1 /* $OpenBSD: bn_prime.c,v 1.18 2017/01/29 17:49:22 beck Exp $ */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
58 /* ====================================================================
59 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
87 * 6. Redistributions of any form whatsoever must retain the following
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
115 #include <openssl/err.h>
119 /* NB: these functions have been "upgraded", the deprecated versions (which are
120 * compatibility wrappers using these functions) are in bn_depr.c.
124 /* The quick sieve algorithm approach to weeding out primes is
125 * Philip Zimmermann's, as implemented in PGP. I have had a read of
126 * his comments and implemented my own version.
128 #include "bn_prime.h"
130 static int witness(BIGNUM
*w
, const BIGNUM
*a
, const BIGNUM
*a1
,
131 const BIGNUM
*a1_odd
, int k
, BN_CTX
*ctx
, BN_MONT_CTX
*mont
);
132 static int probable_prime(BIGNUM
*rnd
, int bits
);
133 static int probable_prime_dh(BIGNUM
*rnd
, int bits
,
134 const BIGNUM
*add
, const BIGNUM
*rem
, BN_CTX
*ctx
);
135 static int probable_prime_dh_safe(BIGNUM
*rnd
, int bits
,
136 const BIGNUM
*add
, const BIGNUM
*rem
, BN_CTX
*ctx
);
139 BN_GENCB_call(BN_GENCB
*cb
, int a
, int b
)
141 /* No callback means continue */
146 /* Deprecated-style callbacks */
149 cb
->cb
.cb_1(a
, b
, cb
->arg
);
152 /* New-style callbacks */
153 return cb
->cb
.cb_2(a
, b
, cb
);
157 /* Unrecognised callback type */
162 BN_generate_prime_ex(BIGNUM
*ret
, int bits
, int safe
, const BIGNUM
*add
,
163 const BIGNUM
*rem
, BN_GENCB
*cb
)
171 if (bits
< 2 || (bits
== 2 && safe
)) {
173 * There are no prime numbers smaller than 2, and the smallest
174 * safe prime (7) spans three bits.
176 BNerror(BN_R_BITS_TOO_SMALL
);
184 if ((t
= BN_CTX_get(ctx
)) == NULL
)
187 checks
= BN_prime_checks_for_size(bits
);
190 /* make a random number and set the top and bottom bits */
192 if (!probable_prime(ret
, bits
))
196 if (!probable_prime_dh_safe(ret
, bits
, add
, rem
, ctx
))
199 if (!probable_prime_dh(ret
, bits
, add
, rem
, ctx
))
203 /* if (BN_mod_word(ret,(BN_ULONG)3) == 1) goto loop; */
204 if (!BN_GENCB_call(cb
, 0, c1
++))
209 i
= BN_is_prime_fasttest_ex(ret
, checks
, ctx
, 0, cb
);
215 /* for "safe prime" generation,
216 * check that (p-1)/2 is prime.
217 * Since a prime is odd, We just
218 * need to divide by 2 */
219 if (!BN_rshift1(t
, ret
))
222 for (i
= 0; i
< checks
; i
++) {
223 j
= BN_is_prime_fasttest_ex(ret
, 1, ctx
, 0, cb
);
229 j
= BN_is_prime_fasttest_ex(t
, 1, ctx
, 0, cb
);
235 if (!BN_GENCB_call(cb
, 2, c1
- 1))
237 /* We have a safe prime test pass */
240 /* we have a prime :-) */
253 BN_is_prime_ex(const BIGNUM
*a
, int checks
, BN_CTX
*ctx_passed
, BN_GENCB
*cb
)
255 return BN_is_prime_fasttest_ex(a
, checks
, ctx_passed
, 0, cb
);
259 BN_is_prime_fasttest_ex(const BIGNUM
*a
, int checks
, BN_CTX
*ctx_passed
,
260 int do_trial_division
, BN_GENCB
*cb
)
265 BIGNUM
*A1
, *A1_odd
, *check
; /* taken from ctx */
266 BN_MONT_CTX
*mont
= NULL
;
267 const BIGNUM
*A
= NULL
;
269 if (BN_cmp(a
, BN_value_one()) <= 0)
272 if (checks
== BN_prime_checks
)
273 checks
= BN_prime_checks_for_size(BN_num_bits(a
));
275 /* first look for small factors */
277 /* a is even => a is prime if and only if a == 2 */
278 return BN_is_word(a
, 2);
279 if (do_trial_division
) {
280 for (i
= 1; i
< NUMPRIMES
; i
++) {
281 BN_ULONG mod
= BN_mod_word(a
, primes
[i
]);
282 if (mod
== (BN_ULONG
)-1)
287 if (!BN_GENCB_call(cb
, 1, -1))
291 if (ctx_passed
!= NULL
)
293 else if ((ctx
= BN_CTX_new()) == NULL
)
300 if ((t
= BN_CTX_get(ctx
)) == NULL
)
307 if ((A1
= BN_CTX_get(ctx
)) == NULL
)
309 if ((A1_odd
= BN_CTX_get(ctx
)) == NULL
)
311 if ((check
