1 /* $OpenBSD: bn_asm.c,v 1.15 2017/05/02 03:59:44 deraadt Exp $ */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
60 # undef NDEBUG /* avoid conflicting definitions */
67 #include <openssl/opensslconf.h>
71 #if defined(BN_LLONG) || defined(BN_UMULT_HIGH)
74 bn_mul_add_words(BN_ULONG
*rp
, const BN_ULONG
*ap
, int num
, BN_ULONG w
)
82 #ifndef OPENSSL_SMALL_FOOTPRINT
84 mul_add(rp
[0], ap
[0], w
, c1
);
85 mul_add(rp
[1], ap
[1], w
, c1
);
86 mul_add(rp
[2], ap
[2], w
, c1
);
87 mul_add(rp
[3], ap
[3], w
, c1
);
94 mul_add(rp
[0], ap
[0], w
, c1
);
104 bn_mul_words(BN_ULONG
*rp
, const BN_ULONG
*ap
, int num
, BN_ULONG w
)
112 #ifndef OPENSSL_SMALL_FOOTPRINT
114 mul(rp
[0], ap
[0], w
, c1
);
115 mul(rp
[1], ap
[1], w
, c1
);
116 mul(rp
[2], ap
[2], w
, c1
);
117 mul(rp
[3], ap
[3], w
, c1
);
124 mul(rp
[0], ap
[0], w
, c1
);
133 bn_sqr_words(BN_ULONG
*r
, const BN_ULONG
*a
, int n
)
139 #ifndef OPENSSL_SMALL_FOOTPRINT
141 sqr(r
[0], r
[1], a
[0]);
142 sqr(r
[2], r
[3], a
[1]);
143 sqr(r
[4], r
[5], a
[2]);
144 sqr(r
[6], r
[7], a
[3]);
151 sqr(r
[0], r
[1], a
[0]);
158 #else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
161 bn_mul_add_words(BN_ULONG
*rp
, const BN_ULONG
*ap
, int num
, BN_ULONG w
)
168 return ((BN_ULONG
)0);
173 #ifndef OPENSSL_SMALL_FOOTPRINT
175 mul_add(rp
[0], ap
[0], bl
, bh
, c
);
176 mul_add(rp
[1], ap
[1], bl
, bh
, c
);
177 mul_add(rp
[2], ap
[2], bl
, bh
, c
);
178 mul_add(rp
[3], ap
[3], bl
, bh
, c
);
185 mul_add(rp
[0], ap
[0], bl
, bh
, c
);
194 bn_mul_words(BN_ULONG
*rp
, const BN_ULONG
*ap
, int num
, BN_ULONG w
)
201 return ((BN_ULONG
)0);
206 #ifndef OPENSSL_SMALL_FOOTPRINT
208 mul(rp
[0], ap
[0], bl
, bh
, carry
);
209 mul(rp
[1], ap
[1], bl
, bh
, carry
);
210 mul(rp
[2], ap
[2], bl
, bh
, carry
);
211 mul(rp
[3], ap
[3], bl
, bh
, carry
);
218 mul(rp
[0], ap
[0], bl
, bh
, carry
);
227 bn_sqr_words(BN_ULONG
*r
, const BN_ULONG
*a
, int n
)
233 #ifndef OPENSSL_SMALL_FOOTPRINT
235 sqr64(r
[0], r
[1], a
[0]);
236 sqr64(r
[2], r
[3], a
[1]);
237 sqr64(r
[4], r
[5], a
[2]);
238 sqr64(r
[6], r
[7], a
[3]);
245 sqr64(r
[0], r
[1], a
[0]);
252 #endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
254 #if defined(BN_LLONG) && defined(BN_DIV2W)
257 bn_div_words(BN_ULONG h
, BN_ULONG l
, BN_ULONG d
)
259 return ((BN_ULONG
)(((((BN_ULLONG
)h
) << BN_BITS2
)|l
)/(BN_ULLONG
)d
));
264 /* Divide h,l by d and return the result. */
265 /* I need to test this some more :-( */
267 bn_div_words(BN_ULONG h
