2 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
7 * The basic framework for this code came from the reference
8 * implementation for MD5. That implementation is Copyright (C)
9 * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
11 * License to copy and use this software is granted provided that it
12 * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
13 * Algorithm" in all material mentioning or referencing this software
16 * License is also granted to make and use derivative works provided
17 * that such works are identified as "derived from the RSA Data
18 * Security, Inc. MD5 Message-Digest Algorithm" in all material
19 * mentioning or referencing the derived work.
21 * RSA Data Security, Inc. makes no representations concerning either
22 * the merchantability of this software or the suitability of this
23 * software for any particular purpose. It is provided "as is"
24 * without express or implied warranty of any kind.
26 * These notices must be retained in any copies of any part of this
27 * documentation and/or software.
29 * NOTE: Cleaned-up and optimized, version of SHA1, based on the FIPS 180-1
30 * standard, available at http://www.itl.nist.gov/fipspubs/fip180-1.htm
31 * Not as fast as one would like -- further optimizations are encouraged
35 #if !defined(_KERNEL) && !defined(_BOOT)
40 #include <sys/systeminfo.h>
41 #endif /* !_KERNEL && !_BOOT */
43 #include <sys/types.h>
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysmacros.h>
48 #include <sys/sha1_consts.h>
51 #include <sys/byteorder.h>
56 #define bcopy(_s, _d, _l) ((void) memcpy((_d), (_s), (_l)))
57 #define bzero(_m, _l) ((void) memset((_m), 0, (_l)))
60 static void Encode(uint8_t *, const uint32_t *, size_t);
64 #define SHA1_TRANSFORM(ctx, in) \
65 SHA1Transform((ctx)->state[0], (ctx)->state[1], (ctx)->state[2], \
66 (ctx)->state[3], (ctx)->state[4], (ctx), (in))
68 static void SHA1Transform(uint32_t, uint32_t, uint32_t, uint32_t, uint32_t,
69 SHA1_CTX
*, const uint8_t *);
71 #elif defined(__amd64)
73 #define SHA1_TRANSFORM(ctx, in) sha1_block_data_order((ctx), (in), 1)
74 #define SHA1_TRANSFORM_BLOCKS(ctx, in, num) sha1_block_data_order((ctx), \
77 void sha1_block_data_order(SHA1_CTX
*ctx
, const void *inpp
, size_t num_blocks
);
81 #define SHA1_TRANSFORM(ctx, in) SHA1Transform((ctx), (in))
83 static void SHA1Transform(SHA1_CTX
*, const uint8_t *);
88 static uint8_t PADDING
[64] = { 0x80, /* all zeros */ };
91 * F, G, and H are the basic SHA1 functions.
93 #define F(b, c, d) (((b) & (c)) | ((~b) & (d)))
94 #define G(b, c, d) ((b) ^ (c) ^ (d))
95 #define H(b, c, d) (((b) & (c)) | (((b)|(c)) & (d)))
98 * ROTATE_LEFT rotates x left n bits.
101 #if defined(__GNUC__) && defined(_LP64)
102 static __inline__
uint64_t
103 ROTATE_LEFT(uint64_t value
, uint32_t n
)
107 t32
= (uint32_t)value
;
108 return ((t32
<< n
) | (t32
>> (32 - n
)));
113 #define ROTATE_LEFT(x, n) \
114 (((x) << (n)) | ((x) >> ((sizeof (x) * NBBY)-(n))))
122 * purpose: initializes the sha1 context and begins and sha1 digest operation
123 * input: SHA1_CTX * : the context to initializes.
128 SHA1Init(SHA1_CTX
*ctx
)
130 ctx
->count
[0] = ctx
->count
[1] = 0;
133 * load magic initialization constants. Tell lint
134 * that these constants are unsigned by using U.
137 ctx
->state
[0] = 0x67452301U
;
138 ctx
->state
[1] = 0xefcdab89U
;
139 ctx
->state
[2] = 0x98badcfeU
;
140 ctx
->state
[3] = 0x10325476U
;
141 ctx
->state
[4] = 0xc3d2e1f0U
;
147 #include <sys/regset.h>
149 #include <sys/fpu/fpusystm.h>
151 /* the alignment for block stores to save fp registers */
152 #define VIS_ALIGN (64)
154 extern int sha1_savefp(kfpu_t
*, int);
155 extern void sha1_restorefp(kfpu_t
*);
157 uint32_t vis_sha1_svfp_threshold
= 128;
164 static uint64_t VIS
[] = {
165 0x8000000080000000ULL
,
166 0x0002000200020002ULL
,
167 0x5a8279996ed9eba1ULL
,
168 0x8f1bbcdcca62c1d6ULL
,
169 0x012389ab456789abULL
};
171 extern void SHA1TransformVIS(uint64_t *, uint32_t *, uint32_t *, uint64_t *);
177 * purpose: continues an sha1 digest operation, using the message block
178 * to update the context.
