2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
62 #define DRV_VERSION "2.20" /* must be exactly four chars */
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
70 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
71 u16 heads
, u16 sectors
);
72 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
73 static void ata_dev_xfermask(struct ata_device
*dev
);
75 unsigned int ata_print_id
= 1;
76 static struct workqueue_struct
*ata_wq
;
78 struct workqueue_struct
*ata_aux_wq
;
80 int atapi_enabled
= 1;
81 module_param(atapi_enabled
, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on)");
85 module_param(atapi_dmadir
, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
89 module_param_named(fua
, libata_fua
, int, 0444);
90 MODULE_PARM_DESC(fua
, "FUA support (0=off, 1=on)");
92 static int ata_ignore_hpa
= 0;
93 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
94 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96 static int ata_probe_timeout
= ATA_TMOUT_INTERNAL
/ HZ
;
97 module_param(ata_probe_timeout
, int, 0444);
98 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
100 int libata_noacpi
= 1;
101 module_param_named(noacpi
, libata_noacpi
, int, 0444);
102 MODULE_PARM_DESC(noacpi
, "Disables the use of ACPI in suspend/resume when set");
104 MODULE_AUTHOR("Jeff Garzik");
105 MODULE_DESCRIPTION("Library module for ATA devices");
106 MODULE_LICENSE("GPL");
107 MODULE_VERSION(DRV_VERSION
);
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
120 * Inherited from caller.
123 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8
*fis
, u8 pmp
)
125 fis
[0] = 0x27; /* Register - Host to Device FIS */
126 fis
[1] = (pmp
& 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis
[2] = tf
->command
;
129 fis
[3] = tf
->feature
;
136 fis
[8] = tf
->hob_lbal
;
137 fis
[9] = tf
->hob_lbam
;
138 fis
[10] = tf
->hob_lbah
;
139 fis
[11] = tf
->hob_feature
;
142 fis
[13] = tf
->hob_nsect
;
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
160 * Inherited from caller.
163 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
165 tf
->command
= fis
[2]; /* status */
166 tf
->feature
= fis
[3]; /* error */
173 tf
->hob_lbal
= fis
[8];
174 tf
->hob_lbam
= fis
[9];
175 tf
->hob_lbah
= fis
[10];
178 tf
->hob_nsect
= fis
[13];
181 static const u8 ata_rw_cmds
[] = {
185 ATA_CMD_READ_MULTI_EXT
,
186 ATA_CMD_WRITE_MULTI_EXT
,
190 ATA_CMD_WRITE_MULTI_FUA_EXT
,
194 ATA_CMD_PIO_READ_EXT
,
195 ATA_CMD_PIO_WRITE_EXT
,
208 ATA_CMD_WRITE_FUA_EXT
212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
216 * Examine the device configuration and tf->flags to calculate
217 * the proper read/write commands and protocol to use.
222 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
226 int index
, fua
, lba48
, write
;
228 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
229 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
230 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
232 if (dev
->flags
& ATA_DFLAG_PIO
) {
233 tf
->protocol
= ATA_PROT_PIO
;
234 index
= dev
->multi_count
? 0 : 8;
235 } else if (lba48
&& (dev
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
236 /* Unable to use DMA due to host limitation */
237 tf
->protocol
= ATA_PROT_PIO
;
238 index
= dev
->multi_count
? 0 : 8;
240 tf
->protocol
= ATA_PROT_DMA
;
244 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
265 * Block address read from @tf.
267 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
271 if (tf
->flags
& ATA_TFLAG_LBA
) {
272 if (tf
->flags
& ATA_TFLAG_LBA48
) {
273 block
|= (u64
)tf
->hob_lbah
<< 40;
274 block
|= (u64
)tf
->hob_lbam
<< 32;
275 block
|= tf
->hob_lbal
<< 24;
277 block
|= (tf
->device
& 0xf) << 24;
279 block
|= tf
->lbah
<< 16;
280 block
|= tf
->lbam
<< 8;
285 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
286 head
= tf
->device
& 0xf;
289 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
;
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
315 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
316 u64 block
, u32 n_block
, unsigned int tf_flags
,
319 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
320 tf
->flags
|= tf_flags
;
322 if (ata_ncq_enabled(dev
) && likely(tag
!= ATA_TAG_INTERNAL
)) {
324 if (!lba_48_ok(block
, n_block
))
327 tf
->protocol
= ATA_PROT_NCQ
;
328 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
330 if (tf
->flags
& ATA_TFLAG_WRITE
)
331 tf
->command
= ATA_CMD_FPDMA_WRITE
;
333 tf
->command
= ATA_CMD_FPDMA_READ
;
335 tf
->nsect
= tag
<< 3;
336 tf
->hob_feature
= (n_block
>> 8) & 0xff;
337 tf
->feature
= n_block
& 0xff;
339 tf
->hob_lbah
= (block
>> 40) & 0xff;
340 tf
->hob_lbam
= (block
>> 32) & 0xff;
341 tf
->hob_lbal
= (block
>> 24) & 0xff;
342 tf
->lbah
= (block
>> 16) & 0xff;
343 tf
->lbam
= (block
>> 8) & 0xff;
344 tf
->lbal
= block
& 0xff;
347 if (tf
->flags
& ATA_TFLAG_FUA
)
348 tf
->device
|= 1 << 7;
349 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
350 tf
->flags
|= ATA_TFLAG_LBA
;
352 if (lba_28_ok(block
, n_block
)) {
354 tf
->device
|= (block
>> 24) & 0xf;
355 } else if (lba_48_ok(block
, n_block
)) {
356 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
360 tf
->flags
|= ATA_TFLAG_LBA48
;
362 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
364 tf
->hob_lbah
= (block
>> 40) & 0xff;
365 tf
->hob_lbam
= (block
>> 32) & 0xff;
366 tf
->hob_lbal
= (block
>> 24) & 0xff;
368 /* request too large even for LBA48 */
371 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
374 tf
->nsect
= n_block
& 0xff;
376 tf
->lbah
= (block
>> 16) & 0xff;
377 tf
->lbam
= (block
>> 8) & 0xff;
378 tf
->lbal
= block
& 0xff;
380 tf
->device
|= ATA_LBA
;
383 u32 sect
, head
, cyl
, track
;
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block
, n_block
))
389 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
392 /* Convert LBA to CHS */
393 track
= (u32
)block
/ dev
->sectors
;
394 cyl
= track
/ dev
->heads
;
395 head
= track
% dev
->heads
;
396 sect
= (u32
)block
% dev
->sectors
+ 1;
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32
)block
, track
, cyl
, head
, sect
);
401 /* Check whether the converted CHS can fit.
405 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
408 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
433 static unsigned int ata_pack_xfermask(unsigned int pio_mask
,
434 unsigned int mwdma_mask
,
435 unsigned int udma_mask
)
437 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
438 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
439 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
452 static void ata_unpack_xfermask(unsigned int xfer_mask
,
453 unsigned int *pio_mask
,
454 unsigned int *mwdma_mask
,
455 unsigned int *udma_mask
)
458 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
460 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
462 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
465 static const struct ata_xfer_ent
{
469 { ATA_SHIFT_PIO
, ATA_BITS_PIO
, XFER_PIO_0
},
470 { ATA_SHIFT_MWDMA
, ATA_BITS_MWDMA
, XFER_MW_DMA_0
},
471 { ATA_SHIFT_UDMA
, ATA_BITS_UDMA
, XFER_UDMA_0
},
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
486 * Matching XFER_* value, 0 if no match found.
488 static u8
ata_xfer_mask2mode(unsigned int xfer_mask
)
490 int highbit
= fls(xfer_mask
) - 1;
491 const struct ata_xfer_ent
*ent
;
493 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
494 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
495 return ent
->base
+ highbit
- ent
->shift
;
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
503 * Return matching xfer_mask for @xfer_mode.
509 * Matching xfer_mask, 0 if no match found.
511 static unsigned int ata_xfer_mode2mask(u8 xfer_mode
)
513 const struct ata_xfer_ent
*ent
;
515 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
516 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
517 return 1 << (ent
->shift
+ xfer_mode
- ent
->base
);
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
525 * Return matching xfer_shift for @xfer_mode.
531 * Matching xfer_shift, -1 if no match found.
533 static int ata_xfer_mode2shift(unsigned int xfer_mode
)
535 const struct ata_xfer_ent
*ent
;
537 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
538 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
547 * Determine string which represents the highest speed
548 * (highest bit in @modemask).
554 * Constant C string representing highest speed listed in
555 * @mode_mask, or the constant C string "<n/a>".
557 static const char *ata_mode_string(unsigned int xfer_mask
)
559 static const char * const xfer_mode_str
[] = {
583 highbit
= fls(xfer_mask
) - 1;
584 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
585 return xfer_mode_str
[highbit
];
589 static const char *sata_spd_string(unsigned int spd
)
591 static const char * const spd_str
[] = {
596 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
598 return spd_str
[spd
- 1];
601 void ata_dev_disable(struct ata_device
*dev
)
603 if (ata_dev_enabled(dev
) && ata_msg_drv(dev
->ap
)) {
604 ata_dev_printk(dev
, KERN_WARNING
, "disabled\n");
605 ata_down_xfermask_limit(dev
, ATA_DNXFER_FORCE_PIO0
|
612 * ata_devchk - PATA device presence detection
613 * @ap: ATA channel to examine
614 * @device: Device to examine (starting at zero)
616 * This technique was originally described in
617 * Hale Landis's ATADRVR (www.ata-atapi.com), and
618 * later found its way into the ATA/ATAPI spec.
620 * Write a pattern to the ATA shadow registers,
621 * and if a device is present, it will respond by
622 * correctly storing and echoing back the
623 * ATA shadow register contents.
629 static unsigned int ata_devchk(struct ata_port
*ap
, unsigned int device
)
631 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
634 ap
->ops
->dev_select(ap
, device
);
636 iowrite8(0x55, ioaddr
->nsect_addr
);
637 iowrite8(0xaa, ioaddr
->lbal_addr
);
639 iowrite8(0xaa, ioaddr
->nsect_addr
);
640 iowrite8(0x55, ioaddr
->lbal_addr
);
642 iowrite8(0x55, ioaddr
->nsect_addr
);
643 iowrite8(0xaa, ioaddr
->lbal_addr
);
645 nsect
= ioread8(ioaddr
->nsect_addr
);
646 lbal
= ioread8(ioaddr
->lbal_addr
);
648 if ((nsect
== 0x55) && (lbal
== 0xaa))
649 return 1; /* we found a device */
651 return 0; /* nothing found */
655 * ata_dev_classify - determine device type based on ATA-spec signature
656 * @tf: ATA taskfile register set for device to be identified
658 * Determine from taskfile register contents whether a device is
659 * ATA or ATAPI, as per "Signature and persistence" section
660 * of ATA/PI spec (volume 1, sect 5.14).
666 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
667 * the event of failure.
670 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
672 /* Apple's open source Darwin code hints that some devices only
673 * put a proper signature into the LBA mid/high registers,
674 * So, we only check those. It's sufficient for uniqueness.
677 if (((tf
->lbam
== 0) && (tf
->lbah
== 0)) ||
678 ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3))) {
679 DPRINTK("found ATA device by sig\n");
683 if (((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) ||
684 ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96))) {
685 DPRINTK("found ATAPI device by sig\n");
686 return ATA_DEV_ATAPI
;
689 DPRINTK("unknown device\n");
690 return ATA_DEV_UNKNOWN
;
694 * ata_dev_try_classify - Parse returned ATA device signature
695 * @ap: ATA channel to examine
696 * @device: Device to examine (starting at zero)
697 * @r_err: Value of error register on completion
699 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
700 * an ATA/ATAPI-defined set of values is placed in the ATA
701 * shadow registers, indicating the results of device detection
704 * Select the ATA device, and read the values from the ATA shadow
705 * registers. Then parse according to the Error register value,
706 * and the spec-defined values examined by ata_dev_classify().
712 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
716 ata_dev_try_classify(struct ata_port
*ap
, unsigned int device
, u8
*r_err
)
718 struct ata_taskfile tf
;
722 ap
->ops
->dev_select(ap
, device
);
724 memset(&tf
, 0, sizeof(tf
));
726 ap
->ops
->tf_read(ap
, &tf
);
731 /* see if device passed diags: if master then continue and warn later */
732 if (err
== 0 && device
== 0)
733 /* diagnostic fail : do nothing _YET_ */
734 ap
->device
[device
].horkage
|= ATA_HORKAGE_DIAGNOSTIC
;
737 else if ((device
== 0) && (err
== 0x81))
742 /* determine if device is ATA or ATAPI */
743 class = ata_dev_classify(&tf
);
745 if (class == ATA_DEV_UNKNOWN
)
747 if ((class == ATA_DEV_ATA
) && (ata_chk_status(ap
) == 0))
753 * ata_id_string - Convert IDENTIFY DEVICE page into string
754 * @id: IDENTIFY DEVICE results we will examine
755 * @s: string into which data is output
756 * @ofs: offset into identify device page
757 * @len: length of string to return. must be an even number.
759 * The strings in the IDENTIFY DEVICE page are broken up into
760 * 16-bit chunks. Run through the string, and output each
761 * 8-bit chunk linearly, regardless of platform.
767 void ata_id_string(const u16
*id
, unsigned char *s
,
768 unsigned int ofs
, unsigned int len
)
787 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
788 * @id: IDENTIFY DEVICE results we will examine
789 * @s: string into which data is output
790 * @ofs: offset into identify device page
791 * @len: length of string to return. must be an odd number.
793 * This function is identical to ata_id_string except that it
794 * trims trailing spaces and terminates the resulting string with
795 * null. @len must be actual maximum length (even number) + 1.
800 void ata_id_c_string(const u16
*id
, unsigned char *s
,
801 unsigned int ofs
, unsigned int len
)
807 ata_id_string(id
, s
, ofs
, len
- 1);
809 p
= s
+ strnlen(s
, len
- 1);
810 while (p
> s
&& p
[-1] == ' ')
815 static u64
ata_tf_to_lba48(struct ata_taskfile
*tf
)
819 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
820 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
821 sectors
|= (tf
->hob_lbal
& 0xff) << 24;
822 sectors
|= (tf
->lbah
& 0xff) << 16;
823 sectors
|= (tf
->lbam
& 0xff) << 8;
824 sectors
|= (tf
->lbal
& 0xff);
829 static u64
ata_tf_to_lba(struct ata_taskfile
*tf
)
833 sectors
|= (tf
->device
& 0x0f) << 24;
834 sectors
|= (tf
->lbah
& 0xff) << 16;
835 sectors
|= (tf
->lbam
& 0xff) << 8;
836 sectors
|= (tf
->lbal
& 0xff);
842 * ata_read_native_max_address_ext - LBA48 native max query
843 * @dev: Device to query
845 * Perform an LBA48 size query upon the device in question. Return the
846 * actual LBA48 size or zero if the command fails.
849 static u64
ata_read_native_max_address_ext(struct ata_device
*dev
)
852 struct ata_taskfile tf
;
854 ata_tf_init(dev
, &tf
);
856 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
857 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_LBA48
| ATA_TFLAG_ISADDR
;
858 tf
.protocol
|= ATA_PROT_NODATA
;
861 err
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
865 return ata_tf_to_lba48(&tf
);
869 * ata_read_native_max_address - LBA28 native max query
870 * @dev: Device to query
872 * Performa an LBA28 size query upon the device in question. Return the
873 * actual LBA28 size or zero if the command fails.
876 static u64
ata_read_native_max_address(struct ata_device
*dev
)
879 struct ata_taskfile tf
;
881 ata_tf_init(dev
, &tf
);
883 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
884 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
885 tf
.protocol
|= ATA_PROT_NODATA
;
888 err
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
892 return ata_tf_to_lba(&tf
);
896 * ata_set_native_max_address_ext - LBA48 native max set
897 * @dev: Device to query
899 * Perform an LBA48 size set max upon the device in question. Return the
900 * actual LBA48 size or zero if the command fails.
903 static u64
ata_set_native_max_address_ext(struct ata_device
*dev
, u64 new_sectors
)
906 struct ata_taskfile tf
;
910 ata_tf_init(dev
, &tf
);
912 tf
.command
= ATA_CMD_SET_MAX_EXT
;
913 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_LBA48
| ATA_TFLAG_ISADDR
;
914 tf
.protocol
|= ATA_PROT_NODATA
;
917 tf
.lbal
= (new_sectors
>> 0) & 0xff;
918 tf
.lbam
= (new_sectors
>> 8) & 0xff;
919 tf
.lbah
= (new_sectors
>> 16) & 0xff;
921 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
922 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
923 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
925 err
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
929 return ata_tf_to_lba48(&tf
);
933 * ata_set_native_max_address - LBA28 native max set
934 * @dev: Device to query
936 * Perform an LBA28 size set max upon the device in question. Return the
937 * actual LBA28 size or zero if the command fails.
940 static u64
ata_set_native_max_address(struct ata_device
*dev
, u64 new_sectors
)
943 struct ata_taskfile tf
;
947 ata_tf_init(dev
, &tf
);
949 tf
.command
= ATA_CMD_SET_MAX
;
950 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
951 tf
.protocol
|= ATA_PROT_NODATA
;
953 tf
.lbal
= (new_sectors
>> 0) & 0xff;
954 tf
.lbam
= (new_sectors
>> 8) & 0xff;
955 tf
.lbah
= (new_sectors
>> 16) & 0xff;
956 tf
.device
|= ((new_sectors
>> 24) & 0x0f) | 0x40;
958 err
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
962 return ata_tf_to_lba(&tf
);
966 * ata_hpa_resize - Resize a device with an HPA set
967 * @dev: Device to resize
969 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
970 * it if required to the full size of the media. The caller must check
971 * the drive has the HPA feature set enabled.
974 static u64
ata_hpa_resize(struct ata_device
*dev
)
976 u64 sectors
= dev
->n_sectors
;
979 if (ata_id_has_lba48(dev
->id
))
980 hpa_sectors
= ata_read_native_max_address_ext(dev
);
982 hpa_sectors
= ata_read_native_max_address(dev
);
984 /* if no hpa, both should be equal */
985 ata_dev_printk(dev
, KERN_INFO
, "%s 1: sectors = %lld, "
986 "hpa_sectors = %lld\n",
987 __FUNCTION__
, (long long)sectors
, (long long)hpa_sectors
);
989 if (hpa_sectors
> sectors
) {
990 ata_dev_printk(dev
, KERN_INFO
,
991 "Host Protected Area detected:\n"
992 "\tcurrent size: %lld sectors\n"
993 "\tnative size: %lld sectors\n",
994 (long long)sectors
, (long long)hpa_sectors
);
996 if (ata_ignore_hpa
) {
997 if (ata_id_has_lba48(dev
->id
))
998 hpa_sectors
= ata_set_native_max_address_ext(dev
, hpa_sectors
);
1000 hpa_sectors
= ata_set_native_max_address(dev
,
1004 ata_dev_printk(dev
, KERN_INFO
, "native size "
1005 "increased to %lld sectors\n",
1006 (long long)hpa_sectors
);
1014 static u64
ata_id_n_sectors(const u16
*id
)
1016 if (ata_id_has_lba(id
)) {
1017 if (ata_id_has_lba48(id
))
1018 return ata_id_u64(id
, 100);
1020 return ata_id_u32(id
, 60);
1022 if (ata_id_current_chs_valid(id
))
1023 return ata_id_u32(id
, 57);
1025 return id
[1] * id
[3] * id
[6];
1030 * ata_id_to_dma_mode - Identify DMA mode from id block
1031 * @dev: device to identify
1032 * @unknown: mode to assume if we cannot tell
1034 * Set up the timing values for the device based upon the identify
1035 * reported values for the DMA mode. This function is used by drivers
1036 * which rely upon firmware configured modes, but wish to report the
1037 * mode correctly when possible.
