Release 951226
[wine/gsoc-2012-control.git] / ipc / bit_array.c
blob6873c82509a00f7d8fa2f4b7b89bd2fb7fd20733
1 /***************************************************************************
2 * Copyright 1995, Technion, Israel Institute of Technology
3 * Electrical Eng, Software Lab.
4 * Author: Michael Veksler.
5 ***************************************************************************
6 * File: bit_array.c
7 * Purpose : manipulate array of bits
8 * Portability: This is not completely portable, non CISC arcitectures
9 * Might not have atomic Clear/Set/Toggle bit. On those
10 * architectures semaphores should be used.
11 * Big Endian Concerns: This code is big endian compatible,
12 * but the byte order will be different (i.e. bit 0 will be
13 * located in byte 3).
14 ***************************************************************************
17 #ifdef CONFIG_IPC
20 ** uncoment the following line to disable assertions,
21 ** this may boost performance by up to 50%
23 /* #define NDEBUG */
25 #if defined(linux) && !defined(NO_ASM)
26 #define HAS_BITOPS
27 #endif
29 #include <stdio.h>
31 #include <assert.h>
33 #include "bit_array.h"
34 #ifdef HAS_BITOPS
35 #define inline __inline__ /* So we can compile with -ansi */
36 #include <asm/bitops.h>
37 #else
38 static __inline__ int clear_bit(int bit, int *mem);
39 static __inline__ int set_bit(int bit, int *mem);
40 #endif /* HAS_BITOPS */
43 #define INT_NR(bit_nr) ((bit_nr) >> INT_LOG2)
44 #define INT_COUNT(bit_count) INT_NR( bit_count + BITS_PER_INT - 1 )
45 #define BIT_IN_INT(bit_nr) ((bit_nr) & (BITS_PER_INT - 1))
47 #if !defined(HAS_BITOPS)
49 /* first_zero maps bytes value to the index of first zero bit */
50 static char first_zero[256];
51 static int arrays_initialized=0;
55 ** initialize static arrays used for bit operations speedup.
56 ** Currently initialized: first_zero[256]
57 ** set "arrays_initialized" to inidate that arrays where initialized
60 static void initialize_arrays()
62 int i;
63 int bit;
65 for (i=0 ; i<256 ; i++) {
66 /* find the first zero bit in `i' */
67 for (bit=0 ; bit < BITS_PER_BYTE ; bit++)
68 /* break if the bit is zero */
69 if ( ( (1 << bit) & i )
70 == 0)
71 break;
72 first_zero[i]= bit;
74 arrays_initialized=1;
78 ** Find first zero bit in the integer.
79 ** Assume there is at least one zero.
81 static __inline__ int find_zbit_in_integer(unsigned int integer)
83 int i;
85 /* find the zero bit */
86 for (i=0 ; i < sizeof(int) ; i++, integer>>=8) {
87 int byte= integer & 0xff;
89 if (byte != 0xff)
90 return ( first_zero[ byte ]
91 + (i << BYTE_LOG2) );
93 assert(0); /* never reached */
94 return 0;
97 /* return -1 on failure */
98 static __inline__ int find_first_zero_bit(unsigned *array, int bits)
100 unsigned int integer;
101 int i;
102 int bytes=INT_COUNT(bits);
104 if (!arrays_initialized)
105 initialize_arrays();
107 for ( i=bytes ; i ; i--, array++) {
108 integer= *array;
110 /* test if integer contains a zero bit */
111 if (integer != ~0U)
112 return ( find_zbit_in_integer(integer)
113 + ((bytes-i) << INT_LOG2) );
116 /* indicate failure */
117 return -1;
120 static __inline__ int test_bit(int pos, unsigned *array)
122 unsigned int integer;
123 int bit = BIT_IN_INT(pos);
125 integer= array[ pos >> INT_LOG2 ];