179 * input: SHA1_CTX * : the context to update
180 * void * : the message block
181 * size_t : the length of the message block in bytes
186 SHA1Update(SHA1_CTX
*ctx
, const void *inptr
, size_t input_len
)
188 uint32_t i
, buf_index
, buf_len
;
189 uint64_t X0
[40], input64
[8];
190 const uint8_t *input
= inptr
;
201 /* compute number of bytes mod 64 */
202 buf_index
= (ctx
->count
[1] >> 3) & 0x3F;
204 /* update number of bits */
205 if ((ctx
->count
[1] += (input_len
<< 3)) < (input_len
<< 3))
208 ctx
->count
[0] += (input_len
>> 29);
210 buf_len
= 64 - buf_index
;
212 /* transform as many times as possible */
214 if (input_len
>= buf_len
) {
218 uint8_t fpua
[sizeof (kfpu_t
) + GSR_SIZE
+ VIS_ALIGN
];
219 uint32_t len
= (input_len
+ buf_index
) & ~0x3f;
222 fpu
= (kfpu_t
*)P2ROUNDUP((uintptr_t)fpua
, 64);
223 svfp_ok
= ((len
>= vis_sha1_svfp_threshold
) ? 1 : 0);
224 usevis
= fpu_exists
&& sha1_savefp(fpu
, svfp_ok
);
231 * general optimization:
233 * only do initial bcopy() and SHA1Transform() if
234 * buf_index != 0. if buf_index == 0, we're just
235 * wasting our time doing the bcopy() since there
236 * wasn't any data left over from a previous call to
241 bcopy(input
, &ctx
->buf_un
.buf8
[buf_index
], buf_len
);
245 &ctx
->state
[0], VIS
);
247 SHA1_TRANSFORM(ctx
, ctx
->buf_un
.buf8
);
253 * VIS SHA-1: uses the VIS 1.0 instructions to accelerate
254 * SHA-1 processing. This is achieved by "offloading" the
255 * computation of the message schedule (MS) to the VIS units.
256 * This allows the VIS computation of the message schedule
257 * to be performed in parallel with the standard integer
258 * processing of the remainder of the SHA-1 computation.
259 * performance by up to around 1.37X, compared to an optimized
260 * integer-only implementation.
262 * The VIS implementation of SHA1Transform has a different API
263 * to the standard integer version:
265 * void SHA1TransformVIS(
266 * uint64_t *, // Pointer to MS for ith block
267 * uint32_t *, // Pointer to ith block of message data
268 * uint32_t *, // Pointer to SHA state i.e ctx->state
269 * uint64_t *, // Pointer to various VIS constants
272 * Note: the message data must by 4-byte aligned.
274 * Function requires VIS 1.0 support.
276 * Handling is provided to deal with arbitrary byte alingment
277 * of the input data but the performance gains are reduced
278 * for alignments other than 4-bytes.
281 if (!IS_P2ALIGNED(&input
[i
], sizeof (uint32_t))) {
283 * Main processing loop - input misaligned
285 for (; i
+ 63 < input_len
; i
+= 64) {
286 bcopy(&input
[i
], input64
, 64);
289 &ctx
->state
[0], VIS
);
293 * Main processing loop - input 8-byte aligned
295 for (; i
+ 63 < input_len
; i
+= 64) {
297 /* LINTED E_BAD_PTR_CAST_ALIGN */
298 (uint32_t *)&input
[i
], /* CSTYLED */
299 &ctx
->state
[0], VIS
);
307 for (; i
+ 63 < input_len
; i
+= 64) {
308 SHA1_TRANSFORM(ctx
, &input
[i
]);
313 * general optimization:
315 * if i and input_len are the same, return now instead
316 * of calling bcopy(), since the bcopy() in this case
317 * will be an expensive nop.
326 /* buffer remaining input */
327 bcopy(&input
[i
], &ctx
->buf_un
.buf8
[buf_index
], input_len
- i
);
333 SHA1Update(SHA1_CTX
*ctx
, const void *inptr
, size_t input_len
)
335 uint32_t i
, buf_index
, buf_len
;
336 const uint8_t *input
= inptr
;
338 uint32_t block_count
;
345 /* compute number of bytes mod 64 */
346 buf_index
= (ctx
->count
[1] >> 3) & 0x3F;
348 /* update number of bits */
349 if ((ctx
->count
[1] += (input_len
<< 3)) < (input_len
<< 3))
352 ctx
->count
[0] += (input_len
>> 29);
354 buf_len
= 64 - buf_index
;
356 /* transform as many times as possible */
358 if (input_len
>= buf_len
) {
361 * general optimization:
363 * only do initial bcopy() and SHA1Transform() if
364 * buf_index != 0. if buf_index == 0, we're just
365 * wasting our time doing the bcopy() since there
366 * wasn't any data left over from a previous call to
371 bcopy(input
, &ctx
->buf_un
.buf8
[buf_index
], buf_len
);
372 SHA1_TRANSFORM(ctx
, ctx
->buf_un
.buf8
);
376 #if !defined(__amd64)
377 for (; i
+ 63 < input_len
; i
+= 64)
378 SHA1_TRANSFORM(ctx
, &input
[i
]);
380 block_count
= (input_len
- i
) >> 6;
381 if (block_count
> 0) {
382 SHA1_TRANSFORM_BLOCKS(ctx
, &input
[i
], block_count
);
383 i
+= block_count
<< 6;
385 #endif /* !__amd64 */
388 * general optimization:
390 * if i and input_len are the same, return now instead
391 * of calling bcopy(), since the bcopy() in this case
392 * will be an expensive nop.