1039 * In addition we emit similarly formatted messages to the default
1040 * ata_dev_set_mode handler, in order to provide consistency of
1044 void ata_id_to_dma_mode(struct ata_device
*dev
, u8 unknown
)
1049 /* Pack the DMA modes */
1050 mask
= ((dev
->id
[63] >> 8) << ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
;
1051 if (dev
->id
[53] & 0x04)
1052 mask
|= ((dev
->id
[88] >> 8) << ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
;
1054 /* Select the mode in use */
1055 mode
= ata_xfer_mask2mode(mask
);
1058 ata_dev_printk(dev
, KERN_INFO
, "configured for %s\n",
1059 ata_mode_string(mask
));
1061 /* SWDMA perhaps ? */
1063 ata_dev_printk(dev
, KERN_INFO
, "configured for DMA\n");
1066 /* Configure the device reporting */
1067 dev
->xfer_mode
= mode
;
1068 dev
->xfer_shift
= ata_xfer_mode2shift(mode
);
1072 * ata_noop_dev_select - Select device 0/1 on ATA bus
1073 * @ap: ATA channel to manipulate
1074 * @device: ATA device (numbered from zero) to select
1076 * This function performs no actual function.
1078 * May be used as the dev_select() entry in ata_port_operations.
1083 void ata_noop_dev_select (struct ata_port
*ap
, unsigned int device
)
1089 * ata_std_dev_select - Select device 0/1 on ATA bus
1090 * @ap: ATA channel to manipulate
1091 * @device: ATA device (numbered from zero) to select
1093 * Use the method defined in the ATA specification to
1094 * make either device 0, or device 1, active on the
1095 * ATA channel. Works with both PIO and MMIO.
1097 * May be used as the dev_select() entry in ata_port_operations.
1103 void ata_std_dev_select (struct ata_port
*ap
, unsigned int device
)
1108 tmp
= ATA_DEVICE_OBS
;
1110 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
1112 iowrite8(tmp
, ap
->ioaddr
.device_addr
);
1113 ata_pause(ap
); /* needed; also flushes, for mmio */
1117 * ata_dev_select - Select device 0/1 on ATA bus
1118 * @ap: ATA channel to manipulate
1119 * @device: ATA device (numbered from zero) to select
1120 * @wait: non-zero to wait for Status register BSY bit to clear
1121 * @can_sleep: non-zero if context allows sleeping
1123 * Use the method defined in the ATA specification to
1124 * make either device 0, or device 1, active on the
1127 * This is a high-level version of ata_std_dev_select(),
1128 * which additionally provides the services of inserting
1129 * the proper pauses and status polling, where needed.
1135 void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
1136 unsigned int wait
, unsigned int can_sleep
)
1138 if (ata_msg_probe(ap
))
1139 ata_port_printk(ap
, KERN_INFO
, "ata_dev_select: ENTER, "
1140 "device %u, wait %u\n", device
, wait
);
1145 ap
->ops
->dev_select(ap
, device
);
1148 if (can_sleep
&& ap
->device
[device
].class == ATA_DEV_ATAPI
)
1155 * ata_dump_id - IDENTIFY DEVICE info debugging output
1156 * @id: IDENTIFY DEVICE page to dump
1158 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1165 static inline void ata_dump_id(const u16
*id
)
1167 DPRINTK("49==0x%04x "
1177 DPRINTK("80==0x%04x "
1187 DPRINTK("88==0x%04x "
1194 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1195 * @id: IDENTIFY data to compute xfer mask from
1197 * Compute the xfermask for this device. This is not as trivial
1198 * as it seems if we must consider early devices correctly.
1200 * FIXME: pre IDE drive timing (do we care ?).
1208 static unsigned int ata_id_xfermask(const u16
*id
)
1210 unsigned int pio_mask
, mwdma_mask
, udma_mask
;
1212 /* Usual case. Word 53 indicates word 64 is valid */
1213 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1214 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1218 /* If word 64 isn't valid then Word 51 high byte holds
1219 * the PIO timing number for the maximum. Turn it into
1222 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1223 if (mode
< 5) /* Valid PIO range */
1224 pio_mask
= (2 << mode
) - 1;
1228 /* But wait.. there's more. Design your standards by
1229 * committee and you too can get a free iordy field to
1230 * process. However its the speeds not the modes that
1231 * are supported... Note drivers using the timing API
1232 * will get this right anyway
1236 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1238 if (ata_id_is_cfa(id
)) {
1240 * Process compact flash extended modes
1242 int pio
= id
[163] & 0x7;
1243 int dma
= (id
[163] >> 3) & 7;
1246 pio_mask
|= (1 << 5);
1248 pio_mask
|= (1 << 6);
1250 mwdma_mask
|= (1 << 3);
1252 mwdma_mask
|= (1 << 4);
1256 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1257 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1259 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1263 * ata_port_queue_task - Queue port_task
1264 * @ap: The ata_port to queue port_task for
1265 * @fn: workqueue function to be scheduled
1266 * @data: data for @fn to use
1267 * @delay: delay time for workqueue function
1269 * Schedule @fn(@data) for execution after @delay jiffies using
1270 * port_task. There is one port_task per port and it's the
1271 * user(low level driver)'s responsibility to make sure that only
1272 * one task is active at any given time.
1274 * libata core layer takes care of synchronization between
1275 * port_task and EH. ata_port_queue_task() may be ignored for EH
1279 * Inherited from caller.
1281 void ata_port_queue_task(struct ata_port
*ap
, work_func_t fn
, void *data
,
1282 unsigned long delay
)
1286 if (ap
->pflags
& ATA_PFLAG_FLUSH_PORT_TASK
)
1289 PREPARE_DELAYED_WORK(&ap
->port_task
, fn
);
1290 ap
->port_task_data
= data
;
1292 rc
= queue_delayed_work(ata_wq
, &ap
->port_task
, delay
);
1294 /* rc == 0 means that another user is using port task */
1299 * ata_port_flush_task - Flush port_task
1300 * @ap: The ata_port to flush port_task for
1302 * After this function completes, port_task is guranteed not to
1303 * be running or scheduled.
1306 * Kernel thread context (may sleep)
1308 void ata_port_flush_task(struct ata_port
*ap
)
1310 unsigned long flags
;
1314 spin_lock_irqsave(ap
->lock
, flags
);
1315 ap
->pflags
|= ATA_PFLAG_FLUSH_PORT_TASK
;
1316 spin_unlock_irqrestore(ap
->lock
, flags
);
1318 DPRINTK("flush #1\n");
1319 flush_workqueue(ata_wq
);
1322 * At this point, if a task is running, it's guaranteed to see
1323 * the FLUSH flag; thus, it will never queue pio tasks again.
1326 if (!cancel_delayed_work(&ap
->port_task
)) {
1327 if (ata_msg_ctl(ap
))
1328 ata_port_printk(ap
, KERN_DEBUG
, "%s: flush #2\n",
1330 flush_workqueue(ata_wq
);
1333 spin_lock_irqsave(ap
->lock
, flags
);
1334 ap
->pflags
&= ~ATA_PFLAG_FLUSH_PORT_TASK
;
1335 spin_unlock_irqrestore(ap
->lock
, flags
);
1337 if (ata_msg_ctl(ap
))
1338 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __FUNCTION__
);
1341 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1343 struct completion
*waiting
= qc
->private_data
;
1349 * ata_exec_internal_sg - execute libata internal command
1350 * @dev: Device to which the command is sent
1351 * @tf: Taskfile registers for the command and the result
1352 * @cdb: CDB for packet command
1353 * @dma_dir: Data tranfer direction of the command
1354 * @sg: sg list for the data buffer of the command
1355 * @n_elem: Number of sg entries
1357 * Executes libata internal command with timeout. @tf contains
1358 * command on entry and result on return. Timeout and error
1359 * conditions are reported via return value. No recovery action
1360 * is taken after a command times out. It's caller's duty to
1361 * clean up after timeout.
1364 * None. Should be called with kernel context, might sleep.
1367 * Zero on success, AC_ERR_* mask on failure
1369 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1370 struct ata_taskfile
*tf
, const u8
*cdb
,
1371 int dma_dir
, struct scatterlist
*sg
,
1372 unsigned int n_elem
)
1374 struct ata_port
*ap
= dev
->ap
;
1375 u8 command
= tf
->command
;
1376 struct ata_queued_cmd
*qc
;
1377 unsigned int tag
, preempted_tag
;
1378 u32 preempted_sactive
, preempted_qc_active
;
1379 DECLARE_COMPLETION_ONSTACK(wait
);
1380 unsigned long flags
;
1381 unsigned int err_mask
;
1384 spin_lock_irqsave(ap
->lock
, flags
);
1386 /* no internal command while frozen */
1387 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1388 spin_unlock_irqrestore(ap
->lock
, flags
);
1389 return AC_ERR_SYSTEM
;
1392 /* initialize internal qc */
1394 /* XXX: Tag 0 is used for drivers with legacy EH as some
1395 * drivers choke if any other tag is given. This breaks
1396 * ata_tag_internal() test for those drivers. Don't use new
1397 * EH stuff without converting to it.
1399 if (ap
->ops
->error_handler
)
1400 tag
= ATA_TAG_INTERNAL
;
1404 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1406 qc
= __ata_qc_from_tag(ap
, tag
);
1414 preempted_tag
= ap
->active_tag
;
1415 preempted_sactive
= ap
->sactive
;
1416 preempted_qc_active
= ap
->qc_active
;
1417 ap
->active_tag
= ATA_TAG_POISON
;
1421 /* prepare & issue qc */
1424 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1425 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1426 qc
->dma_dir
= dma_dir
;
1427 if (dma_dir
!= DMA_NONE
) {
1428 unsigned int i
, buflen
= 0;
1430 for (i
= 0; i
< n_elem
; i
++)
1431 buflen
+= sg
[i
].length
;
1433 ata_sg_init(qc
, sg
, n_elem
);
1434 qc
->nbytes
= buflen
;
1437 qc
->private_data
= &wait
;
1438 qc
->complete_fn
= ata_qc_complete_internal
;
1442 spin_unlock_irqrestore(ap
->lock
, flags
);
1444 rc
= wait_for_completion_timeout(&wait
, ata_probe_timeout
);
1446 ata_port_flush_task(ap
);
1449 spin_lock_irqsave(ap
->lock
, flags
);
1451 /* We're racing with irq here. If we lose, the
1452 * following test prevents us from completing the qc
1453 * twice. If we win, the port is frozen and will be
1454 * cleaned up by ->post_internal_cmd().
1456 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1457 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1459 if (ap
->ops
->error_handler
)
1460 ata_port_freeze(ap
);
1462 ata_qc_complete(qc
);
1464 if (ata_msg_warn(ap
))
1465 ata_dev_printk(dev
, KERN_WARNING
,
1466 "qc timeout (cmd 0x%x)\n", command
);
1469 spin_unlock_irqrestore(ap
->lock
, flags
);
1472 /* do post_internal_cmd */
1473 if (ap
->ops
->post_internal_cmd
)
1474 ap
->ops
->post_internal_cmd(qc
);
1476 /* perform minimal error analysis */
1477 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1478 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1479 qc
->err_mask
|= AC_ERR_DEV
;
1482 qc
->err_mask
|= AC_ERR_OTHER
;
1484 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1485 qc
->err_mask
&= ~AC_ERR_OTHER
;
1489 spin_lock_irqsave(ap
->lock
, flags
);
1491 *tf
= qc
->result_tf
;
1492 err_mask
= qc
->err_mask
;
1495 ap
->active_tag
= preempted_tag
;
1496 ap
->sactive
= preempted_sactive
;
1497 ap
->qc_active
= preempted_qc_active
;
1499 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1500 * Until those drivers are fixed, we detect the condition
1501 * here, fail the command with AC_ERR_SYSTEM and reenable the
1504 * Note that this doesn't change any behavior as internal
1505 * command failure results in disabling the device in the
1506 * higher layer for LLDDs without new reset/EH callbacks.
1508 * Kill the following code as soon as those drivers are fixed.
1510 if (ap
->flags
& ATA_FLAG_DISABLED
) {
1511 err_mask
|= AC_ERR_SYSTEM
;
1515 spin_unlock_irqrestore(ap
->lock
, flags
);
1521 * ata_exec_internal - execute libata internal command
1522 * @dev: Device to which the command is sent
1523 * @tf: Taskfile registers for the command and the result
1524 * @cdb: CDB for packet command
1525 * @dma_dir: Data tranfer direction of the command
1526 * @buf: Data buffer of the command
1527 * @buflen: Length of data buffer
1529 * Wrapper around ata_exec_internal_sg() which takes simple
1530 * buffer instead of sg list.
1533 * None. Should be called with kernel context, might sleep.
1536 * Zero on success, AC_ERR_* mask on failure
1538 unsigned ata_exec_internal(struct ata_device
*dev
,
1539 struct ata_taskfile
*tf
, const u8
*cdb
,
1540 int dma_dir
, void *buf
, unsigned int buflen
)
1542 struct scatterlist
*psg
= NULL
, sg
;
1543 unsigned int n_elem
= 0;
1545 if (dma_dir
!= DMA_NONE
) {
1547 sg_init_one(&sg
, buf
, buflen
);
1552 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
);
1556 * ata_do_simple_cmd - execute simple internal command
1557 * @dev: Device to which the command is sent
1558 * @cmd: Opcode to execute
1560 * Execute a 'simple' command, that only consists of the opcode
1561 * 'cmd' itself, without filling any other registers
1564 * Kernel thread context (may sleep).
1567 * Zero on success, AC_ERR_* mask on failure
1569 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1571 struct ata_taskfile tf
;
1573 ata_tf_init(dev
, &tf
);
1576 tf
.flags
|= ATA_TFLAG_DEVICE
;
1577 tf
.protocol
= ATA_PROT_NODATA
;
1579 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
1583 * ata_pio_need_iordy - check if iordy needed
1586 * Check if the current speed of the device requires IORDY. Used
1587 * by various controllers for chip configuration.
1590 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1592 /* Controller doesn't support IORDY. Probably a pointless check
1593 as the caller should know this */
1594 if (adev
->ap
->flags
& ATA_FLAG_NO_IORDY
)
1596 /* PIO3 and higher it is mandatory */
1597 if (adev
->pio_mode
> XFER_PIO_2
)
1599 /* We turn it on when possible */
1600 if (ata_id_has_iordy(adev
->id
))
1606 * ata_pio_mask_no_iordy - Return the non IORDY mask
1609 * Compute the highest mode possible if we are not using iordy. Return
1610 * -1 if no iordy mode is available.
1613 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
1615 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1616 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
1617 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
1618 /* Is the speed faster than the drive allows non IORDY ? */
1620 /* This is cycle times not frequency - watch the logic! */
1621 if (pio
> 240) /* PIO2 is 240nS per cycle */
1622 return 3 << ATA_SHIFT_PIO
;
1623 return 7 << ATA_SHIFT_PIO
;
1626 return 3 << ATA_SHIFT_PIO
;
1630 * ata_dev_read_id - Read ID data from the specified device
1631 * @dev: target device
1632 * @p_class: pointer to class of the target device (may be changed)
1633 * @flags: ATA_READID_* flags
1634 * @id: buffer to read IDENTIFY data into
1636 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1637 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1638 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1639 * for pre-ATA4 drives.
1642 * Kernel thread context (may sleep)
1645 * 0 on success, -errno otherwise.
1647 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
1648 unsigned int flags
, u16
*id
)
1650 struct ata_port
*ap
= dev
->ap
;
1651 unsigned int class = *p_class
;
1652 struct ata_taskfile tf
;
1653 unsigned int err_mask
= 0;
1655 int tried_spinup
= 0;
1658 if (ata_msg_ctl(ap
))
1659 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __FUNCTION__
);
1661 ata_dev_select(ap
, dev
->devno
, 1, 1); /* select device 0/1 */
1663 ata_tf_init(dev
, &tf
);
1667 tf
.command
= ATA_CMD_ID_ATA
;
1670 tf
.command
= ATA_CMD_ID_ATAPI
;
1674 reason
= "unsupported class";
1678 tf
.protocol
= ATA_PROT_PIO
;
1680 /* Some devices choke if TF registers contain garbage. Make
1681 * sure those are properly initialized.
1683 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
1685 /* Device presence detection is unreliable on some
1686 * controllers. Always poll IDENTIFY if available.
1688 tf
.flags
|= ATA_TFLAG_POLLING
;
1690 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_FROM_DEVICE
,
1691 id
, sizeof(id
[0]) * ATA_ID_WORDS
);
1693 if (err_mask
& AC_ERR_NODEV_HINT
) {
1694 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1695 ap
->print_id
, dev
->devno
);
1700 reason
= "I/O error";
1704 swap_buf_le16(id
, ATA_ID_WORDS
);
1708 reason
= "device reports illegal type";
1710 if (class == ATA_DEV_ATA
) {
1711 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
1714 if (ata_id_is_ata(id
))
1718 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
1721 * Drive powered-up in standby mode, and requires a specific
1722 * SET_FEATURES spin-up subcommand before it will accept
1723 * anything other than the original IDENTIFY command.
1725 ata_tf_init(dev
, &tf
);
1726 tf
.command
= ATA_CMD_SET_FEATURES
;
1727 tf
.feature
= SETFEATURES_SPINUP
;
1728 tf
.protocol
= ATA_PROT_NODATA
;
1729 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
1730 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
1733 reason
= "SPINUP failed";
1737 * If the drive initially returned incomplete IDENTIFY info,
1738 * we now must reissue the IDENTIFY command.
1740 if (id
[2] == 0x37c8)
1744 if ((flags
& ATA_READID_POSTRESET
) && class == ATA_DEV_ATA
) {
1746 * The exact sequence expected by certain pre-ATA4 drives is:
1749 * INITIALIZE DEVICE PARAMETERS
1751 * Some drives were very specific about that exact sequence.
1753 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
1754 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
1757 reason
= "INIT_DEV_PARAMS failed";
1761 /* current CHS translation info (id[53-58]) might be
1762 * changed. reread the identify device info.
