Bug 470455 - test_database_sync_embed_visits.js leaks, r=sdwilsh
[wine-gecko.git] / modules / lcms / src / cmsgamma.c
blobec3703d26389b833d7a9ff03b349c4ea534b14d3
1 //
2 // Little cms
3 // Copyright (C) 1998-2007 Marti Maria
4 //
5 // Permission is hereby granted, free of charge, to any person obtaining
6 // a copy of this software and associated documentation files (the "Software"),
7 // to deal in the Software without restriction, including without limitation
8 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 // and/or sell copies of the Software, and to permit persons to whom the Software
10 // is furnished to do so, subject to the following conditions:
12 // The above copyright notice and this permission notice shall be included in
13 // all copies or substantial portions of the Software.
15 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
17 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
19 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
20 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
21 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 #include "lcms.h"
26 // Gamma handling.
28 LPGAMMATABLE LCMSEXPORT cmsAllocGamma(int nEntries);
29 void LCMSEXPORT cmsFreeGamma(LPGAMMATABLE Gamma);
30 void LCMSEXPORT cmsFreeGammaTriple(LPGAMMATABLE Gamma[3]);
31 LPGAMMATABLE LCMSEXPORT cmsBuildGamma(int nEntries, double Gamma);
32 LPGAMMATABLE LCMSEXPORT cmsDupGamma(LPGAMMATABLE Src);
33 LPGAMMATABLE LCMSEXPORT cmsReverseGamma(int nResultSamples, LPGAMMATABLE InGamma);
34 LPGAMMATABLE LCMSEXPORT cmsBuildParametricGamma(int nEntries, int Type, double Params[]);
35 LPGAMMATABLE LCMSEXPORT cmsJoinGamma(LPGAMMATABLE InGamma, LPGAMMATABLE OutGamma);
36 LPGAMMATABLE LCMSEXPORT cmsJoinGammaEx(LPGAMMATABLE InGamma, LPGAMMATABLE OutGamma, int nPoints);
37 LCMSBOOL LCMSEXPORT cmsSmoothGamma(LPGAMMATABLE Tab, double lambda);
39 LCMSBOOL cdecl _cmsSmoothEndpoints(LPWORD Table, int nPoints);
42 // Sampled curves
44 LPSAMPLEDCURVE cdecl cmsAllocSampledCurve(int nItems);
45 void cdecl cmsFreeSampledCurve(LPSAMPLEDCURVE p);
46 void cdecl cmsEndpointsOfSampledCurve(LPSAMPLEDCURVE p, double* Min, double* Max);
47 void cdecl cmsClampSampledCurve(LPSAMPLEDCURVE p, double Min, double Max);
48 LCMSBOOL cdecl cmsSmoothSampledCurve(LPSAMPLEDCURVE Tab, double SmoothingLambda);
49 void cdecl cmsRescaleSampledCurve(LPSAMPLEDCURVE p, double Min, double Max, int nPoints);
51 LPSAMPLEDCURVE cdecl cmsJoinSampledCurves(LPSAMPLEDCURVE X, LPSAMPLEDCURVE Y, int nResultingPoints);
53 double LCMSEXPORT cmsEstimateGamma(LPGAMMATABLE t);
54 double LCMSEXPORT cmsEstimateGammaEx(LPWORD GammaTable, int nEntries, double Thereshold);
56 // ----------------------------------------------------------------------------------------
59 #define MAX_KNOTS 4096
60 typedef float vec[MAX_KNOTS+1];