401 /* buffer remaining input */
402 bcopy(&input
[i
], &ctx
->buf_un
.buf8
[buf_index
], input_len
- i
);
405 #endif /* VIS_SHA1 */
410 * purpose: ends an sha1 digest operation, finalizing the message digest and
411 * zeroing the context.
412 * input: uchar_t * : A buffer to store the digest.
413 * : The function actually uses void* because many
414 * : callers pass things other than uchar_t here.
415 * SHA1_CTX * : the context to finalize, save, and zero
420 SHA1Final(void *digest
, SHA1_CTX
*ctx
)
422 uint8_t bitcount_be
[sizeof (ctx
->count
)];
423 uint32_t index
= (ctx
->count
[1] >> 3) & 0x3f;
425 /* store bit count, big endian */
426 Encode(bitcount_be
, ctx
->count
, sizeof (bitcount_be
));
428 /* pad out to 56 mod 64 */
429 SHA1Update(ctx
, PADDING
, ((index
< 56) ? 56 : 120) - index
);
431 /* append length (before padding) */
432 SHA1Update(ctx
, bitcount_be
, sizeof (bitcount_be
));
434 /* store state in digest */
435 Encode(digest
, ctx
->state
, sizeof (ctx
->state
));
437 /* zeroize sensitive information */
438 bzero(ctx
, sizeof (*ctx
));
442 #if !defined(__amd64)
444 typedef uint32_t sha1word
;
447 * sparc optimization:
449 * on the sparc, we can load big endian 32-bit data easily. note that
450 * special care must be taken to ensure the address is 32-bit aligned.
451 * in the interest of speed, we don't check to make sure, since
452 * careful programming can guarantee this for us.
455 #if defined(_BIG_ENDIAN)
456 #define LOAD_BIG_32(addr) (*(uint32_t *)(addr))
458 #elif defined(HAVE_HTONL)
459 #define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr)))
462 /* little endian -- will work on big endian, but slowly */
463 #define LOAD_BIG_32(addr) \
464 (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3])
465 #endif /* _BIG_ENDIAN */
472 #else /* !defined(W_ARRAY) */
474 #endif /* !defined(W_ARRAY) */
480 * sparc register window optimization:
482 * `a', `b', `c', `d', and `e' are passed into SHA1Transform
483 * explicitly since it increases the number of registers available to
484 * the compiler. under this scheme, these variables can be held in
485 * %i0 - %i4, which leaves more local and out registers available.
487 * purpose: sha1 transformation -- updates the digest based on `block'
488 * input: uint32_t : bytes 1 - 4 of the digest
489 * uint32_t : bytes 5 - 8 of the digest
490 * uint32_t : bytes 9 - 12 of the digest
491 * uint32_t : bytes 12 - 16 of the digest
492 * uint32_t : bytes 16 - 20 of the digest
493 * SHA1_CTX * : the context to update
494 * uint8_t [64]: the block to use to update the digest
499 SHA1Transform(uint32_t a
, uint32_t b
, uint32_t c
, uint32_t d
, uint32_t e
,
500 SHA1_CTX
*ctx
, const uint8_t blk
[64])
503 * sparc optimization:
505 * while it is somewhat counter-intuitive, on sparc, it is
506 * more efficient to place all the constants used in this
507 * function in an array and load the values out of the array
508 * than to manually load the constants. this is because
509 * setting a register to a 32-bit value takes two ops in most
510 * cases: a `sethi' and an `or', but loading a 32-bit value
511 * from memory only takes one `ld' (or `lduw' on v9). while
512 * this increases memory usage, the compiler can find enough
513 * other things to do while waiting to keep the pipeline does
514 * not stall. additionally, it is likely that many of these
515 * constants are cached so that later accesses do not even go
518 * this array is declared `static' to keep the compiler from
519 * having to bcopy() this array onto the stack frame of
520 * SHA1Transform() each time it is called -- which is
521 * unacceptably expensive.
523 * the `const' is to ensure that callers are good citizens and
524 * do not try to munge the array. since these routines are
525 * going to be called from inside multithreaded kernelland,
526 * this is a good safety check. -- `sha1_consts' will end up in
529 * unfortunately, loading from an array in this manner hurts
530 * performance under Intel. So, there is a macro,
531 * SHA1_CONST(), used in SHA1Transform(), that either expands to
532 * a reference to this array, or to the actual constant,
533 * depending on what platform this code is compiled for.
536 static const uint32_t sha1_consts
[] = {
537 SHA1_CONST_0
, SHA1_CONST_1
, SHA1_CONST_2
, SHA1_CONST_3
541 * general optimization:
543 * use individual integers instead of using an array. this is a
544 * win, although the amount it wins by seems to vary quite a bit.
547 uint32_t w_0
, w_1
, w_2
, w_3
, w_4
, w_5
, w_6
, w_7
;
548 uint32_t w_8
, w_9
, w_10
, w_11
, w_12
, w_13
, w_14
, w_15
;
551 * sparc optimization:
553 * if `block' is already aligned on a 4-byte boundary, use
554 * LOAD_BIG_32() directly. otherwise, bcopy() into a
555 * buffer that *is* aligned on a 4-byte boundary and then do
556 * the LOAD_BIG_32() on that buffer. benchmarks have shown
557 * that using the bcopy() is better than loading the bytes
558 * individually and doing the endian-swap by hand.
