2 * ***** BEGIN LICENSE BLOCK *****
3 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
5 * The contents of this file are subject to the Mozilla Public License Version
6 * 1.1 (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 * http://www.mozilla.org/MPL/
10 * Software distributed under the License is distributed on an "AS IS" basis,
11 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12 * for the specific language governing rights and limitations under the
15 * The Original Code is the elliptic curve math library.
17 * The Initial Developer of the Original Code is
18 * Sun Microsystems, Inc.
19 * Portions created by the Initial Developer are Copyright (C) 2003
20 * the Initial Developer. All Rights Reserved.
23 * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
25 * Alternatively, the contents of this file may be used under the terms of
26 * either the GNU General Public License Version 2 or later (the "GPL"), or
27 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
28 * in which case the provisions of the GPL or the LGPL are applicable instead
29 * of those above. If you wish to allow use of your version of this file only
30 * under the terms of either the GPL or the LGPL, and not to allow others to
31 * use your version of this file under the terms of the MPL, indicate your
32 * decision by deleting the provisions above and replace them with the notice
33 * and other provisions required by the GPL or the LGPL. If you do not delete
34 * the provisions above, a recipient may use your version of this file under
35 * the terms of any one of the MPL, the GPL or the LGPL.
37 * ***** END LICENSE BLOCK ***** */
39 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
40 * Use is subject to license terms.
42 * Sun elects to use this software under the MPL license.
45 #pragma ident "%Z%%M% %I% %E% SMI"
55 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k * P(x,
56 * y). If x, y = NULL, then P is assumed to be the generator (base point)
57 * of the group of points on the elliptic curve. Input and output values
58 * are assumed to be NOT field-encoded. */
60 ECPoint_mul(const ECGroup
*group
, const mp_int
*k
, const mp_int
*px
,
61 const mp_int
*py
, mp_int
*rx
, mp_int
*ry
)
66 ARGCHK((k
!= NULL
) && (group
!= NULL
), MP_BADARG
);
69 /* want scalar to be less than or equal to group order */
70 if (mp_cmp(k
, &group
->order
) > 0) {
71 MP_CHECKOK(mp_init(&kt
, FLAG(k
)));
72 MP_CHECKOK(mp_mod(k
, &group
->order
, &kt
));
74 MP_SIGN(&kt
) = MP_ZPOS
;
75 MP_USED(&kt
) = MP_USED(k
);
76 MP_ALLOC(&kt
) = MP_ALLOC(k
);
77 MP_DIGITS(&kt
) = MP_DIGITS(k
);
80 if ((px
== NULL
) || (py
== NULL
)) {
81 if (group
->base_point_mul
) {
82 MP_CHECKOK(group
->base_point_mul(&kt
, rx
, ry
, group
));
85 point_mul(&kt
, &group
->genx
, &group
->geny
, rx
, ry
,
89 if (group
->meth
->field_enc
) {
90 MP_CHECKOK(group
->meth
->field_enc(px
, rx
, group
->meth
));
91 MP_CHECKOK(group
->meth
->field_enc(py
, ry
, group
->meth
));
92 MP_CHECKOK(group
->point_mul(&kt
, rx
, ry
, rx
, ry
, group
));
94 MP_CHECKOK(group
->point_mul(&kt
, px
, py
, rx
, ry
, group
));
97 if (group
->meth
->field_dec
) {
98 MP_CHECKOK(group
->meth
->field_dec(rx
, rx
, group
->meth
));
99 MP_CHECKOK(group
->meth
->field_dec(ry
, ry
, group
->meth
));
103 if (MP_DIGITS(&kt
) != MP_DIGITS(k
)) {
109 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
110 * k2 * P(x, y), where G is the generator (base point) of the group of
111 * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