, BN_ULONG l
, BN_ULONG d
)
269 BN_ULONG dh
, dl
, q
,ret
= 0, th
, tl
, t
;
275 i
= BN_num_bits_word(d
);
276 assert((i
== BN_BITS2
) || (h
<= (BN_ULONG
)1 << i
));
284 h
= (h
<< i
) | (l
>> (BN_BITS2
- i
));
287 dh
= (d
& BN_MASK2h
) >> BN_BITS4
;
288 dl
= (d
& BN_MASK2l
);
290 if ((h
>> BN_BITS4
) == dh
)
299 if ((t
& BN_MASK2h
) ||
302 ((l
& BN_MASK2h
) >> BN_BITS4
))))
308 t
= (tl
>> BN_BITS4
);
309 tl
= (tl
<< BN_BITS4
) & BN_MASK2h
;
325 h
= ((h
<< BN_BITS4
) | (l
>> BN_BITS4
)) & BN_MASK2
;
326 l
= (l
& BN_MASK2l
) << BN_BITS4
;
331 #endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */
335 bn_add_words(BN_ULONG
*r
, const BN_ULONG
*a
, const BN_ULONG
*b
, int n
)
341 return ((BN_ULONG
)0);
343 #ifndef OPENSSL_SMALL_FOOTPRINT
345 ll
+= (BN_ULLONG
)a
[0] + b
[0];
346 r
[0] = (BN_ULONG
)ll
& BN_MASK2
;
348 ll
+= (BN_ULLONG
)a
[1] + b
[1];
349 r
[1] = (BN_ULONG
)ll
& BN_MASK2
;
351 ll
+= (BN_ULLONG
)a
[2] + b
[2];
352 r
[2] = (BN_ULONG
)ll
& BN_MASK2
;
354 ll
+= (BN_ULLONG
)a
[3] + b
[3];
355 r
[3] = (BN_ULONG
)ll
& BN_MASK2
;
364 ll
+= (BN_ULLONG
)a
[0] + b
[0];
365 r
[0] = (BN_ULONG
)ll
& BN_MASK2
;
372 return ((BN_ULONG
)ll
);
374 #else /* !BN_LLONG */
376 bn_add_words(BN_ULONG
*r
, const BN_ULONG
*a
, const BN_ULONG
*b
, int n
)
382 return ((BN_ULONG
)0);
385 #ifndef OPENSSL_SMALL_FOOTPRINT
388 t
= (t
+ c
) & BN_MASK2
;
390 l
= (t
+ b
[0]) & BN_MASK2
;
394 t
= (t
+ c
) & BN_MASK2
;
396 l
= (t
+ b
[1]) & BN_MASK2
;
400 t
= (t
+ c
) & BN_MASK2
;
402 l
= (t
+ b
[2]) & BN_MASK2
;
406 t
= (t
+ c
) & BN_MASK2
;
408 l
= (t
+ b
[3]) & BN_MASK2
;
419 t
= (t
+ c
) & BN_MASK2
;
421 l
= (t
+ b
[0]) & BN_MASK2
;
429 return ((BN_ULONG
)c
);
431 #endif /* !BN_LLONG */
434 bn_sub_words(BN_ULONG
*r
, const BN_ULONG
*a
, const BN_ULONG
*b
, int n
)
441 return ((BN_ULONG
)0);
443 #ifndef OPENSSL_SMALL_FOOTPRINT
447 r
[0] = (t1
- t2
- c
) & BN_MASK2
;
452 r
[1] = (t1
- t2
- c
) & BN_MASK2
;
457 r
[2] = (t1
- t2
- c
) & BN_MASK2
;
462 r
[3] = (t1
- t2
- c
) & BN_MASK2
;
474 r
[0] = (t1
- t2
- c
) & BN_MASK2
;
485 #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT)
492 /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */
493 /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
494 /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
495 /* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */
499 * Keep in mind that additions to multiplication result can not
500 * overflow, because its high half cannot be all-ones.