560 * even though it's quite tempting to assign to do:
562 * blk = bcopy(ctx->buf_un.buf32, blk, sizeof (ctx->buf_un.buf32));
564 * and only have one set of LOAD_BIG_32()'s, the compiler
565 * *does not* like that, so please resist the urge.
568 if ((uintptr_t)blk
& 0x3) { /* not 4-byte aligned? */
569 bcopy(blk
, ctx
->buf_un
.buf32
, sizeof (ctx
->buf_un
.buf32
));
570 w_15
= LOAD_BIG_32(ctx
->buf_un
.buf32
+ 15);
571 w_14
= LOAD_BIG_32(ctx
->buf_un
.buf32
+ 14);
572 w_13
= LOAD_BIG_32(ctx
->buf_un
.buf32
+ 13);
573 w_12
= LOAD_BIG_32(ctx
->buf_un
.buf32
+ 12);
574 w_11
= LOAD_BIG_32(ctx
->buf_un
.buf32
+ 11);
575 w_10
= LOAD_BIG_32(ctx
->buf_un
.buf32
+ 10);
576 w_9
= LOAD_BIG_32(ctx
->buf_un
.buf32
+ 9);
577 w_8
= LOAD_BIG_32(ctx
->buf_un
.buf32
+ 8);
578 w_7
= LOAD_BIG_32(ctx
->buf_un
.buf32
+ 7);
579 w_6
= LOAD_BIG_32(ctx
->buf_un
.buf32
+ 6);
580 w_5
= LOAD_BIG_32(ctx
->buf_un
.buf32
+ 5);
581 w_4
= LOAD_BIG_32(ctx
->buf_un
.buf32
+ 4);
582 w_3
= LOAD_BIG_32(ctx
->buf_un
.buf32
+ 3);
583 w_2
= LOAD_BIG_32(ctx
->buf_un
.buf32
+ 2);
584 w_1
= LOAD_BIG_32(ctx
->buf_un
.buf32
+ 1);
585 w_0
= LOAD_BIG_32(ctx
->buf_un
.buf32
+ 0);
587 /* LINTED E_BAD_PTR_CAST_ALIGN */
588 w_15
= LOAD_BIG_32(blk
+ 60);
589 /* LINTED E_BAD_PTR_CAST_ALIGN */
590 w_14
= LOAD_BIG_32(blk
+ 56);
591 /* LINTED E_BAD_PTR_CAST_ALIGN */
592 w_13
= LOAD_BIG_32(blk
+ 52);
593 /* LINTED E_BAD_PTR_CAST_ALIGN */
594 w_12
= LOAD_BIG_32(blk
+ 48);
595 /* LINTED E_BAD_PTR_CAST_ALIGN */
596 w_11
= LOAD_BIG_32(blk
+ 44);
597 /* LINTED E_BAD_PTR_CAST_ALIGN */
598 w_10
= LOAD_BIG_32(blk
+ 40);
599 /* LINTED E_BAD_PTR_CAST_ALIGN */
600 w_9
= LOAD_BIG_32(blk
+ 36);
601 /* LINTED E_BAD_PTR_CAST_ALIGN */
602 w_8
= LOAD_BIG_32(blk
+ 32);
603 /* LINTED E_BAD_PTR_CAST_ALIGN */
604 w_7
= LOAD_BIG_32(blk
+ 28);
605 /* LINTED E_BAD_PTR_CAST_ALIGN */
606 w_6
= LOAD_BIG_32(blk
+ 24);
607 /* LINTED E_BAD_PTR_CAST_ALIGN */
608 w_5
= LOAD_BIG_32(blk
+ 20);
609 /* LINTED E_BAD_PTR_CAST_ALIGN */
610 w_4
= LOAD_BIG_32(blk
+ 16);
611 /* LINTED E_BAD_PTR_CAST_ALIGN */
612 w_3
= LOAD_BIG_32(blk
+ 12);
613 /* LINTED E_BAD_PTR_CAST_ALIGN */
614 w_2
= LOAD_BIG_32(blk
+ 8);
615 /* LINTED E_BAD_PTR_CAST_ALIGN */
616 w_1
= LOAD_BIG_32(blk
+ 4);
617 /* LINTED E_BAD_PTR_CAST_ALIGN */
618 w_0
= LOAD_BIG_32(blk
+ 0);
620 #else /* !defined(__sparc) */
623 SHA1Transform(SHA1_CTX
*ctx
, const uint8_t blk
[64])
626 sha1word a
= ctx
->state
[0];
627 sha1word b
= ctx
->state
[1];
628 sha1word c
= ctx
->state
[2];
629 sha1word d
= ctx
->state
[3];
630 sha1word e
= ctx
->state
[4];
634 #else /* !defined(W_ARRAY) */
635 sha1word w_0
, w_1
, w_2
, w_3
, w_4
, w_5
, w_6
, w_7
;
636 sha1word w_8
, w_9
, w_10
, w_11
, w_12
, w_13
, w_14
, w_15
;
637 #endif /* !defined(W_ARRAY) */
639 W(0) = LOAD_BIG_32((void *)(blk
+ 0));
640 W(1) = LOAD_BIG_32((void *)(blk
+ 4));
641 W(2) = LOAD_BIG_32((void *)(blk
+ 8));
642 W(3) = LOAD_BIG_32((void *)(blk
+ 12));
643 W(4) = LOAD_BIG_32((void *)(blk
+ 16));
644 W(5) = LOAD_BIG_32((void *)(blk
+ 20));
645 W(6) = LOAD_BIG_32((void *)(blk
+ 24));
646 W(7) = LOAD_BIG_32((void *)(blk
+ 28));
647 W(8) = LOAD_BIG_32((void *)(blk
+ 32));
648 W(9) = LOAD_BIG_32((void *)(blk
+ 36));
649 W(10) = LOAD_BIG_32((void *)(blk
+ 40));
650 W(11) = LOAD_BIG_32((void *)(blk
+ 44));
651 W(12) = LOAD_BIG_32((void *)(blk
+ 48));
652 W(13) = LOAD_BIG_32((void *)(blk
+ 52));
653 W(14) = LOAD_BIG_32((void *)(blk
+ 56));
654 W(15) = LOAD_BIG_32((void *)(blk
+ 60));
656 #endif /* !defined(__sparc) */
659 * general optimization:
661 * even though this approach is described in the standard as
