Merge commit 'dfc115332c94a2f62058ac7f2bce7631fbd20b3d'
[unleashed/tickless.git] / lib / libcrypto / bn / bn_mul.c
blob7794d5970778e4ab42b9fd44c723c7ced852b618
1 /* $OpenBSD: bn_mul.c,v 1.20 2015/02/09 15:49:22 jsing Exp $ */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
59 #ifndef BN_DEBUG
60 # undef NDEBUG /* avoid conflicting definitions */
61 # define NDEBUG
62 #endif
64 #include <assert.h>
65 #include <stdio.h>
66 #include <string.h>
68 #include <openssl/opensslconf.h>
70 #include "bn_lcl.h"
72 #if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)
73 /* Here follows specialised variants of bn_add_words() and
74 bn_sub_words(). They have the property performing operations on
75 arrays of different sizes. The sizes of those arrays is expressed through
76 cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl,
77 which is the delta between the two lengths, calculated as len(a)-len(b).
78 All lengths are the number of BN_ULONGs... For the operations that require
79 a result array as parameter, it must have the length cl+abs(dl).
80 These functions should probably end up in bn_asm.c as soon as there are
81 assembler counterparts for the systems that use assembler files. */
83 BN_ULONG
84 bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int cl,
85 int dl)
87 BN_ULONG c, t;
89 assert(cl >= 0);
90 c = bn_sub_words(r, a, b, cl);
92 if (dl == 0)
93 return c;
95 r += cl;
96 a += cl;
97 b += cl;
99 if (dl < 0) {
100 #ifdef BN_COUNT
101 fprintf(stderr,
102 " bn_sub_part_words %d + %d (dl < 0, c = %d)\n",
103 cl, dl, c);
104 #endif
105 for (;;) {
106 t = b[0];
107 r[0] = (0 - t - c) & BN_MASK2;
108 if (t != 0)
109 c = 1;
110 if (++dl >= 0)
111 break;
113 t = b[1];
114 r[1] = (0 - t - c) & BN_MASK2;
115 if (t != 0)
116 c = 1;
117 if (++dl >= 0)
118 break;
120 t = b[2];
121 r[2] = (0 - t - c) & BN_MASK2;
122 if (t != 0)
123 c = 1;
124 if (++dl >= 0)
125 break;
127 t = b[3];
128 r[3] = (0 - t - c) & BN_MASK2;
129 if (t != 0)
130 c = 1;
131 if (++dl >= 0)
132 break;
134 b += 4;
135 r += 4;
137 } else {
138 int save_dl = dl;
139 #ifdef BN_COUNT
140 fprintf(stderr,
141 " bn_sub_part_words %d + %d (dl > 0, c = %d)\n",
142 cl, dl, c);
143 #endif
144 while (c) {
145 t = a[0];
146 r[0] = (t - c) & BN_MASK2;
147 if (t != 0)
148 c = 0;
149 if (--dl <= 0)
150 break;
152 t = a[1];
153 r[1] = (t - c) & BN_MASK2;
154 if (t != 0)
155 c = 0;
156 if (--dl <= 0)
157 break;
159 t = a[2];
160 r[2] = (t - c) & BN_MASK2;
161 if (t != 0)
162 c = 0;
163 if (--dl <= 0)
164 break;
166 t = a[3];
167 r[3] = (t - c) & BN_MASK2;
168 if (t != 0)
169 c = 0;
170 if (--dl <= 0)
171 break;
173 save_dl = dl;
174 a += 4;
175 r += 4;
177 if (dl > 0) {
178 #ifdef BN_COUNT
179 fprintf(stderr,
180 " bn_sub_part_words %d + %d (dl > 0, c == 0)\n",
181 cl, dl);
182 #endif
183 if (save_dl > dl) {
184 switch (save_dl - dl) {
185 case 1:
186 r[1] = a[1];
187 if (--dl <= 0)
188 break;
189 case 2:
190 r[2] = a[2];
191 if (--dl <= 0)
192 break;
193 case 3:
194 r[3] = a[3];
195 if (--dl <= 0)
196 break;
198 a += 4;
199 r += 4;
202 if (dl > 0) {
203 #ifdef BN_COUNT
204 fprintf(stderr,
205 " bn_sub_part_words %d + %d (dl > 0, copy)\n",
206 cl, dl);
207 #endif
208 for (;;) {
209 r[0] = a[0];
210 if (--dl <= 0)
211 break;
212 r[1] = a[1];
213 if (--dl <= 0)
