dmake: do not set MAKEFLAGS=k
[unleashed/tickless.git] / lib / libcrypto / rc4 / asm / rc4-586.pl
blob03f0cff467c052c337c30a0fccb031c97afc55b4
1 #!/usr/bin/env perl
3 # ====================================================================
4 # [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ====================================================================
10 # At some point it became apparent that the original SSLeay RC4
11 # assembler implementation performs suboptimally on latest IA-32
12 # microarchitectures. After re-tuning performance has changed as
13 # following:
15 # Pentium -10%
16 # Pentium III +12%
17 # AMD +50%(*)
18 # P4 +250%(**)
20 # (*) This number is actually a trade-off:-) It's possible to
21 # achieve +72%, but at the cost of -48% off PIII performance.
22 # In other words code performing further 13% faster on AMD
23 # would perform almost 2 times slower on Intel PIII...
24 # For reference! This code delivers ~80% of rc4-amd64.pl
25 # performance on the same Opteron machine.
26 # (**) This number requires compressed key schedule set up by
27 # RC4_set_key [see commentary below for further details].
29 # <appro@fy.chalmers.se>
31 # May 2011
33 # Optimize for Core2 and Westmere [and incidentally Opteron]. Current
34 # performance in cycles per processed byte (less is better) and
35 # improvement relative to previous version of this module is:
37 # Pentium 10.2 # original numbers
38 # Pentium III 7.8(*)
39 # Intel P4 7.5
41 # Opteron 6.1/+20% # new MMX numbers
42 # Core2 5.3/+67%(**)
43 # Westmere 5.1/+94%(**)
44 # Sandy Bridge 5.0/+8%
45 # Atom 12.6/+6%
47 # (*) PIII can actually deliver 6.6 cycles per byte with MMX code,
48 # but this specific code performs poorly on Core2. And vice
49 # versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs
50 # poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU
51 # [anymore], I chose to discard PIII-specific code path and opt
52 # for original IALU-only code, which is why MMX/SSE code path
53 # is guarded by SSE2 bit (see below), not MMX/SSE.
54 # (**) Performance vs. block size on Core2 and Westmere had a maximum
55 # at ... 64 bytes block size. And it was quite a maximum, 40-60%
56 # in comparison to largest 8KB block size. Above improvement
57 # coefficients are for the largest block size.
59 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
60 push(@INC,"${dir}","${dir}../../perlasm");
61 require "x86asm.pl";
63 &asm_init($ARGV[0],"rc4-586.pl");
65 $xx="eax";
66 $yy="ebx";
67 $tx="ecx";
68 $ty="edx";
69 $inp="esi";
70 $out="ebp";
71 $dat="edi";
73 sub RC4_loop {
74 my $i=shift;
75 my $func = ($i==0)?*mov:*or;
77 &add (&LB($yy),&LB($tx));
78 &mov ($ty,&DWP(0,$dat,$yy,4));
79 &mov (&DWP(0,$dat,$yy,4),$tx);
80 &mov (&DWP(0,$dat,$xx,4),$ty);
81 &add ($ty,$tx);
82 &inc (&LB($xx));
83 &and ($ty,0xff);
84 &ror ($out,8) if ($i!=0);
85 if ($i<3) {
86 &mov ($tx,&DWP(0,$dat,$xx,4));
87 } else {
88 &mov ($tx,&wparam(3)); # reload [re-biased] out
90 &$func ($out,&DWP(0,$dat,$ty,4));
93 if ($alt=0) {
94 # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron,
95 # but ~40% slower on Core2 and Westmere... Attempt to add movz
96 # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet
97 # on Core2 with movz it's almost 20% slower than below alternative
98 # code... Yes, it's a total mess...
99 my @XX=($xx,$out);
100 $RC4_loop_mmx = sub { # SSE actually...
