1 /* $OpenBSD: bn_mul.c,v 1.20 2015/02/09 15:49:22 jsing Exp $ */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
60 # undef NDEBUG /* avoid conflicting definitions */
68 #include <openssl/opensslconf.h>
72 #if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)
73 /* Here follows specialised variants of bn_add_words() and
74 bn_sub_words(). They have the property performing operations on
75 arrays of different sizes. The sizes of those arrays is expressed through
76 cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl,
77 which is the delta between the two lengths, calculated as len(a)-len(b).
78 All lengths are the number of BN_ULONGs... For the operations that require
79 a result array as parameter, it must have the length cl+abs(dl).
80 These functions should probably end up in bn_asm.c as soon as there are
81 assembler counterparts for the systems that use assembler files. */
84 bn_sub_part_words(BN_ULONG
*r
, const BN_ULONG
*a
, const BN_ULONG
*b
, int cl
,
90 c
= bn_sub_words(r
, a
, b
, cl
);
102 " bn_sub_part_words %d + %d (dl < 0, c = %d)\n",
107 r
[0] = (0 - t
- c
) & BN_MASK2
;
114 r
[1] = (0 - t
- c
) & BN_MASK2
;
121 r
[2] = (0 - t
- c
) & BN_MASK2
;
128 r
[3] = (0 - t
- c
) & BN_MASK2
;
141 " bn_sub_part_words %d + %d (dl > 0, c = %d)\n",
146 r
[0] = (t
- c
) & BN_MASK2
;
153 r
[1] = (t
- c
) & BN_MASK2
;
160 r
[2] = (t
- c
) & BN_MASK2
;
167 r
[3] = (t
- c
) & BN_MASK2
;
180 " bn_sub_part_words %d + %d (dl > 0, c == 0)\n",
184 switch (save_dl
- dl
) {
205 " bn_sub_part_words %d + %d (dl > 0, copy)\n",
232 bn_add_part_words(BN_ULONG
*r
, const BN_ULONG
*a
, const BN_ULONG
*b
, int cl
,
238 c
= bn_add_words(r
, a
, b
, cl
);
251 " bn_add_part_words %d + %d (dl < 0, c = %d)\n",
255 l
= (c
+ b
[0]) & BN_MASK2
;
261 l
= (c
+ b
[1]) & BN_MASK2
;
267 l
= (c
+ b
[2]) & BN_MASK2
;
273 l
= (c
+ b
[3]) & BN_MASK2
;
286 " bn_add_part_words %d + %d (dl < 0, c == 0)\n",
290 switch (dl
- save_dl
) {
311 " bn_add_part_words %d + %d (dl < 0, copy)\n",
336 " bn_add_part_words %d + %d (dl > 0)\n", cl
, dl
);
339 t
= (a
[0] + c
) & BN_MASK2
;
345 t
= (a
[1] + c
) & BN_MASK2
;
351 t
= (a
[2] + c
) & BN_MASK2
;
357 t
= (a
[3] + c
) & BN_MASK2
;
369 " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl
, dl
);
373 switch (save_dl
- dl
) {
394 " bn_add_part_words %d + %d (dl > 0, copy)\n",
420 /* Karatsuba recursive multiplication algorithm
421 * (cf. Knuth, The Art of Computer Programming, Vol. 2) */
423 /* r is 2*n2 words in size,
424 * a and b are both n2 words in size.
425 * n2 must be a power of 2.
426 * We multiply and return the result.
