3 # ====================================================================
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ====================================================================
12 # 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
13 # "hand-coded assembler"] doesn't stand for the whole improvement
14 # coefficient. It turned out that eliminating RC4_CHAR from config
15 # line results in ~40% improvement (yes, even for C implementation).
16 # Presumably it has everything to do with AMD cache architecture and
17 # RAW or whatever penalties. Once again! The module *requires* config
18 # line *without* RC4_CHAR! As for coding "secret," I bet on partial
19 # register arithmetics. For example instead of 'inc %r8; and $255,%r8'
20 # I simply 'inc %r8b'. Even though optimization manual discourages
21 # to operate on partial registers, it turned out to be the best bet.
22 # At least for AMD... How IA32E would perform remains to be seen...
26 # As was shown by Marc Bevand reordering of couple of load operations
27 # results in even higher performance gain of 3.3x:-) At least on
28 # Opteron... For reference, 1x in this case is RC4_CHAR C-code
29 # compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
30 # Latter means that if you want to *estimate* what to expect from
31 # *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
35 # Intel P4 EM64T core was found to run the AMD64 code really slow...
36 # The only way to achieve comparable performance on P4 was to keep
37 # RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
38 # compose blended code, which would perform even within 30% marginal
39 # on either AMD and Intel platforms, I implement both cases. See
40 # rc4_skey.c for further details...
44 # P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
45 # those with add/sub results in 50% performance improvement of folded
50 # As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
51 # performance by >30% [unlike P4 32-bit case that is]. But this is
52 # provided that loads are reordered even more aggressively! Both code
53 # pathes, AMD64 and EM64T, reorder loads in essentially same manner
54 # as my IA-64 implementation. On Opteron this resulted in modest 5%
55 # improvement [I had to test it], while final Intel P4 performance
56 # achieves respectful 432MBps on 2.8GHz processor now. For reference.
57 # If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
58 # RC4_INT code-path. While if executed on Opteron, it's only 25%
59 # slower than the RC4_INT one [meaning that if CPU ยต-arch detection
60 # is not implemented, then this final RC4_CHAR code-path should be
61 # preferred, as it provides better *all-round* performance].
65 # Intel Core2 was observed to perform poorly on both code paths:-( It
66 # apparently suffers from some kind of partial register stall, which
67 # occurs in 64-bit mode only [as virtually identical 32-bit loop was
68 # observed to outperform 64-bit one by almost 50%]. Adding two movzb to
69 # cloop1 boosts its performance by 80%! This loop appears to be optimal
70 # fit for Core2 and therefore the code was modified to skip cloop8 on
75 # Intel Westmere was observed to perform suboptimally. Adding yet
76 # another movzb to cloop1 improved performance by almost 50%! Core2
77 # performance is improved too, but nominally...
81 # The only code path that was not modified is P4-specific one. Non-P4
82 # Intel code path optimization is heavily based on submission by Maxim
83 # Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used
84 # some of the ideas even in attempt to optmize the original RC4_INT
85 # code path... Current performance in cycles per processed byte (less
86 # is better) and improvement coefficients relative to previous
87 # version of this module are:
93 # Sandy Bridge 4.2/+120%
96 # (*) But corresponding loop has less instructions, which should have
97 # positive effect on upcoming Bulldozer, which has one less ALU.
98 # For reference, Intel code runs at 6.8 cpb rate on Opteron.
99 # (**) Note that Core2 result is ~15% lower than corresponding result
100 # for 32-bit code, meaning that it's possible to improve it,
101 # but more than likely at the cost of the others (see rc4-586.pl
102 # to get the idea)...
106 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
108 $0 =~ m/(.*[\/\\])[^\
/\\]+$/; $dir=$1;
109 ( $xlate="${dir}x86_64-xlate.pl" and -f
$xlate ) or
110 ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f
$xlate) or
111 die "can't locate x86_64-xlate.pl";
113 open OUT
,"| \"$^X\" $xlate $flavour $output";
124 .extern OPENSSL_ia32cap_P
125 .hidden OPENSSL_ia32cap_P
128 .type RC4
,\
@function,4
142 my $len="%r11"; # reassign input arguments
146 my @XX=("%r10","%rsi");
147 my @TX=("%rax","%rbx");
156 mov
-8($dat),$XX[0]#b
160 mov OPENSSL_ia32cap_P
(%rip),%r8d
165 movl
($dat,$XX[0],4),$TX[0]#d
168 bt \
$IA32CAP_BIT0_INTEL,%r8d # Intel CPU?