101 my $i=shift;
102 my $j=$i<=0?0:$i>>1;
103 my $mm=$i<=0?"mm0":"mm".($i&1);
105 &add (&LB($yy),&LB($tx));
106 &lea (@XX[1],&DWP(1,@XX[0]));
107 &pxor ("mm2","mm0") if ($i==0);
108 &psllq ("mm1",8) if ($i==0);
109 &and (@XX[1],0xff);
110 &pxor ("mm0","mm0") if ($i<=0);
111 &mov ($ty,&DWP(0,$dat,$yy,4));
112 &mov (&DWP(0,$dat,$yy,4),$tx);
113 &pxor ("mm1","mm2") if ($i==0);
114 &mov (&DWP(0,$dat,$XX[0],4),$ty);
115 &add (&LB($ty),&LB($tx));
116 &movd (@XX[0],"mm7") if ($i==0);
117 &mov ($tx,&DWP(0,$dat,@XX[1],4));
118 &pxor ("mm1","mm1") if ($i==1);
119 &movq ("mm2",&QWP(0,$inp)) if ($i==1);
120 &movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0);
121 &pinsrw ($mm,&DWP(0,$dat,$ty,4),$j);
123 push (@XX,shift(@XX)) if ($i>=0);
125 } else {
126 # Using pinsrw here improves performane on Intel CPUs by 2-3%, but
127 # brings down AMD by 7%...
128 $RC4_loop_mmx = sub {
129 my $i=shift;
131 &add (&LB($yy),&LB($tx));
132 &psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1);
133 &mov ($ty,&DWP(0,$dat,$yy,4));
134 &mov (&DWP(0,$dat,$yy,4),$tx);
135 &mov (&DWP(0,$dat,$xx,4),$ty);
136 &inc ($xx);
137 &add ($ty,$tx);
138 &movz ($xx,&LB($xx)); # (*)
139 &movz ($ty,&LB($ty)); # (*)
140 &pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0);
141 &movq ("mm0",&QWP(0,$inp)) if ($i<=0);
142 &movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0);
143 &mov ($tx,&DWP(0,$dat,$xx,4));
144 &movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4));
146 # (*) This is the key to Core2 and Westmere performance.
147 # Whithout movz out-of-order execution logic confuses
148 # itself and fails to reorder loads and stores. Problem
149 # appears to be fixed in Sandy Bridge...
153 &external_label("OPENSSL_ia32cap_P");
155 # void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out);
156 &function_begin("RC4");
157 &mov ($dat,&wparam(0)); # load key schedule pointer
158 &mov ($ty, &wparam(1)); # load len
159 &mov ($inp,&wparam(2)); # load inp
160 &mov ($out,&wparam(3)); # load out
162 &xor ($xx,$xx); # avoid partial register stalls
163 &xor ($yy,$yy);
165 &cmp ($ty,0); # safety net
166 &je (&label("abort"));
168 &mov (&LB($xx),&BP(0,$dat)); # load key->x
169 &mov (&LB($yy),&BP(4,$dat)); # load key->y
170 &add ($dat,8);
172 &lea ($tx,&DWP(0,$inp,$ty));
173 &sub ($out,$inp); # re-bias out
174 &mov (&wparam(1),$tx); # save input+len
176 &inc (&LB($xx));
178 # detect compressed key schedule...
179 &cmp (&DWP(256,$dat),-1);
180 &je (&label("RC4_CHAR"));
182 &mov ($tx,&DWP(0,$dat,$xx,4));
184 &and ($ty,-4); # how many 4-byte chunks?
185 &jz (&label("loop1"));
187 &test ($ty,-8);
188 &mov (&wparam(3),$out); # $out as accumulator in these loops
189 &jz (&label("go4loop4"));
191 &picmeup($out,"OPENSSL_ia32cap_P");
192 # check SSE2 bit [could have been MMX]
193 &bt (&DWP(0,$out),"\$IA32CAP_BIT0_SSE2");
194 &jnc (&label("go4loop4"));
196 &mov ($out,&wparam(3)) if (!$alt);
197 &movd ("mm7",&wparam(3)) if ($alt);
198 &and ($ty,-8);
199 &lea ($ty,&DWP(-8,$inp,$ty));
200 &mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8
202 &$RC4_loop_mmx(-1);
203 &jmp(&label("loop_mmx_enter"));
205 &set_label("loop_mmx",16);
206 &$RC4_loop_mmx(0);
207 &set_label("loop_mmx_enter");
208 for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); }
209 &mov ($ty,$yy);
210 &xor ($yy,$yy); # this is second key to Core2
211 &mov (&LB($yy),&LB($ty)); # and Westmere performance...