427 * t must be 2*n2 words in size
430 * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
433 /* dnX may not be positive, but n2/2+dnX has to be */
435 bn_mul_recursive(BN_ULONG
*r
, BN_ULONG
*a
, BN_ULONG
*b
, int n2
, int dna
,
436 int dnb
, BN_ULONG
*t
)
438 int n
= n2
/ 2, c1
, c2
;
439 int tna
= n
+ dna
, tnb
= n
+ dnb
;
440 unsigned int neg
, zero
;
444 fprintf(stderr
, " bn_mul_recursive %d%+d * %d%+d\n",n2
,dna
,n2
,dnb
);
449 bn_mul_comba4(r
, a
, b
);
453 /* Only call bn_mul_comba 8 if n2 == 8 and the
454 * two arrays are complete [steve]
456 if (n2
== 8 && dna
== 0 && dnb
== 0) {
457 bn_mul_comba8(r
, a
, b
);
460 # endif /* BN_MUL_COMBA */
461 /* Else do normal multiply */
462 if (n2
< BN_MUL_RECURSIVE_SIZE_NORMAL
) {
463 bn_mul_normal(r
, a
, n2
+ dna
, b
, n2
+ dnb
);
465 memset(&r
[2*n2
+ dna
+ dnb
], 0,
466 sizeof(BN_ULONG
) * -(dna
+ dnb
));
469 /* r=(a[0]-a[1])*(b[1]-b[0]) */
470 c1
= bn_cmp_part_words(a
, &(a
[n
]), tna
, n
- tna
);
471 c2
= bn_cmp_part_words(&(b
[n
]), b
,tnb
, tnb
- n
);
473 switch (c1
* 3 + c2
) {
475 bn_sub_part_words(t
, &(a
[n
]), a
, tna
, tna
- n
); /* - */
476 bn_sub_part_words(&(t
[n
]), b
, &(b
[n
]), tnb
, n
- tnb
); /* - */
482 bn_sub_part_words(t
, &(a
[n
]), a
, tna
, tna
- n
); /* - */
483 bn_sub_part_words(&(t
[n
]), &(b
[n
]), b
, tnb
, tnb
- n
); /* + */
492 bn_sub_part_words(t
, a
, &(a
[n
]), tna
, n
- tna
); /* + */
493 bn_sub_part_words(&(t
[n
]), b
, &(b
[n
]), tnb
, n
- tnb
); /* - */
500 bn_sub_part_words(t
, a
, &(a
[n
]), tna
, n
- tna
);
501 bn_sub_part_words(&(t
[n
]), &(b
[n
]), b
, tnb
, tnb
- n
);
506 if (n
== 4 && dna
== 0 && dnb
== 0) /* XXX: bn_mul_comba4 could take
507 extra args to do this well */
510 bn_mul_comba4(&(t
[n2
]), t
, &(t
[n
]));
512 memset(&(t
[n2
]), 0, 8 * sizeof(BN_ULONG
));
514 bn_mul_comba4(r
, a
, b
);
515 bn_mul_comba4(&(r
[n2
]), &(a
[n
]), &(b
[n
]));
516 } else if (n
== 8 && dna
== 0 && dnb
== 0) /* XXX: bn_mul_comba8 could
517 take extra args to do this
521 bn_mul_comba8(&(t
[n2
]), t
, &(t
[n
]));
523 memset(&(t
[n2
]), 0, 16 * sizeof(BN_ULONG
));
525 bn_mul_comba8(r
, a
, b
);
526 bn_mul_comba8(&(r
[n2
]), &(a
[n
]), &(b
[n
]));
528 # endif /* BN_MUL_COMBA */
532 bn_mul_recursive(&(t
[n2
]), t
, &(t
[n
]), n
, 0, 0, p
);
534 memset(&(t
[n2
]), 0, n2
* sizeof(BN_ULONG
));
535 bn_mul_recursive(r
, a
, b
, n
, 0, 0, p
);
536 bn_mul_recursive(&(r
[n2
]), &(a
[n
]), &(b
[n
]), n
, dna
, dnb
, p
);
539 /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
540 * r[10] holds (a[0]*b[0])
541 * r[32] holds (b[1]*b[1])
544 c1
= (int)(bn_add_words(t