214 break;
215 r[2] = a[2];
216 if (--dl <= 0)
217 break;
218 r[3] = a[3];
219 if (--dl <= 0)
220 break;
222 a += 4;
223 r += 4;
227 return c;
229 #endif
231 BN_ULONG
232 bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int cl,
233 int dl)
235 BN_ULONG c, l, t;
237 assert(cl >= 0);
238 c = bn_add_words(r, a, b, cl);
240 if (dl == 0)
241 return c;
243 r += cl;
244 a += cl;
245 b += cl;
247 if (dl < 0) {
248 int save_dl = dl;
249 #ifdef BN_COUNT
250 fprintf(stderr,
251 " bn_add_part_words %d + %d (dl < 0, c = %d)\n",
252 cl, dl, c);
253 #endif
254 while (c) {
255 l = (c + b[0]) & BN_MASK2;
256 c = (l < c);
257 r[0] = l;
258 if (++dl >= 0)
259 break;
261 l = (c + b[1]) & BN_MASK2;
262 c = (l < c);
263 r[1] = l;
264 if (++dl >= 0)
265 break;
267 l = (c + b[2]) & BN_MASK2;
268 c = (l < c);
269 r[2] = l;
270 if (++dl >= 0)
271 break;
273 l = (c + b[3]) & BN_MASK2;
274 c = (l < c);
275 r[3] = l;
276 if (++dl >= 0)
277 break;
279 save_dl = dl;
280 b += 4;
281 r += 4;
283 if (dl < 0) {
284 #ifdef BN_COUNT
285 fprintf(stderr,
286 " bn_add_part_words %d + %d (dl < 0, c == 0)\n",
287 cl, dl);
288 #endif
289 if (save_dl < dl) {
290 switch (dl - save_dl) {
291 case 1:
292 r[1] = b[1];
293 if (++dl >= 0)
294 break;
295 case 2:
296 r[2] = b[2];
297 if (++dl >= 0)
298 break;
299 case 3:
300 r[3] = b[3];
301 if (++dl >= 0)
302 break;
304 b += 4;
305 r += 4;
308 if (dl < 0) {
309 #ifdef BN_COUNT
310 fprintf(stderr,
311 " bn_add_part_words %d + %d (dl < 0, copy)\n",
312 cl, dl);
313 #endif
314 for (;;) {
315 r[0] = b[0];
316 if (++dl >= 0)
317 break;
318 r[1] = b[1];
319 if (++dl >= 0)
320 break;
321 r[2] = b[2];
322 if (++dl >= 0)
323 break;
324 r[3] = b[3];
325 if (++dl >= 0)
326 break;
328 b += 4;
329 r += 4;
332 } else {
333 int save_dl = dl;
334 #ifdef BN_COUNT
335 fprintf(stderr,
336 " bn_add_part_words %d + %d (dl > 0)\n", cl, dl);
337 #endif
338 while (c) {
339 t = (a[0] + c) & BN_MASK2;
340 c = (t < c);
341 r[0] = t;
342 if (--dl <= 0)
343 break;
345 t = (a[1] + c) & BN_MASK2;
346 c = (t < c);
347 r[1] = t;
348 if (--dl <= 0)
349 break;
351 t = (a[2] + c) & BN_MASK2;
352 c = (t < c);
353 r[2] = t;
354 if (--dl <= 0)
355 break;
357 t = (a[3] + c) & BN_MASK2;
358 c = (t < c);
359 r[3] = t;
360 if (--dl <= 0)
361 break;
363 save_dl = dl;
364 a += 4;
365 r += 4;
367 #ifdef BN_COUNT
368 fprintf(stderr,
369 " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
370 #endif
371 if (dl > 0) {
372 if (save_dl > dl) {
373 switch (save_dl - dl) {
374 case 1:
375 r[1] = a[1];
376 if (--dl <= 0)
377 break;
378 case 2:
379 r[2] = a[2];
380 if (--dl <= 0)
381 break;
382 case 3:
383 r[3] = a[3];
384 if (--dl <= 0)
385 break;
387 a += 4;
388 r += 4;
391 if (dl > 0) {
392 #ifdef BN_COUNT
393 fprintf(stderr,
394 " bn_add_part_words %d + %d (dl > 0, copy)\n",
395 cl, dl);
396 #endif
397 for (;;) {
398 r[0] = a[0];
399 if (--dl <= 0)
400 break;
401 r[1] = a[1];
402 if (--dl <= 0)
403 break;
404 r[2] = a[2];
405 if (--dl <= 0)
406 break;
407 r[3] = a[3];
408 if (--dl <= 0)
409 break;
411 a += 4;
412 r += 4;
416 return c;
419 #ifdef BN_RECURSION
420 /* Karatsuba recursive multiplication algorithm
421 * (cf. Knuth, The Art of Computer Programming, Vol. 2) */
423 /* r is 2*n2 words in size,
424 * a and b are both n2 words in size.