502 #define mul_add_c(a,b,c0,c1,c2) do { \
504 BN_ULLONG t = (BN_ULLONG)(a)*(b); \
505 t += c0; /* no carry */ \
506 c0 = (BN_ULONG)Lw(t); \
507 hi = (BN_ULONG)Hw(t); \
508 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
511 #define mul_add_c2(a,b,c0,c1,c2) do { \
513 BN_ULLONG t = (BN_ULLONG)(a)*(b); \
514 BN_ULLONG tt = t+c0; /* no carry */ \
515 c0 = (BN_ULONG)Lw(tt); \
516 hi = (BN_ULONG)Hw(tt); \
517 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
518 t += c0; /* no carry */ \
519 c0 = (BN_ULONG)Lw(t); \
520 hi = (BN_ULONG)Hw(t); \
521 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
524 #define sqr_add_c(a,i,c0,c1,c2) do { \
526 BN_ULLONG t = (BN_ULLONG)a[i]*a[i]; \
527 t += c0; /* no carry */ \
528 c0 = (BN_ULONG)Lw(t); \
529 hi = (BN_ULONG)Hw(t); \
530 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
533 #define sqr_add_c2(a,i,j,c0,c1,c2) \
534 mul_add_c2((a)[i],(a)[j],c0,c1,c2)
536 #elif defined(BN_UMULT_LOHI)
538 * Keep in mind that additions to hi can not overflow, because
539 * the high word of a multiplication result cannot be all-ones.
541 #define mul_add_c(a,b,c0,c1,c2) do { \
542 BN_ULONG ta = (a), tb = (b); \
544 BN_UMULT_LOHI(lo,hi,ta,tb); \
545 c0 += lo; hi += (c0<lo)?1:0; \
546 c1 += hi; c2 += (c1<hi)?1:0; \
549 #define mul_add_c2(a,b,c0,c1,c2) do { \
550 BN_ULONG ta = (a), tb = (b); \
551 BN_ULONG lo, hi, tt; \
552 BN_UMULT_LOHI(lo,hi,ta,tb); \
553 c0 += lo; tt = hi+((c0<lo)?1:0); \
554 c1 += tt; c2 += (c1<tt)?1:0; \
555 c0 += lo; hi += (c0<lo)?1:0; \
556 c1 += hi; c2 += (c1<hi)?1:0; \
559 #define sqr_add_c(a,i,c0,c1,c2) do { \
560 BN_ULONG ta = (a)[i]; \
562 BN_UMULT_LOHI(lo,hi,ta,ta); \
563 c0 += lo; hi += (c0<lo)?1:0; \
564 c1 += hi; c2 += (c1<hi)?1:0; \
567 #define sqr_add_c2(a,i,j,c0,c1,c2) \
568 mul_add_c2((a)[i],(a)[j],c0,c1,c2)
570 #elif defined(BN_UMULT_HIGH)
572 * Keep in mind that additions to hi can not overflow, because
573 * the high word of a multiplication result cannot be all-ones.
575 #define mul_add_c(a,b,c0,c1,c2) do { \
576 BN_ULONG ta = (a), tb = (b); \
577 BN_ULONG lo = ta * tb; \
578 BN_ULONG hi = BN_UMULT_HIGH(ta,tb); \
579 c0 += lo; hi += (c0<lo)?1:0; \
580 c1 += hi; c2 += (c1<hi)?1:0; \
583 #define mul_add_c2(a,b,c0,c1,c2) do { \
584 BN_ULONG ta = (a), tb = (b), tt; \
585 BN_ULONG lo = ta * tb; \
586 BN_ULONG hi = BN_UMULT_HIGH(ta,tb); \
587 c0 += lo; tt = hi + ((c0<lo)?1:0); \
588 c1 += tt; c2 += (c1<tt)?1:0; \
589 c0 += lo; hi += (c0<lo)?1:0; \
590 c1 += hi; c2 += (c1<hi)?1:0; \
593 #define sqr_add_c(a,i,c0,c1,c2) do { \
594 BN_ULONG ta = (a)[i]; \
595 BN_ULONG lo = ta * ta; \
596 BN_ULONG hi = BN_UMULT_HIGH(ta,ta); \
597 c0 += lo; hi += (c0<lo)?1:0; \
598 c1 += hi; c2 += (c1<hi)?1:0; \
601 #define sqr_add_c2(a,i,j,c0,c1,c2) \
602 mul_add_c2((a)[i],(a)[j],c0,c1,c2)
604 #else /* !BN_LLONG */
606 * Keep in mind that additions to hi can not overflow, because
607 * the high word of a multiplication result cannot be all-ones.