212 &cmp ($inp,&DWP(-4,$dat));
213 &lea ($inp,&DWP(8,$inp));
214 &jb (&label("loop_mmx"));
216 if ($alt) {
217 &movd ($out,"mm7");
218 &pxor ("mm2","mm0");
219 &psllq ("mm1",8);
220 &pxor ("mm1","mm2");
221 &movq (&QWP(-8,$out,$inp),"mm1");
222 } else {
223 &psllq ("mm1",56);
224 &pxor ("mm2","mm1");
225 &movq (&QWP(-8,$out,$inp),"mm2");
227 &emms ();
229 &cmp ($inp,&wparam(1)); # compare to input+len
230 &je (&label("done"));
231 &jmp (&label("loop1"));
233 &set_label("go4loop4",16);
234 &lea ($ty,&DWP(-4,$inp,$ty));
235 &mov (&wparam(2),$ty); # save input+(len/4)*4-4
237 &set_label("loop4");
238 for ($i=0;$i<4;$i++) { RC4_loop($i); }
239 &ror ($out,8);
240 &xor ($out,&DWP(0,$inp));
241 &cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4
242 &mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here
243 &lea ($inp,&DWP(4,$inp));
244 &mov ($tx,&DWP(0,$dat,$xx,4));
245 &jb (&label("loop4"));
247 &cmp ($inp,&wparam(1)); # compare to input+len
248 &je (&label("done"));
249 &mov ($out,&wparam(3)); # restore $out
251 &set_label("loop1",16);
252 &add (&LB($yy),&LB($tx));
253 &mov ($ty,&DWP(0,$dat,$yy,4));
254 &mov (&DWP(0,$dat,$yy,4),$tx);
255 &mov (&DWP(0,$dat,$xx,4),$ty);
256 &add ($ty,$tx);
257 &inc (&LB($xx));
258 &and ($ty,0xff);
259 &mov ($ty,&DWP(0,$dat,$ty,4));
260 &xor (&LB($ty),&BP(0,$inp));
261 &lea ($inp,&DWP(1,$inp));
262 &mov ($tx,&DWP(0,$dat,$xx,4));
263 &cmp ($inp,&wparam(1)); # compare to input+len
264 &mov (&BP(-1,$out,$inp),&LB($ty));
265 &jb (&label("loop1"));
267 &jmp (&label("done"));
269 # this is essentially Intel P4 specific codepath...
270 &set_label("RC4_CHAR",16);
271 &movz ($tx,&BP(0,$dat,$xx));
272 # strangely enough unrolled loop performs over 20% slower...
273 &set_label("cloop1");
274 &add (&LB($yy),&LB($tx));
275 &movz ($ty,&BP(0,$dat,$yy));
276 &mov (&BP(0,$dat,$yy),&LB($tx));
277 &mov (&BP(0,$dat,$xx),&LB($ty));
278 &add (&LB($ty),&LB($tx));
279 &movz ($ty,&BP(0,$dat,$ty));
280 &add (&LB($xx),1);
281 &xor (&LB($ty),&BP(0,$inp));
282 &lea ($inp,&DWP(1,$inp));
283 &movz ($tx,&BP(0,$dat,$xx));
284 &cmp ($inp,&wparam(1));
285 &mov (&BP(-1,$out,$inp),&LB($ty));
286 &jb (&label("cloop1"));
288 &set_label("done");
289 &dec (&LB($xx));
290 &mov (&DWP(-4,$dat),$yy); # save key->y
291 &mov (&BP(-8,$dat),&LB($xx)); # save key->x
292 &set_label("abort");
293 &function_end("RC4");
295 ########################################################################
297 $inp="esi";
298 $out="edi";
299 $idi="ebp";
300 $ido="ecx";
301 $idx="edx";
303 # void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data);
304 &function_begin("RC4_set_key");
305 &mov ($out,&wparam(0)); # load key
306 &mov ($idi,&wparam(1)); # load len
307 &mov ($inp,&wparam(2)); # load data
308 &picmeup($idx,"OPENSSL_ia32cap_P");
310 &lea ($out,&DWP(2*4,$out)); # &key->data
311 &lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end
312 &neg ($idi);
313 &xor ("eax","eax");
314 &mov (&DWP(-4,$out),$idi); # borrow key->y
316 &bt (&DWP(0,$idx),"\$IA32CAP_BIT0_INTELP4");
317 &jc (&label("c1stloop"));