425 * n2 must be a power of 2.
426 * We multiply and return the result.
427 * t must be 2*n2 words in size
428 * We calculate
429 * a[0]*b[0]
430 * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
431 * a[1]*b[1]
433 /* dnX may not be positive, but n2/2+dnX has to be */
434 void
435 bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, int dna,
436 int dnb, BN_ULONG *t)
438 int n = n2 / 2, c1, c2;
439 int tna = n + dna, tnb = n + dnb;
440 unsigned int neg, zero;
441 BN_ULONG ln, lo, *p;
443 # ifdef BN_COUNT
444 fprintf(stderr, " bn_mul_recursive %d%+d * %d%+d\n",n2,dna,n2,dnb);
445 # endif
446 # ifdef BN_MUL_COMBA
447 # if 0
448 if (n2 == 4) {
449 bn_mul_comba4(r, a, b);
450 return;
452 # endif
453 /* Only call bn_mul_comba 8 if n2 == 8 and the
454 * two arrays are complete [steve]
456 if (n2 == 8 && dna == 0 && dnb == 0) {
457 bn_mul_comba8(r, a, b);
458 return;
460 # endif /* BN_MUL_COMBA */
461 /* Else do normal multiply */
462 if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
463 bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
464 if ((dna + dnb) < 0)
465 memset(&r[2*n2 + dna + dnb], 0,
466 sizeof(BN_ULONG) * -(dna + dnb));
467 return;
469 /* r=(a[0]-a[1])*(b[1]-b[0]) */
470 c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
471 c2 = bn_cmp_part_words(&(b[n]), b,tnb, tnb - n);
472 zero = neg = 0;
473 switch (c1 * 3 + c2) {
474 case -4:
475 bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
476 bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
477 break;
478 case -3:
479 zero = 1;
480 break;
481 case -2:
482 bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
483 bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
484 neg = 1;
485 break;
486 case -1:
487 case 0:
488 case 1:
489 zero = 1;
490 break;
491 case 2:
492 bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
493 bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
494 neg = 1;
495 break;
496 case 3:
497 zero = 1;
498 break;
499 case 4:
500 bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
501 bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
502 break;
505 # ifdef BN_MUL_COMBA
506 if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take
507 extra args to do this well */
509 if (!zero)
510 bn_mul_comba4(&(t[n2]), t, &(t[n]));
511 else
512 memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG));
514 bn_mul_comba4(r, a, b);
515 bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n]));
516 } else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could
517 take extra args to do this
518 well */
520 if (!zero)
521 bn_mul_comba8(&(t[n2]), t, &(t[n]));
522 else
523 memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG));
525 bn_mul_comba8(r, a, b);
526 bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n]));
527 } else
528 # endif /* BN_MUL_COMBA */
530 p = &(t[n2 * 2]);
531 if (!zero)
532 bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
533 else
534 memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG));
535 bn_mul_recursive(r, a, b, n, 0, 0, p);
536 bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p);
539 /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
540 * r[10] holds (a[0]*b[0])
541 * r[32] holds (b[1]*b[1])
544 c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
546 if (neg) /* if t[32] is negative */
548 c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
549 } else {
550 /* Might have a carry */
551 c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
554 /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
555 * r[10] holds (a[0]*b[0])
556 * r[32] holds (b[1]*b[1])
557 * c1 holds the carry bits
559 c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
560 if (c1) {
561 p = &(r[n + n2]);
562 lo= *p;
563 ln = (lo + c1) & BN_MASK2;
564 *p = ln;
566 /* The overflow will stop before we over write
567 * words we should not overwrite */
568 if (ln < (BN_ULONG)c1) {
569 do {
570 p++;
571 lo= *p;
572 ln = (lo + 1) & BN_MASK2;
573 *p = ln;
574 } while (ln == 0);
579 /* n+tn is the word length
580 * t needs to be n*4 is size, as does r */
581 /* tnX may not be negative but less than n */
582 void