609 #define mul_add_c(a,b,c0,c1,c2) do { \
610 BN_ULONG lo = LBITS(a), hi = HBITS(a); \
611 BN_ULONG bl = LBITS(b), bh = HBITS(b); \
612 mul64(lo,hi,bl,bh); \
613 c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \
614 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
617 #define mul_add_c2(a,b,c0,c1,c2) do { \
619 BN_ULONG lo = LBITS(a), hi = HBITS(a); \
620 BN_ULONG bl = LBITS(b), bh = HBITS(b); \
621 mul64(lo,hi,bl,bh); \
623 c0 = (c0+lo)&BN_MASK2; if (c0<lo) tt++; \
624 c1 = (c1+tt)&BN_MASK2; if (c1<tt) c2++; \
625 c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \
626 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
629 #define sqr_add_c(a,i,c0,c1,c2) do { \
631 sqr64(lo,hi,(a)[i]); \
632 c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \
633 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
636 #define sqr_add_c2(a,i,j,c0,c1,c2) \
637 mul_add_c2((a)[i],(a)[j],c0,c1,c2)
638 #endif /* !BN_LLONG */
641 bn_mul_comba8(BN_ULONG
*r
, BN_ULONG
*a
, BN_ULONG
*b
)
648 mul_add_c(a
[0], b
[0], c1
, c2
, c3
);
651 mul_add_c(a
[0], b
[1], c2
, c3
, c1
);
652 mul_add_c(a
[1], b
[0], c2
, c3
, c1
);
655 mul_add_c(a
[2], b
[0], c3
, c1
, c2
);
656 mul_add_c(a
[1], b
[1], c3
, c1
, c2
);
657 mul_add_c(a
[0], b
[2], c3
, c1
, c2
);
660 mul_add_c(a
[0], b
[3], c1
, c2
, c3
);
661 mul_add_c(a
[1], b
[2], c1
, c2
, c3
);
662 mul_add_c(a
[2], b
[1], c1
, c2
, c3
);
663 mul_add_c(a
[3], b
[0], c1
, c2
, c3
);
666 mul_add_c(a
[4], b
[0], c2
, c3
, c1
);
667 mul_add_c(a
[3], b
[1], c2
, c3
, c1
);
668 mul_add_c(a
[2], b
[2], c2
, c3
, c1
);
669 mul_add_c(a
[1], b
[3], c2
, c3
, c1
);
670 mul_add_c(a
[0], b
[4], c2
, c3
, c1
);
673 mul_add_c(a
[0], b
[5], c3
, c1
, c2
);
674 mul_add_c(a
[1], b
[4], c3
, c1
, c2
);
675 mul_add_c(a
[2], b
[3], c3
, c1
, c2
);
676 mul_add_c(a
[3], b
[2], c3
, c1
, c2
);
677 mul_add_c(a
[4], b
[1], c3
, c1
, c2
);
678 mul_add_c(a
[5], b
[0], c3
, c1
, c2
);
681 mul_add_c(a
[6], b
[0], c1
, c2
, c3
);
682 mul_add_c(a
[5], b
[1], c1
, c2
, c3
);
683 mul_add_c(a
[4], b
[2], c1
, c2
, c3
);
684 mul_add_c(a
[3], b
[3], c1
, c2
, c3
);
685 mul_add_c(a
[2], b
[4], c1
, c2
, c3
);
686 mul_add_c(a
[1], b
[5], c1
, c2
, c3
);
687 mul_add_c(a
[0], b
[6], c1
, c2