= BN_CTX_get(ctx
)) == NULL
)
314 /* compute A1 := A - 1 */
317 if (!BN_sub_word(A1
, 1))
319 if (BN_is_zero(A1
)) {
324 /* write A1 as A1_odd * 2^k */
326 while (!BN_is_bit_set(A1
, k
))
328 if (!BN_rshift(A1_odd
, A1
, k
))
331 /* Montgomery setup for computations mod A */
332 mont
= BN_MONT_CTX_new();
335 if (!BN_MONT_CTX_set(mont
, A
, ctx
))
338 for (i
= 0; i
< checks
; i
++) {
339 if (!BN_pseudo_rand_range(check
, A1
))
341 if (!BN_add_word(check
, 1))
343 /* now 1 <= check < A */
345 j
= witness(check
, A
, A1
, A1_odd
, k
, ctx
, mont
);
352 if (!BN_GENCB_call(cb
, 1, i
))
360 if (ctx_passed
== NULL
)
363 BN_MONT_CTX_free(mont
);
369 witness(BIGNUM
*w
, const BIGNUM
*a
, const BIGNUM
*a1
, const BIGNUM
*a1_odd
,
370 int k
, BN_CTX
*ctx
, BN_MONT_CTX
*mont
)
372 if (!BN_mod_exp_mont_ct(w
, w
, a1_odd
, a
, ctx
, mont
))
373 /* w := w^a1_odd mod a */
376 return 0; /* probably prime */
377 if (BN_cmp(w
, a1
) == 0)
378 return 0; /* w == -1 (mod a), 'a' is probably prime */
380 if (!BN_mod_mul(w
, w
, w
, a
, ctx
)) /* w := w^2 mod a */
383 return 1; /* 'a' is composite, otherwise a previous 'w' would
384 * have been == -1 (mod 'a') */
385 if (BN_cmp(w
, a1
) == 0)
386 return 0; /* w == -1 (mod a), 'a' is probably prime */
388 /* If we get here, 'w' is the (a-1)/2-th power of the original 'w',
389 * and it is neither -1 nor +1 -- so 'a' cannot be prime */
395 probable_prime(BIGNUM
*rnd
, int bits
)
398 prime_t mods
[NUMPRIMES
];
399 BN_ULONG delta
, maxdelta
;
402 if (!BN_rand(rnd
, bits
, 1, 1))
404 /* we now have a random number 'rand' to test. */
405 for (i
= 1; i
< NUMPRIMES
; i
++) {
406 BN_ULONG mod
= BN_mod_word(rnd
, (BN_ULONG
)primes
[i
]);
407 if (mod
== (BN_ULONG
)-1)
409 mods
[i
] = (prime_t
)mod
;
411 maxdelta
= BN_MASK2
- primes
[NUMPRIMES
- 1];
414 for (i
= 1; i
< NUMPRIMES
; i
++) {
415 /* check that rnd is not a prime and also
416 * that gcd(rnd-1,primes) == 1 (except for 2) */
417 if (((mods
[i
] + delta
) % primes
[i
]) <= 1) {
419 if (delta
> maxdelta
)
424 if (!BN_add_word(rnd
, delta
))
431 probable_prime_dh(BIGNUM
*rnd
, int bits
, const BIGNUM
*add
, const BIGNUM
*rem
,
438 if ((t1
= BN_CTX_get(ctx
)) == NULL
)
441 if (!BN_rand(rnd
, bits
, 0, 1))
444 /* we need ((rnd-rem) % add) == 0 */
446 if (!BN_mod_ct(t1
, rnd
, add
, ctx
))
448 if (!BN_sub(rnd
, rnd
, t1
))
451 if (!BN_add_word(rnd
, 1))
454 if (!BN_add(rnd
, rnd
, rem
))
458 /* we now have a random number 'rand' to test. */
461 for (i
= 1; i
< NUMPRIMES
; i
++) {
462 /* check that rnd is a prime */
463 BN_LONG mod
= BN_mod_word(rnd
, (BN_ULONG
)primes
[i
]);
464 if (mod
== (BN_ULONG
)-1)
467 if (!BN_add(rnd
, rnd
, add
))
481 probable_prime_dh_safe(BIGNUM
*p
, int bits
, const BIGNUM
*padd
,
482 const BIGNUM
*rem
, BN_CTX
*ctx
)
485 BIGNUM
*t1
, *qadd
, *q
;
489 if ((t1
= BN_CTX_get(ctx
)) == NULL
)
491 if ((q
= BN_CTX_get(ctx
)) == NULL
)
493 if ((qadd
= BN_CTX_get(ctx
)) == NULL
)
496 if (!BN_rshift1(qadd
, padd
))
499 if (!BN_rand(q
, bits
, 0, 1))
502 /* we need ((rnd-rem) % add) == 0 */
503 if (!BN_mod_ct(t1
, q
,qadd
, ctx
))
505 if (!BN_sub(q
, q
, t1
))
508 if (!BN_add_word(q
, 1))
511 if (!BN_rshift1(t1
, rem
))
513 if (!BN_add(q
, q
, t1
))
517 /* we now have a random number 'rand' to test. */
518 if (!BN_lshift1(p
, q
))
520 if (!BN_add_word(p
, 1))
524 for (i
= 1; i
< NUMPRIMES
; i
++) {
525 /* check that p and q are prime */
526 /* check that for p and q
527 * gcd(p-1,primes) == 1 (except for 2) */
528 BN_ULONG pmod
= BN_mod_word(p
, (BN_ULONG
)primes
[i
]);
529 BN_ULONG qmod
= BN_mod_word(q
, (BN_ULONG
)primes
[i
]);
530 if (pmod
== (BN_ULONG
)-1 || qmod
== (BN_ULONG
)-1)
532 if (pmod
== 0 || qmod
== 0) {
533 if (!BN_add(p
, p
, padd
))
535 if (!BN_add(q
, q
, qadd
))