63 // Ciclic-redundant-check for assuring table is a true representation of parametric curve
65 // The usual polynomial, which is used for AAL5, FDDI, and probably Ethernet
66 #define QUOTIENT 0x04c11db7
68 static
69 unsigned int Crc32(unsigned int result, LPVOID ptr, int len)
71 int i,j;
72 BYTE octet;
73 LPBYTE data = (LPBYTE) ptr;
75 for (i=0; i < len; i++) {
77 octet = *data++;
79 for (j=0; j < 8; j++) {
81 if (result & 0x80000000) {
83 result = (result << 1) ^ QUOTIENT ^ (octet >> 7);
85 else
87 result = (result << 1) ^ (octet >> 7);
89 octet <<= 1;
93 return result;
96 // Get CRC of gamma table
98 unsigned int _cmsCrc32OfGammaTable(LPGAMMATABLE Table)
100 unsigned int crc = ~0U;
102 crc = Crc32(crc, &Table -> Seed.Type, sizeof(int));
103 crc = Crc32(crc, Table ->Seed.Params, sizeof(double)*10);
104 crc = Crc32(crc, &Table ->nEntries, sizeof(int));
105 crc = Crc32(crc, Table ->GammaTable, sizeof(WORD) * Table -> nEntries);
107 return ~crc;
112 LPGAMMATABLE LCMSEXPORT cmsAllocGamma(int nEntries)
114 LPGAMMATABLE p;
115 size_t size;
117 if (nEntries > 65530 || nEntries < 0) {
118 cmsSignalError(LCMS_ERRC_ABORTED, "Couldn't create gammatable of more than 65530 entries");
119 return NULL;
122 size = sizeof(GAMMATABLE) + (sizeof(WORD) * (nEntries-1));
124 p = (LPGAMMATABLE) _cmsMalloc(size);
125 if (!p) return NULL;
127 ZeroMemory(p, size);
129 p -> Seed.Type = 0;
130 p -> nEntries = nEntries;
132 return p;
135 void LCMSEXPORT cmsFreeGamma(LPGAMMATABLE Gamma)
137 if (Gamma) _cmsFree(Gamma);
142 void LCMSEXPORT cmsFreeGammaTriple(LPGAMMATABLE Gamma[3])
144 cmsFreeGamma(Gamma[0]);
145 cmsFreeGamma(Gamma[1]);
146 cmsFreeGamma(Gamma[2]);
147 Gamma[0] = Gamma[1] = Gamma[2] = NULL;
152 // Duplicate a gamma table
154 LPGAMMATABLE LCMSEXPORT cmsDupGamma(LPGAMMATABLE In)
156 LPGAMMATABLE Ptr;
157 size_t size;
159 Ptr = cmsAllocGamma(In -> nEntries);
160 if (Ptr == NULL) return NULL;
162 size = sizeof(GAMMATABLE) + (sizeof(WORD) * (In -> nEntries-1));
164 CopyMemory(Ptr, In, size);
165 return Ptr;
169 // Handle gamma using interpolation tables. The resulting curves can become
170 // very stange, but are pleasent to eye.
172 LPGAMMATABLE LCMSEXPORT cmsJoinGamma(LPGAMMATABLE InGamma,
173 LPGAMMATABLE OutGamma)
175 register int i;
176 L16PARAMS L16In, L16Out;
177 LPWORD InPtr, OutPtr;
178 LPGAMMATABLE p;
180 p = cmsAllocGamma(256);
181 if (!p) return NULL;
183 cmsCalcL16Params(InGamma -> nEntries, &L16In);
184 InPtr = InGamma -> GammaTable;
186 cmsCalcL16Params(OutGamma -> nEntries, &L16Out);
187 OutPtr = OutGamma-> GammaTable;
189 for (i=0; i < 256; i++)
191 WORD wValIn, wValOut;
193 wValIn = cmsLinearInterpLUT16(RGB_8_TO_16(i), InPtr, &L16In);
194 wValOut = cmsReverseLinearInterpLUT16(wValIn, OutPtr, &L16Out);
196 p -> GammaTable[i] = wValOut;
199 return p;
204 // New method, using smoothed parametric curves. This works FAR better.