112 * Input and output values are assumed to be NOT field-encoded. */
114 ec_pts_mul_basic(const mp_int
*k1
, const mp_int
*k2
, const mp_int
*px
,
115 const mp_int
*py
, mp_int
*rx
, mp_int
*ry
,
116 const ECGroup
*group
)
118 mp_err res
= MP_OKAY
;
121 ARGCHK(group
!= NULL
, MP_BADARG
);
122 ARGCHK(!((k1
== NULL
)
123 && ((k2
== NULL
) || (px
== NULL
)
124 || (py
== NULL
))), MP_BADARG
);
126 /* if some arguments are not defined used ECPoint_mul */
128 return ECPoint_mul(group
, k2
, px
, py
, rx
, ry
);
129 } else if ((k2
== NULL
) || (px
== NULL
) || (py
== NULL
)) {
130 return ECPoint_mul(group
, k1
, NULL
, NULL
, rx
, ry
);
135 MP_CHECKOK(mp_init(&sx
, FLAG(k1
)));
136 MP_CHECKOK(mp_init(&sy
, FLAG(k1
)));
138 MP_CHECKOK(ECPoint_mul(group
, k1
, NULL
, NULL
, &sx
, &sy
));
139 MP_CHECKOK(ECPoint_mul(group
, k2
, px
, py
, rx
, ry
));
141 if (group
->meth
->field_enc
) {
142 MP_CHECKOK(group
->meth
->field_enc(&sx
, &sx
, group
->meth
));
143 MP_CHECKOK(group
->meth
->field_enc(&sy
, &sy
, group
->meth
));
144 MP_CHECKOK(group
->meth
->field_enc(rx
, rx
, group
->meth
));
145 MP_CHECKOK(group
->meth
->field_enc(ry
, ry
, group
->meth
));
148 MP_CHECKOK(group
->point_add(&sx
, &sy
, rx
, ry
, rx
, ry
, group
));
150 if (group
->meth
->field_dec
) {
151 MP_CHECKOK(group
->meth
->field_dec(rx
, rx
, group
->meth
));
152 MP_CHECKOK(group
->meth
->field_dec(ry
, ry
, group
->meth
));
161 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
162 * k2 * P(x, y), where G is the generator (base point) of the group of
163 * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
164 * Input and output values are assumed to be NOT field-encoded. Uses
165 * algorithm 15 (simultaneous multiple point multiplication) from Brown,
166 * Hankerson, Lopez, Menezes. Software Implementation of the NIST
167 * Elliptic Curves over Prime Fields. */
169 ec_pts_mul_simul_w2(const mp_int
*k1
, const mp_int
*k2
, const mp_int
*px
,
170 const mp_int
*py
, mp_int
*rx
, mp_int
*ry
,
171 const ECGroup
*group
)
173 mp_err res
= MP_OKAY
;
174 mp_int precomp
[4][4][2];
179 ARGCHK(group
!= NULL
, MP_BADARG
);
180 ARGCHK(!((k1
== NULL
)
181 && ((k2
== NULL
) || (px
== NULL
)
182 || (py
== NULL
))), MP_BADARG
);
184 /* if some arguments are not defined used ECPoint_mul */
186 return ECPoint_mul(group
, k2
, px
, py
, rx
, ry
);
187 } else if ((k2
== NULL
) || (px
== NULL
) || (py
== NULL
)) {
188 return ECPoint_mul(group
, k1
, NULL
, NULL
, rx
, ry
);
191 /* initialize precomputation table */
192 for (i
= 0; i
< 4; i
++) {
193 for (j
= 0; j
< 4; j
++) {
194 MP_DIGITS(&precomp
[i
][j
][0]) = 0;
195 MP_DIGITS(&precomp
[i
][j
][1]) = 0;
198 for (i
= 0; i
< 4; i
++) {
199 for (j
= 0; j
< 4; j
++) {
200 MP_CHECKOK( mp_init_size(&precomp
[i
][j
][0],
201 ECL_MAX_FIELD_SIZE_DIGITS
, FLAG(k1
)) );
202 MP_CHECKOK( mp_init_size(&precomp
[i
][j
][1],
203 ECL_MAX_FIELD_SIZE_DIGITS
, FLAG(k1
)) );
207 /* fill precomputation table */
208 /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
209 if (mpl_significant_bits(k1
) < mpl_significant_bits(k2
)) {
212 if (group
->meth
->field_enc
) {
213 MP_CHECKOK(group
->meth
->
214 field_enc(px
, &precomp
[1][0][0], group
->meth
));
215 MP_CHECKOK(group
->meth
->
216 field_enc(py
, &precomp
[1][0][1], group
->meth
));
218 MP_CHECKOK(mp_copy(px
, &precomp
[1][0][0]));
219 MP_CHECKOK(mp_copy(py
, &precomp
[1][0][1]));
221 MP_CHECKOK(mp_copy(&group
->genx
, &precomp
[0][1][0]));
222 MP_CHECKOK(mp_copy(&group
->geny
, &precomp
[0][1][1]));
226 MP_CHECKOK(mp_copy(&group
