4 * This source code is a product of Sun Microsystems, Inc. and is provided
5 * for unrestricted use. Users may copy or modify this source code without
8 * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
9 * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
10 * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
12 * Sun source code is provided with no support and without any obligation on
13 * the part of Sun Microsystems, Inc. to assist in its use, correction,
14 * modification or enhancement.
16 * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
17 * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
18 * OR ANY PART THEREOF.
20 * In no event will Sun Microsystems, Inc. be liable for any lost revenue
21 * or profits or other special, indirect and consequential damages, even if
22 * Sun has been advised of the possibility of such damages.
24 * Sun Microsystems, Inc.
26 * Mountain View, California 94043
34 * u-law, A-law and linear PCM conversions.
36 #define SIGN_BIT (0x80) /* Sign bit for a A-law byte. */
37 #define QUANT_MASK (0xf) /* Quantization field mask. */
38 #define NSEGS (8) /* Number of A-law segments. */
39 #define SEG_SHIFT (4) /* Left shift for segment number. */
40 #define SEG_MASK (0x70) /* Segment field mask. */
42 static short seg_end
[8] = {0xFF, 0x1FF, 0x3FF, 0x7FF,
43 0xFFF, 0x1FFF, 0x3FFF, 0x7FFF};
45 /* copy from CCITT G.711 specifications */
46 unsigned char _u2a
[128] = { /* u- to A-law conversions */
47 1, 1, 2, 2, 3, 3, 4, 4,
48 5, 5, 6, 6, 7, 7, 8, 8,
49 9, 10, 11, 12, 13, 14, 15, 16,
50 17, 18, 19, 20, 21, 22, 23, 24,
51 25, 27, 29, 31, 33, 34, 35, 36,
52 37, 38, 39, 40, 41, 42, 43, 44,
53 46, 48, 49, 50, 51, 52, 53, 54,
54 55, 56, 57, 58, 59, 60, 61, 62,
55 64, 65, 66, 67, 68, 69, 70, 71,
56 72, 73, 74, 75, 76, 77, 78, 79,
57 81, 82, 83, 84, 85, 86, 87, 88,
58 89, 90, 91, 92, 93, 94, 95, 96,
59 97, 98, 99, 100, 101, 102, 103, 104,
60 105, 106, 107, 108, 109, 110, 111, 112,
61 113, 114, 115, 116, 117, 118, 119, 120,
62 121, 122, 123, 124, 125, 126, 127, 128};
64 unsigned char _a2u
[128] = { /* A- to u-law conversions */
65 1, 3, 5, 7, 9, 11, 13, 15,
66 16, 17, 18, 19, 20, 21, 22, 23,
67 24, 25, 26, 27, 28, 29, 30, 31,
68 32, 32, 33, 33, 34, 34, 35, 35,
69 36, 37, 38, 39, 40, 41, 42, 43,
70 44, 45, 46, 47, 48, 48, 49, 49,
71 50, 51, 52, 53, 54, 55, 56, 57,
72 58, 59, 60, 61, 62, 63, 64, 64,
73 65, 66, 67, 68, 69, 70, 71, 72,
74 73, 74, 75, 76, 77, 78, 79, 79,
75 80, 81, 82, 83, 84, 85, 86, 87,
76 88, 89, 90, 91, 92, 93, 94, 95,
77 96, 97, 98, 99, 100, 101, 102, 103,
78 104, 105, 106, 107, 108, 109, 110, 111,
79 112, 113, 114, 115, 116, 117, 118, 119,
80 120, 121, 122, 123, 124, 125, 126, 127};
90 for (i
= 0; i
< size
; i
++) {
98 * linear2alaw() - Convert a 16-bit linear PCM value to 8-bit A-law
100 * linear2alaw() accepts an 16-bit integer and encodes it as A-law data.
102 * Linear Input Code Compressed Code
103 * ------------------------ ---------------
104 * 0000000wxyza 000wxyz
105 * 0000001wxyza 001wxyz
106 * 000001wxyzab 010wxyz
107 * 00001wxyzabc 011wxyz
108 * 0001wxyzabcd 100wxyz
109 * 001wxyzabcde 101wxyz
110 * 01wxyzabcdef 110wxyz
111 * 1wxyzabcdefg 111wxyz
113 * For further information see John C. Bellamy's Digital Telephony, 1982,
114 * John Wiley & Sons, pps 98-111 and 472-476.