205 // We want to get
207 // y = f(g^-1(x)) ; f = ingamma, g = outgamma
209 // And this can be parametrized as
211 // y = f(t)
212 // x = g(t)
215 LPGAMMATABLE LCMSEXPORT cmsJoinGammaEx(LPGAMMATABLE InGamma,
216 LPGAMMATABLE OutGamma, int nPoints)
219 LPSAMPLEDCURVE x, y, r;
220 LPGAMMATABLE res;
222 x = cmsConvertGammaToSampledCurve(InGamma, nPoints);
223 y = cmsConvertGammaToSampledCurve(OutGamma, nPoints);
224 r = cmsJoinSampledCurves(y, x, nPoints);
226 // Does clean "hair"
227 cmsSmoothSampledCurve(r, 0.001);
229 cmsClampSampledCurve(r, 0.0, 65535.0);
231 cmsFreeSampledCurve(x);
232 cmsFreeSampledCurve(y);
234 res = cmsConvertSampledCurveToGamma(r, 65535.0);
235 cmsFreeSampledCurve(r);
237 return res;
242 // Reverse a gamma table
244 LPGAMMATABLE LCMSEXPORT cmsReverseGamma(int nResultSamples, LPGAMMATABLE InGamma)
246 register int i;
247 L16PARAMS L16In;
248 LPWORD InPtr;
249 LPGAMMATABLE p;
251 // Try to reverse it analytically whatever possible
252 if (InGamma -> Seed.Type > 0 && InGamma -> Seed.Type <= 5 &&
253 _cmsCrc32OfGammaTable(InGamma) == InGamma -> Seed.Crc32) {
255 return cmsBuildParametricGamma(nResultSamples, -(InGamma -> Seed.Type), InGamma ->Seed.Params);
259 // Nope, reverse the table
260 p = cmsAllocGamma(nResultSamples);
261 if (!p) return NULL;
263 cmsCalcL16Params(InGamma -> nEntries, &L16In);
264 InPtr = InGamma -> GammaTable;
266 for (i=0; i < nResultSamples; i++)
268 WORD wValIn, wValOut;
270 wValIn = _cmsQuantizeVal(i, nResultSamples);
271 wValOut = cmsReverseLinearInterpLUT16(wValIn, InPtr, &L16In);
272 p -> GammaTable[i] = wValOut;
276 return p;
281 // Parametric curves
283 // Parameters goes as: Gamma, a, b, c, d, e, f
284 // Type is the ICC type +1
285 // if type is negative, then the curve is analyticaly inverted
287 LPGAMMATABLE LCMSEXPORT cmsBuildParametricGamma(int nEntries, int Type, double Params[])
289 LPGAMMATABLE Table;
290 double R, Val, dval, e;
291 int i;
292 int ParamsByType[] = { 0, 1, 3, 4, 5, 7 };
294 Table = cmsAllocGamma(nEntries);
295 if (NULL == Table) return NULL;
297 Table -> Seed.Type = Type;
299 CopyMemory(Table ->Seed.Params, Params, ParamsByType[abs(Type)] * sizeof(double));
302 for (i=0; i < nEntries; i++) {
304 R = (double) i / (nEntries-1);
306 switch (Type) {
308 // X = Y ^ Gamma
309 case 1:
310 Val = pow(R, Params[0]);
311 break;
313 // Type 1 Reversed: X = Y ^1/gamma
314 case -1:
315 Val = pow(R, 1/Params[0]);
316 break;
318 // CIE 122-1966
319 // Y = (aX + b)^Gamma | X >= -b/a
320 // Y = 0 | else
321 case 2:
322 if (R >= -Params[2] / Params[1]) {
324 e = Params[1]*R + Params[2];
326 if (e > 0)
327 Val = pow(e, Params[0]);
328 else
329 Val = 0;
331 else
332 Val = 0;
333 break;
335 // Type 2 Reversed
336 // X = (Y ^1/g - b) / a
337 case -2:
339 Val = (pow(R, 1.0/Params[0]) - Params[2]) / Params[1];
340 if (Val < 0)
341 Val = 0;
342 break;
345 // IEC 61966-3
346 // Y = (aX + b)^Gamma | X <= -b/a