->genx
, &precomp
[1][0][0]));
227 MP_CHECKOK(mp_copy(&group
->geny
, &precomp
[1][0][1]));
228 if (group
->meth
->field_enc
) {
229 MP_CHECKOK(group
->meth
->
230 field_enc(px
, &precomp
[0][1][0], group
->meth
));
231 MP_CHECKOK(group
->meth
->
232 field_enc(py
, &precomp
[0][1][1], group
->meth
));
234 MP_CHECKOK(mp_copy(px
, &precomp
[0][1][0]));
235 MP_CHECKOK(mp_copy(py
, &precomp
[0][1][1]));
238 /* precompute [*][0][*] */
239 mp_zero(&precomp
[0][0][0]);
240 mp_zero(&precomp
[0][0][1]);
242 point_dbl(&precomp
[1][0][0], &precomp
[1][0][1],
243 &precomp
[2][0][0], &precomp
[2][0][1], group
));
245 point_add(&precomp
[1][0][0], &precomp
[1][0][1],
246 &precomp
[2][0][0], &precomp
[2][0][1],
247 &precomp
[3][0][0], &precomp
[3][0][1], group
));
248 /* precompute [*][1][*] */
249 for (i
= 1; i
< 4; i
++) {
251 point_add(&precomp
[0][1][0], &precomp
[0][1][1],
252 &precomp
[i
][0][0], &precomp
[i
][0][1],
253 &precomp
[i
][1][0], &precomp
[i
][1][1], group
));
255 /* precompute [*][2][*] */
257 point_dbl(&precomp
[0][1][0], &precomp
[0][1][1],
258 &precomp
[0][2][0], &precomp
[0][2][1], group
));
259 for (i
= 1; i
< 4; i
++) {
261 point_add(&precomp
[0][2][0], &precomp
[0][2][1],
262 &precomp
[i
][0][0], &precomp
[i
][0][1],
263 &precomp
[i
][2][0], &precomp
[i
][2][1], group
));
265 /* precompute [*][3][*] */
267 point_add(&precomp
[0][1][0], &precomp
[0][1][1],
268 &precomp
[0][2][0], &precomp
[0][2][1],
269 &precomp
[0][3][0], &precomp
[0][3][1], group
));
270 for (i
= 1; i
< 4; i
++) {
272 point_add(&precomp
[0][3][0], &precomp
[0][3][1],
273 &precomp
[i
][0][0], &precomp
[i
][0][1],
274 &precomp
[i
][3][0], &precomp
[i
][3][1], group
));
277 d
= (mpl_significant_bits(a
) + 1) / 2;
283 for (i
= d
- 1; i
>= 0; i
--) {
284 ai
= MP_GET_BIT(a
, 2 * i
+ 1);
286 ai
|= MP_GET_BIT(a
, 2 * i
);
287 bi
= MP_GET_BIT(b
, 2 * i
+ 1);
289 bi
|= MP_GET_BIT(b
, 2 * i
);
291 MP_CHECKOK(group
->point_dbl(rx
, ry
, rx
, ry
, group
));
292 MP_CHECKOK(group
->point_dbl(rx
, ry
, rx
, ry
, group
));
293 /* R = R + (ai * A + bi * B) */
295 point_add(rx
, ry
, &precomp
[ai
][bi
][0],
296 &precomp
[ai
][bi
][1], rx
, ry
, group
));
299 if (group
->meth
->field_dec
) {
300 MP_CHECKOK(group
->meth
->field_dec(rx
, rx
, group
->meth
));
301 MP_CHECKOK(group
->meth
->field_dec(ry
, ry
, group
->meth
));
305 for (i
= 0; i
< 4; i
++) {
306 for (j
= 0; j
< 4; j
++) {
307 mp_clear(&precomp
[i
][j
][0]);
308 mp_clear(&precomp
[i
][j
][1]);
314 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
315 * k2 * P(x, y), where G is the generator (base point) of the group of
316 * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
317 * Input and output values are assumed to be NOT field-encoded. */
319 ECPoints_mul(const ECGroup
*group
, const mp_int
*k1
, const mp_int
*k2
,
320 const mp_int
*px
, const mp_int
*py
, mp_int
*rx
, mp_int
*ry
)
322 mp_err res
= MP_OKAY
;
324 const mp_int
*k1p
, *k2p
;
329 ARGCHK(group
!= NULL
, MP_BADARG
);
331 /* want scalar to be less than or equal to group order */
333 if (mp_cmp(k1
, &group
->order
) >= 0) {
334 MP_CHECKOK(mp_init(&k1t
, FLAG(k1
)));
335 MP_CHECKOK(mp_mod(k1
, &group
->order
, &k1t
));
344 if (mp_cmp(k2
, &group
->order
) >= 0) {
345 MP_CHECKOK(mp_init(&k2t
, FLAG(k2
)));
346 MP_CHECKOK(mp_mod(k2
, &group
->order
, &k2t
));
355 /* if points_mul is defined, then use it */
356 if (group
->points_mul
) {
357 res
= group
->points_mul(k1p
, k2p
, px
, py
, rx
, ry
, group
);
359 res
= ec_pts_mul_simul_w2(k1p
, k2p
, px
, py
, rx
, ry
, group
);