1764 flags
&= ~ATA_READID_POSTRESET
;
1774 if (ata_msg_warn(ap
))
1775 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
1776 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
1780 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
1782 return ((dev
->ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
1785 static void ata_dev_config_ncq(struct ata_device
*dev
,
1786 char *desc
, size_t desc_sz
)
1788 struct ata_port
*ap
= dev
->ap
;
1789 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
1791 if (!ata_id_has_ncq(dev
->id
)) {
1795 if (ata_device_blacklisted(dev
) & ATA_HORKAGE_NONCQ
) {
1796 snprintf(desc
, desc_sz
, "NCQ (not used)");
1799 if (ap
->flags
& ATA_FLAG_NCQ
) {
1800 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
1801 dev
->flags
|= ATA_DFLAG_NCQ
;
1804 if (hdepth
>= ddepth
)
1805 snprintf(desc
, desc_sz
, "NCQ (depth %d)", ddepth
);
1807 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)", hdepth
, ddepth
);
1811 * ata_dev_configure - Configure the specified ATA/ATAPI device
1812 * @dev: Target device to configure
1814 * Configure @dev according to @dev->id. Generic and low-level
1815 * driver specific fixups are also applied.
1818 * Kernel thread context (may sleep)
1821 * 0 on success, -errno otherwise
1823 int ata_dev_configure(struct ata_device
*dev
)
1825 struct ata_port
*ap
= dev
->ap
;
1826 int print_info
= ap
->eh_context
.i
.flags
& ATA_EHI_PRINTINFO
;
1827 const u16
*id
= dev
->id
;
1828 unsigned int xfer_mask
;
1829 char revbuf
[7]; /* XYZ-99\0 */
1830 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
1831 char modelbuf
[ATA_ID_PROD_LEN
+1];
1834 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
1835 ata_dev_printk(dev
, KERN_INFO
, "%s: ENTER/EXIT -- nodev\n",
1840 if (ata_msg_probe(ap
))
1841 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __FUNCTION__
);
1844 rc
= ata_acpi_push_id(ap
, dev
->devno
);
1846 ata_dev_printk(dev
, KERN_WARNING
, "failed to set _SDD(%d)\n",
1850 /* retrieve and execute the ATA task file of _GTF */
1851 ata_acpi_exec_tfs(ap
);
1853 /* print device capabilities */
1854 if (ata_msg_probe(ap
))
1855 ata_dev_printk(dev
, KERN_DEBUG
,
1856 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1857 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1859 id
[49], id
[82], id
[83], id
[84],
1860 id
[85], id
[86], id
[87], id
[88]);
1862 /* initialize to-be-configured parameters */
1863 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
1864 dev
->max_sectors
= 0;
1872 * common ATA, ATAPI feature tests
1875 /* find max transfer mode; for printk only */
1876 xfer_mask
= ata_id_xfermask(id
);
1878 if (ata_msg_probe(ap
))
1881 /* ATA-specific feature tests */
1882 if (dev
->class == ATA_DEV_ATA
) {
1883 if (ata_id_is_cfa(id
)) {
1884 if (id
[162] & 1) /* CPRM may make this media unusable */
1885 ata_dev_printk(dev
, KERN_WARNING
,
1886 "supports DRM functions and may "
1887 "not be fully accessable.\n");
1888 snprintf(revbuf
, 7, "CFA");
1891 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
1893 dev
->n_sectors
= ata_id_n_sectors(id
);
1894 dev
->n_sectors_boot
= dev
->n_sectors
;
1896 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1897 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
1900 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
1903 if (dev
->id
[59] & 0x100)
1904 dev
->multi_count
= dev
->id
[59] & 0xff;
1906 if (ata_id_has_lba(id
)) {
1907 const char *lba_desc
;
1911 dev
->flags
|= ATA_DFLAG_LBA
;
1912 if (ata_id_has_lba48(id
)) {
1913 dev
->flags
|= ATA_DFLAG_LBA48
;
1916 if (dev
->n_sectors
>= (1UL << 28) &&
1917 ata_id_has_flush_ext(id
))
1918 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
1921 if (ata_id_hpa_enabled(dev
->id
))
1922 dev
->n_sectors
= ata_hpa_resize(dev
);
1925 ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
1927 /* print device info to dmesg */
1928 if (ata_msg_drv(ap
) && print_info
) {
1929 ata_dev_printk(dev
, KERN_INFO
,
1930 "%s: %s, %s, max %s\n",
1931 revbuf
, modelbuf
, fwrevbuf
,
1932 ata_mode_string(xfer_mask
));
1933 ata_dev_printk(dev
, KERN_INFO
,
1934 "%Lu sectors, multi %u: %s %s\n",
1935 (unsigned long long)dev
->n_sectors
,
1936 dev
->multi_count
, lba_desc
, ncq_desc
);
1941 /* Default translation */
1942 dev
->cylinders
= id
[1];
1944 dev
->sectors
= id
[6];
1946 if (ata_id_current_chs_valid(id
)) {
1947 /* Current CHS translation is valid. */
1948 dev
->cylinders
= id
[54];
1949 dev
->heads
= id
[55];
1950 dev
->sectors
= id
[56];
1953 /* print device info to dmesg */
1954 if (ata_msg_drv(ap
) && print_info
) {
1955 ata_dev_printk(dev
, KERN_INFO
,
1956 "%s: %s, %s, max %s\n",
1957 revbuf
, modelbuf
, fwrevbuf
,
1958 ata_mode_string(xfer_mask
));
1959 ata_dev_printk(dev
, KERN_INFO
,
1960 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1961 (unsigned long long)dev
->n_sectors
,
1962 dev
->multi_count
, dev
->cylinders
,
1963 dev
->heads
, dev
->sectors
);
1970 /* ATAPI-specific feature tests */
1971 else if (dev
->class == ATA_DEV_ATAPI
) {
1972 char *cdb_intr_string
= "";
1974 rc
= atapi_cdb_len(id
);
1975 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
1976 if (ata_msg_warn(ap
))
1977 ata_dev_printk(dev
, KERN_WARNING
,
1978 "unsupported CDB len\n");
1982 dev
->cdb_len
= (unsigned int) rc
;
1984 if (ata_id_cdb_intr(dev
->id
)) {
1985 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
1986 cdb_intr_string
= ", CDB intr";
1989 /* print device info to dmesg */
1990 if (ata_msg_drv(ap
) && print_info
)
1991 ata_dev_printk(dev
, KERN_INFO
, "ATAPI, max %s%s\n",
1992 ata_mode_string(xfer_mask
),
1996 /* determine max_sectors */
1997 dev
->max_sectors
= ATA_MAX_SECTORS
;
1998 if (dev
->flags
& ATA_DFLAG_LBA48
)
1999 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2001 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2002 /* Let the user know. We don't want to disallow opens for
2003 rescue purposes, or in case the vendor is just a blithering
2006 ata_dev_printk(dev
, KERN_WARNING
,
2007 "Drive reports diagnostics failure. This may indicate a drive\n");
2008 ata_dev_printk(dev
, KERN_WARNING
,
2009 "fault or invalid emulation. Contact drive vendor for information.\n");
2013 /* limit bridge transfers to udma5, 200 sectors */
2014 if (ata_dev_knobble(dev
)) {
2015 if (ata_msg_drv(ap
) && print_info
)
2016 ata_dev_printk(dev
, KERN_INFO
,
2017 "applying bridge limits\n");
2018 dev
->udma_mask
&= ATA_UDMA5
;
2019 dev
->max_sectors
= ATA_MAX_SECTORS
;
2022 if (ata_device_blacklisted(dev
) & ATA_HORKAGE_MAX_SEC_128
)
2023 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2026 /* limit ATAPI DMA to R/W commands only */
2027 if (ata_device_blacklisted(dev
) & ATA_HORKAGE_DMA_RW_ONLY
)
2028 dev
->horkage
|= ATA_HORKAGE_DMA_RW_ONLY
;
2030 if (ap
->ops
->dev_config
)
2031 ap
->ops
->dev_config(dev
);
2033 if (ata_msg_probe(ap
))
2034 ata_dev_printk(dev
, KERN_DEBUG
, "%s: EXIT, drv_stat = 0x%x\n",
2035 __FUNCTION__
, ata_chk_status(ap
));
2039 if (ata_msg_probe(ap
))
2040 ata_dev_printk(dev
, KERN_DEBUG
,
2041 "%s: EXIT, err\n", __FUNCTION__
);
2046 * ata_cable_40wire - return 40 wire cable type
2049 * Helper method for drivers which want to hardwire 40 wire cable
2053 int ata_cable_40wire(struct ata_port
*ap
)
2055 return ATA_CBL_PATA40
;
2059 * ata_cable_80wire - return 80 wire cable type
2062 * Helper method for drivers which want to hardwire 80 wire cable
2066 int ata_cable_80wire(struct ata_port
*ap
)
2068 return ATA_CBL_PATA80
;
2072 * ata_cable_unknown - return unknown PATA cable.
2075 * Helper method for drivers which have no PATA cable detection.
2078 int ata_cable_unknown(struct ata_port
*ap
)
2080 return ATA_CBL_PATA_UNK
;
2084 * ata_cable_sata - return SATA cable type
2087 * Helper method for drivers which have SATA cables
2090 int ata_cable_sata(struct ata_port
*ap
)
2092 return ATA_CBL_SATA
;
2096 * ata_bus_probe - Reset and probe ATA bus
2099 * Master ATA bus probing function. Initiates a hardware-dependent
2100 * bus reset, then attempts to identify any devices found on
2104 * PCI/etc. bus probe sem.
2107 * Zero on success, negative errno otherwise.
2110 int ata_bus_probe(struct ata_port
*ap
)
2112 unsigned int classes
[ATA_MAX_DEVICES
];
2113 int tries
[ATA_MAX_DEVICES
];
2115 struct ata_device
*dev
;
2119 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
2120 tries
[i
] = ATA_PROBE_MAX_TRIES
;
2123 /* reset and determine device classes */
2124 ap
->ops
->phy_reset(ap
);
2126 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2127 dev
= &ap
->device
[i
];
2129 if (!(ap
->flags
& ATA_FLAG_DISABLED
) &&
2130 dev
->class != ATA_DEV_UNKNOWN
)
2131 classes
[dev
->devno
] = dev
->class;
2133 classes
[dev
->devno
] = ATA_DEV_NONE
;
2135 dev
->class = ATA_DEV_UNKNOWN
;
2140 /* after the reset the device state is PIO 0 and the controller
2141 state is undefined. Record the mode */
2143 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
2144 ap
->device
[i
].pio_mode
= XFER_PIO_0
;
2146 /* read IDENTIFY page and configure devices. We have to do the identify
2147 specific sequence bass-ackwards so that PDIAG- is released by
2150 for (i
= ATA_MAX_DEVICES
- 1; i
>= 0; i
--) {
2151 dev
= &ap
->device
[i
];
2154 dev
->class = classes
[i
];
2156 if (!ata_dev_enabled(dev
))
2159 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2165 /* Now ask for the cable type as PDIAG- should have been released */
2166 if (ap
->ops
->cable_detect
)
2167 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2169 /* After the identify sequence we can now set up the devices. We do
2170 this in the normal order so that the user doesn't get confused */
2172 for(i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2173 dev
= &ap
->device
[i
];
2174 if (!ata_dev_enabled(dev
))
2177 ap
->eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2178 rc
= ata_dev_configure(dev
);
2179 ap
->eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2184 /* configure transfer mode */
2185 rc
= ata_set_mode(ap
, &dev
);
2189 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
2190 if (ata_dev_enabled(&ap
->device
[i
]))
2193 /* no device present, disable port */
2194 ata_port_disable(ap
);
2195 ap
->ops
->port_disable(ap
);
2199 tries
[dev
->devno
]--;
2203 /* eeek, something went very wrong, give up */
2204 tries
[dev
->devno
] = 0;
2208 /* give it just one more chance */
2209 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2211 if (tries
[dev
->devno
] == 1) {
2212 /* This is the last chance, better to slow
2213 * down than lose it.
2215 sata_down_spd_limit(ap
);
2216 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2220 if (!tries
[dev
->devno
])
2221 ata_dev_disable(dev
);
2227 * ata_port_probe - Mark port as enabled
2228 * @ap: Port for which we indicate enablement
2230 * Modify @ap data structure such that the system
2231 * thinks that the entire port is enabled.
2233 * LOCKING: host lock, or some other form of
2237 void ata_port_probe(struct ata_port
*ap
)
2239 ap
->flags
&= ~ATA_FLAG_DISABLED
;
2243 * sata_print_link_status - Print SATA link status
2244 * @ap: SATA port to printk link status about
2246 * This function prints link speed and status of a SATA link.
2251 void sata_print_link_status(struct ata_port
*ap
)
2253 u32 sstatus
, scontrol
, tmp
;
2255 if (sata_scr_read(ap
, SCR_STATUS
, &sstatus
))
2257 sata_scr_read(ap
, SCR_CONTROL
, &scontrol
);
2259 if (ata_port_online(ap
)) {
2260 tmp
= (sstatus
>> 4) & 0xf;
2261 ata_port_printk(ap
, KERN_INFO
,
2262 "SATA link up %s (SStatus %X SControl %X)\n",
2263 sata_spd_string(tmp
), sstatus
, scontrol
);
2265 ata_port_printk(ap
, KERN_INFO
,
2266 "SATA link down (SStatus %X SControl %X)\n",
2272 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2273 * @ap: SATA port associated with target SATA PHY.
2275 * This function issues commands to standard SATA Sxxx
2276 * PHY registers, to wake up the phy (and device), and
2277 * clear any reset condition.
2280 * PCI/etc. bus probe sem.
2283 void __sata_phy_reset(struct ata_port
*ap
)
2286 unsigned long timeout
= jiffies
+ (HZ
* 5);
2288 if (ap
->flags
& ATA_FLAG_SATA_RESET
) {
2289 /* issue phy wake/reset */
2290 sata_scr_write_flush(ap
, SCR_CONTROL
, 0x301);
2291 /* Couldn't find anything in SATA I/II specs, but
2292 * AHCI-1.1 10.4.2 says at least 1 ms. */
2295 /* phy wake/clear reset */
2296 sata_scr_write_flush(ap
, SCR_CONTROL
, 0x300);
2298 /* wait for phy to become ready, if necessary */
2301 sata_scr_read(ap
, SCR_STATUS
, &sstatus
);
2302 if ((sstatus
& 0xf) != 1)
2304 } while (time_before(jiffies
, timeout
));
2306 /* print link status */
2307 sata_print_link_status(ap
);
2309 /* TODO: phy layer with polling, timeouts, etc. */
2310 if (!ata_port_offline(ap
))
2313 ata_port_disable(ap
);
2315 if (ap
->flags
& ATA_FLAG_DISABLED
)
2318 if (ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
)) {
2319 ata_port_disable(ap
);
2323 ap
->cbl
= ATA_CBL_SATA
;
2327 * sata_phy_reset - Reset SATA bus.
2328 * @ap: SATA port associated with target SATA PHY.
2330 * This function resets the SATA bus, and then probes
2331 * the bus for devices.
2334 * PCI/etc. bus probe sem.
2337 void sata_phy_reset(struct ata_port
*ap
)
2339 __sata_phy_reset(ap
);
2340 if (ap
->flags
& ATA_FLAG_DISABLED
)
2346 * ata_dev_pair - return other device on cable
2349 * Obtain the other device on the same cable, or if none is
2350 * present NULL is returned
2353 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2355 struct ata_port
*ap
= adev
->ap
;
2356 struct ata_device
*pair
= &ap
->device
[1 - adev
->devno
];
2357 if (!ata_dev_enabled(pair
))
2363 * ata_port_disable - Disable port.
2364 * @ap: Port to be disabled.
2366 * Modify @ap data structure such that the system
2367 * thinks that the entire port is disabled, and should
2368 * never attempt to probe or communicate with devices
2371 * LOCKING: host lock, or some other form of
2375 void ata_port_disable(struct ata_port
*ap
)
2377 ap
->device
[0].class = ATA_DEV_NONE
;
2378 ap
->device
[1].class = ATA_DEV_NONE
;
2379 ap
->flags
|= ATA_FLAG_DISABLED
;
2383 * sata_down_spd_limit - adjust SATA spd limit downward
2384 * @ap: Port to adjust SATA spd limit for
2386 * Adjust SATA spd limit of @ap downward. Note that this
2387 * function only adjusts the limit. The change must be applied
2388 * using sata_set_spd().
2391 * Inherited from caller.
2394 * 0 on success, negative errno on failure
2396 int sata_down_spd_limit(struct ata_port
*ap
)
2398 u32 sstatus
, spd
, mask
;
2401 rc
= sata_scr_read(ap
, SCR_STATUS
, &sstatus
);
2405 mask
= ap
->sata_spd_limit
;
2408 highbit
= fls(mask
) - 1;
2409 mask
&= ~(1 << highbit
);
2411 spd
= (sstatus
>> 4) & 0xf;
2415 mask
&= (1 << spd
) - 1;
2419 ap
->sata_spd_limit
= mask
;
2421 ata_port_printk(ap
, KERN_WARNING
, "limiting SATA link speed to %s\n",
2422 sata_spd_string(fls(mask
)));
2427 static int __sata_set_spd_needed(struct ata_port
*ap
, u32
*scontrol
)
2431 if (ap
->sata_spd_limit
== UINT_MAX
)
2434 limit
= fls(ap
->sata_spd_limit
);
2436 spd
= (*scontrol
>> 4) & 0xf;
2437 *scontrol
= (*scontrol
& ~0xf0) | ((limit
& 0xf) << 4);
2439 return spd
!= limit
;
2443 * sata_set_spd_needed - is SATA spd configuration needed
2444 * @ap: Port in question
2446 * Test whether the spd limit in SControl matches
2447 * @ap->sata_spd_limit. This function is used to determine
2448 * whether hardreset is necessary to apply SATA spd
2452 * Inherited from caller.
2455 * 1 if SATA spd configuration is needed, 0 otherwise.
2457 int sata_set_spd_needed(struct ata_port
*ap
)
2461 if (sata_scr_read(ap
, SCR_CONTROL
, &scontrol
))
2464 return __sata_set_spd_needed(ap
, &scontrol
);
2468 * sata_set_spd - set SATA spd according to spd limit
2469 * @ap: Port to set SATA spd for
2471 * Set SATA spd of @ap according to sata_spd_limit.
2474 * Inherited from caller.
2477 * 0 if spd doesn't need to be changed, 1 if spd has been
2478 * changed. Negative errno if SCR registers are inaccessible.
2480 int sata_set_spd(struct ata_port
*ap
)
2485 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
2488 if (!__sata_set_spd_needed(ap
, &scontrol
))
2491 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
2498 * This mode timing computation functionality is ported over from
2499 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2502 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2503 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2504 * for UDMA6, which is currently supported only by Maxtor drives.