662 * being slower algorithmically, it is 30-40% faster than the
663 * "faster" version under SPARC, because this version has more
664 * of the constraints specified at compile-time and uses fewer
665 * variables (and therefore has better register utilization)
666 * than its "speedier" brother. (i've tried both, trust me)
668 * for either method given in the spec, there is an "assignment"
669 * phase where the following takes place:
671 * tmp = (main_computation);
672 * e = d; d = c; c = rotate_left(b, 30); b = a; a = tmp;
674 * we can make the algorithm go faster by not doing this work,
675 * but just pretending that `d' is now `e', etc. this works
676 * really well and obviates the need for a temporary variable.
677 * however, we still explicitly perform the rotate action,
678 * since it is cheaper on SPARC to do it once than to have to
679 * do it over and over again.
683 e
= ROTATE_LEFT(a
, 5) + F(b
, c
, d
) + e
+ W(0) + SHA1_CONST(0); /* 0 */
684 b
= ROTATE_LEFT(b
, 30);
686 d
= ROTATE_LEFT(e
, 5) + F(a
, b
, c
) + d
+ W(1) + SHA1_CONST(0); /* 1 */
687 a
= ROTATE_LEFT(a
, 30);
689 c
= ROTATE_LEFT(d
, 5) + F(e
, a
, b
) + c
+ W(2) + SHA1_CONST(0); /* 2 */
690 e
= ROTATE_LEFT(e
, 30);
692 b
= ROTATE_LEFT(c
, 5) + F(d
, e
, a
) + b
+ W(3) + SHA1_CONST(0); /* 3 */
693 d
= ROTATE_LEFT(d
, 30);
695 a
= ROTATE_LEFT(b
, 5) + F(c
, d
, e
) + a
+ W(4) + SHA1_CONST(0); /* 4 */
696 c
= ROTATE_LEFT(c
, 30);
698 e
= ROTATE_LEFT(a
, 5) + F(b
, c
, d
) + e
+ W(5) + SHA1_CONST(0); /* 5 */
699 b
= ROTATE_LEFT(b
, 30);
701 d
= ROTATE_LEFT(e
, 5) + F(a
, b
, c
) + d
+ W(6) + SHA1_CONST(0); /* 6 */
702 a
= ROTATE_LEFT(a
, 30);
704 c
= ROTATE_LEFT(d
, 5) + F(e
, a
, b
) + c
+ W(7) + SHA1_CONST(0); /* 7 */
705 e
= ROTATE_LEFT(e
, 30);
707 b
= ROTATE_LEFT(c
, 5) + F(d
, e
, a
) + b
+ W(8) + SHA1_CONST(0); /* 8 */
708 d
= ROTATE_LEFT(d
, 30);
710 a
= ROTATE_LEFT(b
, 5) + F(c
, d
, e
) + a
+ W(9) + SHA1_CONST(0); /* 9 */
711 c
= ROTATE_LEFT(c
, 30);
713 e
= ROTATE_LEFT(a
, 5) + F(b
, c
, d
) + e
+ W(10) + SHA1_CONST(0); /* 10 */
714 b
= ROTATE_LEFT(b
, 30);
716 d
= ROTATE_LEFT(e
, 5) + F(a
, b
, c
) + d
+ W(11) + SHA1_CONST(0); /* 11 */
717 a
= ROTATE_LEFT(a
, 30);
719 c
= ROTATE_LEFT(d
, 5) + F(e
, a
, b
) + c
+ W(12) + SHA1_CONST(0); /* 12 */
720 e
= ROTATE_LEFT(e
, 30);
722 b
= ROTATE_LEFT(c
, 5) + F(d
, e
, a
) + b
+ W(13) + SHA1_CONST(0); /* 13 */
723 d
= ROTATE_LEFT(d
, 30);
725 a
= ROTATE_LEFT(b
, 5) + F(c
, d
, e
) + a
+ W(14) + SHA1_CONST(0); /* 14 */
726 c
= ROTATE_LEFT(c
, 30);
728 e
= ROTATE_LEFT(a
, 5) + F(b
, c
, d
) + e
+ W(15) + SHA1_CONST(0); /* 15 */
729 b
= ROTATE_LEFT(b
, 30);
731 W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 16 */
732 d
= ROTATE_LEFT(e
, 5) + F(a
, b
, c
) + d
+ W(0) + SHA1_CONST(0);
733 a
= ROTATE_LEFT(a
, 30);
735 W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 17 */
736 c
= ROTATE_LEFT(d
, 5) + F(e
, a
, b
) + c
+ W(1) + SHA1_CONST(0);
737 e
= ROTATE_LEFT(e
, 30);
739 W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 18 */
740 b
= ROTATE_LEFT(c
, 5) + F(d
, e
, a
) + b
+ W(2) + SHA1_CONST(0);
741 d
= ROTATE_LEFT(d
, 30);
743 W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 19 */
744 a
= ROTATE_LEFT(b
, 5) + F(c
, d
, e
) + a
+ W(3) + SHA1_CONST(0);
745 c
= ROTATE_LEFT(c
, 30);
748 W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 20 */
749 e
= ROTATE_LEFT(a
, 5) + G(b
, c
, d
) + e
+ W(4) + SHA1_CONST(1);
750 b
= ROTATE_LEFT(b
, 30);
752 W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 21 */
753 d
= ROTATE_LEFT(e
, 5) + G(a
, b
, c
) + d
+ W(5) + SHA1_CONST(1);