, c3
);
690 mul_add_c(a
[0], b
[7], c2
, c3
, c1
);
691 mul_add_c(a
[1], b
[6], c2
, c3
, c1
);
692 mul_add_c(a
[2], b
[5], c2
, c3
, c1
);
693 mul_add_c(a
[3], b
[4], c2
, c3
, c1
);
694 mul_add_c(a
[4], b
[3], c2
, c3
, c1
);
695 mul_add_c(a
[5], b
[2], c2
, c3
, c1
);
696 mul_add_c(a
[6], b
[1], c2
, c3
, c1
);
697 mul_add_c(a
[7], b
[0], c2
, c3
, c1
);
700 mul_add_c(a
[7], b
[1], c3
, c1
, c2
);
701 mul_add_c(a
[6], b
[2], c3
, c1
, c2
);
702 mul_add_c(a
[5], b
[3], c3
, c1
, c2
);
703 mul_add_c(a
[4], b
[4], c3
, c1
, c2
);
704 mul_add_c(a
[3], b
[5], c3
, c1
, c2
);
705 mul_add_c(a
[2], b
[6], c3
, c1
, c2
);
706 mul_add_c(a
[1], b
[7], c3
, c1
, c2
);
709 mul_add_c(a
[2], b
[7], c1
, c2
, c3
);
710 mul_add_c(a
[3], b
[6], c1
, c2
, c3
);
711 mul_add_c(a
[4], b
[5], c1
, c2
, c3
);
712 mul_add_c(a
[5], b
[4], c1
, c2
, c3
);
713 mul_add_c(a
[6], b
[3], c1
, c2
, c3
);
714 mul_add_c(a
[7], b
[2], c1
, c2
, c3
);
717 mul_add_c(a
[7], b
[3], c2
, c3
, c1
);
718 mul_add_c(a
[6], b
[4], c2
, c3
, c1
);
719 mul_add_c(a
[5], b
[5], c2
, c3
, c1
);
720 mul_add_c(a
[4], b
[6], c2
, c3
, c1
);
721 mul_add_c(a
[3], b
[7], c2
, c3
, c1
);
724 mul_add_c(a
[4], b
[7], c3
, c1
, c2
);
725 mul_add_c(a
[5], b
[6], c3
, c1
, c2
);
726 mul_add_c(a
[6], b
[5], c3
, c1
, c2
);
727 mul_add_c(a
[7], b
[4], c3
, c1
, c2
);
730 mul_add_c(a
[7], b
[5], c1
, c2
, c3
);
731 mul_add_c(a
[6], b
[6], c1
, c2
, c3
);
732 mul_add_c(a
[5], b
[7], c1
, c2
, c3
);
735 mul_add_c(a
[6], b
[7], c2
, c3
, c1
);
736 mul_add_c(a
[7], b
[6], c2
, c3
, c1
);
739 mul_add_c(a
[7], b
[7], c3
, c1
, c2
);
745 bn_mul_comba4(BN_ULONG
*r
, BN_ULONG
*a
, BN_ULONG
*b
)
752 mul_add_c(a
[0], b
[0], c1
, c2
, c3
);
755 mul_add_c(a
[0], b
[1], c2
, c3
, c1
);
756 mul_add_c(a
[1], b
[0], c2
, c3
, c1
);
759 mul_add_c(a
[2], b
[0], c3
, c1
, c2
);
760 mul_add_c(a
[1], b
[1], c3
, c1
, c2
);
761 mul_add_c(a
[0], b
[2], c3
, c1
, c2
);
764 mul_add_c(a
[0], b
[3], c1
, c2
, c3
);
765 mul_add_c(a
[1], b
[2], c1
, c2
, c3
);
766 mul_add_c(a
[2], b
[1], c1
, c2
, c3
);
767 mul_add_c(a
[3], b
[0], c1
, c2
, c3
);
770 mul_add_c(a
[3], b
[1], c2
, c3
, c1
);
771 mul_add_c(a
[2], b
[2], c2
, c3
, c1
);
772 mul_add_c(a
[1], b
[3], c2
, c3
, c1
);