2506 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2509 static const struct ata_timing ata_timing
[] = {
2511 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
2512 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
2513 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
2514 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
2516 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 80, 0 },
2517 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 100, 0 },
2518 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
2519 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
2520 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
2522 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2524 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
2525 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
2526 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
2528 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
2529 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
2530 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
2532 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 80, 0 },
2533 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 100, 0 },
2534 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
2535 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
2537 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
2538 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
2539 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
2541 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2546 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2547 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2549 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
2551 q
->setup
= EZ(t
->setup
* 1000, T
);
2552 q
->act8b
= EZ(t
->act8b
* 1000, T
);
2553 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
2554 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
2555 q
->active
= EZ(t
->active
* 1000, T
);
2556 q
->recover
= EZ(t
->recover
* 1000, T
);
2557 q
->cycle
= EZ(t
->cycle
* 1000, T
);
2558 q
->udma
= EZ(t
->udma
* 1000, UT
);
2561 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
2562 struct ata_timing
*m
, unsigned int what
)
2564 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
2565 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
2566 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
2567 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
2568 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
2569 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
2570 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
2571 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
2574 static const struct ata_timing
* ata_timing_find_mode(unsigned short speed
)
2576 const struct ata_timing
*t
;
2578 for (t
= ata_timing
; t
->mode
!= speed
; t
++)
2579 if (t
->mode
== 0xFF)
2584 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
2585 struct ata_timing
*t
, int T
, int UT
)
2587 const struct ata_timing
*s
;
2588 struct ata_timing p
;
2594 if (!(s
= ata_timing_find_mode(speed
)))
2597 memcpy(t
, s
, sizeof(*s
));
2600 * If the drive is an EIDE drive, it can tell us it needs extended
2601 * PIO/MW_DMA cycle timing.
2604 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
2605 memset(&p
, 0, sizeof(p
));
2606 if(speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
2607 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
2608 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
2609 } else if(speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
2610 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
2612 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
2616 * Convert the timing to bus clock counts.
2619 ata_timing_quantize(t
, t
, T
, UT
);
2622 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2623 * S.M.A.R.T * and some other commands. We have to ensure that the
2624 * DMA cycle timing is slower/equal than the fastest PIO timing.
2627 if (speed
> XFER_PIO_6
) {
2628 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
2629 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
2633 * Lengthen active & recovery time so that cycle time is correct.
2636 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
2637 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
2638 t
->rec8b
= t
->cyc8b
- t
->act8b
;
2641 if (t
->active
+ t
->recover
< t
->cycle
) {
2642 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
2643 t
->recover
= t
->cycle
- t
->active
;
2646 /* In a few cases quantisation may produce enough errors to
2647 leave t->cycle too low for the sum of active and recovery
2648 if so we must correct this */
2649 if (t
->active
+ t
->recover
> t
->cycle
)
2650 t
->cycle
= t
->active
+ t
->recover
;
2656 * ata_down_xfermask_limit - adjust dev xfer masks downward
2657 * @dev: Device to adjust xfer masks
2658 * @sel: ATA_DNXFER_* selector
2660 * Adjust xfer masks of @dev downward. Note that this function
2661 * does not apply the change. Invoking ata_set_mode() afterwards
2662 * will apply the limit.
2665 * Inherited from caller.
2668 * 0 on success, negative errno on failure
2670 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
2673 unsigned int orig_mask
, xfer_mask
;
2674 unsigned int pio_mask
, mwdma_mask
, udma_mask
;
2677 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
2678 sel
&= ~ATA_DNXFER_QUIET
;
2680 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
2683 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
2686 case ATA_DNXFER_PIO
:
2687 highbit
= fls(pio_mask
) - 1;
2688 pio_mask
&= ~(1 << highbit
);
2691 case ATA_DNXFER_DMA
:
2693 highbit
= fls(udma_mask
) - 1;
2694 udma_mask
&= ~(1 << highbit
);
2697 } else if (mwdma_mask
) {
2698 highbit
= fls(mwdma_mask
) - 1;
2699 mwdma_mask
&= ~(1 << highbit
);
2705 case ATA_DNXFER_40C
:
2706 udma_mask
&= ATA_UDMA_MASK_40C
;
2709 case ATA_DNXFER_FORCE_PIO0
:
2711 case ATA_DNXFER_FORCE_PIO
:
2720 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
2722 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
2726 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
2727 snprintf(buf
, sizeof(buf
), "%s:%s",
2728 ata_mode_string(xfer_mask
),
2729 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
2731 snprintf(buf
, sizeof(buf
), "%s",
2732 ata_mode_string(xfer_mask
));
2734 ata_dev_printk(dev
, KERN_WARNING
,
2735 "limiting speed to %s\n", buf
);
2738 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
2744 static int ata_dev_set_mode(struct ata_device
*dev
)
2746 struct ata_eh_context
*ehc
= &dev
->ap
->eh_context
;
2747 unsigned int err_mask
;
2750 dev
->flags
&= ~ATA_DFLAG_PIO
;
2751 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
2752 dev
->flags
|= ATA_DFLAG_PIO
;
2754 err_mask
= ata_dev_set_xfermode(dev
);
2755 /* Old CFA may refuse this command, which is just fine */
2756 if (dev
->xfer_shift
== ATA_SHIFT_PIO
&& ata_id_is_cfa(dev
->id
))
2757 err_mask
&= ~AC_ERR_DEV
;
2760 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
2761 "(err_mask=0x%x)\n", err_mask
);
2765 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
2766 rc
= ata_dev_revalidate(dev
, 0);
2767 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
2771 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2772 dev
->xfer_shift
, (int)dev
->xfer_mode
);
2774 ata_dev_printk(dev
, KERN_INFO
, "configured for %s\n",
2775 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)));
2780 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2781 * @ap: port on which timings will be programmed
2782 * @r_failed_dev: out paramter for failed device
2784 * Standard implementation of the function used to tune and set
2785 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2786 * ata_dev_set_mode() fails, pointer to the failing device is
2787 * returned in @r_failed_dev.
2790 * PCI/etc. bus probe sem.
2793 * 0 on success, negative errno otherwise
2796 int ata_do_set_mode(struct ata_port
*ap
, struct ata_device
**r_failed_dev
)
2798 struct ata_device
*dev
;
2799 int i
, rc
= 0, used_dma
= 0, found
= 0;
2802 /* step 1: calculate xfer_mask */
2803 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2804 unsigned int pio_mask
, dma_mask
;
2806 dev
= &ap
->device
[i
];
2808 if (!ata_dev_enabled(dev
))
2811 ata_dev_xfermask(dev
);
2813 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
2814 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
2815 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
2816 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
2825 /* step 2: always set host PIO timings */
2826 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2827 dev
= &ap
->device
[i
];
2828 if (!ata_dev_enabled(dev
))
2831 if (!dev
->pio_mode
) {
2832 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
2837 dev
->xfer_mode
= dev
->pio_mode
;
2838 dev
->xfer_shift
= ATA_SHIFT_PIO
;
2839 if (ap
->ops
->set_piomode
)
2840 ap
->ops
->set_piomode(ap
, dev
);
2843 /* step 3: set host DMA timings */
2844 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2845 dev
= &ap
->device
[i
];
2847 if (!ata_dev_enabled(dev
) || !dev
->dma_mode
)
2850 dev
->xfer_mode
= dev
->dma_mode
;
2851 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
2852 if (ap
->ops
->set_dmamode
)
2853 ap
->ops
->set_dmamode(ap
, dev
);
2856 /* step 4: update devices' xfer mode */
2857 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2858 dev
= &ap
->device
[i
];
2860 /* don't update suspended devices' xfer mode */
2861 if (!ata_dev_ready(dev
))
2864 rc
= ata_dev_set_mode(dev
);
2869 /* Record simplex status. If we selected DMA then the other
2870 * host channels are not permitted to do so.
2872 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
2873 ap
->host
->simplex_claimed
= ap
;
2875 /* step5: chip specific finalisation */
2876 if (ap
->ops
->post_set_mode
)
2877 ap
->ops
->post_set_mode(ap
);
2880 *r_failed_dev
= dev
;
2885 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2886 * @ap: port on which timings will be programmed
2887 * @r_failed_dev: out paramter for failed device
2889 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2890 * ata_set_mode() fails, pointer to the failing device is
2891 * returned in @r_failed_dev.
2894 * PCI/etc. bus probe sem.
2897 * 0 on success, negative errno otherwise
2899 int ata_set_mode(struct ata_port
*ap
, struct ata_device
**r_failed_dev
)
2901 /* has private set_mode? */
2902 if (ap
->ops
->set_mode
)
2903 return ap
->ops
->set_mode(ap
, r_failed_dev
);
2904 return ata_do_set_mode(ap
, r_failed_dev
);
2908 * ata_tf_to_host - issue ATA taskfile to host controller
2909 * @ap: port to which command is being issued
2910 * @tf: ATA taskfile register set
2912 * Issues ATA taskfile register set to ATA host controller,
2913 * with proper synchronization with interrupt handler and
2917 * spin_lock_irqsave(host lock)
2920 static inline void ata_tf_to_host(struct ata_port
*ap
,
2921 const struct ata_taskfile
*tf
)
2923 ap
->ops
->tf_load(ap
, tf
);
2924 ap
->ops
->exec_command(ap
, tf
);
2928 * ata_busy_sleep - sleep until BSY clears, or timeout
2929 * @ap: port containing status register to be polled
2930 * @tmout_pat: impatience timeout
2931 * @tmout: overall timeout
2933 * Sleep until ATA Status register bit BSY clears,
2934 * or a timeout occurs.
2937 * Kernel thread context (may sleep).
2940 * 0 on success, -errno otherwise.
2942 int ata_busy_sleep(struct ata_port
*ap
,
2943 unsigned long tmout_pat
, unsigned long tmout
)
2945 unsigned long timer_start
, timeout
;
2948 status
= ata_busy_wait(ap
, ATA_BUSY
, 300);
2949 timer_start
= jiffies
;
2950 timeout
= timer_start
+ tmout_pat
;
2951 while (status
!= 0xff && (status
& ATA_BUSY
) &&
2952 time_before(jiffies
, timeout
)) {
2954 status
= ata_busy_wait(ap
, ATA_BUSY
, 3);
2957 if (status
!= 0xff && (status
& ATA_BUSY
))
2958 ata_port_printk(ap
, KERN_WARNING
,
2959 "port is slow to respond, please be patient "
2960 "(Status 0x%x)\n", status
);
2962 timeout
= timer_start
+ tmout
;
2963 while (status
!= 0xff && (status
& ATA_BUSY
) &&
2964 time_before(jiffies
, timeout
)) {
2966 status
= ata_chk_status(ap
);
2972 if (status
& ATA_BUSY
) {
2973 ata_port_printk(ap
, KERN_ERR
, "port failed to respond "
2974 "(%lu secs, Status 0x%x)\n",
2975 tmout
/ HZ
, status
);
2982 static void ata_bus_post_reset(struct ata_port
*ap
, unsigned int devmask
)
2984 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
2985 unsigned int dev0
= devmask
& (1 << 0);
2986 unsigned int dev1
= devmask
& (1 << 1);
2987 unsigned long timeout
;
2989 /* if device 0 was found in ata_devchk, wait for its
2993 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
2995 /* if device 1 was found in ata_devchk, wait for
2996 * register access, then wait for BSY to clear
2998 timeout
= jiffies
+ ATA_TMOUT_BOOT
;
3002 ap
->ops
->dev_select(ap
, 1);
3003 nsect
= ioread8(ioaddr
->nsect_addr
);
3004 lbal
= ioread8(ioaddr
->lbal_addr
);
3005 if ((nsect
== 1) && (lbal
== 1))
3007 if (time_after(jiffies
, timeout
)) {
3011 msleep(50); /* give drive a breather */
3014 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
3016 /* is all this really necessary? */
3017 ap
->ops
->dev_select(ap
, 0);
3019 ap
->ops
->dev_select(ap
, 1);
3021 ap
->ops
->dev_select(ap
, 0);
3024 static unsigned int ata_bus_softreset(struct ata_port
*ap
,
3025 unsigned int devmask
)
3027 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3029 DPRINTK("ata%u: bus reset via SRST\n", ap
->print_id
);
3031 /* software reset. causes dev0 to be selected */
3032 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3033 udelay(20); /* FIXME: flush */
3034 iowrite8(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
3035 udelay(20); /* FIXME: flush */
3036 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3038 /* spec mandates ">= 2ms" before checking status.
3039 * We wait 150ms, because that was the magic delay used for
3040 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3041 * between when the ATA command register is written, and then
3042 * status is checked. Because waiting for "a while" before
3043 * checking status is fine, post SRST, we perform this magic
3044 * delay here as well.
3046 * Old drivers/ide uses the 2mS rule and then waits for ready
3050 /* Before we perform post reset processing we want to see if
3051 * the bus shows 0xFF because the odd clown forgets the D7
3052 * pulldown resistor.
3054 if (ata_check_status(ap
) == 0xFF)
3057 ata_bus_post_reset(ap
, devmask
);
3063 * ata_bus_reset - reset host port and associated ATA channel
3064 * @ap: port to reset
3066 * This is typically the first time we actually start issuing
3067 * commands to the ATA channel. We wait for BSY to clear, then
3068 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3069 * result. Determine what devices, if any, are on the channel
3070 * by looking at the device 0/1 error register. Look at the signature
3071 * stored in each device's taskfile registers, to determine if
3072 * the device is ATA or ATAPI.
3075 * PCI/etc. bus probe sem.
3076 * Obtains host lock.
3079 * Sets ATA_FLAG_DISABLED if bus reset fails.
3082 void ata_bus_reset(struct ata_port
*ap
)
3084 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3085 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
3087 unsigned int dev0
, dev1
= 0, devmask
= 0;
3089 DPRINTK("ENTER, host %u, port %u\n", ap
->print_id
, ap
->port_no
);
3091 /* determine if device 0/1 are present */
3092 if (ap
->flags
& ATA_FLAG_SATA_RESET
)
3095 dev0
= ata_devchk(ap
, 0);
3097 dev1
= ata_devchk(ap
, 1);
3101 devmask
|= (1 << 0);
3103 devmask
|= (1 << 1);
3105 /* select device 0 again */
3106 ap
->ops
->dev_select(ap
, 0);
3108 /* issue bus reset */
3109 if (ap
->flags
& ATA_FLAG_SRST
)
3110 if (ata_bus_softreset(ap
, devmask
))
3114 * determine by signature whether we have ATA or ATAPI devices
3116 ap
->device
[0].class = ata_dev_try_classify(ap
, 0, &err
);
3117 if ((slave_possible
) && (err
!= 0x81))
3118 ap
->device
[1].class = ata_dev_try_classify(ap
, 1, &err
);
3120 /* re-enable interrupts */
3121 ap
->ops
->irq_on(ap
);
3123 /* is double-select really necessary? */
3124 if (ap
->device
[1].class != ATA_DEV_NONE
)
3125 ap
->ops
->dev_select(ap
, 1);
3126 if (ap
->device
[0].class != ATA_DEV_NONE
)
3127 ap
->ops
->dev_select(ap
, 0);
3129 /* if no devices were detected, disable this port */
3130 if ((ap
->device
[0].class == ATA_DEV_NONE
) &&
3131 (ap
->device
[1].class == ATA_DEV_NONE
))
3134 if (ap
->flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
)) {
3135 /* set up device control for ATA_FLAG_SATA_RESET */
3136 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3143 ata_port_printk(ap
, KERN_ERR
, "disabling port\n");
3144 ap
->ops
->port_disable(ap
);
3150 * sata_phy_debounce - debounce SATA phy status
3151 * @ap: ATA port to debounce SATA phy status for
3152 * @params: timing parameters { interval, duratinon, timeout } in msec
3154 * Make sure SStatus of @ap reaches stable state, determined by
3155 * holding the same value where DET is not 1 for @duration polled
3156 * every @interval, before @timeout. Timeout constraints the
3157 * beginning of the stable state. Because, after hot unplugging,
3158 * DET gets stuck at 1 on some controllers, this functions waits
3159 * until timeout then returns 0 if DET is stable at 1.
3162 * Kernel thread context (may sleep)
3165 * 0 on success, -errno on failure.
3167 int sata_phy_debounce(struct ata_port
*ap
, const unsigned long *params
)
3169 unsigned long interval_msec
= params
[0];
3170 unsigned long duration
= params
[1] * HZ
/ 1000;
3171 unsigned long timeout
= jiffies
+ params
[2] * HZ
/ 1000;
3172 unsigned long last_jiffies
;
3176 if ((rc
= sata_scr_read(ap
, SCR_STATUS
, &cur
)))
3181 last_jiffies
= jiffies
;
3184 msleep(interval_msec
);
3185 if ((rc
= sata_scr_read(ap
, SCR_STATUS
, &cur
)))
3191 if (cur
== 1 && time_before(jiffies
, timeout
))
3193 if (time_after(jiffies
, last_jiffies
+ duration
))
3198 /* unstable, start over */
3200 last_jiffies
= jiffies
;
3203 if (time_after(jiffies
, timeout
))
3209 * sata_phy_resume - resume SATA phy
3210 * @ap: ATA port to resume SATA phy for
3211 * @params: timing parameters { interval, duratinon, timeout } in msec
3213 * Resume SATA phy of @ap and debounce it.
3216 * Kernel thread context (may sleep)
3219 * 0 on success, -errno on failure.
3221 int sata_phy_resume(struct ata_port
*ap
, const unsigned long *params
)
3226 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
3229 scontrol
= (scontrol
& 0x0f0) | 0x300;
3231 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
3234 /* Some PHYs react badly if SStatus is pounded immediately
3235 * after resuming. Delay 200ms before debouncing.
3239 return sata_phy_debounce(ap
, params
);
3242 static void ata_wait_spinup(struct ata_port
*ap
)
3244 struct ata_eh_context
*ehc
= &ap
->eh_context
;
3245 unsigned long end
, secs
;
3248 /* first, debounce phy if SATA */
3249 if (ap
->cbl
== ATA_CBL_SATA
) {
3250 rc
= sata_phy_debounce(ap
, sata_deb_timing_hotplug
);
3252 /* if debounced successfully and offline, no need to wait */
3253 if ((rc
== 0 || rc
== -EOPNOTSUPP
) && ata_port_offline(ap
))
3257 /* okay, let's give the drive time to spin up */
3258 end
= ehc
->i
.hotplug_timestamp
+ ATA_SPINUP_WAIT
* HZ
/ 1000;
3259 secs
= ((end
- jiffies
) + HZ
- 1) / HZ
;
3261 if (time_after(jiffies
, end
))
3265 ata_port_printk(ap
, KERN_INFO
, "waiting for device to spin up "
3266 "(%lu secs)\n", secs
);
3268 schedule_timeout_uninterruptible(end
- jiffies
);
3272 * ata_std_prereset - prepare for reset
3273 * @ap: ATA port to be reset
3275 * @ap is about to be reset. Initialize it.
3278 * Kernel thread context (may sleep)
3281 * 0 on success, -errno otherwise.
3283 int ata_std_prereset(struct ata_port
*ap
)
3285 struct ata_eh_context
*ehc
= &ap
->eh_context
;
3286 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
3289 /* handle link resume & hotplug spinup */
3290 if ((ehc
->i
.flags
& ATA_EHI_RESUME_LINK
) &&
3291 (ap
->flags
& ATA_FLAG_HRST_TO_RESUME
))
3292 ehc
->i
.action
|= ATA_EH_HARDRESET
;
3294 if ((ehc
->i
.flags
& ATA_EHI_HOTPLUGGED
) &&
3295 (ap
->flags
& ATA_FLAG_SKIP_D2H_BSY
))
3296 ata_wait_spinup(ap
);
3298 /* if we're about to do hardreset, nothing more to do */
3299 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
3302 /* if SATA, resume phy */
3303 if (ap
->cbl
== ATA_CBL_SATA
) {
3304 rc
= sata_phy_resume(ap
, timing
);
3305 if (rc
&& rc
!= -EOPNOTSUPP
) {
3306 /* phy resume failed */
3307 ata_port_printk(ap
, KERN_WARNING
, "failed to resume "
3308 "link for reset (errno=%d)\n", rc
);
3313 /* Wait for !BSY if the controller can wait for the first D2H
3314 * Reg FIS and we don't know that no device is attached.