347 // Y = c | else
348 case 3:
349 if (R >= -Params[2] / Params[1]) {
351 e = Params[1]*R + Params[2];
352 Val = pow(e, Params[0]) + Params[3];
354 else
355 Val = Params[3];
356 break;
359 // Type 3 reversed
360 // X=((Y-c)^1/g - b)/a | (Y>=c)
361 // X=-b/a | (Y<c)
363 case -3:
364 if (R >= Params[3]) {
365 e = R - Params[3];
366 Val = (pow(e, 1/Params[0]) - Params[2]) / Params[1];
367 if (Val < 0) Val = 0;
369 else {
370 Val = -Params[2] / Params[1];
372 break;
375 // IEC 61966-2.1 (sRGB)
376 // Y = (aX + b)^Gamma | X >= d
377 // Y = cX | X < d
378 case 4:
379 if (R >= Params[4]) {
381 e = Params[1]*R + Params[2];
382 if (e > 0)
383 Val = pow(e, Params[0]);
384 else
385 Val = 0;
387 else
388 Val = R * Params[3];
389 break;
391 // Type 4 reversed
392 // X=((Y^1/g-b)/a) | Y >= (ad+b)^g
393 // X=Y/c | Y< (ad+b)^g
395 case -4:
396 if (R >= pow(Params[1] * Params[4] + Params[2], Params[0])) {
398 Val = (pow(R, 1.0/Params[0]) - Params[2]) / Params[1];
400 else {
401 Val = R / Params[3];
403 break;
407 // Y = (aX + b)^Gamma + e | X <= d
408 // Y = cX + f | else
409 case 5:
410 if (R >= Params[4]) {
412 e = Params[1]*R + Params[2];
413 Val = pow(e, Params[0]) + Params[5];
415 else
416 Val = R*Params[3] + Params[6];
417 break;
420 // Reversed type 5
421 // X=((Y-e)1/g-b)/a | Y >=(ad+b)^g+e)
422 // X=(Y-f)/c | else
423 case -5:
425 if (R >= pow(Params[1] * Params[4], Params[0]) + Params[5]) {
427 Val = pow(R - Params[5], 1/Params[0]) - Params[2] / Params[1];
429 else {
430 Val = (R - Params[6]) / Params[3];
432 break;
434 default:
435 cmsSignalError(LCMS_ERRC_ABORTED, "Unsupported parametric curve type=%d", abs(Type)-1);
436 cmsFreeGamma(Table);
437 return NULL;
441 // Saturate
443 dval = Val * 65535.0 + .5;
444 if (dval > 65535.) dval = 65535.0;
445 if (dval < 0) dval = 0;
447 Table->GammaTable[i] = (WORD) floor(dval);
450 Table -> Seed.Crc32 = _cmsCrc32OfGammaTable(Table);
452 return Table;
455 // Build a gamma table based on gamma constant
457 LPGAMMATABLE LCMSEXPORT cmsBuildGamma(int nEntries, double Gamma)
459 return cmsBuildParametricGamma(nEntries, 1, &Gamma);
464 // From: Eilers, P.H.C. (1994) Smoothing and interpolation with finite
465 // differences. in: Graphic Gems IV, Heckbert, P.S. (ed.), Academic press.
467 // Smoothing and interpolation with second differences.
469 // Input: weights (w), data (y): vector from 1 to m.
470 // Input: smoothing parameter (lambda), length (m).
471 // Output: smoothed vector (z): vector from 1 to m.
474 static
475 void smooth2(vec w, vec y, vec z, float lambda, int m)
477 int i, i1, i2;
478 vec c, d, e;
479 d[1] = w[1] + lambda;
480 c[1] = -2 * lambda / d[1];
481 e[1] = lambda /d[1];
482 z[1] = w[1] * y[1];
483 d[2] = w[2] + 5 * lambda - d[1] * c[1] * c[1];
484 c[2] = (-4 * lambda - d[1] * c[1] * e[1]) / d[2];
485 e[2] = lambda / d[2];
486 z[2] = w[2] * y[2] - c[1] * z[1];
487 for (i = 3; i < m - 1; i++) {
488 i1 = i - 1; i2 = i - 2;