775 mul_add_c(a
[2], b
[3], c3
, c1
, c2
);
776 mul_add_c(a
[3], b
[2], c3
, c1
, c2
);
779 mul_add_c(a
[3], b
[3], c1
, c2
, c3
);
785 bn_sqr_comba8(BN_ULONG
*r
, const BN_ULONG
*a
)
792 sqr_add_c(a
, 0, c1
, c2
, c3
);
795 sqr_add_c2(a
, 1, 0, c2
, c3
, c1
);
798 sqr_add_c(a
, 1, c3
, c1
, c2
);
799 sqr_add_c2(a
, 2, 0, c3
, c1
, c2
);
802 sqr_add_c2(a
, 3, 0, c1
, c2
, c3
);
803 sqr_add_c2(a
, 2, 1, c1
, c2
, c3
);
806 sqr_add_c(a
, 2, c2
, c3
, c1
);
807 sqr_add_c2(a
, 3, 1, c2
, c3
, c1
);
808 sqr_add_c2(a
, 4, 0, c2
, c3
, c1
);
811 sqr_add_c2(a
, 5, 0, c3
, c1
, c2
);
812 sqr_add_c2(a
, 4, 1, c3
, c1
, c2
);
813 sqr_add_c2(a
, 3, 2, c3
, c1
, c2
);
816 sqr_add_c(a
, 3, c1
, c2
, c3
);
817 sqr_add_c2(a
, 4, 2, c1
, c2
, c3
);
818 sqr_add_c2(a
, 5, 1, c1
, c2
, c3
);
819 sqr_add_c2(a
, 6, 0, c1
, c2
, c3
);
822 sqr_add_c2(a
, 7, 0, c2
, c3
, c1
);
823 sqr_add_c2(a
, 6, 1, c2
, c3
, c1
);
824 sqr_add_c2(a
, 5, 2, c2
, c3
, c1
);
825 sqr_add_c2(a
, 4, 3, c2
, c3
, c1
);
828 sqr_add_c(a
, 4, c3
, c1
, c2
);
829 sqr_add_c2(a
, 5, 3, c3
, c1
, c2
);
830 sqr_add_c2(a
, 6, 2, c3
, c1
, c2
);
831 sqr_add_c2(a
, 7, 1, c3
, c1
, c2
);
834 sqr_add_c2(a
, 7, 2, c1
, c2
, c3
);
835 sqr_add_c2(a
, 6, 3, c1
, c2
, c3
);
836 sqr_add_c2(a
, 5, 4, c1
, c2
, c3
);
839 sqr_add_c(a
, 5, c2
, c3
, c1
);
840 sqr_add_c2(a
, 6, 4, c2
, c3
, c1
);
841 sqr_add_c2(a
, 7, 3, c2
, c3
, c1
);
844 sqr_add_c2(a
, 7, 4, c3
, c1
, c2
);
845 sqr_add_c2(a
, 6, 5, c3
, c1
, c2
);
848 sqr_add_c(a
, 6, c1
, c2
, c3
);
849 sqr_add_c2(a
, 7, 5, c1
, c2
, c3
);
852 sqr_add_c2(a
, 7, 6, c2
, c3
, c1
);
855 sqr_add_c(a
, 7, c3
, c1
, c2
);
861 bn_sqr_comba4(BN_ULONG
*r
, const BN_ULONG
*a
)
868 sqr_add_c(a
, 0, c1
, c2
, c3
);
871 sqr_add_c2(a
, 1, 0, c2
, c3
, c1
);
874 sqr_add_c(a
, 1, c3
, c1
, c2
);
875 sqr_add_c2(a
, 2, 0, c3
, c1
, c2
);
878 sqr_add_c2(a
, 3, 0, c1
, c2
, c3
);
879 sqr_add_c2(a
, 2, 1, c1
, c2
, c3
);
882 sqr_add_c(a
, 2, c2
, c3
, c1
);
883 sqr_add_c2(a
, 3, 1, c2
, c3
, c1
);
886 sqr_add_c2(a
, 3, 2, c3
, c1
, c2
);
889 sqr_add_c(a
, 3, c1
, c2
, c3
);
894 #ifdef OPENSSL_NO_ASM
895 #ifdef OPENSSL_BN_ASM_MONT
897 * This is essentially reference implementation, which may or may not