3316 if (!(ap
->flags
& ATA_FLAG_SKIP_D2H_BSY
) && !ata_port_offline(ap
))
3317 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
3323 * ata_std_softreset - reset host port via ATA SRST
3324 * @ap: port to reset
3325 * @classes: resulting classes of attached devices
3327 * Reset host port using ATA SRST.
3330 * Kernel thread context (may sleep)
3333 * 0 on success, -errno otherwise.
3335 int ata_std_softreset(struct ata_port
*ap
, unsigned int *classes
)
3337 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
3338 unsigned int devmask
= 0, err_mask
;
3343 if (ata_port_offline(ap
)) {
3344 classes
[0] = ATA_DEV_NONE
;
3348 /* determine if device 0/1 are present */
3349 if (ata_devchk(ap
, 0))
3350 devmask
|= (1 << 0);
3351 if (slave_possible
&& ata_devchk(ap
, 1))
3352 devmask
|= (1 << 1);
3354 /* select device 0 again */
3355 ap
->ops
->dev_select(ap
, 0);
3357 /* issue bus reset */
3358 DPRINTK("about to softreset, devmask=%x\n", devmask
);
3359 err_mask
= ata_bus_softreset(ap
, devmask
);
3361 ata_port_printk(ap
, KERN_ERR
, "SRST failed (err_mask=0x%x)\n",
3366 /* determine by signature whether we have ATA or ATAPI devices */
3367 classes
[0] = ata_dev_try_classify(ap
, 0, &err
);
3368 if (slave_possible
&& err
!= 0x81)
3369 classes
[1] = ata_dev_try_classify(ap
, 1, &err
);
3372 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
3377 * sata_port_hardreset - reset port via SATA phy reset
3378 * @ap: port to reset
3379 * @timing: timing parameters { interval, duratinon, timeout } in msec
3381 * SATA phy-reset host port using DET bits of SControl register.
3384 * Kernel thread context (may sleep)
3387 * 0 on success, -errno otherwise.
3389 int sata_port_hardreset(struct ata_port
*ap
, const unsigned long *timing
)
3396 if (sata_set_spd_needed(ap
)) {
3397 /* SATA spec says nothing about how to reconfigure
3398 * spd. To be on the safe side, turn off phy during
3399 * reconfiguration. This works for at least ICH7 AHCI
3402 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
3405 scontrol
= (scontrol
& 0x0f0) | 0x304;
3407 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
3413 /* issue phy wake/reset */
3414 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
3417 scontrol
= (scontrol
& 0x0f0) | 0x301;
3419 if ((rc
= sata_scr_write_flush(ap
, SCR_CONTROL
, scontrol
)))
3422 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3423 * 10.4.2 says at least 1 ms.
3427 /* bring phy back */
3428 rc
= sata_phy_resume(ap
, timing
);
3430 DPRINTK("EXIT, rc=%d\n", rc
);
3435 * sata_std_hardreset - reset host port via SATA phy reset
3436 * @ap: port to reset
3437 * @class: resulting class of attached device
3439 * SATA phy-reset host port using DET bits of SControl register,
3440 * wait for !BSY and classify the attached device.
3443 * Kernel thread context (may sleep)
3446 * 0 on success, -errno otherwise.
3448 int sata_std_hardreset(struct ata_port
*ap
, unsigned int *class)
3450 const unsigned long *timing
= sata_ehc_deb_timing(&ap
->eh_context
);
3456 rc
= sata_port_hardreset(ap
, timing
);
3458 ata_port_printk(ap
, KERN_ERR
,
3459 "COMRESET failed (errno=%d)\n", rc
);
3463 /* TODO: phy layer with polling, timeouts, etc. */
3464 if (ata_port_offline(ap
)) {
3465 *class = ATA_DEV_NONE
;
3466 DPRINTK("EXIT, link offline\n");
3470 /* wait a while before checking status, see SRST for more info */
3473 if (ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
)) {
3474 ata_port_printk(ap
, KERN_ERR
,
3475 "COMRESET failed (device not ready)\n");
3479 ap
->ops
->dev_select(ap
, 0); /* probably unnecessary */
3481 *class = ata_dev_try_classify(ap
, 0, NULL
);
3483 DPRINTK("EXIT, class=%u\n", *class);
3488 * ata_std_postreset - standard postreset callback
3489 * @ap: the target ata_port
3490 * @classes: classes of attached devices
3492 * This function is invoked after a successful reset. Note that
3493 * the device might have been reset more than once using
3494 * different reset methods before postreset is invoked.
3497 * Kernel thread context (may sleep)
3499 void ata_std_postreset(struct ata_port
*ap
, unsigned int *classes
)
3505 /* print link status */
3506 sata_print_link_status(ap
);
3509 if (sata_scr_read(ap
, SCR_ERROR
, &serror
) == 0)
3510 sata_scr_write(ap
, SCR_ERROR
, serror
);
3512 /* re-enable interrupts */
3513 if (!ap
->ops
->error_handler
)
3514 ap
->ops
->irq_on(ap
);
3516 /* is double-select really necessary? */
3517 if (classes
[0] != ATA_DEV_NONE
)
3518 ap
->ops
->dev_select(ap
, 1);
3519 if (classes
[1] != ATA_DEV_NONE
)
3520 ap
->ops
->dev_select(ap
, 0);
3522 /* bail out if no device is present */
3523 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
3524 DPRINTK("EXIT, no device\n");
3528 /* set up device control */
3529 if (ap
->ioaddr
.ctl_addr
)
3530 iowrite8(ap
->ctl
, ap
->ioaddr
.ctl_addr
);
3536 * ata_dev_same_device - Determine whether new ID matches configured device
3537 * @dev: device to compare against
3538 * @new_class: class of the new device
3539 * @new_id: IDENTIFY page of the new device
3541 * Compare @new_class and @new_id against @dev and determine
3542 * whether @dev is the device indicated by @new_class and
3549 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3551 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
3554 const u16
*old_id
= dev
->id
;
3555 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
3556 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
3559 if (dev
->class != new_class
) {
3560 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
3561 dev
->class, new_class
);
3565 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
3566 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
3567 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
3568 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
3569 new_n_sectors
= ata_id_n_sectors(new_id
);
3571 if (strcmp(model
[0], model
[1])) {
3572 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
3573 "'%s' != '%s'\n", model
[0], model
[1]);
3577 if (strcmp(serial
[0], serial
[1])) {
3578 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
3579 "'%s' != '%s'\n", serial
[0], serial
[1]);
3583 if (dev
->class == ATA_DEV_ATA
&& dev
->n_sectors
!= new_n_sectors
) {
3584 ata_dev_printk(dev
, KERN_INFO
, "n_sectors mismatch "
3586 (unsigned long long)dev
->n_sectors
,
3587 (unsigned long long)new_n_sectors
);
3588 /* Are we the boot time size - if so we appear to be the
3589 same disk at this point and our HPA got reapplied */
3590 if (ata_ignore_hpa
&& dev
->n_sectors_boot
== new_n_sectors
3591 && ata_id_hpa_enabled(new_id
))
3600 * ata_dev_revalidate - Revalidate ATA device
3601 * @dev: device to revalidate
3602 * @readid_flags: read ID flags
3604 * Re-read IDENTIFY page and make sure @dev is still attached to
3608 * Kernel thread context (may sleep)
3611 * 0 on success, negative errno otherwise
3613 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int readid_flags
)
3615 unsigned int class = dev
->class;
3616 u16
*id
= (void *)dev
->ap
->sector_buf
;
3619 if (!ata_dev_enabled(dev
)) {
3625 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
3629 /* is the device still there? */
3630 if (!ata_dev_same_device(dev
, class, id
)) {
3635 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
3637 /* configure device according to the new ID */
3638 rc
= ata_dev_configure(dev
);
3643 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
3647 struct ata_blacklist_entry
{
3648 const char *model_num
;
3649 const char *model_rev
;
3650 unsigned long horkage
;
3653 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
3654 /* Devices with DMA related problems under Linux */
3655 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
3656 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
3657 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
3658 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
3659 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
3660 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
3661 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
3662 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
3663 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
3664 { "CRD-8480B", NULL
, ATA_HORKAGE_NODMA
},
3665 { "CRD-8482B", NULL
, ATA_HORKAGE_NODMA
},
3666 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
3667 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
3668 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
3669 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
3670 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
3671 { "HITACHI CDR-8335", NULL
, ATA_HORKAGE_NODMA
},
3672 { "HITACHI CDR-8435", NULL
, ATA_HORKAGE_NODMA
},
3673 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
3674 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
3675 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
3676 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
3677 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
3678 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
3679 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
3680 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
3681 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
3682 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
3683 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA
},
3685 /* Weird ATAPI devices */
3686 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
|
3687 ATA_HORKAGE_DMA_RW_ONLY
},
3689 /* Devices we expect to fail diagnostics */
3691 /* Devices where NCQ should be avoided */
3693 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
3694 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3695 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
3697 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ
},
3698 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3699 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ
},
3700 /* Blacklist entries taken from Silicon Image 3124/3132
3701 Windows driver .inf file - also several Linux problem reports */
3702 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
3703 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
3704 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
3706 /* Devices with NCQ limits */
3712 unsigned long ata_device_blacklisted(const struct ata_device
*dev
)
3714 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
3715 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
3716 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
3718 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
3719 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
3721 while (ad
->model_num
) {
3722 if (!strcmp(ad
->model_num
, model_num
)) {
3723 if (ad
->model_rev
== NULL
)
3725 if (!strcmp(ad
->model_rev
, model_rev
))
3733 static int ata_dma_blacklisted(const struct ata_device
*dev
)
3735 /* We don't support polling DMA.
3736 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3737 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3739 if ((dev
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
3740 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
3742 return (ata_device_blacklisted(dev
) & ATA_HORKAGE_NODMA
) ? 1 : 0;
3746 * ata_dev_xfermask - Compute supported xfermask of the given device
3747 * @dev: Device to compute xfermask for
3749 * Compute supported xfermask of @dev and store it in
3750 * dev->*_mask. This function is responsible for applying all
3751 * known limits including host controller limits, device
3757 static void ata_dev_xfermask(struct ata_device
*dev
)
3759 struct ata_port
*ap
= dev
->ap
;
3760 struct ata_host
*host
= ap
->host
;
3761 unsigned long xfer_mask
;
3763 /* controller modes available */
3764 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
3765 ap
->mwdma_mask
, ap
->udma_mask
);
3767 /* drive modes available */
3768 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
3769 dev
->mwdma_mask
, dev
->udma_mask
);
3770 xfer_mask
&= ata_id_xfermask(dev
->id
);
3773 * CFA Advanced TrueIDE timings are not allowed on a shared
3776 if (ata_dev_pair(dev
)) {
3777 /* No PIO5 or PIO6 */
3778 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
3779 /* No MWDMA3 or MWDMA 4 */
3780 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
3783 if (ata_dma_blacklisted(dev
)) {
3784 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
3785 ata_dev_printk(dev
, KERN_WARNING
,
3786 "device is on DMA blacklist, disabling DMA\n");
3789 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
3790 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
3791 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
3792 ata_dev_printk(dev
, KERN_WARNING
, "simplex DMA is claimed by "
3793 "other device, disabling DMA\n");
3796 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
3797 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
3799 if (ap
->ops
->mode_filter
)
3800 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
3802 /* Apply cable rule here. Don't apply it early because when
3803 * we handle hot plug the cable type can itself change.
3804 * Check this last so that we know if the transfer rate was
3805 * solely limited by the cable.
3806 * Unknown or 80 wire cables reported host side are checked
3807 * drive side as well. Cases where we know a 40wire cable
3808 * is used safely for 80 are not checked here.
3810 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
3811 /* UDMA/44 or higher would be available */
3812 if((ap
->cbl
== ATA_CBL_PATA40
) ||
3813 (ata_drive_40wire(dev
->id
) &&
3814 (ap
->cbl
== ATA_CBL_PATA_UNK
||
3815 ap
->cbl
== ATA_CBL_PATA80
))) {
3816 ata_dev_printk(dev
, KERN_WARNING
,
3817 "limited to UDMA/33 due to 40-wire cable\n");
3818 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
3821 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
3822 &dev
->mwdma_mask
, &dev
->udma_mask
);
3826 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3827 * @dev: Device to which command will be sent
3829 * Issue SET FEATURES - XFER MODE command to device @dev
3833 * PCI/etc. bus probe sem.
3836 * 0 on success, AC_ERR_* mask otherwise.
3839 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
3841 struct ata_taskfile tf
;
3842 unsigned int err_mask
;
3844 /* set up set-features taskfile */
3845 DPRINTK("set features - xfer mode\n");
3847 ata_tf_init(dev
, &tf
);
3848 tf
.command
= ATA_CMD_SET_FEATURES
;
3849 tf
.feature
= SETFEATURES_XFER
;
3850 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
3851 tf
.protocol
= ATA_PROT_NODATA
;
3852 tf
.nsect
= dev
->xfer_mode
;
3854 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
3856 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
3861 * ata_dev_init_params - Issue INIT DEV PARAMS command
3862 * @dev: Device to which command will be sent
3863 * @heads: Number of heads (taskfile parameter)
3864 * @sectors: Number of sectors (taskfile parameter)
3867 * Kernel thread context (may sleep)
3870 * 0 on success, AC_ERR_* mask otherwise.
3872 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
3873 u16 heads
, u16 sectors
)
3875 struct ata_taskfile tf
;
3876 unsigned int err_mask
;
3878 /* Number of sectors per track 1-255. Number of heads 1-16 */
3879 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
3880 return AC_ERR_INVALID
;
3882 /* set up init dev params taskfile */
3883 DPRINTK("init dev params \n");
3885 ata_tf_init(dev
, &tf
);
3886 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
3887 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
3888 tf
.protocol
= ATA_PROT_NODATA
;
3890 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
3892 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
3894 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
3899 * ata_sg_clean - Unmap DMA memory associated with command
3900 * @qc: Command containing DMA memory to be released
3902 * Unmap all mapped DMA memory associated with this command.
3905 * spin_lock_irqsave(host lock)
3907 void ata_sg_clean(struct ata_queued_cmd
*qc
)
3909 struct ata_port
*ap
= qc
->ap
;
3910 struct scatterlist
*sg
= qc
->__sg
;
3911 int dir
= qc
->dma_dir
;
3912 void *pad_buf
= NULL
;
3914 WARN_ON(!(qc
->flags
& ATA_QCFLAG_DMAMAP
));
3915 WARN_ON(sg
== NULL
);
3917 if (qc
->flags
& ATA_QCFLAG_SINGLE
)
3918 WARN_ON(qc
->n_elem
> 1);
3920 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
3922 /* if we padded the buffer out to 32-bit bound, and data
3923 * xfer direction is from-device, we must copy from the
3924 * pad buffer back into the supplied buffer
3926 if (qc
->pad_len
&& !(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
3927 pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3929 if (qc
->flags
& ATA_QCFLAG_SG
) {
3931 dma_unmap_sg(ap
->dev
, sg
, qc
->n_elem
, dir
);
3932 /* restore last sg */
3933 sg
[qc
->orig_n_elem
- 1].length
+= qc
->pad_len
;
3935 struct scatterlist
*psg
= &qc
->pad_sgent
;
3936 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
3937 memcpy(addr
+ psg
->offset
, pad_buf
, qc
->pad_len
);
3938 kunmap_atomic(addr
, KM_IRQ0
);
3942 dma_unmap_single(ap
->dev
,
3943 sg_dma_address(&sg
[0]), sg_dma_len(&sg
[0]),
3946 sg
->length
+= qc
->pad_len
;
3948 memcpy(qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
3949 pad_buf
, qc
->pad_len
);
3952 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
3957 * ata_fill_sg - Fill PCI IDE PRD table
3958 * @qc: Metadata associated with taskfile to be transferred
3960 * Fill PCI IDE PRD (scatter-gather) table with segments
3961 * associated with the current disk command.
3964 * spin_lock_irqsave(host lock)
3967 static void ata_fill_sg(struct ata_queued_cmd
*qc
)
3969 struct ata_port
*ap
= qc
->ap
;
3970 struct scatterlist
*sg
;
3973 WARN_ON(qc
->__sg
== NULL
);
3974 WARN_ON(qc
->n_elem
== 0 && qc
->pad_len
== 0);
3977 ata_for_each_sg(sg
, qc
) {
3981 /* determine if physical DMA addr spans 64K boundary.
3982 * Note h/w doesn't support 64-bit, so we unconditionally
3983 * truncate dma_addr_t to u32.
3985 addr
= (u32
) sg_dma_address(sg
);
3986 sg_len
= sg_dma_len(sg
);
3989 offset
= addr
& 0xffff;
3991 if ((offset
+ sg_len
) > 0x10000)
3992 len
= 0x10000 - offset
;
3994 ap
->prd
[idx
].addr
= cpu_to_le32(addr
);
3995 ap
->prd
[idx
].flags_len
= cpu_to_le32(len
& 0xffff);
3996 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx
, addr
, len
);
4005 ap
->prd
[idx
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
4008 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4009 * @qc: Metadata associated with taskfile to check
4011 * Allow low-level driver to filter ATA PACKET commands, returning
4012 * a status indicating whether or not it is OK to use DMA for the
4013 * supplied PACKET command.
4016 * spin_lock_irqsave(host lock)
4018 * RETURNS: 0 when ATAPI DMA can be used
4021 int ata_check_atapi_dma(struct ata_queued_cmd
*qc
)
4023 struct ata_port
*ap
= qc
->ap
;
4024 int rc
= 0; /* Assume ATAPI DMA is OK by default */
4026 /* some drives can only do ATAPI DMA on read/write */
4027 if (unlikely(qc
->dev
->horkage
& ATA_HORKAGE_DMA_RW_ONLY
)) {
4028 struct scsi_cmnd
*cmd
= qc
->scsicmd
;
4029 u8
*scsicmd
= cmd
->cmnd
;
4031 switch (scsicmd
[0]) {
4038 /* atapi dma maybe ok */
4041 /* turn off atapi dma */
4046 if (ap
->ops
->check_atapi_dma
)
4047 rc
= ap
->ops
->check_atapi_dma(qc
);
4052 * ata_qc_prep - Prepare taskfile for submission
4053 * @qc: Metadata associated with taskfile to be prepared
4055 * Prepare ATA taskfile for submission.
4058 * spin_lock_irqsave(host lock)
4060 void ata_qc_prep(struct ata_queued_cmd
*qc
)
4062 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4068 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
4071 * ata_sg_init_one - Associate command with memory buffer
4072 * @qc: Command to be associated
4073 * @buf: Memory buffer
4074 * @buflen: Length of memory buffer, in bytes.
4076 * Initialize the data-related elements of queued_cmd @qc
4077 * to point to a single memory buffer, @buf of byte length @buflen.