489 d[i]= w[i] + 6 * lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
490 c[i] = (-4 * lambda -d[i1] * c[i1] * e[i1])/ d[i];
491 e[i] = lambda / d[i];
492 z[i] = w[i] * y[i] - c[i1] * z[i1] - e[i2] * z[i2];
494 i1 = m - 2; i2 = m - 3;
495 d[m - 1] = w[m - 1] + 5 * lambda -c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
496 c[m - 1] = (-2 * lambda - d[i1] * c[i1] * e[i1]) / d[m - 1];
497 z[m - 1] = w[m - 1] * y[m - 1] - c[i1] * z[i1] - e[i2] * z[i2];
498 i1 = m - 1; i2 = m - 2;
499 d[m] = w[m] + lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
500 z[m] = (w[m] * y[m] - c[i1] * z[i1] - e[i2] * z[i2]) / d[m];
501 z[m - 1] = z[m - 1] / d[m - 1] - c[m - 1] * z[m];
502 for (i = m - 2; 1<= i; i--)
503 z[i] = z[i] / d[i] - c[i] * z[i + 1] - e[i] * z[i + 2];
508 // Smooths a curve sampled at regular intervals
510 LCMSBOOL LCMSEXPORT cmsSmoothGamma(LPGAMMATABLE Tab, double lambda)
513 vec w, y, z;
514 int i, nItems, Zeros, Poles;
517 if (cmsIsLinear(Tab->GammaTable, Tab->nEntries)) return FALSE; // Nothing to do
519 nItems = Tab -> nEntries;
521 if (nItems > MAX_KNOTS) {
522 cmsSignalError(LCMS_ERRC_ABORTED, "cmsSmoothGamma: too many points.");
523 return FALSE;
526 ZeroMemory(w, nItems * sizeof(float));
527 ZeroMemory(y, nItems * sizeof(float));
528 ZeroMemory(z, nItems * sizeof(float));
530 for (i=0; i < nItems; i++)
532 y[i+1] = (float) Tab -> GammaTable[i];
533 w[i+1] = 1.0;
536 smooth2(w, y, z, (float) lambda, nItems);
538 // Do some reality - checking...
539 Zeros = Poles = 0;
540 for (i=nItems; i > 1; --i) {
542 if (z[i] == 0.) Zeros++;
543 if (z[i] >= 65535.) Poles++;
544 if (z[i] < z[i-1]) return FALSE; // Non-Monotonic
547 if (Zeros > (nItems / 3)) return FALSE; // Degenerated, mostly zeros
548 if (Poles > (nItems / 3)) return FALSE; // Degenerated, mostly poles
550 // Seems ok
552 for (i=0; i < nItems; i++) {
554 // Clamp to WORD
556 float v = z[i+1];
558 if (v < 0) v = 0;
559 if (v > 65535.) v = 65535.;
561 Tab -> GammaTable[i] = (WORD) floor(v + .5);
564 return TRUE;
568 // Check if curve is exponential, return gamma if so.
570 double LCMSEXPORT cmsEstimateGammaEx(LPWORD GammaTable, int nEntries, double Thereshold)
572 double gamma, sum, sum2;
573 double n, x, y, Std;
574 int i;
576 sum = sum2 = n = 0;
578 // Does exclude endpoints
579 for (i=1; i < nEntries - 1; i++) {
581 x = (double) i / (nEntries - 1);
582 y = (double) GammaTable[i] / 65535.;
584 // Avoid 7% on lower part to prevent
585 // artifacts due to linear ramps
587 if (y > 0. && y < 1. && x > 0.07) {
589 gamma = log(y) / log(x);
590 sum += gamma;
591 sum2 += gamma * gamma;
592 n++;
597 // Take a look on SD to see if gamma isn't exponential at all
598 Std = sqrt((n * sum2 - sum * sum) / (n*(n-1)));
601 if (Std > Thereshold)
602 return -1.0;
604 return (sum / n); // The mean
608 double LCMSEXPORT cmsEstimateGamma(LPGAMMATABLE t)
610 return cmsEstimateGammaEx(t->GammaTable, t->nEntries, 0.7);