176 movl
($dat,$YY,4),$TY#d
177 movl
$TX[0]#d,($dat,$YY,4)
178 movl
$TY#d,($dat,$XX[0],4)
181 movl
($dat,$TX[0],4),$TY#d
182 movl
($dat,$XX[0],4),$TX[0]#d
184 movb
$TY#b,($out,$inp)
194 for ($i=0;$i<8;$i++) {
195 $code.=<<___
if ($i==7);
200 movl
($dat,$YY,4),$TY#d
201 movl
$TX[0]#d,($dat,$YY,4)
202 movl
`4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d
203 ror \
$8,%r8 # ror is redundant when $i=0
204 movl
$TY#d,4*$i($dat,$XX[0],4)
206 movb
($dat,$TY,4),%r8b
208 push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers
234 movl
($dat,$YY,4),$TY#d
235 movl
$TX[0]#d,($dat,$YY,4)
236 movl
$TY#d,($dat,$XX[0],4)
239 movl
($dat,$TX[0],4),$TY#d
240 movl
($dat,$XX[0],4),$TX[0]#d
242 movb
$TY#b,($out,$inp)
252 lea
($dat,$XX[0],4),$XX[1]
257 my $xmm="%xmm".($j&1);
259 $code.=" add \$16,$XX[0]#b\n" if ($i==15);
260 $code.=" movdqu ($inp),%xmm2\n" if ($i==15);
261 $code.=" add $TX[0]#b,$YY#b\n" if ($i<=0);
262 $code.=" movl ($dat,$YY,4),$TY#d\n";
263 $code.=" pxor %xmm0,%xmm2\n" if ($i==0);
264 $code.=" psllq \$8,%xmm1\n" if ($i==0);
265 $code.=" pxor $xmm,$xmm\n" if ($i<=1);
266 $code.=" movl $TX[0]#d,($dat,$YY,4)\n";
267 $code.=" add $TY#b,$TX[0]#b\n";
268 $code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15);
269 $code.=" movz $TX[0]#b,$TX[0]#d\n";
270 $code.=" movl $TY#d,4*$j($XX[1])\n";
271 $code.=" pxor %xmm1,%xmm2\n" if ($i==0);
272 $code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15);
273 $code.=" add $TX[1]#b,$YY#b\n" if ($i<15);
274 $code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n";
275 $code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0);
276 $code.=" lea 16($inp),$inp\n" if ($i==0);
277 $code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15);
286 for ($i=0;$i<16;$i++) {
287 $code.=".Loop16_enter:\n" if ($i==1);
289 push(@TX,shift(@TX)); # "rotate" registers
293 xor $YY,$YY # keyword to partial register
302 movdqu
%xmm2,($out,$inp)
312 movl
($dat,$YY,4),$TY#d
313 movl
$TX[0]#d,($dat,$YY,4)
314 movl
$TY#d,($dat,$XX[0],4)
317 movl
($dat,$TX[0],4),$TY#d
318 movl
($dat,$XX[0],4),$TX[0]#d
320 movb
$TY#b,($out,$inp)
329 movzb
($dat,$XX[0]),$TX[0]#d
338 # unroll 2x4-wise, because 64-bit rotates kill Intel P4...
339 for ($i=0;$i<4;$i++) {
343 movzb
($dat,$YY),$TY#d
344 movzb
$XX[1]#b,$XX[1]#d
345 movzb
($dat,$XX[1]),$TX[1]#d
346 movb
$TX[0]#b,($dat,$YY)
348 movb
$TY#b,($dat,$XX[0])
349 jne
.Lcmov
$i # Intel cmov is sloooow...
356 push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
358 for ($i=4;$i<8;$i++) {
362 movzb
($dat,$YY),$TY#d
363 movzb
$XX[1]#b,$XX[1]#d
364 movzb
($dat,$XX[1]),$TX[1]#d
365 movb
$TX[0]#b,($dat,$YY)
367 movb
$TY#b,($dat,$XX[0])
368 jne
.Lcmov
$i # Intel cmov is sloooow...
375 push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
395 movzb
($dat,$YY),$TY#d
396 movb
$TX[0]#b,($dat,$YY)
397 movb
$TY#b,($dat,$XX[0])
401 movzb
$XX[0]#b,$XX[0]#d
402 movzb
($dat,$TY),$TY#d
403 movzb
($dat,$XX[0]),$TX[0]#d
415 movl
$XX[0]#d,-8($dat)
433 .type RC4_set_key
,\
@function,3
445 mov OPENSSL_ia32cap_P
(%rip),$idx#d
446 bt \
$IA32CAP_BIT0_INTELP4,$idx#d # RC4_CHAR?
452 mov
%eax,($dat,%rax,4)
460 mov
($dat,$ido,4),%r10d
461 add
($inp,$len,1),$idx#b
464 mov
($dat,$idx,4),%r11d
466 mov
%r10d,($dat,$idx,4)
467 mov
%r11d,($dat,$ido,4)
482 mov
($dat,$ido),%r10b
483 add
($inp,$len),$idx#b
486 mov
($dat,$idx),%r11b
490 mov
%r10b,($dat,$idx)
491 mov
%r11b,($dat,$ido)
502 .size RC4_set_key
,.-RC4_set_key
505 .type RC4_options
,\
@abi-omnipotent
508 lea
.Lopts
(%rip),%rax
509 mov OPENSSL_ia32cap_P
(%rip),%edx
510 bt \
$IA32CAP_BIT0_INTELP4,%edx
512 bt \
$IA32CAP_BIT0_INTEL,%edx
523 .asciz
"rc4(8x,char)"
524 .asciz
"rc4(16x,int)"
525 .asciz
"RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
527 .size RC4_options
,.-RC4_options
532 if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
533 elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
534 elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
535 elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
539 $code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
540 $code =~ s/\`([^\`]*)\`/eval $1/gem;