4080 * spin_lock_irqsave(host lock)
4083 void ata_sg_init_one(struct ata_queued_cmd
*qc
, void *buf
, unsigned int buflen
)
4085 qc
->flags
|= ATA_QCFLAG_SINGLE
;
4087 qc
->__sg
= &qc
->sgent
;
4089 qc
->orig_n_elem
= 1;
4091 qc
->nbytes
= buflen
;
4093 sg_init_one(&qc
->sgent
, buf
, buflen
);
4097 * ata_sg_init - Associate command with scatter-gather table.
4098 * @qc: Command to be associated
4099 * @sg: Scatter-gather table.
4100 * @n_elem: Number of elements in s/g table.
4102 * Initialize the data-related elements of queued_cmd @qc
4103 * to point to a scatter-gather table @sg, containing @n_elem
4107 * spin_lock_irqsave(host lock)
4110 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
4111 unsigned int n_elem
)
4113 qc
->flags
|= ATA_QCFLAG_SG
;
4115 qc
->n_elem
= n_elem
;
4116 qc
->orig_n_elem
= n_elem
;
4120 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4121 * @qc: Command with memory buffer to be mapped.
4123 * DMA-map the memory buffer associated with queued_cmd @qc.
4126 * spin_lock_irqsave(host lock)
4129 * Zero on success, negative on error.
4132 static int ata_sg_setup_one(struct ata_queued_cmd
*qc
)
4134 struct ata_port
*ap
= qc
->ap
;
4135 int dir
= qc
->dma_dir
;
4136 struct scatterlist
*sg
= qc
->__sg
;
4137 dma_addr_t dma_address
;
4140 /* we must lengthen transfers to end on a 32-bit boundary */
4141 qc
->pad_len
= sg
->length
& 3;
4143 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4144 struct scatterlist
*psg
= &qc
->pad_sgent
;
4146 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
4148 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
4150 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
)
4151 memcpy(pad_buf
, qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
4154 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4155 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
4157 sg
->length
-= qc
->pad_len
;
4158 if (sg
->length
== 0)
4161 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4162 sg
->length
, qc
->pad_len
);
4170 dma_address
= dma_map_single(ap
->dev
, qc
->buf_virt
,
4172 if (dma_mapping_error(dma_address
)) {
4174 sg
->length
+= qc
->pad_len
;
4178 sg_dma_address(sg
) = dma_address
;
4179 sg_dma_len(sg
) = sg
->length
;
4182 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg
),
4183 qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
4189 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4190 * @qc: Command with scatter-gather table to be mapped.
4192 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4195 * spin_lock_irqsave(host lock)
4198 * Zero on success, negative on error.
4202 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
4204 struct ata_port
*ap
= qc
->ap
;
4205 struct scatterlist
*sg
= qc
->__sg
;
4206 struct scatterlist
*lsg
= &sg
[qc
->n_elem
- 1];
4207 int n_elem
, pre_n_elem
, dir
, trim_sg
= 0;
4209 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
4210 WARN_ON(!(qc
->flags
& ATA_QCFLAG_SG
));
4212 /* we must lengthen transfers to end on a 32-bit boundary */
4213 qc
->pad_len
= lsg
->length
& 3;
4215 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4216 struct scatterlist
*psg
= &qc
->pad_sgent
;
4217 unsigned int offset
;
4219 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
4221 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
4224 * psg->page/offset are used to copy to-be-written
4225 * data in this function or read data in ata_sg_clean.
4227 offset
= lsg
->offset
+ lsg
->length
- qc
->pad_len
;
4228 psg
->page
= nth_page(lsg
->page
, offset
>> PAGE_SHIFT
);
4229 psg
->offset
= offset_in_page(offset
);
4231 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
4232 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
4233 memcpy(pad_buf
, addr
+ psg
->offset
, qc
->pad_len
);
4234 kunmap_atomic(addr
, KM_IRQ0
);
4237 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4238 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
4240 lsg
->length
-= qc
->pad_len
;
4241 if (lsg
->length
== 0)
4244 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4245 qc
->n_elem
- 1, lsg
->length
, qc
->pad_len
);
4248 pre_n_elem
= qc
->n_elem
;
4249 if (trim_sg
&& pre_n_elem
)
4258 n_elem
= dma_map_sg(ap
->dev
, sg
, pre_n_elem
, dir
);
4260 /* restore last sg */
4261 lsg
->length
+= qc
->pad_len
;
4265 DPRINTK("%d sg elements mapped\n", n_elem
);
4268 qc
->n_elem
= n_elem
;
4274 * swap_buf_le16 - swap halves of 16-bit words in place
4275 * @buf: Buffer to swap
4276 * @buf_words: Number of 16-bit words in buffer.
4278 * Swap halves of 16-bit words if needed to convert from
4279 * little-endian byte order to native cpu byte order, or
4283 * Inherited from caller.
4285 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
4290 for (i
= 0; i
< buf_words
; i
++)
4291 buf
[i
] = le16_to_cpu(buf
[i
]);
4292 #endif /* __BIG_ENDIAN */
4296 * ata_data_xfer - Transfer data by PIO
4297 * @adev: device to target
4299 * @buflen: buffer length
4300 * @write_data: read/write
4302 * Transfer data from/to the device data register by PIO.
4305 * Inherited from caller.
4307 void ata_data_xfer(struct ata_device
*adev
, unsigned char *buf
,
4308 unsigned int buflen
, int write_data
)
4310 struct ata_port
*ap
= adev
->ap
;
4311 unsigned int words
= buflen
>> 1;
4313 /* Transfer multiple of 2 bytes */
4315 iowrite16_rep(ap
->ioaddr
.data_addr
, buf
, words
);
4317 ioread16_rep(ap
->ioaddr
.data_addr
, buf
, words
);
4319 /* Transfer trailing 1 byte, if any. */
4320 if (unlikely(buflen
& 0x01)) {
4321 u16 align_buf
[1] = { 0 };
4322 unsigned char *trailing_buf
= buf
+ buflen
- 1;
4325 memcpy(align_buf
, trailing_buf
, 1);
4326 iowrite16(le16_to_cpu(align_buf
[0]), ap
->ioaddr
.data_addr
);
4328 align_buf
[0] = cpu_to_le16(ioread16(ap
->ioaddr
.data_addr
));
4329 memcpy(trailing_buf
, align_buf
, 1);
4335 * ata_data_xfer_noirq - Transfer data by PIO
4336 * @adev: device to target
4338 * @buflen: buffer length
4339 * @write_data: read/write
4341 * Transfer data from/to the device data register by PIO. Do the
4342 * transfer with interrupts disabled.
4345 * Inherited from caller.
4347 void ata_data_xfer_noirq(struct ata_device
*adev
, unsigned char *buf
,
4348 unsigned int buflen
, int write_data
)
4350 unsigned long flags
;
4351 local_irq_save(flags
);
4352 ata_data_xfer(adev
, buf
, buflen
, write_data
);
4353 local_irq_restore(flags
);
4358 * ata_pio_sector - Transfer a sector of data.
4359 * @qc: Command on going
4361 * Transfer qc->sect_size bytes of data from/to the ATA device.
4364 * Inherited from caller.
4367 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
4369 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
4370 struct scatterlist
*sg
= qc
->__sg
;
4371 struct ata_port
*ap
= qc
->ap
;
4373 unsigned int offset
;
4376 if (qc
->curbytes
== qc
->nbytes
- qc
->sect_size
)
4377 ap
->hsm_task_state
= HSM_ST_LAST
;
4379 page
= sg
[qc
->cursg
].page
;
4380 offset
= sg
[qc
->cursg
].offset
+ qc
->cursg_ofs
;
4382 /* get the current page and offset */
4383 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
4384 offset
%= PAGE_SIZE
;
4386 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
4388 if (PageHighMem(page
)) {
4389 unsigned long flags
;
4391 /* FIXME: use a bounce buffer */
4392 local_irq_save(flags
);
4393 buf
= kmap_atomic(page
, KM_IRQ0
);
4395 /* do the actual data transfer */
4396 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
, do_write
);
4398 kunmap_atomic(buf
, KM_IRQ0
);
4399 local_irq_restore(flags
);
4401 buf
= page_address(page
);
4402 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
, do_write
);
4405 qc
->curbytes
+= qc
->sect_size
;
4406 qc
->cursg_ofs
+= qc
->sect_size
;
4408 if (qc
->cursg_ofs
== (&sg
[qc
->cursg
])->length
) {
4415 * ata_pio_sectors - Transfer one or many sectors.
4416 * @qc: Command on going
4418 * Transfer one or many sectors of data from/to the
4419 * ATA device for the DRQ request.
4422 * Inherited from caller.
4425 static void ata_pio_sectors(struct ata_queued_cmd
*qc
)
4427 if (is_multi_taskfile(&qc
->tf
)) {
4428 /* READ/WRITE MULTIPLE */
4431 WARN_ON(qc
->dev
->multi_count
== 0);
4433 nsect
= min((qc
->nbytes
- qc
->curbytes
) / qc
->sect_size
,
4434 qc
->dev
->multi_count
);
4442 * atapi_send_cdb - Write CDB bytes to hardware
4443 * @ap: Port to which ATAPI device is attached.
4444 * @qc: Taskfile currently active
4446 * When device has indicated its readiness to accept
4447 * a CDB, this function is called. Send the CDB.
4453 static void atapi_send_cdb(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
4456 DPRINTK("send cdb\n");
4457 WARN_ON(qc
->dev
->cdb_len
< 12);
4459 ap
->ops
->data_xfer(qc
->dev
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
4460 ata_altstatus(ap
); /* flush */
4462 switch (qc
->tf
.protocol
) {
4463 case ATA_PROT_ATAPI
:
4464 ap
->hsm_task_state
= HSM_ST
;
4466 case ATA_PROT_ATAPI_NODATA
:
4467 ap
->hsm_task_state
= HSM_ST_LAST
;
4469 case ATA_PROT_ATAPI_DMA
:
4470 ap
->hsm_task_state
= HSM_ST_LAST
;
4471 /* initiate bmdma */
4472 ap
->ops
->bmdma_start(qc
);
4478 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4479 * @qc: Command on going
4480 * @bytes: number of bytes
4482 * Transfer Transfer data from/to the ATAPI device.
4485 * Inherited from caller.
4489 static void __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
4491 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
4492 struct scatterlist
*sg
= qc
->__sg
;
4493 struct ata_port
*ap
= qc
->ap
;
4496 unsigned int offset
, count
;
4498 if (qc
->curbytes
+ bytes
>= qc
->nbytes
)
4499 ap
->hsm_task_state
= HSM_ST_LAST
;
4502 if (unlikely(qc
->cursg
>= qc
->n_elem
)) {
4504 * The end of qc->sg is reached and the device expects
4505 * more data to transfer. In order not to overrun qc->sg
4506 * and fulfill length specified in the byte count register,
4507 * - for read case, discard trailing data from the device
4508 * - for write case, padding zero data to the device
4510 u16 pad_buf
[1] = { 0 };
4511 unsigned int words
= bytes
>> 1;
4514 if (words
) /* warning if bytes > 1 */
4515 ata_dev_printk(qc
->dev
, KERN_WARNING
,
4516 "%u bytes trailing data\n", bytes
);
4518 for (i
= 0; i
< words
; i
++)
4519 ap
->ops
->data_xfer(qc
->dev
, (unsigned char*)pad_buf
, 2, do_write
);
4521 ap
->hsm_task_state
= HSM_ST_LAST
;
4525 sg
= &qc
->__sg
[qc
->cursg
];
4528 offset
= sg
->offset
+ qc
->cursg_ofs
;
4530 /* get the current page and offset */
4531 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
4532 offset
%= PAGE_SIZE
;
4534 /* don't overrun current sg */
4535 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
4537 /* don't cross page boundaries */
4538 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
4540 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
4542 if (PageHighMem(page
)) {
4543 unsigned long flags
;
4545 /* FIXME: use bounce buffer */
4546 local_irq_save(flags
);
4547 buf
= kmap_atomic(page
, KM_IRQ0
);
4549 /* do the actual data transfer */
4550 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, count
, do_write
);
4552 kunmap_atomic(buf
, KM_IRQ0
);
4553 local_irq_restore(flags
);
4555 buf
= page_address(page
);
4556 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, count
, do_write
);
4560 qc
->curbytes
+= count
;
4561 qc
->cursg_ofs
+= count
;
4563 if (qc
->cursg_ofs
== sg
->length
) {
4573 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4574 * @qc: Command on going
4576 * Transfer Transfer data from/to the ATAPI device.
4579 * Inherited from caller.
4582 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
4584 struct ata_port
*ap
= qc
->ap
;
4585 struct ata_device
*dev
= qc
->dev
;
4586 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
4587 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
4589 /* Abuse qc->result_tf for temp storage of intermediate TF
4590 * here to save some kernel stack usage.
4591 * For normal completion, qc->result_tf is not relevant. For
4592 * error, qc->result_tf is later overwritten by ata_qc_complete().
4593 * So, the correctness of qc->result_tf is not affected.
4595 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
4596 ireason
= qc
->result_tf
.nsect
;
4597 bc_lo
= qc
->result_tf
.lbam
;
4598 bc_hi
= qc
->result_tf
.lbah
;
4599 bytes
= (bc_hi
<< 8) | bc_lo
;
4601 /* shall be cleared to zero, indicating xfer of data */
4602 if (ireason
& (1 << 0))
4605 /* make sure transfer direction matches expected */
4606 i_write
= ((ireason
& (1 << 1)) == 0) ? 1 : 0;
4607 if (do_write
!= i_write
)
4610 VPRINTK("ata%u: xfering %d bytes\n", ap
->print_id
, bytes
);
4612 __atapi_pio_bytes(qc
, bytes
);
4617 ata_dev_printk(dev
, KERN_INFO
, "ATAPI check failed\n");
4618 qc
->err_mask
|= AC_ERR_HSM
;
4619 ap
->hsm_task_state
= HSM_ST_ERR
;
4623 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4624 * @ap: the target ata_port
4628 * 1 if ok in workqueue, 0 otherwise.
4631 static inline int ata_hsm_ok_in_wq(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
4633 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4636 if (ap
->hsm_task_state
== HSM_ST_FIRST
) {
4637 if (qc
->tf
.protocol
== ATA_PROT_PIO
&&
4638 (qc
->tf
.flags
& ATA_TFLAG_WRITE
))
4641 if (is_atapi_taskfile(&qc
->tf
) &&
4642 !(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
4650 * ata_hsm_qc_complete - finish a qc running on standard HSM
4651 * @qc: Command to complete
4652 * @in_wq: 1 if called from workqueue, 0 otherwise
4654 * Finish @qc which is running on standard HSM.
4657 * If @in_wq is zero, spin_lock_irqsave(host lock).
4658 * Otherwise, none on entry and grabs host lock.
4660 static void ata_hsm_qc_complete(struct ata_queued_cmd
*qc
, int in_wq
)
4662 struct ata_port
*ap
= qc
->ap
;
4663 unsigned long flags
;
4665 if (ap
->ops
->error_handler
) {
4667 spin_lock_irqsave(ap
->lock
, flags
);
4669 /* EH might have kicked in while host lock is
4672 qc
= ata_qc_from_tag(ap
, qc
->tag
);
4674 if (likely(!(qc
->err_mask
& AC_ERR_HSM
))) {
4675 ap
->ops
->irq_on(ap
);
4676 ata_qc_complete(qc
);
4678 ata_port_freeze(ap
);
4681 spin_unlock_irqrestore(ap
->lock
, flags
);
4683 if (likely(!(qc
->err_mask
& AC_ERR_HSM
)))
4684 ata_qc_complete(qc
);
4686 ata_port_freeze(ap
);
4690 spin_lock_irqsave(ap
->lock
, flags
);
4691 ap
->ops
->irq_on(ap
);
4692 ata_qc_complete(qc
);
4693 spin_unlock_irqrestore(ap
->lock
, flags
);
4695 ata_qc_complete(qc
);
4698 ata_altstatus(ap
); /* flush */
4702 * ata_hsm_move - move the HSM to the next state.
4703 * @ap: the target ata_port
4705 * @status: current device status
4706 * @in_wq: 1 if called from workqueue, 0 otherwise
4709 * 1 when poll next status needed, 0 otherwise.
4711 int ata_hsm_move(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
4712 u8 status
, int in_wq
)
4714 unsigned long flags
= 0;
4717 WARN_ON((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
4719 /* Make sure ata_qc_issue_prot() does not throw things
4720 * like DMA polling into the workqueue. Notice that
4721 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4723 WARN_ON(in_wq
!= ata_hsm_ok_in_wq(ap
, qc
));
4726 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4727 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
, status
);
4729 switch (ap
->hsm_task_state
) {
4731 /* Send first data block or PACKET CDB */
4733 /* If polling, we will stay in the work queue after
4734 * sending the data. Otherwise, interrupt handler
4735 * takes over after sending the data.
4737 poll_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
4739 /* check device status */
4740 if (unlikely((status
& ATA_DRQ
) == 0)) {
4741 /* handle BSY=0, DRQ=0 as error */
4742 if (likely(status
& (ATA_ERR
| ATA_DF
)))
4743 /* device stops HSM for abort/error */
4744 qc
->err_mask
|= AC_ERR_DEV
;
4746 /* HSM violation. Let EH handle this */
4747 qc
->err_mask
|= AC_ERR_HSM
;
4749 ap
->hsm_task_state
= HSM_ST_ERR
;
4753 /* Device should not ask for data transfer (DRQ=1)
4754 * when it finds something wrong.
4755 * We ignore DRQ here and stop the HSM by
4756 * changing hsm_task_state to HSM_ST_ERR and
4757 * let the EH abort the command or reset the device.
4759 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4760 ata_port_printk(ap
, KERN_WARNING
, "DRQ=1 with device "
4761 "error, dev_stat 0x%X\n", status
);
4762 qc
->err_mask
|= AC_ERR_HSM
;
4763 ap
->hsm_task_state
= HSM_ST_ERR
;
4767 /* Send the CDB (atapi) or the first data block (ata pio out).
4768 * During the state transition, interrupt handler shouldn't
4769 * be invoked before the data transfer is complete and
4770 * hsm_task_state is changed. Hence, the following locking.
4773 spin_lock_irqsave(ap
->lock
, flags
);
4775 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
4776 /* PIO data out protocol.
4777 * send first data block.
4780 /* ata_pio_sectors() might change the state
4781 * to HSM_ST_LAST. so, the state is changed here
4782 * before ata_pio_sectors().
4784 ap
->hsm_task_state
= HSM_ST
;
4785 ata_pio_sectors(qc
);
4786 ata_altstatus(ap
); /* flush */
4789 atapi_send_cdb(ap
, qc
);
4792 spin_unlock_irqrestore(ap
->lock
, flags
);
4794 /* if polling, ata_pio_task() handles the rest.
4795 * otherwise, interrupt handler takes over from here.
4800 /* complete command or read/write the data register */
4801 if (qc
->tf
.protocol
== ATA_PROT_ATAPI
) {
4802 /* ATAPI PIO protocol */
4803 if ((status
& ATA_DRQ
) == 0) {
4804 /* No more data to transfer or device error.
4805 * Device error will be tagged in HSM_ST_LAST.