898 * result in performance improvement. E.g. on IA-32 this routine was
899 * observed to give 40% faster rsa1024 private key operations and 10%
900 * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only
901 * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a
902 * reference implementation, one to be used as starting point for
903 * platform-specific assembler. Mentioned numbers apply to compiler
904 * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and
905 * can vary not only from platform to platform, but even for compiler
906 * versions. Assembler vs. assembler improvement coefficients can
907 * [and are known to] differ and are to be documented elsewhere.
910 bn_mul_mont(BN_ULONG
*rp
, const BN_ULONG
*ap
, const BN_ULONG
*bp
, const BN_ULONG
*np
, const BN_ULONG
*n0p
, int num
)
912 BN_ULONG c0
, c1
, ml
, *tp
, n0
;
918 #if 0 /* template for platform-specific implementation */
920 return bn_sqr_mont(rp
, ap
, np
, n0p
, num
);
922 tp
= reallocarray(NULL
, num
+ 2, sizeof(BN_ULONG
));
933 for (j
= 0; j
< num
; ++j
)
934 mul(tp
[j
], ap
[j
], ml
, mh
, c0
);
936 for (j
= 0; j
< num
; ++j
)
937 mul(tp
[j
], ap
[j
], ml
, c0
);
944 for (i
= 0; i
< num
; i
++) {
950 for (j
= 0; j
< num
; ++j
)
951 mul_add(tp
[j
], ap
[j
], ml
, mh
, c0
);
953 for (j
= 0; j
< num
; ++j
)
954 mul_add(tp
[j
], ap
[j
], ml
, c0
);
956 c1
= (tp
[num
] + c0
) & BN_MASK2
;
958 tp
[num
+ 1] = (c1
< c0
? 1 : 0);
961 ml
= (c1
* n0
) & BN_MASK2
;
966 mul_add(c1
, np
[0], ml
, mh
, c0
);
968 mul_add(c1
, ml
, np
[0], c0
);
970 for (j
= 1; j
< num
; j
++) {
973 mul_add(c1
, np
[j
], ml
, mh
, c0
);
975 mul_add(c1
, ml
, np
[j
], c0
);
977 tp
[j
- 1] = c1
& BN_MASK2
;
979 c1
= (tp
[num
] + c0
) & BN_MASK2
;
981 tp
[num
] = tp
[num
+ 1] + (c1
< c0
? 1 : 0);
984 if (tp
[num
] != 0 || tp
[num
- 1] >= np
[num
- 1]) {
985 c0
= bn_sub_words(rp
, tp
, np
, num
);
986 if (tp
[num
] != 0 || c0
== 0) {
990 memcpy(rp
, tp
, num
* sizeof(BN_ULONG
));
992 freezero(tp
, (num
+ 2) * sizeof(BN_ULONG
));
997 * Return value of 0 indicates that multiplication/convolution was not
998 * performed to signal the caller to fall down to alternative/original
1001 int bn_mul_mont(BN_ULONG
*rp
, const BN_ULONG
*ap
, const BN_ULONG
*bp
, const BN_ULONG
*np