127 return ( (integer & (1 << bit)) != 0
129 : 0 ) ;
133 ** The following two functions are x86 specific ,
134 ** other processors will need porting
137 /* inputs: bit number and memory address (32 bit) */
138 /* output: Value of the bit before modification */
139 static __inline__ int clear_bit(int bit, int *mem)
141 int ret;
143 __asm__("xor %1,%1
144 btrl %2,%0
145 adcl %1,%1"
146 :"=m" (*mem), "=&r" (ret)
147 :"r" (bit));
148 return (ret);
151 static __inline__ int set_bit(int bit, int *mem)
153 int ret;
154 __asm__("xor %1,%1
155 btsl %2,%0
156 adcl %1,%1"
157 :"=m" (*mem), "=&r" (ret)
158 :"r" (bit));
159 return (ret);
162 #endif /* !deined(HAS_BITOPS) */
165 /* AssembleArray: assemble an array object using existing data */
166 bit_array *AssembleArray(bit_array *new_array, unsigned int *buff, int bits)
168 assert(new_array!=NULL);
169 assert(buff!=NULL);
170 assert(bits>0);
171 assert((1 << INT_LOG2) == BITS_PER_INT); /* if fails, redefine INT_LOG2 */
173 new_array->bits=bits;
174 new_array->array=buff;
175 return new_array;
178 /* ResetArray: reset the bit array to zeros */
179 int ResetArray(bit_array *bits)
181 int i;
182 int *p;
184 assert(bits!=NULL);
185 assert(bits->array!=NULL);
187 for(i= INT_COUNT(bits->bits), p=bits->array; i ; p++, i--)
188 *p=0;
189 return 1;
193 /* VacantBit: find a vacant (zero) bit in the array,
194 * Return: Bit index on success, -1 on failure.
196 int VacantBit(bit_array *bits)
198 int bit;
200 assert(bits!=NULL);
201 assert(bits->array!=NULL);
203 bit= find_first_zero_bit(bits->array, bits->bits);
205 if (bit >= bits->bits) /* failed? */
206 return -1;
208 return bit;
211 int SampleBit(bit_array *bits, int i)
213 assert(bits != NULL);
214 assert(bits->array != NULL);
215 assert(i >= 0 && i < bits->bits);
217 return ( test_bit(i,bits->array) != 0
225 ** Use "compare and exchange" mechanism to make sure
226 ** that bits are not modified while "integer" value
227 ** is calculated.
229 ** This may be the slowest technique, but it is the most portable
230 ** (Since most architectures have compare and exchange command)
232 int AssignBit(bit_array *bits, int bit_nr, int val)
234 int ret;
236 assert(bits != NULL);
237 assert(bits->array != NULL);
238 assert(val==0 || val==1);
239 assert(bit_nr >= 0 && bit_nr < bits->bits);
241 if (val==0)
242 ret= clear_bit(BIT_IN_INT(bit_nr), &bits->array[ INT_NR(bit_nr) ]);
243 else
244 ret= set_bit(BIT_IN_INT(bit_nr), &bits->array[ INT_NR(bit_nr) ]);
246 return ( (ret!=0) ? 1 : 0);
250 ** Allocate a free bit (==0) and make it used (==1).
251 ** This operation is guaranteed to resemble an atomic instruction.
253 ** Return: allocated bit index, or -1 on failure.
255 ** There is a crack between locating free bit, and allocating it.
256 ** We assign 1 to the bit, test it was not '1' before the assignment.
257 ** If it was, restart the seek and assign cycle.
261 int AllocateBit(bit_array *bits)
263 int bit_nr;
264 int orig_bit;
266 assert(bits != NULL);
267 assert(bits->array != NULL);
269 do {
270 bit_nr= VacantBit(bits);
272 if (bit_nr == -1) /* No vacant bit ? */
273 return -1;
275 orig_bit = AssignBit(bits, bit_nr, 1);
276 } while (orig_bit != 0); /* it got assigned before we tried */
278 return bit_nr;
281 #endif /* CONFIG_IPC */