4807 ap
->hsm_task_state
= HSM_ST_LAST
;
4811 /* Device should not ask for data transfer (DRQ=1)
4812 * when it finds something wrong.
4813 * We ignore DRQ here and stop the HSM by
4814 * changing hsm_task_state to HSM_ST_ERR and
4815 * let the EH abort the command or reset the device.
4817 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4818 ata_port_printk(ap
, KERN_WARNING
, "DRQ=1 with "
4819 "device error, dev_stat 0x%X\n",
4821 qc
->err_mask
|= AC_ERR_HSM
;
4822 ap
->hsm_task_state
= HSM_ST_ERR
;
4826 atapi_pio_bytes(qc
);
4828 if (unlikely(ap
->hsm_task_state
== HSM_ST_ERR
))
4829 /* bad ireason reported by device */
4833 /* ATA PIO protocol */
4834 if (unlikely((status
& ATA_DRQ
) == 0)) {
4835 /* handle BSY=0, DRQ=0 as error */
4836 if (likely(status
& (ATA_ERR
| ATA_DF
)))
4837 /* device stops HSM for abort/error */
4838 qc
->err_mask
|= AC_ERR_DEV
;
4840 /* HSM violation. Let EH handle this.
4841 * Phantom devices also trigger this
4842 * condition. Mark hint.
4844 qc
->err_mask
|= AC_ERR_HSM
|
4847 ap
->hsm_task_state
= HSM_ST_ERR
;
4851 /* For PIO reads, some devices may ask for
4852 * data transfer (DRQ=1) alone with ERR=1.
4853 * We respect DRQ here and transfer one
4854 * block of junk data before changing the
4855 * hsm_task_state to HSM_ST_ERR.
4857 * For PIO writes, ERR=1 DRQ=1 doesn't make
4858 * sense since the data block has been
4859 * transferred to the device.
4861 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4862 /* data might be corrputed */
4863 qc
->err_mask
|= AC_ERR_DEV
;
4865 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
)) {
4866 ata_pio_sectors(qc
);
4868 status
= ata_wait_idle(ap
);
4871 if (status
& (ATA_BUSY
| ATA_DRQ
))
4872 qc
->err_mask
|= AC_ERR_HSM
;
4874 /* ata_pio_sectors() might change the
4875 * state to HSM_ST_LAST. so, the state
4876 * is changed after ata_pio_sectors().
4878 ap
->hsm_task_state
= HSM_ST_ERR
;
4882 ata_pio_sectors(qc
);
4884 if (ap
->hsm_task_state
== HSM_ST_LAST
&&
4885 (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))) {
4888 status
= ata_wait_idle(ap
);
4893 ata_altstatus(ap
); /* flush */
4898 if (unlikely(!ata_ok(status
))) {
4899 qc
->err_mask
|= __ac_err_mask(status
);
4900 ap
->hsm_task_state
= HSM_ST_ERR
;
4904 /* no more data to transfer */
4905 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4906 ap
->print_id
, qc
->dev
->devno
, status
);
4908 WARN_ON(qc
->err_mask
);
4910 ap
->hsm_task_state
= HSM_ST_IDLE
;
4912 /* complete taskfile transaction */
4913 ata_hsm_qc_complete(qc
, in_wq
);
4919 /* make sure qc->err_mask is available to
4920 * know what's wrong and recover
4922 WARN_ON(qc
->err_mask
== 0);
4924 ap
->hsm_task_state
= HSM_ST_IDLE
;
4926 /* complete taskfile transaction */
4927 ata_hsm_qc_complete(qc
, in_wq
);
4939 static void ata_pio_task(struct work_struct
*work
)
4941 struct ata_port
*ap
=
4942 container_of(work
, struct ata_port
, port_task
.work
);
4943 struct ata_queued_cmd
*qc
= ap
->port_task_data
;
4948 WARN_ON(ap
->hsm_task_state
== HSM_ST_IDLE
);
4951 * This is purely heuristic. This is a fast path.
4952 * Sometimes when we enter, BSY will be cleared in
4953 * a chk-status or two. If not, the drive is probably seeking
4954 * or something. Snooze for a couple msecs, then
4955 * chk-status again. If still busy, queue delayed work.
4957 status
= ata_busy_wait(ap
, ATA_BUSY
, 5);
4958 if (status
& ATA_BUSY
) {
4960 status
= ata_busy_wait(ap
, ATA_BUSY
, 10);
4961 if (status
& ATA_BUSY
) {
4962 ata_port_queue_task(ap
, ata_pio_task
, qc
, ATA_SHORT_PAUSE
);
4968 poll_next
= ata_hsm_move(ap
, qc
, status
, 1);
4970 /* another command or interrupt handler
4971 * may be running at this point.
4978 * ata_qc_new - Request an available ATA command, for queueing
4979 * @ap: Port associated with device @dev
4980 * @dev: Device from whom we request an available command structure
4986 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
4988 struct ata_queued_cmd
*qc
= NULL
;
4991 /* no command while frozen */
4992 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
4995 /* the last tag is reserved for internal command. */
4996 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
4997 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
4998 qc
= __ata_qc_from_tag(ap
, i
);
5009 * ata_qc_new_init - Request an available ATA command, and initialize it
5010 * @dev: Device from whom we request an available command structure
5016 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
5018 struct ata_port
*ap
= dev
->ap
;
5019 struct ata_queued_cmd
*qc
;
5021 qc
= ata_qc_new(ap
);
5034 * ata_qc_free - free unused ata_queued_cmd
5035 * @qc: Command to complete
5037 * Designed to free unused ata_queued_cmd object
5038 * in case something prevents using it.
5041 * spin_lock_irqsave(host lock)
5043 void ata_qc_free(struct ata_queued_cmd
*qc
)
5045 struct ata_port
*ap
= qc
->ap
;
5048 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
5052 if (likely(ata_tag_valid(tag
))) {
5053 qc
->tag
= ATA_TAG_POISON
;
5054 clear_bit(tag
, &ap
->qc_allocated
);
5058 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
5060 struct ata_port
*ap
= qc
->ap
;
5062 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
5063 WARN_ON(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
5065 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
5068 /* command should be marked inactive atomically with qc completion */
5069 if (qc
->tf
.protocol
== ATA_PROT_NCQ
)
5070 ap
->sactive
&= ~(1 << qc
->tag
);
5072 ap
->active_tag
= ATA_TAG_POISON
;
5074 /* atapi: mark qc as inactive to prevent the interrupt handler
5075 * from completing the command twice later, before the error handler
5076 * is called. (when rc != 0 and atapi request sense is needed)
5078 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
5079 ap
->qc_active
&= ~(1 << qc
->tag
);
5081 /* call completion callback */
5082 qc
->complete_fn(qc
);
5085 static void fill_result_tf(struct ata_queued_cmd
*qc
)
5087 struct ata_port
*ap
= qc
->ap
;
5089 qc
->result_tf
.flags
= qc
->tf
.flags
;
5090 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
5094 * ata_qc_complete - Complete an active ATA command
5095 * @qc: Command to complete
5096 * @err_mask: ATA Status register contents
5098 * Indicate to the mid and upper layers that an ATA
5099 * command has completed, with either an ok or not-ok status.
5102 * spin_lock_irqsave(host lock)
5104 void ata_qc_complete(struct ata_queued_cmd
*qc
)
5106 struct ata_port
*ap
= qc
->ap
;
5108 /* XXX: New EH and old EH use different mechanisms to
5109 * synchronize EH with regular execution path.
5111 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5112 * Normal execution path is responsible for not accessing a
5113 * failed qc. libata core enforces the rule by returning NULL
5114 * from ata_qc_from_tag() for failed qcs.
5116 * Old EH depends on ata_qc_complete() nullifying completion
5117 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5118 * not synchronize with interrupt handler. Only PIO task is
5121 if (ap
->ops
->error_handler
) {
5122 WARN_ON(ap
->pflags
& ATA_PFLAG_FROZEN
);
5124 if (unlikely(qc
->err_mask
))
5125 qc
->flags
|= ATA_QCFLAG_FAILED
;
5127 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
5128 if (!ata_tag_internal(qc
->tag
)) {
5129 /* always fill result TF for failed qc */
5131 ata_qc_schedule_eh(qc
);
5136 /* read result TF if requested */
5137 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5140 __ata_qc_complete(qc
);
5142 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
5145 /* read result TF if failed or requested */
5146 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5149 __ata_qc_complete(qc
);
5154 * ata_qc_complete_multiple - Complete multiple qcs successfully
5155 * @ap: port in question
5156 * @qc_active: new qc_active mask
5157 * @finish_qc: LLDD callback invoked before completing a qc
5159 * Complete in-flight commands. This functions is meant to be
5160 * called from low-level driver's interrupt routine to complete
5161 * requests normally. ap->qc_active and @qc_active is compared
5162 * and commands are completed accordingly.
5165 * spin_lock_irqsave(host lock)
5168 * Number of completed commands on success, -errno otherwise.
5170 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
,
5171 void (*finish_qc
)(struct ata_queued_cmd
*))
5177 done_mask
= ap
->qc_active
^ qc_active
;
5179 if (unlikely(done_mask
& qc_active
)) {
5180 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
5181 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
5185 for (i
= 0; i
< ATA_MAX_QUEUE
; i
++) {
5186 struct ata_queued_cmd
*qc
;
5188 if (!(done_mask
& (1 << i
)))
5191 if ((qc
= ata_qc_from_tag(ap
, i
))) {
5194 ata_qc_complete(qc
);
5202 static inline int ata_should_dma_map(struct ata_queued_cmd
*qc
)
5204 struct ata_port
*ap
= qc
->ap
;
5206 switch (qc
->tf
.protocol
) {
5209 case ATA_PROT_ATAPI_DMA
:
5212 case ATA_PROT_ATAPI
:
5214 if (ap
->flags
& ATA_FLAG_PIO_DMA
)
5227 * ata_qc_issue - issue taskfile to device
5228 * @qc: command to issue to device
5230 * Prepare an ATA command to submission to device.
5231 * This includes mapping the data into a DMA-able
5232 * area, filling in the S/G table, and finally
5233 * writing the taskfile to hardware, starting the command.
5236 * spin_lock_irqsave(host lock)
5238 void ata_qc_issue(struct ata_queued_cmd
*qc
)
5240 struct ata_port
*ap
= qc
->ap
;
5242 /* Make sure only one non-NCQ command is outstanding. The
5243 * check is skipped for old EH because it reuses active qc to
5244 * request ATAPI sense.
5246 WARN_ON(ap
->ops
->error_handler
&& ata_tag_valid(ap
->active_tag
));
5248 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
5249 WARN_ON(ap
->sactive
& (1 << qc
->tag
));
5250 ap
->sactive
|= 1 << qc
->tag
;
5252 WARN_ON(ap
->sactive
);
5253 ap
->active_tag
= qc
->tag
;
5256 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
5257 ap
->qc_active
|= 1 << qc
->tag
;
5259 if (ata_should_dma_map(qc
)) {
5260 if (qc
->flags
& ATA_QCFLAG_SG
) {
5261 if (ata_sg_setup(qc
))
5263 } else if (qc
->flags
& ATA_QCFLAG_SINGLE
) {
5264 if (ata_sg_setup_one(qc
))
5268 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
5271 ap
->ops
->qc_prep(qc
);
5273 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
5274 if (unlikely(qc
->err_mask
))
5279 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
5280 qc
->err_mask
|= AC_ERR_SYSTEM
;
5282 ata_qc_complete(qc
);
5286 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5287 * @qc: command to issue to device
5289 * Using various libata functions and hooks, this function
5290 * starts an ATA command. ATA commands are grouped into
5291 * classes called "protocols", and issuing each type of protocol
5292 * is slightly different.
5294 * May be used as the qc_issue() entry in ata_port_operations.
5297 * spin_lock_irqsave(host lock)
5300 * Zero on success, AC_ERR_* mask on failure
5303 unsigned int ata_qc_issue_prot(struct ata_queued_cmd
*qc
)
5305 struct ata_port
*ap
= qc
->ap
;
5307 /* Use polling pio if the LLD doesn't handle
5308 * interrupt driven pio and atapi CDB interrupt.
5310 if (ap
->flags
& ATA_FLAG_PIO_POLLING
) {
5311 switch (qc
->tf
.protocol
) {
5313 case ATA_PROT_NODATA
:
5314 case ATA_PROT_ATAPI
:
5315 case ATA_PROT_ATAPI_NODATA
:
5316 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
5318 case ATA_PROT_ATAPI_DMA
:
5319 if (qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)
5320 /* see ata_dma_blacklisted() */
5328 /* Some controllers show flaky interrupt behavior after
5329 * setting xfer mode. Use polling instead.
5331 if (unlikely(qc
->tf
.command
== ATA_CMD_SET_FEATURES
&&
5332 qc
->tf
.feature
== SETFEATURES_XFER
) &&
5333 (ap
->flags
& ATA_FLAG_SETXFER_POLLING
))
5334 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
5336 /* select the device */
5337 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
5339 /* start the command */
5340 switch (qc
->tf
.protocol
) {
5341 case ATA_PROT_NODATA
:
5342 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5343 ata_qc_set_polling(qc
);
5345 ata_tf_to_host(ap
, &qc
->tf
);
5346 ap
->hsm_task_state
= HSM_ST_LAST
;
5348 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5349 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5354 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
5356 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
5357 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
5358 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
5359 ap
->hsm_task_state
= HSM_ST_LAST
;
5363 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5364 ata_qc_set_polling(qc
);
5366 ata_tf_to_host(ap
, &qc
->tf
);
5368 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
5369 /* PIO data out protocol */
5370 ap
->hsm_task_state
= HSM_ST_FIRST
;
5371 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5373 /* always send first data block using
5374 * the ata_pio_task() codepath.
5377 /* PIO data in protocol */
5378 ap
->hsm_task_state
= HSM_ST
;
5380 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5381 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5383 /* if polling, ata_pio_task() handles the rest.
5384 * otherwise, interrupt handler takes over from here.
5390 case ATA_PROT_ATAPI
:
5391 case ATA_PROT_ATAPI_NODATA
:
5392 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5393 ata_qc_set_polling(qc
);
5395 ata_tf_to_host(ap
, &qc
->tf
);
5397 ap
->hsm_task_state
= HSM_ST_FIRST
;
5399 /* send cdb by polling if no cdb interrupt */
5400 if ((!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)) ||
5401 (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
5402 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5405 case ATA_PROT_ATAPI_DMA
:
5406 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
5408 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
5409 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
5410 ap
->hsm_task_state
= HSM_ST_FIRST
;
5412 /* send cdb by polling if no cdb interrupt */
5413 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
5414 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5419 return AC_ERR_SYSTEM
;
5426 * ata_host_intr - Handle host interrupt for given (port, task)
5427 * @ap: Port on which interrupt arrived (possibly...)
5428 * @qc: Taskfile currently active in engine
5430 * Handle host interrupt for given queued command. Currently,
5431 * only DMA interrupts are handled. All other commands are
5432 * handled via polling with interrupts disabled (nIEN bit).
5435 * spin_lock_irqsave(host lock)
5438 * One if interrupt was handled, zero if not (shared irq).
5441 inline unsigned int ata_host_intr (struct ata_port
*ap
,
5442 struct ata_queued_cmd
*qc
)
5444 struct ata_eh_info
*ehi
= &ap
->eh_info
;
5445 u8 status
, host_stat
= 0;
5447 VPRINTK("ata%u: protocol %d task_state %d\n",
5448 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
);
5450 /* Check whether we are expecting interrupt in this state */
5451 switch (ap
->hsm_task_state
) {
5453 /* Some pre-ATAPI-4 devices assert INTRQ
5454 * at this state when ready to receive CDB.
5457 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5458 * The flag was turned on only for atapi devices.
5459 * No need to check is_atapi_taskfile(&qc->tf) again.
5461 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
5465 if (qc
->tf
.protocol
== ATA_PROT_DMA
||
5466 qc
->tf
.protocol
== ATA_PROT_ATAPI_DMA
) {
5467 /* check status of DMA engine */
5468 host_stat
= ap
->ops
->bmdma_status(ap
);
5469 VPRINTK("ata%u: host_stat 0x%X\n",
5470 ap
->print_id
, host_stat
);
5472 /* if it's not our irq... */
5473 if (!(host_stat
& ATA_DMA_INTR
))
5476 /* before we do anything else, clear DMA-Start bit */
5477 ap
->ops
->bmdma_stop(qc
);
5479 if (unlikely(host_stat
& ATA_DMA_ERR
)) {
5480 /* error when transfering data to/from memory */
5481 qc
->err_mask
|= AC_ERR_HOST_BUS
;
5482 ap
->hsm_task_state
= HSM_ST_ERR
;
5492 /* check altstatus */
5493 status
= ata_altstatus(ap
);
5494 if (status
& ATA_BUSY
)
5497 /* check main status, clearing INTRQ */
5498 status
= ata_chk_status(ap
);
5499 if (unlikely(status
& ATA_BUSY
))
5502 /* ack bmdma irq events */
5503 ap
->ops
->irq_clear(ap
);
5505 ata_hsm_move(ap
, qc
, status
, 0);
5507 if (unlikely(qc
->err_mask
) && (qc
->tf
.protocol
== ATA_PROT_DMA
||
5508 qc
->tf
.protocol
== ATA_PROT_ATAPI_DMA
))
5509 ata_ehi_push_desc(ehi
, "BMDMA stat 0x%x", host_stat
);
5511 return 1; /* irq handled */
5514 ap
->stats
.idle_irq
++;
5517 if ((ap
->stats
.idle_irq
% 1000) == 0) {
5518 ap
->ops
->irq_ack(ap
, 0); /* debug trap */
5519 ata_port_printk(ap
, KERN_WARNING
, "irq trap\n");
5523 return 0; /* irq not handled */
5527 * ata_interrupt - Default ATA host interrupt handler
5528 * @irq: irq line (unused)
5529 * @dev_instance: pointer to our ata_host information structure
5531 * Default interrupt handler for PCI IDE devices. Calls
5532 * ata_host_intr() for each port that is not disabled.
5535 * Obtains host lock during operation.
5538 * IRQ_NONE or IRQ_HANDLED.
5541 irqreturn_t
ata_interrupt (int irq
, void *dev_instance
)
5543 struct ata_host
*host
= dev_instance
;
5545 unsigned int handled
= 0;
5546 unsigned long flags
;
5548 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5549 spin_lock_irqsave(&host
->lock
, flags
);
5551 for (i
= 0; i
< host
->n_ports
; i
++) {
5552 struct ata_port
*ap
;
5554 ap
= host
->ports
[i
];
5556 !(ap
->flags
& ATA_FLAG_DISABLED
)) {
5557 struct ata_queued_cmd
*qc
;
5559 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
5560 if (qc
&& (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
)) &&
5561 (qc
->flags
& ATA_QCFLAG_ACTIVE
))
5562 handled
|= ata_host_intr(ap
, qc
);
5566 spin_unlock_irqrestore(&host
->lock
, flags
);
5568 return IRQ_RETVAL(handled
);
5572 * sata_scr_valid - test whether SCRs are accessible
5573 * @ap: ATA port to test SCR accessibility for
5575 * Test whether SCRs are accessible for @ap.