, const BN_ULONG
*n0
, int num
)
1004 #endif /* OPENSSL_BN_ASM_MONT */
1007 #else /* !BN_MUL_COMBA */
1009 /* hmm... is it faster just to do a multiply? */
1010 #undef bn_sqr_comba4
1012 bn_sqr_comba4(BN_ULONG
*r
, const BN_ULONG
*a
)
1015 bn_sqr_normal(r
, a
, 4, t
);
1018 #undef bn_sqr_comba8
1020 bn_sqr_comba8(BN_ULONG
*r
, const BN_ULONG
*a
)
1023 bn_sqr_normal(r
, a
, 8, t
);
1027 bn_mul_comba4(BN_ULONG
*r
, BN_ULONG
*a
, BN_ULONG
*b
)
1029 r
[4] = bn_mul_words(&(r
[0]), a
, 4, b
[0]);
1030 r
[5] = bn_mul_add_words(&(r
[1]), a
, 4, b
[1]);
1031 r
[6] = bn_mul_add_words(&(r
[2]), a
, 4, b
[2]);
1032 r
[7] = bn_mul_add_words(&(r
[3]), a
, 4, b
[3]);
1036 bn_mul_comba8(BN_ULONG
*r
, BN_ULONG
*a
, BN_ULONG
*b
)
1038 r
[8] = bn_mul_words(&(r
[0]), a
, 8, b
[0]);
1039 r
[9] = bn_mul_add_words(&(r
[1]), a
, 8, b
[1]);
1040 r
[10] = bn_mul_add_words(&(r
[2]), a
, 8, b
[2]);
1041 r
[11] = bn_mul_add_words(&(r
[3]), a
, 8, b
[3]);
1042 r
[12] = bn_mul_add_words(&(r
[4]), a
, 8, b
[4]);
1043 r
[13] = bn_mul_add_words(&(r
[5]), a
, 8, b
[5]);
1044 r
[14] = bn_mul_add_words(&(r
[6]), a
, 8, b
[6]);
1045 r
[15] = bn_mul_add_words(&(r
[7]), a
, 8, b
[7]);
1048 #ifdef OPENSSL_NO_ASM
1049 #ifdef OPENSSL_BN_ASM_MONT
1051 bn_mul_mont(BN_ULONG
*rp
, const BN_ULONG
*ap
, const BN_ULONG
*bp
,
1052 const BN_ULONG
*np
, const BN_ULONG
*n0p
, int num
)
1054 BN_ULONG c0
, c1
, *tp
, n0
= *n0p
;
1057 tp
= calloc(NULL
, num
+ 2, sizeof(BN_ULONG
));
1061 for (i
= 0; i
< num
; i
++) {
1062 c0
= bn_mul_add_words(tp
, ap
, num
, bp
[i
]);
1063 c1
= (tp
[num
] + c0
) & BN_MASK2
;
1065 tp
[num
+ 1] = (c1
< c0
? 1 : 0);
1067 c0
= bn_mul_add_words(tp
, np
, num
, tp
[0] * n0
);
1068 c1
= (tp
[num
] + c0
) & BN_MASK2
;
1070 tp
[num
+ 1] += (c1
< c0
? 1 : 0);
1071 for (j
= 0; j
<= num
; j
++)
1075 if (tp
[num
] != 0 || tp
[num
- 1] >= np
[num
- 1]) {
1076 c0
= bn_sub_words(rp
, tp
, np
, num
);
1077 if (tp
[num
] != 0 || c0
== 0) {
1081 memcpy(rp
, tp
, num
* sizeof(BN_ULONG
));
1083 freezero(tp
, (num
+ 2) * sizeof(BN_ULONG
));
1088 bn_mul_mont(BN_ULONG
*rp
, const BN_ULONG
*ap
, const BN_ULONG
*bp
,
1089 const BN_ULONG
*np
, const BN_ULONG
*n0
, int num
)
1093 #endif /* OPENSSL_BN_ASM_MONT */
1096 #endif /* !BN_MUL_COMBA */