, r
, &(r
[n2
]), n2
));
546 if (neg
) /* if t[32] is negative */
548 c1
-= (int)(bn_sub_words(&(t
[n2
]), t
, &(t
[n2
]), n2
));
550 /* Might have a carry */
551 c1
+= (int)(bn_add_words(&(t
[n2
]), &(t
[n2
]), t
, n2
));
554 /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
555 * r[10] holds (a[0]*b[0])
556 * r[32] holds (b[1]*b[1])
557 * c1 holds the carry bits
559 c1
+= (int)(bn_add_words(&(r
[n
]), &(r
[n
]), &(t
[n2
]), n2
));
563 ln
= (lo
+ c1
) & BN_MASK2
;
566 /* The overflow will stop before we over write
567 * words we should not overwrite */
568 if (ln
< (BN_ULONG
)c1
) {
572 ln
= (lo
+ 1) & BN_MASK2
;
579 /* n+tn is the word length
580 * t needs to be n*4 is size, as does r */
581 /* tnX may not be negative but less than n */
583 bn_mul_part_recursive(BN_ULONG
*r
, BN_ULONG
*a
, BN_ULONG
*b
, int n
, int tna
,
584 int tnb
, BN_ULONG
*t
)
586 int i
, j
, n2
= n
* 2;
591 fprintf(stderr
, " bn_mul_part_recursive (%d%+d) * (%d%+d)\n",
595 bn_mul_normal(r
, a
, n
+ tna
, b
, n
+ tnb
);
599 /* r=(a[0]-a[1])*(b[1]-b[0]) */
600 c1
= bn_cmp_part_words(a
, &(a
[n
]), tna
, n
- tna
);
601 c2
= bn_cmp_part_words(&(b
[n
]), b
, tnb
, tnb
- n
);
603 switch (c1
* 3 + c2
) {
605 bn_sub_part_words(t
, &(a
[n
]), a
, tna
, tna
- n
); /* - */
606 bn_sub_part_words(&(t
[n
]), b
, &(b
[n
]), tnb
, n
- tnb
); /* - */
611 bn_sub_part_words(t
, &(a
[n
]), a
, tna
, tna
- n
); /* - */
612 bn_sub_part_words(&(t
[n
]), &(b
[n
]), b
, tnb
, tnb
- n
); /* + */
620 bn_sub_part_words(t
, a
, &(a
[n
]), tna
, n
- tna
); /* + */
621 bn_sub_part_words(&(t
[n
]), b
, &(b
[n
]), tnb
, n
- tnb
); /* - */
627 bn_sub_part_words(t
, a
, &(a
[n
]), tna
, n
- tna
);
628 bn_sub_part_words(&(t
[n
]), &(b
[n
]), b
, tnb
, tnb
- n
);
631 /* The zero case isn't yet implemented here. The speedup
632 would probably be negligible. */
635 bn_mul_comba4(&(t
[n2
]), t
, &(t
[n
]));
636 bn_mul_comba4(r
, a
, b
);
637 bn_mul_normal(&(r
[n2
]), &(a
[n
]), tn
, &(b
[n
]), tn
);
638 memset(&(r
[n2
+ tn
* 2]), 0, sizeof(BN_ULONG
) * (n2
- tn
* 2));
642 bn_mul_comba8(&(t
[n2
]), t
, &(t
[n
]));
643 bn_mul_comba8(r
, a
, b
);
644 bn_mul_normal(&(r
[n2
]), &(a
[n
]), tna
, &(b
[n
]), tnb
);
645 memset(&(r
[n2
+ tna
+ tnb
]), 0,
646 sizeof(BN_ULONG
) * (n2
- tna
- tnb
));
649 bn_mul_recursive(&(t
[n2
]), t
, &(t
[n
]), n
, 0, 0, p
);
650 bn_mul_recursive(r
, a
, b
, n
, 0, 0, p
);
652 /* If there is only a bottom half to the number,
659 bn_mul_recursive(&(r
[n2
]), &(a
[n
]), &(b
[n
]),
660 i
, tna
- i
, tnb
- i
, p
);
661 memset(&(r
[n2
+ i
* 2]), 0,
662 sizeof(BN_ULONG
) * (n2
- i