614 // -----------------------------------------------------------------Sampled curves
616 // Allocate a empty curve
618 LPSAMPLEDCURVE cmsAllocSampledCurve(int nItems)
620 LPSAMPLEDCURVE pOut;
622 pOut = (LPSAMPLEDCURVE) _cmsMalloc(sizeof(SAMPLEDCURVE));
623 if (pOut == NULL)
624 return NULL;
626 if((pOut->Values = (double *) _cmsMalloc(nItems * sizeof(double))) == NULL)
628 _cmsFree(pOut);
629 return NULL;
632 pOut->nItems = nItems;
633 ZeroMemory(pOut->Values, nItems * sizeof(double));
635 return pOut;
639 void cmsFreeSampledCurve(LPSAMPLEDCURVE p)
641 _cmsFree((LPVOID) p -> Values);
642 _cmsFree((LPVOID) p);
647 // Does duplicate a sampled curve
649 LPSAMPLEDCURVE cmsDupSampledCurve(LPSAMPLEDCURVE p)
651 LPSAMPLEDCURVE out;
653 out = cmsAllocSampledCurve(p -> nItems);
654 if (!out) return NULL;
656 CopyMemory(out ->Values, p ->Values, p->nItems * sizeof(double));
658 return out;
662 // Take min, max of curve
664 void cmsEndpointsOfSampledCurve(LPSAMPLEDCURVE p, double* Min, double* Max)
666 int i;
668 *Min = 65536.;
669 *Max = 0.;
671 for (i=0; i < p -> nItems; i++) {
673 double v = p -> Values[i];
675 if (v < *Min)
676 *Min = v;
678 if (v > *Max)
679 *Max = v;
682 if (*Min < 0) *Min = 0;
683 if (*Max > 65535.0) *Max = 65535.0;
686 // Clamps to Min, Max
688 void cmsClampSampledCurve(LPSAMPLEDCURVE p, double Min, double Max)
691 int i;
693 for (i=0; i < p -> nItems; i++) {
695 double v = p -> Values[i];
697 if (v < Min)
698 v = Min;
700 if (v > Max)
701 v = Max;
703 p -> Values[i] = v;
711 // Smooths a curve sampled at regular intervals
713 LCMSBOOL cmsSmoothSampledCurve(LPSAMPLEDCURVE Tab, double lambda)
715 vec w, y, z;
716 int i, nItems;
718 nItems = Tab -> nItems;
720 if (nItems > MAX_KNOTS) {
721 cmsSignalError(LCMS_ERRC_ABORTED, "cmsSmoothSampledCurve: too many points.");
722 return FALSE;
725 ZeroMemory(w, nItems * sizeof(float));
726 ZeroMemory(y, nItems * sizeof(float));
727 ZeroMemory(z, nItems * sizeof(float));
729 for (i=0; i < nItems; i++)
731 float value = (float) Tab -> Values[i];
733 y[i+1] = value;
734 w[i+1] = (float) ((value < 0.0) ? 0 : 1);
738 smooth2(w, y, z, (float) lambda, nItems);
740 for (i=0; i < nItems; i++) {
742 Tab -> Values[i] = z[i+1];;
745 return TRUE;
750 // Scale a value v, within domain Min .. Max
751 // to a domain 0..(nPoints-1)
753 static
754 double ScaleVal(double v, double Min, double Max, int nPoints)
757 double a, b;
759 if (v <= Min) return 0;
760 if (v >= Max) return (nPoints-1);
762 a = (double) (nPoints - 1) / (Max - Min);
763 b = a * Min;
765 return (a * v) - b;
770 // Does rescale a sampled curve to fit in a 0..(nPoints-1) domain
772 void cmsRescaleSampledCurve(LPSAMPLEDCURVE p, double Min, double Max, int nPoints)
775 int i;
777 for (i=0; i < p -> nItems; i++) {
779 double v = p -> Values[i];
781 p -> Values[i] = ScaleVal(v, Min, Max, nPoints);
787 // Joins two sampled curves for X and Y. Curves should be sorted.