754 a
= ROTATE_LEFT(a
, 30);
756 W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 22 */
757 c
= ROTATE_LEFT(d
, 5) + G(e
, a
, b
) + c
+ W(6) + SHA1_CONST(1);
758 e
= ROTATE_LEFT(e
, 30);
760 W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 23 */
761 b
= ROTATE_LEFT(c
, 5) + G(d
, e
, a
) + b
+ W(7) + SHA1_CONST(1);
762 d
= ROTATE_LEFT(d
, 30);
764 W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 24 */
765 a
= ROTATE_LEFT(b
, 5) + G(c
, d
, e
) + a
+ W(8) + SHA1_CONST(1);
766 c
= ROTATE_LEFT(c
, 30);
768 W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 25 */
769 e
= ROTATE_LEFT(a
, 5) + G(b
, c
, d
) + e
+ W(9) + SHA1_CONST(1);
770 b
= ROTATE_LEFT(b
, 30);
772 W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 26 */
773 d
= ROTATE_LEFT(e
, 5) + G(a
, b
, c
) + d
+ W(10) + SHA1_CONST(1);
774 a
= ROTATE_LEFT(a
, 30);
776 W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 27 */
777 c
= ROTATE_LEFT(d
, 5) + G(e
, a
, b
) + c
+ W(11) + SHA1_CONST(1);
778 e
= ROTATE_LEFT(e
, 30);
780 W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 28 */
781 b
= ROTATE_LEFT(c
, 5) + G(d
, e
, a
) + b
+ W(12) + SHA1_CONST(1);
782 d
= ROTATE_LEFT(d
, 30);
784 W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 29 */
785 a
= ROTATE_LEFT(b
, 5) + G(c
, d
, e
) + a
+ W(13) + SHA1_CONST(1);
786 c
= ROTATE_LEFT(c
, 30);
788 W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 30 */
789 e
= ROTATE_LEFT(a
, 5) + G(b
, c
, d
) + e
+ W(14) + SHA1_CONST(1);
790 b
= ROTATE_LEFT(b
, 30);
792 W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 31 */
793 d
= ROTATE_LEFT(e
, 5) + G(a
, b
, c
) + d
+ W(15) + SHA1_CONST(1);
794 a
= ROTATE_LEFT(a
, 30);
796 W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 32 */
797 c
= ROTATE_LEFT(d
, 5) + G(e
, a
, b
) + c
+ W(0) + SHA1_CONST(1);
798 e
= ROTATE_LEFT(e
, 30);
800 W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 33 */
801 b
= ROTATE_LEFT(c
, 5) + G(d
, e
, a
) + b
+ W(1) + SHA1_CONST(1);
802 d
= ROTATE_LEFT(d
, 30);
804 W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 34 */
805 a
= ROTATE_LEFT(b
, 5) + G(c
, d
, e
) + a
+ W(2) + SHA1_CONST(1);
806 c
= ROTATE_LEFT(c
, 30);
808 W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 35 */
809 e
= ROTATE_LEFT(a
, 5) + G(b
, c
, d
) + e
+ W(3) + SHA1_CONST(1);
810 b
= ROTATE_LEFT(b
, 30);
812 W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 36 */
813 d
= ROTATE_LEFT(e
, 5) + G(a
, b
, c
) + d
+ W(4) + SHA1_CONST(1);
814 a
= ROTATE_LEFT(a
, 30);
816 W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 37 */
817 c
= ROTATE_LEFT(d
, 5) + G(e
, a
, b
) + c
+ W(5) + SHA1_CONST(1);
818 e
= ROTATE_LEFT(e
, 30);
820 W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 38 */
821 b
= ROTATE_LEFT(c
, 5) + G(d
, e
, a
) + b
+ W(6) + SHA1_CONST(1);
822 d
= ROTATE_LEFT(d
, 30);
824 W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 39 */
825 a
= ROTATE_LEFT(b
, 5) + G(c
, d
, e
) + a
+ W(7) + SHA1_CONST(1);
826 c
= ROTATE_LEFT(c
, 30);
829 W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 40 */
830 e
= ROTATE_LEFT(a
, 5) + H(b
, c
, d
) + e
+ W(8) + SHA1_CONST(2);
831 b
= ROTATE_LEFT(b
, 30);
833 W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 41 */
834 d
= ROTATE_LEFT(e
, 5) + H(a
, b
, c
) + d
+ W(9) + SHA1_CONST(2);
835 a
= ROTATE_LEFT(a
, 30);
837 W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 42 */
838 c
= ROTATE_LEFT(d
, 5) + H(e
, a
, b
) + c
+ W(10) + SHA1_CONST(2);
839 e
= ROTATE_LEFT(e
, 30);
841 W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 43 */
842 b
