2 (** {1 Pancake sorting}
4 See {h <a href="https://en.wikipedia.org/wiki/Pancake_sorting">Pancake
7 Author: Jean-Christophe FilliĆ¢tre (CNRS)
16 (** We choose to have the bottom of the stack of pancakes at `a[0]`.
17 So it means we sort the array in reverse order. *)
19 predicate sorted (a: array int) (hi: int) =
20 forall j1 j2. 0 <= j1 <= j2 < hi -> a[j1] >= a[j2]
22 (** Insert the spatula at index `i` and flip the pancakes *)
23 let flip (a: array int) (i: int)
24 requires { 0 <= i < length a }
25 ensures { forall j. 0 <= j < i -> a[j] = (old a)[j] }
26 ensures { forall j. i <= j < length a -> a[j] = (old a)[length a -1-(j-i)] }
27 ensures { permut_all (old a) a }
29 for k = 0 to (n - i) / 2 - 1 do
30 invariant { forall j. 0 <= j < i -> a[j] = (old a)[j] }
31 invariant { forall j. i <= j < i+k -> a[j] = (old a)[n-1-(j-i)] }
32 invariant { forall j. i+k <= j < n-k -> a[j] = (old a)[j] }
33 invariant { forall j. n-k <= j < n -> a[j] = (old a)[n-1-(j-i)] }
34 invariant { permut_all (old a) a }
35 swap a (i + k) (n - 1 - k)
38 let pancake_sort (a: array int)
39 ensures { sorted a (length a) }
40 ensures { permut_all (old a) a }
41 = for i = 0 to length a - 2 do
42 invariant { sorted a i }
43 invariant { forall j1 j2. 0 <= j1 < i <= j2 < length a -> a[j1] >= a[j2] }
44 invariant { permut_all (old a) a }
45 (* 1. look for the maximum of a[i..] *)
47 for k = i + 1 to length a - 1 do
48 invariant { i <= !m < length a }
49 invariant { forall j. i <= j < k -> a[j] <= a[!m] }
50 if a[k] > a[!m] then m := k
52 (* 2. then flip the pancakes to put it at index i *)
53 if !m = i then continue;
54 if !m < length a - 1 then flip a !m;