* 2));
664 else if (j
> 0) /* eg, n == 16, i == 8 and tn == 11 */
666 bn_mul_part_recursive(&(r
[n2
]), &(a
[n
]), &(b
[n
]),
667 i
, tna
- i
, tnb
- i
, p
);
668 memset(&(r
[n2
+ tna
+ tnb
]), 0,
669 sizeof(BN_ULONG
) * (n2
- tna
- tnb
));
671 else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
673 memset(&(r
[n2
]), 0, sizeof(BN_ULONG
) * n2
);
674 if (tna
< BN_MUL_RECURSIVE_SIZE_NORMAL
&&
675 tnb
< BN_MUL_RECURSIVE_SIZE_NORMAL
) {
676 bn_mul_normal(&(r
[n2
]), &(a
[n
]), tna
,
681 /* these simplified conditions work
682 * exclusively because difference
683 * between tna and tnb is 1 or 0 */
684 if (i
< tna
|| i
< tnb
) {
685 bn_mul_part_recursive(&(r
[n2
]),
687 tna
- i
, tnb
- i
, p
);
689 } else if (i
== tna
|| i
== tnb
) {
690 bn_mul_recursive(&(r
[n2
]),
692 tna
- i
, tnb
- i
, p
);
700 /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
701 * r[10] holds (a[0]*b[0])
702 * r[32] holds (b[1]*b[1])
705 c1
= (int)(bn_add_words(t
, r
,&(r
[n2
]), n2
));
707 if (neg
) /* if t[32] is negative */
709 c1
-= (int)(bn_sub_words(&(t
[n2
]), t
,&(t
[n2
]), n2
));
711 /* Might have a carry */
712 c1
+= (int)(bn_add_words(&(t
[n2
]), &(t
[n2
]), t
, n2
));
715 /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
716 * r[10] holds (a[0]*b[0])
717 * r[32] holds (b[1]*b[1])
718 * c1 holds the carry bits
720 c1
+= (int)(bn_add_words(&(r
[n
]), &(r
[n
]), &(t
[n2
]), n2
));
724 ln
= (lo
+ c1
)&BN_MASK2
;
727 /* The overflow will stop before we over write
728 * words we should not overwrite */
729 if (ln
< (BN_ULONG
)c1
) {
733 ln
= (lo
+ 1) & BN_MASK2
;
740 /* a and b must be the same size, which is n2.
741 * r needs to be n2 words and t needs to be n2*2
744 bn_mul_low_recursive(BN_ULONG
*r
, BN_ULONG
*a
, BN_ULONG
*b
, int n2
, BN_ULONG
*t
)
749 fprintf(stderr
, " bn_mul_low_recursive %d * %d\n",n2
,n2
);
752 bn_mul_recursive(r
, a
, b
, n
, 0, 0, &(t
[0]));
753 if (n
>= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL
) {
754 bn_mul_low_recursive(&(t
[0]), &(a
[0]), &(b
[n
]), n
, &(t
[n2
]));
755 bn_add_words(&(r
[n
]), &(r
[n
]), &(t
[0]), n
);
756 bn_mul_low_recursive(&(t
[0]), &(a
[n
]), &(b
[0]), n
, &(t
[n2
]));
757 bn_add_words(&(r
[n
]), &(r
[n
]), &(t
[0]), n
);
759 bn_mul_low_normal(&(t
[0]), &(a
[0]), &(b
[n
]), n
);
760 bn_mul_low_normal(&(t
[n
]), &(a
[n
]), &(b
[0]), n
);
761 bn_add_words(&(r
[n
]), &(r
[n
]), &(t
[0]), n
);
762 bn_add_words(&(r
[n
]), &(r
[n
]), &(t
[n
]), n
);
766 /* a and b must be the same size, which is n2.
767 * r needs to be n2 words and t needs to be n2*2
768 * l is the low words of the output.