583 bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, int tna,
584 int tnb, BN_ULONG *t)
586 int i, j, n2 = n * 2;
587 int c1, c2, neg;
588 BN_ULONG ln, lo, *p;
590 # ifdef BN_COUNT
591 fprintf(stderr, " bn_mul_part_recursive (%d%+d) * (%d%+d)\n",
592 n, tna, n, tnb);
593 # endif
594 if (n < 8) {
595 bn_mul_normal(r, a, n + tna, b, n + tnb);
596 return;
599 /* r=(a[0]-a[1])*(b[1]-b[0]) */
600 c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
601 c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
602 neg = 0;
603 switch (c1 * 3 + c2) {
604 case -4:
605 bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
606 bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
607 break;
608 case -3:
609 /* break; */
610 case -2:
611 bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
612 bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
613 neg = 1;
614 break;
615 case -1:
616 case 0:
617 case 1:
618 /* break; */
619 case 2:
620 bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
621 bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
622 neg = 1;
623 break;
624 case 3:
625 /* break; */
626 case 4:
627 bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
628 bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
629 break;
631 /* The zero case isn't yet implemented here. The speedup
632 would probably be negligible. */
633 # if 0
634 if (n == 4) {
635 bn_mul_comba4(&(t[n2]), t, &(t[n]));
636 bn_mul_comba4(r, a, b);
637 bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn);
638 memset(&(r[n2 + tn * 2]), 0, sizeof(BN_ULONG) * (n2 - tn * 2));
639 } else
640 # endif
641 if (n == 8) {
642 bn_mul_comba8(&(t[n2]), t, &(t[n]));
643 bn_mul_comba8(r, a, b);
644 bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
645 memset(&(r[n2 + tna + tnb]), 0,
646 sizeof(BN_ULONG) * (n2 - tna - tnb));
647 } else {
648 p = &(t[n2*2]);
649 bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
650 bn_mul_recursive(r, a, b, n, 0, 0, p);
651 i = n / 2;
652 /* If there is only a bottom half to the number,
653 * just do it */
654 if (tna > tnb)
655 j = tna - i;
656 else
657 j = tnb - i;
658 if (j == 0) {
659 bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]),
660 i, tna - i, tnb - i, p);
661 memset(&(r[n2 + i * 2]), 0,
662 sizeof(BN_ULONG) * (n2 - i * 2));
664 else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
666 bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]),
667 i, tna - i, tnb - i, p);
668 memset(&(r[n2 + tna + tnb]), 0,
669 sizeof(BN_ULONG) * (n2 - tna - tnb));
671 else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
673 memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2);
674 if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL &&
675 tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
676 bn_mul_normal(&(r[n2]), &(a[n]), tna,
677 &(b[n]), tnb);
678 } else {
679 for (;;) {
680 i /= 2;
681 /* these simplified conditions work
682 * exclusively because difference
683 * between tna and tnb is 1 or 0 */
684 if (i < tna || i < tnb) {
685 bn_mul_part_recursive(&(r[n2]),
686 &(a[n]), &(b[n]), i,
687 tna - i, tnb - i, p);
688 break;
689 } else if (i == tna || i == tnb) {
690 bn_mul_recursive(&(r[n2]),
691 &(a[n]), &(b[n]), i,
692 tna - i, tnb - i, p);
693 break;
700 /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
701 * r[10] holds (a[0]*b[0])
702 * r[32] holds (b[1]*b[1])
705 c1 = (int)(bn_add_words(t, r,&(r[n2]), n2));
707 if (neg) /* if t[32] is negative */
709 c1 -= (int)(bn_sub_words(&(t[n2]), t,&(t[n2]), n2));
710 } else {
711 /* Might have a carry */
712 c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
715 /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
716 * r[10] holds (a[0]*b[0])
717 * r[32] holds (b[1]*b[1])
718 * c1 holds the carry bits
720 c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
721 if (c1) {
722 p = &(r[n + n2]);
723 lo= *p;
724 ln = (lo + c1)&BN_MASK2;
725 *p = ln;
727 /* The overflow will stop before we over write
728 * words we should not overwrite */
729 if (ln < (BN_ULONG)c1) {
730 do {
731 p++;
732 lo= *p;
733 ln = (lo + 1) & BN_MASK2;
734 *p = ln;
735 } while (ln == 0);
740 /* a and b must be the same size, which is n2.