319 &set_label("w1stloop",16);
320 &mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i;
321 &add (&LB("eax"),1); # i++;
322 &jnc (&label("w1stloop"));
324 &xor ($ido,$ido);
325 &xor ($idx,$idx);
327 &set_label("w2ndloop",16);
328 &mov ("eax",&DWP(0,$out,$ido,4));
329 &add (&LB($idx),&BP(0,$inp,$idi));
330 &add (&LB($idx),&LB("eax"));
331 &add ($idi,1);
332 &mov ("ebx",&DWP(0,$out,$idx,4));
333 &jnz (&label("wnowrap"));
334 &mov ($idi,&DWP(-4,$out));
335 &set_label("wnowrap");
336 &mov (&DWP(0,$out,$idx,4),"eax");
337 &mov (&DWP(0,$out,$ido,4),"ebx");
338 &add (&LB($ido),1);
339 &jnc (&label("w2ndloop"));
340 &jmp (&label("exit"));
342 # Unlike all other x86 [and x86_64] implementations, Intel P4 core
343 # [including EM64T] was found to perform poorly with above "32-bit" key
344 # schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded
345 # assembler turned out to be 3.5x if re-coded for compressed 8-bit one,
346 # a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit
347 # schedule for x86[_64], because non-P4 implementations suffer from
348 # significant performance losses then, e.g. PIII exhibits >2x
349 # deterioration, and so does Opteron. In order to assure optimal
350 # all-round performance, we detect P4 at run-time and set up compressed
351 # key schedule, which is recognized by RC4 procedure.
353 &set_label("c1stloop",16);
354 &mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i;
355 &add (&LB("eax"),1); # i++;
356 &jnc (&label("c1stloop"));
358 &xor ($ido,$ido);
359 &xor ($idx,$idx);
360 &xor ("ebx","ebx");
362 &set_label("c2ndloop",16);
363 &mov (&LB("eax"),&BP(0,$out,$ido));
364 &add (&LB($idx),&BP(0,$inp,$idi));
365 &add (&LB($idx),&LB("eax"));
366 &add ($idi,1);
367 &mov (&LB("ebx"),&BP(0,$out,$idx));
368 &jnz (&label("cnowrap"));
369 &mov ($idi,&DWP(-4,$out));
370 &set_label("cnowrap");
371 &mov (&BP(0,$out,$idx),&LB("eax"));
372 &mov (&BP(0,$out,$ido),&LB("ebx"));
373 &add (&LB($ido),1);
374 &jnc (&label("c2ndloop"));
376 &mov (&DWP(256,$out),-1); # mark schedule as compressed
378 &set_label("exit");
379 &xor ("eax","eax");
380 &mov (&DWP(-8,$out),"eax"); # key->x=0;
381 &mov (&DWP(-4,$out),"eax"); # key->y=0;
382 &function_end("RC4_set_key");
384 # const char *RC4_options(void);
385 &function_begin_B("RC4_options");
386 &call (&label("pic_point"));
387 &set_label("pic_point");
388 &blindpop("eax");
389 &lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax"));
390 &picmeup("edx","OPENSSL_ia32cap_P");
391 &mov ("edx",&DWP(0,"edx"));
392 &bt ("edx","\$IA32CAP_BIT0_INTELP4");
393 &jc (&label("1xchar"));
394 &bt ("edx","\$IA32CAP_BIT0_SSE2");
395 &jnc (&label("ret"));
396 &add ("eax",25);
397 &ret ();
398 &set_label("1xchar");
399 &add ("eax",12);
400 &set_label("ret");
401 &ret ();
402 &set_label("opts",64);
403 &asciz ("rc4(4x,int)");
404 &asciz ("rc4(1x,char)");
405 &asciz ("rc4(8x,mmx)");
406 &asciz ("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>");
407 &align (64);
408 &function_end_B("RC4_options");
410 &asm_finish();