772 bn_mul_high(BN_ULONG
*r
, BN_ULONG
*a
, BN_ULONG
*b
, BN_ULONG
*l
, int n2
,
778 BN_ULONG ll
, lc
, *lp
, *mp
;
781 fprintf(stderr
, " bn_mul_high %d * %d\n",n2
,n2
);
785 /* Calculate (al-ah)*(bh-bl) */
787 c1
= bn_cmp_words(&(a
[0]), &(a
[n
]), n
);
788 c2
= bn_cmp_words(&(b
[n
]), &(b
[0]), n
);
789 switch (c1
* 3 + c2
) {
791 bn_sub_words(&(r
[0]), &(a
[n
]), &(a
[0]), n
);
792 bn_sub_words(&(r
[n
]), &(b
[0]), &(b
[n
]), n
);
798 bn_sub_words(&(r
[0]), &(a
[n
]), &(a
[0]), n
);
799 bn_sub_words(&(r
[n
]), &(b
[n
]), &(b
[0]), n
);
808 bn_sub_words(&(r
[0]), &(a
[0]), &(a
[n
]), n
);
809 bn_sub_words(&(r
[n
]), &(b
[0]), &(b
[n
]), n
);
816 bn_sub_words(&(r
[0]), &(a
[0]), &(a
[n
]), n
);
817 bn_sub_words(&(r
[n
]), &(b
[n
]), &(b
[0]), n
);
822 /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
823 /* r[10] = (a[1]*b[1]) */
826 bn_mul_comba8(&(t
[0]), &(r
[0]), &(r
[n
]));
827 bn_mul_comba8(r
, &(a
[n
]), &(b
[n
]));
831 bn_mul_recursive(&(t
[0]), &(r
[0]), &(r
[n
]), n
, 0, 0, &(t
[n2
]));
832 bn_mul_recursive(r
, &(a
[n
]), &(b
[n
]), n
, 0, 0, &(t
[n2
]));
836 * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
837 * We know s0 and s1 so the only unknown is high(al*bl)
838 * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
839 * high(al*bl) == s1 - (r[0]+l[0]+t[0])
843 c1
= (int)(bn_add_words(lp
, &(r
[0]), &(l
[0]), n
));
850 neg
= (int)(bn_sub_words(&(t
[n2
]), lp
, &(t
[0]), n
));
852 bn_add_words(&(t
[n2
]), lp
, &(t
[0]), n
);
857 bn_sub_words(&(t
[n2
+ n
]), &(l
[n
]), &(t
[n2
]), n
);
861 for (i
= 0; i
< n
; i
++)
862 lp
[i
] = ((~mp
[i
]) + 1) & BN_MASK2
;
867 * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
868 * r[10] = (a[1]*b[1])
871 * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
874 /* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
875 * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
876 * R[3]=r[1]+(carry/borrow)
880 c1
= (int)(bn_add_words(lp
, &(t
[n2
+ n
]), &(l
[0]), n
));
885 c1
+= (int)(bn_add_words(&(t
[n2
]), lp
, &(r
[0]), n
));
887 c1
-= (int)(bn_sub_words(&(t
[n2
]), &(t
[n2
]), &(t
[0]), n
));
889 c1
+= (int)(bn_add_words(&(t
[n2
]), &(t
[n2
]), &(t
[0]), n
));
891 c2
= (int)(bn_add_words(&(r
[0]), &(r
[0]), &(t
[n2
+ n
]), n
));
892 c2
+= (int)(bn_add_words(&(r
[0]), &(r
[0]), &(r
[n
]), n
));
894 c2
-= (int)(bn_sub_words(&(r
[0]), &(r
[0]), &(t
[n
]), n
));
896 c2
+= (int)(bn_add_words(&(r
[0]), &(r
[0]), &(t
[n
]), n
));
898 if (c1
!= 0) /* Add starting at r[0], could be +ve or -ve */
904 ll
= (r
[i
] + lc
) & BN_MASK2
;
912 r
[i
++] = (ll
- lc
) & BN_MASK2
;
917 if (c2
!= 0) /* Add starting at r[1] */
923 ll
= (r
[i
] + lc
) & BN_MASK2
;
931 r
[i
++] = (ll
- lc
) & BN_MASK2
;
937 #endif /* BN_RECURSION */
940 BN_mul(BIGNUM
*r
, const BIGNUM
*a
, const BIGNUM
*b
, BN_CTX
*ctx
)
945 #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
954 fprintf(stderr
, "BN_mul %d * %d\n",a