= ROTATE_LEFT(c
, 5) + H(d
, e
, a
) + b
+ W(11) + SHA1_CONST(2);
843 d
= ROTATE_LEFT(d
, 30);
845 W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 44 */
846 a
= ROTATE_LEFT(b
, 5) + H(c
, d
, e
) + a
+ W(12) + SHA1_CONST(2);
847 c
= ROTATE_LEFT(c
, 30);
849 W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 45 */
850 e
= ROTATE_LEFT(a
, 5) + H(b
, c
, d
) + e
+ W(13) + SHA1_CONST(2);
851 b
= ROTATE_LEFT(b
, 30);
853 W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 46 */
854 d
= ROTATE_LEFT(e
, 5) + H(a
, b
, c
) + d
+ W(14) + SHA1_CONST(2);
855 a
= ROTATE_LEFT(a
, 30);
857 W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 47 */
858 c
= ROTATE_LEFT(d
, 5) + H(e
, a
, b
) + c
+ W(15) + SHA1_CONST(2);
859 e
= ROTATE_LEFT(e
, 30);
861 W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 48 */
862 b
= ROTATE_LEFT(c
, 5) + H(d
, e
, a
) + b
+ W(0) + SHA1_CONST(2);
863 d
= ROTATE_LEFT(d
, 30);
865 W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 49 */
866 a
= ROTATE_LEFT(b
, 5) + H(c
, d
, e
) + a
+ W(1) + SHA1_CONST(2);
867 c
= ROTATE_LEFT(c
, 30);
869 W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 50 */
870 e
= ROTATE_LEFT(a
, 5) + H(b
, c
, d
) + e
+ W(2) + SHA1_CONST(2);
871 b
= ROTATE_LEFT(b
, 30);
873 W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 51 */
874 d
= ROTATE_LEFT(e
, 5) + H(a
, b
, c
) + d
+ W(3) + SHA1_CONST(2);
875 a
= ROTATE_LEFT(a
, 30);
877 W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 52 */
878 c
= ROTATE_LEFT(d
, 5) + H(e
, a
, b
) + c
+ W(4) + SHA1_CONST(2);
879 e
= ROTATE_LEFT(e
, 30);
881 W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 53 */
882 b
= ROTATE_LEFT(c
, 5) + H(d
, e
, a
) + b
+ W(5) + SHA1_CONST(2);
883 d
= ROTATE_LEFT(d
, 30);
885 W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 54 */
886 a
= ROTATE_LEFT(b
, 5) + H(c
, d
, e
) + a
+ W(6) + SHA1_CONST(2);
887 c
= ROTATE_LEFT(c
, 30);
889 W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 55 */
890 e
= ROTATE_LEFT(a
, 5) + H(b
, c
, d
) + e
+ W(7) + SHA1_CONST(2);
891 b
= ROTATE_LEFT(b
, 30);
893 W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 56 */
894 d
= ROTATE_LEFT(e
, 5) + H(a
, b
, c
) + d
+ W(8) + SHA1_CONST(2);
895 a
= ROTATE_LEFT(a
, 30);
897 W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 57 */
898 c
= ROTATE_LEFT(d
, 5) + H(e
, a
, b
) + c
+ W(9) + SHA1_CONST(2);
899 e
= ROTATE_LEFT(e
, 30);
901 W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 58 */
902 b
= ROTATE_LEFT(c
, 5) + H(d
, e
, a
) + b
+ W(10) + SHA1_CONST(2);
903 d
= ROTATE_LEFT(d
, 30);
905 W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 59 */
906 a
= ROTATE_LEFT(b
, 5) + H(c
, d
, e
) + a
+ W(11) + SHA1_CONST(2);
907 c
= ROTATE_LEFT(c
, 30);
910 W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 60 */
911 e
= ROTATE_LEFT(a
, 5) + G(b
, c
, d
) + e
+ W(12) + SHA1_CONST(3);
912 b
= ROTATE_LEFT(b
, 30);
914 W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 61 */
915 d
= ROTATE_LEFT(e
, 5) + G(a
, b
, c
) + d
+ W(13) + SHA1_CONST(3);
916 a
= ROTATE_LEFT(a
, 30);
918 W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 62 */
919 c
= ROTATE_LEFT(d
, 5) + G(e
, a
, b
) + c
+ W(14) + SHA1_CONST(3);
920 e
= ROTATE_LEFT(e
, 30);
922 W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 63 */
923 b
= ROTATE_LEFT(c
, 5) + G(d
, e
, a
) + b
+ W(15) + SHA1_CONST(3);
924 d
= ROTATE_LEFT(d
, 30);
926 W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 64 */
927 a
= ROTATE_LEFT(b
, 5) + G(c
, d
, e
) + a
+ W(0) + SHA1_CONST(3);
928 c
= ROTATE_LEFT(c
, 30);