741 * r needs to be n2 words and t needs to be n2*2
743 void
744 bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, BN_ULONG *t)
746 int n = n2 / 2;
748 # ifdef BN_COUNT
749 fprintf(stderr, " bn_mul_low_recursive %d * %d\n",n2,n2);
750 # endif
752 bn_mul_recursive(r, a, b, n, 0, 0, &(t[0]));
753 if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) {
754 bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2]));
755 bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
756 bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2]));
757 bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
758 } else {
759 bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n);
760 bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n);
761 bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
762 bn_add_words(&(r[n]), &(r[n]), &(t[n]), n);
766 /* a and b must be the same size, which is n2.
767 * r needs to be n2 words and t needs to be n2*2
768 * l is the low words of the output.
769 * t needs to be n2*3
771 void
772 bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
773 BN_ULONG *t)
775 int i, n;
776 int c1, c2;
777 int neg, oneg, zero;
778 BN_ULONG ll, lc, *lp, *mp;
780 # ifdef BN_COUNT
781 fprintf(stderr, " bn_mul_high %d * %d\n",n2,n2);
782 # endif
783 n = n2 / 2;
785 /* Calculate (al-ah)*(bh-bl) */
786 neg = zero = 0;
787 c1 = bn_cmp_words(&(a[0]), &(a[n]), n);
788 c2 = bn_cmp_words(&(b[n]), &(b[0]), n);
789 switch (c1 * 3 + c2) {
790 case -4:
791 bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n);
792 bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n);
793 break;
794 case -3:
795 zero = 1;
796 break;
797 case -2:
798 bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n);
799 bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n);
800 neg = 1;
801 break;
802 case -1:
803 case 0:
804 case 1:
805 zero = 1;
806 break;
807 case 2:
808 bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n);
809 bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n);
810 neg = 1;
811 break;
812 case 3:
813 zero = 1;
814 break;
815 case 4:
816 bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n);
817 bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n);
818 break;
821 oneg = neg;
822 /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
823 /* r[10] = (a[1]*b[1]) */
824 # ifdef BN_MUL_COMBA
825 if (n == 8) {
826 bn_mul_comba8(&(t[0]), &(r[0]), &(r[n]));
827 bn_mul_comba8(r, &(a[n]), &(b[n]));
828 } else
829 # endif
831 bn_mul_recursive(&(t[0]), &(r[0]), &(r[n]), n, 0, 0, &(t[n2]));
832 bn_mul_recursive(r, &(a[n]), &(b[n]), n, 0, 0, &(t[n2]));
835 /* s0 == low(al*bl)
836 * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
837 * We know s0 and s1 so the only unknown is high(al*bl)
838 * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
839 * high(al*bl) == s1 - (r[0]+l[0]+t[0])
841 if (l != NULL) {
842 lp = &(t[n2 + n]);
843 c1 = (int)(bn_add_words(lp, &(r[0]), &(l[0]), n));
844 } else {
845 c1 = 0;
846 lp = &(r[0]);
849 if (neg)
850 neg = (int)(bn_sub_words(&(t[n2]), lp, &(t[0]), n));
851 else {
852 bn_add_words(&(t[n2]), lp, &(t[0]), n);
853 neg = 0;
856 if (l != NULL) {
857 bn_sub_words(&(t[n2 + n]), &(l[n]), &(t[n2]), n);
858 } else {
859 lp = &(t[n2 + n]);
860 mp = &(t[n2]);
861 for (i = 0; i < n; i++)
862 lp[i] = ((~mp[i]) + 1) & BN_MASK2;
