2 * ***** BEGIN LICENSE BLOCK *****
3 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
5 * The contents of this file are subject to the Mozilla Public License Version
6 * 1.1 (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 * http://www.mozilla.org/MPL/
10 * Software distributed under the License is distributed on an "AS IS" basis,
11 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12 * for the specific language governing rights and limitations under the
15 * The Original Code is the Multi-precision Binary Polynomial Arithmetic Library.
17 * The Initial Developer of the Original Code is
18 * Sun Microsystems, Inc.
19 * Portions created by the Initial Developer are Copyright (C) 2003
20 * the Initial Developer. All Rights Reserved.
23 * Sheueling Chang Shantz <sheueling.chang@sun.com> and
24 * Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
26 * Alternatively, the contents of this file may be used under the terms of
27 * either the GNU General Public License Version 2 or later (the "GPL"), or
28 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
29 * in which case the provisions of the GPL or the LGPL are applicable instead
30 * of those above. If you wish to allow use of your version of this file only
31 * under the terms of either the GPL or the LGPL, and not to allow others to
32 * use your version of this file under the terms of the MPL, indicate your
33 * decision by deleting the provisions above and replace them with the notice
34 * and other provisions required by the GPL or the LGPL. If you do not delete
35 * the provisions above, a recipient may use your version of this file under
36 * the terms of any one of the MPL, the GPL or the LGPL.
38 * ***** END LICENSE BLOCK ***** */
40 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
41 * Use is subject to license terms.
43 * Sun elects to use this software under the MPL license.
46 #ifndef _MP_GF2M_PRIV_H_
47 #define _MP_GF2M_PRIV_H_
49 #pragma ident "%Z%%M% %I% %E% SMI"
53 extern const mp_digit mp_gf2m_sqr_tb
[16];
55 #if defined(MP_USE_UINT_DIGIT)
56 #define MP_DIGIT_BITS 32
58 #define MP_DIGIT_BITS 64
61 /* Platform-specific macros for fast binary polynomial squaring. */
62 #if MP_DIGIT_BITS == 32
63 #define gf2m_SQR1(w) \
64 mp_gf2m_sqr_tb[(w) >> 28 & 0xF] << 24 | mp_gf2m_sqr_tb[(w) >> 24 & 0xF] << 16 | \
65 mp_gf2m_sqr_tb[(w) >> 20 & 0xF] << 8 | mp_gf2m_sqr_tb[(w) >> 16 & 0xF]
66 #define gf2m_SQR0(w) \
67 mp_gf2m_sqr_tb[(w) >> 12 & 0xF] << 24 | mp_gf2m_sqr_tb[(w) >> 8 & 0xF] << 16 | \
68 mp_gf2m_sqr_tb[(w) >> 4 & 0xF] << 8 | mp_gf2m_sqr_tb[(w) & 0xF]
70 #define gf2m_SQR1(w) \
71 mp_gf2m_sqr_tb[(w) >> 60 & 0xF] << 56 | mp_gf2m_sqr_tb[(w) >> 56 & 0xF] << 48 | \
72 mp_gf2m_sqr_tb[(w) >> 52 & 0xF] << 40 | mp_gf2m_sqr_tb[(w) >> 48 & 0xF] << 32 | \
73 mp_gf2m_sqr_tb[(w) >> 44 & 0xF] << 24 | mp_gf2m_sqr_tb[(w) >> 40 & 0xF] << 16 | \
74 mp_gf2m_sqr_tb[(w) >> 36 & 0xF] << 8 | mp_gf2m_sqr_tb[(w) >> 32 & 0xF]
75 #define gf2m_SQR0(w) \
76 mp_gf2m_sqr_tb[(w) >> 28 & 0xF] << 56 | mp_gf2m_sqr_tb[(w) >> 24 & 0xF] << 48 | \
77 mp_gf2m_sqr_tb[(w) >> 20 & 0xF] << 40 | mp_gf2m_sqr_tb[(w) >> 16 & 0xF] << 32 | \
78 mp_gf2m_sqr_tb[(w) >> 12 & 0xF] << 24 | mp_gf2m_sqr_tb[(w) >> 8 & 0xF] << 16 | \
79 mp_gf2m_sqr_tb[(w) >> 4 & 0xF] << 8 | mp_gf2m_sqr_tb[(w) & 0xF]
82 /* Multiply two binary polynomials mp_digits a, b.
83 * Result is a polynomial with degree < 2 * MP_DIGIT_BITS - 1.
84 * Output in two mp_digits rh, rl.
86 void s_bmul_1x1(mp_digit
*rh
, mp_digit
*rl
, const mp_digit a
, const mp_digit b
);
88 /* Compute xor-multiply of two binary polynomials (a1, a0) x (b1, b0)
89 * result is a binary polynomial in 4 mp_digits r[4].
90 * The caller MUST ensure that r has the right amount of space allocated.
92 void s_bmul_2x2(mp_digit
*r
, const mp_digit a1
, const mp_digit a0
, const mp_digit b1
,
95 /* Compute xor-multiply of two binary polynomials (a2, a1, a0) x (b2, b1, b0)
96 * result is a binary polynomial in 6 mp_digits r[6].
97 * The caller MUST ensure that r has the right amount of space allocated.
99 void s_bmul_3x3(mp_digit
*r
, const mp_digit a2
, const mp_digit a1
, const mp_digit a0
,
100 const mp_digit b2
, const mp_digit b1
, const mp_digit b0
);
102 /* Compute xor-multiply of two binary polynomials (a3, a2, a1, a0) x (b3, b2, b1, b0)
103 * result is a binary polynomial in 8 mp_digits r[8].
104 * The caller MUST ensure that r has the right amount of space allocated.
106 void s_bmul_4x4(mp_digit
*r
, const mp_digit a3
, const mp_digit a2
, const mp_digit a1
,
107 const mp_digit a0
, const mp_digit b3
, const mp_digit b2
, const mp_digit b1
,
110 #endif /* _MP_GF2M_PRIV_H_ */