789 LPSAMPLEDCURVE cmsJoinSampledCurves(LPSAMPLEDCURVE X, LPSAMPLEDCURVE Y, int nResultingPoints)
791 int i, j;
792 LPSAMPLEDCURVE out;
793 double MinX, MinY, MaxX, MaxY;
794 double x, y, x1, y1, x2, y2, a, b;
796 out = cmsAllocSampledCurve(nResultingPoints);
797 if (out == NULL)
798 return NULL;
800 if (X -> nItems != Y -> nItems) {
802 cmsSignalError(LCMS_ERRC_ABORTED, "cmsJoinSampledCurves: invalid curve.");
803 cmsFreeSampledCurve(out);
804 return NULL;
807 // Get endpoints of sampled curves
808 cmsEndpointsOfSampledCurve(X, &MinX, &MaxX);
809 cmsEndpointsOfSampledCurve(Y, &MinY, &MaxY);
812 // Set our points
813 out ->Values[0] = MinY;
814 for (i=1; i < nResultingPoints; i++) {
816 // Scale t to x domain
817 x = (i * (MaxX - MinX) / (nResultingPoints-1)) + MinX;
819 // Find interval in which j is within (always up,
820 // since fn should be monotonic at all)
822 j = 1;
823 while ((j < X ->nItems - 1) && X ->Values[j] < x)
824 j++;
826 // Now x is within X[j-1], X[j]
827 x1 = X ->Values[j-1]; x2 = X ->Values[j];
828 y1 = Y ->Values[j-1]; y2 = Y ->Values[j];
830 // Interpolate the value
831 a = (y1 - y2) / (x1 - x2);
832 b = y1 - a * x1;
833 y = a* x + b;
835 out ->Values[i] = y;
839 cmsClampSampledCurve(out, MinY, MaxY);
840 return out;
845 // Convert between curve types
847 LPGAMMATABLE cmsConvertSampledCurveToGamma(LPSAMPLEDCURVE Sampled, double Max)
849 LPGAMMATABLE Gamma;
850 int i, nPoints;
853 nPoints = Sampled ->nItems;
855 Gamma = cmsAllocGamma(nPoints);
856 for (i=0; i < nPoints; i++) {
858 Gamma->GammaTable[i] = (WORD) floor(ScaleVal(Sampled ->Values[i], 0, Max, 65536) + .5);
861 return Gamma;
865 // Inverse of anterior
867 LPSAMPLEDCURVE cmsConvertGammaToSampledCurve(LPGAMMATABLE Gamma, int nPoints)
869 LPSAMPLEDCURVE Sampled;
870 L16PARAMS L16;
871 int i;
872 WORD wQuant, wValIn;
874 if (nPoints > 4096) {
876 cmsSignalError(LCMS_ERRC_ABORTED, "cmsConvertGammaToSampledCurve: too many points (max=4096)");
877 return NULL;
880 cmsCalcL16Params(Gamma -> nEntries, &L16);
882 Sampled = cmsAllocSampledCurve(nPoints);
883 for (i=0; i < nPoints; i++) {
884 wQuant = _cmsQuantizeVal(i, nPoints);
885 wValIn = cmsLinearInterpLUT16(wQuant, Gamma ->GammaTable, &L16);
886 Sampled ->Values[i] = (float) wValIn;
889 return Sampled;
895 // Smooth endpoints (used in Black/White compensation)
897 LCMSBOOL _cmsSmoothEndpoints(LPWORD Table, int nEntries)
899 vec w, y, z;
900 int i, Zeros, Poles;
904 if (cmsIsLinear(Table, nEntries)) return FALSE; // Nothing to do
907 if (nEntries > MAX_KNOTS) {
908 cmsSignalError(LCMS_ERRC_ABORTED, "_cmsSmoothEndpoints: too many points.");
909 return FALSE;
912 ZeroMemory(w, nEntries * sizeof(float));
913 ZeroMemory(y, nEntries * sizeof(float));
914 ZeroMemory(z, nEntries * sizeof(float));
916 for (i=0; i < nEntries; i++)
918 y[i+1] = (float) Table[i];
919 w[i+1] = 1.0;
922 w[1] = 65535.0;
923 w[nEntries] = 65535.0;
925 smooth2(w, y, z, (float) nEntries, nEntries);
927 // Do some reality - checking...
928 Zeros = Poles = 0;
929 for (i=nEntries; i > 1; --i) {
931 if (z[i] == 0.) Zeros++;
932 if (z[i] >= 65535.) Poles++;
933 if (z[i] < z[i-1]) return FALSE; // Non-Monotonic
936 if (Zeros > (nEntries / 3)) return FALSE; // Degenerated, mostly zeros
937 if (Poles > (nEntries / 3)) return FALSE; // Degenerated, mostly poles
939 // Seems ok
941 for (i=0; i < nEntries; i++) {
943 // Clamp to WORD
945 float v = z[i+1];
947 if (v < 0) v = 0;
948 if (v > 65535.) v = 65535.;
950 Table[i] = (WORD) floor(v + .5);
953 return TRUE;