->top
,b
->top
);
964 if ((al
== 0) || (bl
== 0)) {
971 if ((r
== a
) || (r
== b
)) {
972 if ((rr
= BN_CTX_get(ctx
)) == NULL
)
976 rr
->neg
= a
->neg
^ b
->neg
;
978 #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
985 if (bn_wexpand(rr
, 8) == NULL
)
988 bn_mul_comba4(rr
->d
, a
->d
, b
->d
);
993 if (bn_wexpand(rr
, 16) == NULL
)
996 bn_mul_comba8(rr
->d
, a
->d
, b
->d
);
1000 #endif /* BN_MUL_COMBA */
1002 if ((al
>= BN_MULL_SIZE_NORMAL
) && (bl
>= BN_MULL_SIZE_NORMAL
)) {
1003 if (i
>= -1 && i
<= 1) {
1004 /* Find out the power of two lower or equal
1005 to the longest of the two numbers */
1007 j
= BN_num_bits_word((BN_ULONG
)al
);
1010 j
= BN_num_bits_word((BN_ULONG
)bl
);
1013 assert(j
<= al
|| j
<= bl
);
1015 if ((t
= BN_CTX_get(ctx
)) == NULL
)
1017 if (al
> j
|| bl
> j
) {
1018 if (bn_wexpand(t
, k
* 4) == NULL
)
1020 if (bn_wexpand(rr
, k
* 4) == NULL
)
1022 bn_mul_part_recursive(rr
->d
, a
->d
, b
->d
,
1023 j
, al
- j
, bl
- j
, t
->d
);
1025 else /* al <= j || bl <= j */
1027 if (bn_wexpand(t
, k
* 2) == NULL
)
1029 if (bn_wexpand(rr
, k
* 2) == NULL
)
1031 bn_mul_recursive(rr
->d
, a
->d
, b
->d
,
1032 j
, al
- j
, bl
- j
, t
->d
);
1038 if (i
== 1 && !BN_get_flags(b
, BN_FLG_STATIC_DATA
)) {
1039 BIGNUM
*tmp_bn
= (BIGNUM
*)b
;
1040 if (bn_wexpand(tmp_bn
, al
) == NULL
)
1045 } else if (i
== -1 && !BN_get_flags(a
, BN_FLG_STATIC_DATA
)) {
1046 BIGNUM
*tmp_bn
= (BIGNUM
*)a
;
1047 if (bn_wexpand(tmp_bn
, bl
) == NULL
)
1054 /* symmetric and > 4 */
1056 j
= BN_num_bits_word((BN_ULONG
)al
);
1059 if ((t
= BN_CTX_get(ctx
)) == NULL
)
1061 if (al
== j
) /* exact multiple */
1063 if (bn_wexpand(t
, k
* 2) == NULL
)
1065 if (bn_wexpand(rr
, k
* 2) == NULL
)
1067 bn_mul_recursive(rr
->d
, a
->d
, b
->d
, al
, t
->d
);
1069 if (bn_wexpand(t
, k
* 4) == NULL
)
1071 if (bn_wexpand(rr
, k
* 4) == NULL
)
1073 bn_mul_part_recursive(rr
->d
, a
->d
, b
->d
,
1081 #endif /* BN_RECURSION */
1082 if (bn_wexpand(rr
, top
) == NULL
)
1085 bn_mul_normal(rr
->d
, a
->d
, al
, b
->d
, bl
);
1087 #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
1101 bn_mul_normal(BN_ULONG
*r
, BN_ULONG
*a
, int na
, BN_ULONG
*b
, int nb
)
1106 fprintf(stderr
, " bn_mul_normal %d * %d\n", na
, nb
);
1123 (void)bn_mul_words(r
, a
, na
, 0);
1126 rr
[0] = bn_mul_words(r
, a
, na
, b
[0]);
1131 rr
[1] = bn_mul_add_words(&(r
[1]), a
, na
, b
[1]);
1134 rr
[2] = bn_mul_add_words(&(r
[2]), a
, na
, b
[2]);
1137 rr
[3] = bn_mul_add_words(&(r
[3]), a
, na
, b
[3]);
1140 rr
[4] = bn_mul_add_words(&(r
[4]), a
, na
, b
[4]);
1148 bn_mul_low_normal(BN_ULONG
*r
, BN_ULONG
*a
, BN_ULONG
*b
, int n
)
1151 fprintf(stderr
, " bn_mul_low_normal %d * %d\n", n
, n
);
1153 bn_mul_words(r
, a
, n
, b
[0]);
1158 bn_mul_add_words(&(r
[1]), a
, n
, b
[1]);
1161 bn_mul_add_words(&(r
[2]), a
, n
, b
[2]);
1164 bn_mul_add_words(&(r
[3]), a
, n
, b
[3]);
1167 bn_mul_add_words(&(r
[4]), a
, n
, b
[4]);