930 W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 65 */
931 e
= ROTATE_LEFT(a
, 5) + G(b
, c
, d
) + e
+ W(1) + SHA1_CONST(3);
932 b
= ROTATE_LEFT(b
, 30);
934 W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 66 */
935 d
= ROTATE_LEFT(e
, 5) + G(a
, b
, c
) + d
+ W(2) + SHA1_CONST(3);
936 a
= ROTATE_LEFT(a
, 30);
938 W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 67 */
939 c
= ROTATE_LEFT(d
, 5) + G(e
, a
, b
) + c
+ W(3) + SHA1_CONST(3);
940 e
= ROTATE_LEFT(e
, 30);
942 W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 68 */
943 b
= ROTATE_LEFT(c
, 5) + G(d
, e
, a
) + b
+ W(4) + SHA1_CONST(3);
944 d
= ROTATE_LEFT(d
, 30);
946 W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 69 */
947 a
= ROTATE_LEFT(b
, 5) + G(c
, d
, e
) + a
+ W(5) + SHA1_CONST(3);
948 c
= ROTATE_LEFT(c
, 30);
950 W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 70 */
951 e
= ROTATE_LEFT(a
, 5) + G(b
, c
, d
) + e
+ W(6) + SHA1_CONST(3);
952 b
= ROTATE_LEFT(b
, 30);
954 W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 71 */
955 d
= ROTATE_LEFT(e
, 5) + G(a
, b
, c
) + d
+ W(7) + SHA1_CONST(3);
956 a
= ROTATE_LEFT(a
, 30);
958 W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 72 */
959 c
= ROTATE_LEFT(d
, 5) + G(e
, a
, b
) + c
+ W(8) + SHA1_CONST(3);
960 e
= ROTATE_LEFT(e
, 30);
962 W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 73 */
963 b
= ROTATE_LEFT(c
, 5) + G(d
, e
, a
) + b
+ W(9) + SHA1_CONST(3);
964 d
= ROTATE_LEFT(d
, 30);
966 W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 74 */
967 a
= ROTATE_LEFT(b
, 5) + G(c
, d
, e
) + a
+ W(10) + SHA1_CONST(3);
968 c
= ROTATE_LEFT(c
, 30);
970 W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 75 */
971 e
= ROTATE_LEFT(a
, 5) + G(b
, c
, d
) + e
+ W(11) + SHA1_CONST(3);
972 b
= ROTATE_LEFT(b
, 30);
974 W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 76 */
975 d
= ROTATE_LEFT(e
, 5) + G(a
, b
, c
) + d
+ W(12) + SHA1_CONST(3);
976 a
= ROTATE_LEFT(a
, 30);
978 W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 77 */
979 c
= ROTATE_LEFT(d
, 5) + G(e
, a
, b
) + c
+ W(13) + SHA1_CONST(3);
980 e
= ROTATE_LEFT(e
, 30);
982 W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 78 */
983 b
= ROTATE_LEFT(c
, 5) + G(d
, e
, a
) + b
+ W(14) + SHA1_CONST(3);
984 d
= ROTATE_LEFT(d
, 30);
986 W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 79 */
988 ctx
->state
[0] += ROTATE_LEFT(b
, 5) + G(c
, d
, e
) + a
+ W(15) +
991 ctx
->state
[2] += ROTATE_LEFT(c
, 30);
995 /* zeroize sensitive information */
996 W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = W(6) = W(7) = W(8) = 0;
997 W(9) = W(10) = W(11) = W(12) = W(13) = W(14) = W(15) = 0;
999 #endif /* !__amd64 */
1005 * purpose: to convert a list of numbers from little endian to big endian
1006 * input: uint8_t * : place to store the converted big endian numbers
1007 * uint32_t * : place to get numbers to convert from
1008 * size_t : the length of the input in bytes
1013 Encode(uint8_t *_RESTRICT_KYWD output
, const uint32_t *_RESTRICT_KYWD input
,
1018 #if defined(__sparc)
1019 if (IS_P2ALIGNED(output
, sizeof (uint32_t))) {
1020 for (i
= 0, j
= 0; j
< len
; i
++, j
+= 4) {
1021 /* LINTED E_BAD_PTR_CAST_ALIGN */
1022 *((uint32_t *)(output
+ j
)) = input
[i
];
1025 #endif /* little endian -- will work on big endian, but slowly */
1026 for (i
= 0, j
= 0; j
< len
; i
++, j
+= 4) {
1027 output
[j
] = (input
[i
] >> 24) & 0xff;
1028 output
[j
+ 1] = (input
[i
] >> 16) & 0xff;
1029 output
[j
+ 2] = (input
[i
] >> 8) & 0xff;
1030 output
[j
+ 3] = input
[i
] & 0xff;
1032 #if defined(__sparc)