865 /* s[0] = low(al*bl)
866 * t[3] = high(al*bl)
867 * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
868 * r[10] = (a[1]*b[1])
870 /* R[10] = al*bl
871 * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
872 * R[32] = ah*bh
874 /* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
875 * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
876 * R[3]=r[1]+(carry/borrow)
878 if (l != NULL) {
879 lp = &(t[n2]);
880 c1 = (int)(bn_add_words(lp, &(t[n2 + n]), &(l[0]), n));
881 } else {
882 lp = &(t[n2 + n]);
883 c1 = 0;
885 c1 += (int)(bn_add_words(&(t[n2]), lp, &(r[0]), n));
886 if (oneg)
887 c1 -= (int)(bn_sub_words(&(t[n2]), &(t[n2]), &(t[0]), n));
888 else
889 c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), &(t[0]), n));
891 c2 = (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n2 + n]), n));
892 c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(r[n]), n));
893 if (oneg)
894 c2 -= (int)(bn_sub_words(&(r[0]), &(r[0]), &(t[n]), n));
895 else
896 c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n]), n));
898 if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */
900 i = 0;
901 if (c1 > 0) {
902 lc = c1;
903 do {
904 ll = (r[i] + lc) & BN_MASK2;
905 r[i++] = ll;
906 lc = (lc > ll);
907 } while (lc);
908 } else {
909 lc = -c1;
910 do {
911 ll = r[i];
912 r[i++] = (ll - lc) & BN_MASK2;
913 lc = (lc > ll);
914 } while (lc);
917 if (c2 != 0) /* Add starting at r[1] */
919 i = n;
920 if (c2 > 0) {
921 lc = c2;
922 do {
923 ll = (r[i] + lc) & BN_MASK2;
924 r[i++] = ll;
925 lc = (lc > ll);
926 } while (lc);
927 } else {
928 lc = -c2;
929 do {
930 ll = r[i];
931 r[i++] = (ll - lc) & BN_MASK2;
932 lc = (lc > ll);
933 } while (lc);
937 #endif /* BN_RECURSION */
940 BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
942 int ret = 0;
943 int top, al, bl;
944 BIGNUM *rr;
945 #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
946 int i;
947 #endif
948 #ifdef BN_RECURSION
949 BIGNUM *t = NULL;
950 int j = 0, k;
951 #endif
953 #ifdef BN_COUNT
954 fprintf(stderr, "BN_mul %d * %d\n",a->top,b->top);
955 #endif
957 bn_check_top(a);
958 bn_check_top(b);
959 bn_check_top(r);
961 al = a->top;
962 bl = b->top;
964 if ((al == 0) || (bl == 0)) {
965 BN_zero(r);
966 return (1);
968 top = al + bl;
970 BN_CTX_start(ctx);
971 if ((r == a) || (r == b)) {
972 if ((rr = BN_CTX_get(ctx)) == NULL)
973 goto err;
974 } else
975 rr = r;
976 rr->neg = a->neg ^ b->neg;
978 #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
979 i = al - bl;
980 #endif
981 #ifdef BN_MUL_COMBA
982 if (i == 0) {
983 # if 0
984 if (al == 4) {
985 if (bn_wexpand(rr, 8) == NULL)
986 goto err;
987 rr->top = 8;
988 bn_mul_comba4(rr->d, a->d, b->d);
989 goto end;
991 # endif
992 if (al == 8) {
993 if (bn_wexpand(rr, 16) == NULL)
994 goto err;
995 rr->top = 16;
996 bn_mul_comba8(rr->d, a->d, b->d);
997 goto end;
1000 #endif /* BN_MUL_COMBA */
1001 #ifdef BN_RECURSION
1002 if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) {
1003 if (i >= -1 && i <= 1) {
1004 /* Find out the power of two lower or equal
1005 to the longest of the two numbers */
1006 if (i >= 0) {
1007 j = BN_num_bits_word((BN_ULONG)al);
1009 if (i == -1) {
1010 j = BN_num_bits_word((BN_ULONG)bl);
1012 j = 1 << (j - 1);
1013 assert(j <= al || j <= bl);
1014 k = j + j;
1015 if ((t = BN_CTX_get(ctx)) == NULL)
1016 goto err;