118 int pcm_val
) /* 2's complement (16-bit range) */
124 mask
= 0xD5; /* sign (7th) bit = 1 */
126 mask
= 0x55; /* sign bit = 0 */
127 pcm_val
= -pcm_val
- 8;
130 /* Convert the scaled magnitude to segment number. */
131 seg
= search(pcm_val
, seg_end
, 8);
133 /* Combine the sign, segment, and quantization bits. */
135 if (seg
>= 8) /* out of range, return maximum value. */
136 return (0x7F ^ mask
);
138 aval
= seg
<< SEG_SHIFT
;
140 aval
|= (pcm_val
>> 4) & QUANT_MASK
;
142 aval
|= (pcm_val
>> (seg
+ 3)) & QUANT_MASK
;
143 return (aval
^ mask
);
148 * alaw2linear() - Convert an A-law value to 16-bit linear PCM
157 /*printf(" vrednost a_val %X ", a_val);*/
160 t
= (a_val
& QUANT_MASK
) << 4;
161 seg
= ((unsigned)a_val
& SEG_MASK
) >> SEG_SHIFT
;
173 /*printf("izracunan int %d in njegov hex %X \n", t,t);*/
174 return ((a_val
& SIGN_BIT
) ? t
: -t
);
177 #define BIAS (0x84) /* Bias for linear code. */
180 * linear2ulaw() - Convert a linear PCM value to u-law
182 * In order to simplify the encoding process, the original linear magnitude
183 * is biased by adding 33 which shifts the encoding range from (0 - 8158) to
184 * (33 - 8191). The result can be seen in the following encoding table:
186 * Biased Linear Input Code Compressed Code
187 * ------------------------ ---------------
188 * 00000001wxyza 000wxyz
189 * 0000001wxyzab 001wxyz
190 * 000001wxyzabc 010wxyz
191 * 00001wxyzabcd 011wxyz
192 * 0001wxyzabcde 100wxyz
193 * 001wxyzabcdef 101wxyz
194 * 01wxyzabcdefg 110wxyz
195 * 1wxyzabcdefgh 111wxyz
197 * Each biased linear code has a leading 1 which identifies the segment
198 * number. The value of the segment number is equal to 7 minus the number
199 * of leading 0's. The quantization interval is directly available as the
200 * four bits wxyz. * The trailing bits (a - h) are ignored.
202 * Ordinarily the complement of the resulting code word is used for
203 * transmission, and so the code word is complemented before it is returned.
205 * For further information see John C. Bellamy's Digital Telephony, 1982,
206 * John Wiley & Sons, pps 98-111 and 472-476.
210 int pcm_val
) /* 2's complement (16-bit range) */
216 /* Get the sign and the magnitude of the value. */
218 pcm_val
= BIAS
- pcm_val
;
225 /* Convert the scaled magnitude to segment number. */
226 seg
= search(pcm_val
, seg_end
, 8);
229 * Combine the sign, segment, quantization bits;
230 * and complement the code word.
232 if (seg
>= 8) /* out of range, return maximum value. */
233 return (0x7F ^ mask
);
235 uval
= (seg
<< 4) | ((pcm_val
>> (seg
+ 3)) & 0xF);
236 return (uval
^ mask
);
242 * ulaw2linear() - Convert a u-law value to 16-bit linear PCM
244 * First, a biased linear code is derived from the code word. An unbiased
245 * output can then be obtained by subtracting 33 from the biased code.
247 * Note that this function expects to be passed the complement of the
248 * original code word. This is in keeping with ISDN conventions.
256 /* Complement to obtain normal u-law value. */
260 * Extract and bias the quantization bits. Then
261 * shift up by the segment number and subtract out the bias.
263 t
= ((u_val
& QUANT_MASK
) << 3) + BIAS
;
264 t
<<= ((unsigned)u_val
& SEG_MASK
) >> SEG_SHIFT
;
266 return ((u_val
& SIGN_BIT
) ? (BIAS
- t
) : (t
- BIAS
));
269 /* A-law to u-law conversion */
272 * unsigned char aval)
275 * return ((aval & 0x80) ? (0xFF ^ _a2u[aval ^ 0xD5]) :
276 * (0x7F ^ _a2u[aval ^ 0x55]));
280 /* u-law to A-law conversion */
283 * unsigned char uval)
286 * return ((uval & 0x80) ? (0xD5 ^ (_u2a[0xFF ^ uval] - 1)) :
287 * (0x55 ^ (_u2a[0x7F ^ uval] - 1)));