1017 if (al > j || bl > j) {
1018 if (bn_wexpand(t, k * 4) == NULL)
1019 goto err;
1020 if (bn_wexpand(rr, k * 4) == NULL)
1021 goto err;
1022 bn_mul_part_recursive(rr->d, a->d, b->d,
1023 j, al - j, bl - j, t->d);
1025 else /* al <= j || bl <= j */
1027 if (bn_wexpand(t, k * 2) == NULL)
1028 goto err;
1029 if (bn_wexpand(rr, k * 2) == NULL)
1030 goto err;
1031 bn_mul_recursive(rr->d, a->d, b->d,
1032 j, al - j, bl - j, t->d);
1034 rr->top = top;
1035 goto end;
1037 #if 0
1038 if (i == 1 && !BN_get_flags(b, BN_FLG_STATIC_DATA)) {
1039 BIGNUM *tmp_bn = (BIGNUM *)b;
1040 if (bn_wexpand(tmp_bn, al) == NULL)
1041 goto err;
1042 tmp_bn->d[bl] = 0;
1043 bl++;
1044 i--;
1045 } else if (i == -1 && !BN_get_flags(a, BN_FLG_STATIC_DATA)) {
1046 BIGNUM *tmp_bn = (BIGNUM *)a;
1047 if (bn_wexpand(tmp_bn, bl) == NULL)
1048 goto err;
1049 tmp_bn->d[al] = 0;
1050 al++;
1051 i++;
1053 if (i == 0) {
1054 /* symmetric and > 4 */
1055 /* 16 or larger */
1056 j = BN_num_bits_word((BN_ULONG)al);
1057 j = 1 << (j - 1);
1058 k = j + j;
1059 if ((t = BN_CTX_get(ctx)) == NULL)
1060 goto err;
1061 if (al == j) /* exact multiple */
1063 if (bn_wexpand(t, k * 2) == NULL)
1064 goto err;
1065 if (bn_wexpand(rr, k * 2) == NULL)
1066 goto err;
1067 bn_mul_recursive(rr->d, a->d, b->d, al, t->d);
1068 } else {
1069 if (bn_wexpand(t, k * 4) == NULL)
1070 goto err;
1071 if (bn_wexpand(rr, k * 4) == NULL)
1072 goto err;
1073 bn_mul_part_recursive(rr->d, a->d, b->d,
1074 al - j, j, t->d);
1076 rr->top = top;
1077 goto end;
1079 #endif
1081 #endif /* BN_RECURSION */
1082 if (bn_wexpand(rr, top) == NULL)
1083 goto err;
1084 rr->top = top;
1085 bn_mul_normal(rr->d, a->d, al, b->d, bl);
1087 #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
1088 end:
1089 #endif
1090 bn_correct_top(rr);
1091 if (r != rr)
1092 BN_copy(r, rr);
1093 ret = 1;
1094 err:
1095 bn_check_top(r);
1096 BN_CTX_end(ctx);
1097 return (ret);
1100 void
1101 bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
1103 BN_ULONG *rr;
1105 #ifdef BN_COUNT
1106 fprintf(stderr, " bn_mul_normal %d * %d\n", na, nb);
1107 #endif
1109 if (na < nb) {
1110 int itmp;
1111 BN_ULONG *ltmp;
1113 itmp = na;
1114 na = nb;
1115 nb = itmp;
1116 ltmp = a;
1117 a = b;
1118 b = ltmp;
1121 rr = &(r[na]);
1122 if (nb <= 0) {
1123 (void)bn_mul_words(r, a, na, 0);
1124 return;
1125 } else
1126 rr[0] = bn_mul_words(r, a, na, b[0]);
1128 for (;;) {
1129 if (--nb <= 0)
1130 return;
1131 rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
1132 if (--nb <= 0)
1133 return;
1134 rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
1135 if (--nb <= 0)
1136 return;
1137 rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
1138 if (--nb <= 0)
1139 return;
1140 rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
1141 rr += 4;
1142 r += 4;
1143 b += 4;
1147 void
1148 bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
1150 #ifdef BN_COUNT
1151 fprintf(stderr, " bn_mul_low_normal %d * %d\n", n, n);
1152 #endif
1153 bn_mul_words(r, a, n, b[0]);
1155 for (;;) {
1156 if (--n <= 0)
1157 return;
1158 bn_mul_add_words(&(r[1]), a, n, b[1]);
1159 if (--n <= 0)
1160 return;
1161 bn_mul_add_words(&(r[2]), a, n, b[2]);
1162 if (--n <= 0)
1163 return;
1164 bn_mul_add_words(&(r[3]), a, n, b[3]);
1165 if (--n <= 0)
1166 return;
1167 bn_mul_add_words(&(r[4]), a, n, b[4]);
1168 r += 4;
1169 b += 4;