5581 * 1 if SCRs are accessible, 0 otherwise.
5583 int sata_scr_valid(struct ata_port
*ap
)
5585 return ap
->cbl
== ATA_CBL_SATA
&& ap
->ops
->scr_read
;
5589 * sata_scr_read - read SCR register of the specified port
5590 * @ap: ATA port to read SCR for
5592 * @val: Place to store read value
5594 * Read SCR register @reg of @ap into *@val. This function is
5595 * guaranteed to succeed if the cable type of the port is SATA
5596 * and the port implements ->scr_read.
5602 * 0 on success, negative errno on failure.
5604 int sata_scr_read(struct ata_port
*ap
, int reg
, u32
*val
)
5606 if (sata_scr_valid(ap
)) {
5607 *val
= ap
->ops
->scr_read(ap
, reg
);
5614 * sata_scr_write - write SCR register of the specified port
5615 * @ap: ATA port to write SCR for
5616 * @reg: SCR to write
5617 * @val: value to write
5619 * Write @val to SCR register @reg of @ap. This function is
5620 * guaranteed to succeed if the cable type of the port is SATA
5621 * and the port implements ->scr_read.
5627 * 0 on success, negative errno on failure.
5629 int sata_scr_write(struct ata_port
*ap
, int reg
, u32 val
)
5631 if (sata_scr_valid(ap
)) {
5632 ap
->ops
->scr_write(ap
, reg
, val
);
5639 * sata_scr_write_flush - write SCR register of the specified port and flush
5640 * @ap: ATA port to write SCR for
5641 * @reg: SCR to write
5642 * @val: value to write
5644 * This function is identical to sata_scr_write() except that this
5645 * function performs flush after writing to the register.
5651 * 0 on success, negative errno on failure.
5653 int sata_scr_write_flush(struct ata_port
*ap
, int reg
, u32 val
)
5655 if (sata_scr_valid(ap
)) {
5656 ap
->ops
->scr_write(ap
, reg
, val
);
5657 ap
->ops
->scr_read(ap
, reg
);
5664 * ata_port_online - test whether the given port is online
5665 * @ap: ATA port to test
5667 * Test whether @ap is online. Note that this function returns 0
5668 * if online status of @ap cannot be obtained, so
5669 * ata_port_online(ap) != !ata_port_offline(ap).
5675 * 1 if the port online status is available and online.
5677 int ata_port_online(struct ata_port
*ap
)
5681 if (!sata_scr_read(ap
, SCR_STATUS
, &sstatus
) && (sstatus
& 0xf) == 0x3)
5687 * ata_port_offline - test whether the given port is offline
5688 * @ap: ATA port to test
5690 * Test whether @ap is offline. Note that this function returns
5691 * 0 if offline status of @ap cannot be obtained, so
5692 * ata_port_online(ap) != !ata_port_offline(ap).
5698 * 1 if the port offline status is available and offline.
5700 int ata_port_offline(struct ata_port
*ap
)
5704 if (!sata_scr_read(ap
, SCR_STATUS
, &sstatus
) && (sstatus
& 0xf) != 0x3)
5709 int ata_flush_cache(struct ata_device
*dev
)
5711 unsigned int err_mask
;
5714 if (!ata_try_flush_cache(dev
))
5717 if (dev
->flags
& ATA_DFLAG_FLUSH_EXT
)
5718 cmd
= ATA_CMD_FLUSH_EXT
;
5720 cmd
= ATA_CMD_FLUSH
;
5722 err_mask
= ata_do_simple_cmd(dev
, cmd
);
5724 ata_dev_printk(dev
, KERN_ERR
, "failed to flush cache\n");
5732 static int ata_host_request_pm(struct ata_host
*host
, pm_message_t mesg
,
5733 unsigned int action
, unsigned int ehi_flags
,
5736 unsigned long flags
;
5739 for (i
= 0; i
< host
->n_ports
; i
++) {
5740 struct ata_port
*ap
= host
->ports
[i
];
5742 /* Previous resume operation might still be in
5743 * progress. Wait for PM_PENDING to clear.
5745 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
5746 ata_port_wait_eh(ap
);
5747 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5750 /* request PM ops to EH */
5751 spin_lock_irqsave(ap
->lock
, flags
);
5756 ap
->pm_result
= &rc
;
5759 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
5760 ap
->eh_info
.action
|= action
;
5761 ap
->eh_info
.flags
|= ehi_flags
;
5763 ata_port_schedule_eh(ap
);
5765 spin_unlock_irqrestore(ap
->lock
, flags
);
5767 /* wait and check result */
5769 ata_port_wait_eh(ap
);
5770 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5780 * ata_host_suspend - suspend host
5781 * @host: host to suspend
5784 * Suspend @host. Actual operation is performed by EH. This
5785 * function requests EH to perform PM operations and waits for EH
5789 * Kernel thread context (may sleep).
5792 * 0 on success, -errno on failure.
5794 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
5798 rc
= ata_host_request_pm(host
, mesg
, 0, ATA_EHI_QUIET
, 1);
5802 /* EH is quiescent now. Fail if we have any ready device.
5803 * This happens if hotplug occurs between completion of device
5804 * suspension and here.
5806 for (i
= 0; i
< host
->n_ports
; i
++) {
5807 struct ata_port
*ap
= host
->ports
[i
];
5809 for (j
= 0; j
< ATA_MAX_DEVICES
; j
++) {
5810 struct ata_device
*dev
= &ap
->device
[j
];
5812 if (ata_dev_ready(dev
)) {
5813 ata_port_printk(ap
, KERN_WARNING
,
5814 "suspend failed, device %d "
5815 "still active\n", dev
->devno
);
5822 host
->dev
->power
.power_state
= mesg
;
5826 ata_host_resume(host
);
5831 * ata_host_resume - resume host
5832 * @host: host to resume
5834 * Resume @host. Actual operation is performed by EH. This
5835 * function requests EH to perform PM operations and returns.
5836 * Note that all resume operations are performed parallely.
5839 * Kernel thread context (may sleep).
5841 void ata_host_resume(struct ata_host
*host
)
5843 ata_host_request_pm(host
, PMSG_ON
, ATA_EH_SOFTRESET
,
5844 ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
, 0);
5845 host
->dev
->power
.power_state
= PMSG_ON
;
5850 * ata_port_start - Set port up for dma.
5851 * @ap: Port to initialize
5853 * Called just after data structures for each port are
5854 * initialized. Allocates space for PRD table.
5856 * May be used as the port_start() entry in ata_port_operations.
5859 * Inherited from caller.
5861 int ata_port_start(struct ata_port
*ap
)
5863 struct device
*dev
= ap
->dev
;
5866 ap
->prd
= dmam_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
,
5871 rc
= ata_pad_alloc(ap
, dev
);
5875 DPRINTK("prd alloc, virt %p, dma %llx\n", ap
->prd
,
5876 (unsigned long long)ap
->prd_dma
);
5881 * ata_dev_init - Initialize an ata_device structure
5882 * @dev: Device structure to initialize
5884 * Initialize @dev in preparation for probing.
5887 * Inherited from caller.
5889 void ata_dev_init(struct ata_device
*dev
)
5891 struct ata_port
*ap
= dev
->ap
;
5892 unsigned long flags
;
5894 /* SATA spd limit is bound to the first device */
5895 ap
->sata_spd_limit
= ap
->hw_sata_spd_limit
;
5897 /* High bits of dev->flags are used to record warm plug
5898 * requests which occur asynchronously. Synchronize using
5901 spin_lock_irqsave(ap
->lock
, flags
);
5902 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5903 spin_unlock_irqrestore(ap
->lock
, flags
);
5905 memset((void *)dev
+ ATA_DEVICE_CLEAR_OFFSET
, 0,
5906 sizeof(*dev
) - ATA_DEVICE_CLEAR_OFFSET
);
5907 dev
->pio_mask
= UINT_MAX
;
5908 dev
->mwdma_mask
= UINT_MAX
;
5909 dev
->udma_mask
= UINT_MAX
;
5913 * ata_port_alloc - allocate and initialize basic ATA port resources
5914 * @host: ATA host this allocated port belongs to
5916 * Allocate and initialize basic ATA port resources.
5919 * Allocate ATA port on success, NULL on failure.
5922 * Inherited from calling layer (may sleep).
5924 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
5926 struct ata_port
*ap
;
5931 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
5935 ap
->lock
= &host
->lock
;
5936 ap
->flags
= ATA_FLAG_DISABLED
;
5938 ap
->ctl
= ATA_DEVCTL_OBS
;
5940 ap
->dev
= host
->dev
;
5942 ap
->hw_sata_spd_limit
= UINT_MAX
;
5943 ap
->active_tag
= ATA_TAG_POISON
;
5944 ap
->last_ctl
= 0xFF;
5946 #if defined(ATA_VERBOSE_DEBUG)
5947 /* turn on all debugging levels */
5948 ap
->msg_enable
= 0x00FF;
5949 #elif defined(ATA_DEBUG)
5950 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
5952 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
5955 INIT_DELAYED_WORK(&ap
->port_task
, NULL
);
5956 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
5957 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
5958 INIT_LIST_HEAD(&ap
->eh_done_q
);
5959 init_waitqueue_head(&ap
->eh_wait_q
);
5961 ap
->cbl
= ATA_CBL_NONE
;
5963 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
5964 struct ata_device
*dev
= &ap
->device
[i
];
5971 ap
->stats
.unhandled_irq
= 1;
5972 ap
->stats
.idle_irq
= 1;
5977 static void ata_host_release(struct device
*gendev
, void *res
)
5979 struct ata_host
*host
= dev_get_drvdata(gendev
);
5982 for (i
= 0; i
< host
->n_ports
; i
++) {
5983 struct ata_port
*ap
= host
->ports
[i
];
5988 if ((host
->flags
& ATA_HOST_STARTED
) && ap
->ops
->port_stop
)
5989 ap
->ops
->port_stop(ap
);
5992 if ((host
->flags
& ATA_HOST_STARTED
) && host
->ops
->host_stop
)
5993 host
->ops
->host_stop(host
);
5995 for (i
= 0; i
< host
->n_ports
; i
++) {
5996 struct ata_port
*ap
= host
->ports
[i
];
6002 scsi_host_put(ap
->scsi_host
);
6005 host
->ports
[i
] = NULL
;
6008 dev_set_drvdata(gendev
, NULL
);
6012 * ata_host_alloc - allocate and init basic ATA host resources
6013 * @dev: generic device this host is associated with
6014 * @max_ports: maximum number of ATA ports associated with this host
6016 * Allocate and initialize basic ATA host resources. LLD calls
6017 * this function to allocate a host, initializes it fully and
6018 * attaches it using ata_host_register().
6020 * @max_ports ports are allocated and host->n_ports is
6021 * initialized to @max_ports. The caller is allowed to decrease
6022 * host->n_ports before calling ata_host_register(). The unused
6023 * ports will be automatically freed on registration.
6026 * Allocate ATA host on success, NULL on failure.
6029 * Inherited from calling layer (may sleep).
6031 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
6033 struct ata_host
*host
;
6039 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
6042 /* alloc a container for our list of ATA ports (buses) */
6043 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
6044 /* alloc a container for our list of ATA ports (buses) */
6045 host
= devres_alloc(ata_host_release
, sz
, GFP_KERNEL
);
6049 devres_add(dev
, host
);
6050 dev_set_drvdata(dev
, host
);
6052 spin_lock_init(&host
->lock
);
6054 host
->n_ports
= max_ports
;
6056 /* allocate ports bound to this host */
6057 for (i
= 0; i
< max_ports
; i
++) {
6058 struct ata_port
*ap
;
6060 ap
= ata_port_alloc(host
);
6065 host
->ports
[i
] = ap
;
6068 devres_remove_group(dev
, NULL
);
6072 devres_release_group(dev
, NULL
);
6077 * ata_host_alloc_pinfo - alloc host and init with port_info array
6078 * @dev: generic device this host is associated with
6079 * @ppi: array of ATA port_info to initialize host with
6080 * @n_ports: number of ATA ports attached to this host
6082 * Allocate ATA host and initialize with info from @ppi. If NULL
6083 * terminated, @ppi may contain fewer entries than @n_ports. The
6084 * last entry will be used for the remaining ports.
6087 * Allocate ATA host on success, NULL on failure.
6090 * Inherited from calling layer (may sleep).
6092 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
6093 const struct ata_port_info
* const * ppi
,
6096 const struct ata_port_info
*pi
;
6097 struct ata_host
*host
;
6100 host
= ata_host_alloc(dev
, n_ports
);
6104 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
6105 struct ata_port
*ap
= host
->ports
[i
];
6110 ap
->pio_mask
= pi
->pio_mask
;
6111 ap
->mwdma_mask
= pi
->mwdma_mask
;
6112 ap
->udma_mask
= pi
->udma_mask
;
6113 ap
->flags
|= pi
->flags
;
6114 ap
->ops
= pi
->port_ops
;
6116 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
6117 host
->ops
= pi
->port_ops
;
6118 if (!host
->private_data
&& pi
->private_data
)
6119 host
->private_data
= pi
->private_data
;
6126 * ata_host_start - start and freeze ports of an ATA host
6127 * @host: ATA host to start ports for
6129 * Start and then freeze ports of @host. Started status is
6130 * recorded in host->flags, so this function can be called
6131 * multiple times. Ports are guaranteed to get started only
6132 * once. If host->ops isn't initialized yet, its set to the
6133 * first non-dummy port ops.
6136 * Inherited from calling layer (may sleep).
6139 * 0 if all ports are started successfully, -errno otherwise.
6141 int ata_host_start(struct ata_host
*host
)
6145 if (host
->flags
& ATA_HOST_STARTED
)
6148 for (i
= 0; i
< host
->n_ports
; i
++) {
6149 struct ata_port
*ap
= host
->ports
[i
];
6151 if (!host
->ops
&& !ata_port_is_dummy(ap
))
6152 host
->ops
= ap
->ops
;
6154 if (ap
->ops
->port_start
) {
6155 rc
= ap
->ops
->port_start(ap
);
6157 ata_port_printk(ap
, KERN_ERR
, "failed to "
6158 "start port (errno=%d)\n", rc
);
6163 ata_eh_freeze_port(ap
);
6166 host
->flags
|= ATA_HOST_STARTED
;
6171 struct ata_port
*ap
= host
->ports
[i
];
6173 if (ap
->ops
->port_stop
)
6174 ap
->ops
->port_stop(ap
);
6180 * ata_sas_host_init - Initialize a host struct
6181 * @host: host to initialize
6182 * @dev: device host is attached to
6183 * @flags: host flags
6187 * PCI/etc. bus probe sem.
6190 /* KILLME - the only user left is ipr */
6191 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
6192 unsigned long flags
, const struct ata_port_operations
*ops
)
6194 spin_lock_init(&host
->lock
);
6196 host
->flags
= flags
;
6201 * ata_host_register - register initialized ATA host
6202 * @host: ATA host to register
6203 * @sht: template for SCSI host
6205 * Register initialized ATA host. @host is allocated using
6206 * ata_host_alloc() and fully initialized by LLD. This function
6207 * starts ports, registers @host with ATA and SCSI layers and
6208 * probe registered devices.
6211 * Inherited from calling layer (may sleep).
6214 * 0 on success, -errno otherwise.
6216 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
6220 /* host must have been started */
6221 if (!(host
->flags
& ATA_HOST_STARTED
)) {
6222 dev_printk(KERN_ERR
, host
->dev
,
6223 "BUG: trying to register unstarted host\n");
6228 /* Blow away unused ports. This happens when LLD can't
6229 * determine the exact number of ports to allocate at
6232 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
6233 kfree(host
->ports
[i
]);
6235 /* give ports names and add SCSI hosts */
6236 for (i
= 0; i
< host
->n_ports
; i
++)
6237 host
->ports
[i
]->print_id
= ata_print_id
++;
6239 rc
= ata_scsi_add_hosts(host
, sht
);
6243 /* set cable, sata_spd_limit and report */
6244 for (i
= 0; i
< host
->n_ports
; i
++) {
6245 struct ata_port
*ap
= host
->ports
[i
];
6248 unsigned long xfer_mask
;
6250 /* set SATA cable type if still unset */
6251 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
6252 ap
->cbl
= ATA_CBL_SATA
;
6254 /* init sata_spd_limit to the current value */
6255 if (sata_scr_read(ap
, SCR_CONTROL
, &scontrol
) == 0) {
6256 int spd
= (scontrol
>> 4) & 0xf;
6257 ap
->hw_sata_spd_limit
&= (1 << spd
) - 1;
6259 ap
->sata_spd_limit
= ap
->hw_sata_spd_limit
;
6261 /* report the secondary IRQ for second channel legacy */
6262 irq_line
= host
->irq
;
6263 if (i
== 1 && host
->irq2
)
6264 irq_line
= host
->irq2
;
6266 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
6269 /* print per-port info to dmesg */
6270 if (!ata_port_is_dummy(ap
))
6271 ata_port_printk(ap
, KERN_INFO
, "%cATA max %s cmd 0x%p "
6272 "ctl 0x%p bmdma 0x%p irq %d\n",
6273 ap
->cbl
== ATA_CBL_SATA
? 'S' : 'P',
6274 ata_mode_string(xfer_mask
),
6275 ap
->ioaddr
.cmd_addr
,
6276 ap
->ioaddr
.ctl_addr
,
6277 ap
->ioaddr
.bmdma_addr
,
6280 ata_port_printk(ap
, KERN_INFO
, "DUMMY\n");
6283 /* perform each probe synchronously */
6284 DPRINTK("probe begin\n");
6285 for (i
= 0; i
< host
->n_ports
; i
++) {
6286 struct ata_port
*ap
= host
->ports
[i
];
6290 if (ap
->ops
->error_handler
) {
6291 struct ata_eh_info
*ehi
= &ap
->eh_info
;
6292 unsigned long flags
;
6296 /* kick EH for boot probing */
6297 spin_lock_irqsave(ap
->lock
, flags
);
6299 ehi
->probe_mask
= (1 << ATA_MAX_DEVICES
) - 1;
6300 ehi
->action
|= ATA_EH_SOFTRESET
;
6301 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
6303 ap
->pflags
|= ATA_PFLAG_LOADING
;
6304 ata_port_schedule_eh(ap
);
6306 spin_unlock_irqrestore(ap
->lock
, flags
);
6308 /* wait for EH to finish */
6309 ata_port_wait_eh(ap
);
6311 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
6312 rc
= ata_bus_probe(ap
);
6313 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
6316 /* FIXME: do something useful here?
6317 * Current libata behavior will
6318 * tear down everything when
6319 * the module is removed
6320 * or the h/w is unplugged.
6326 /* probes are done, now scan each port's disk(s) */
6327 DPRINTK("host probe begin\n");
6328 for (i
= 0; i
< host
->n_ports
; i
++) {
6329 struct ata_port
*ap
= host
->ports
[i
];
6331 ata_scsi_scan_host(ap
);
6338 * ata_host_activate - start host, request IRQ and register it
6339 * @host: target ATA host
6340 * @irq: IRQ to request
6341 * @irq_handler: irq_handler used when requesting IRQ
6342 * @irq_flags: irq_flags used when requesting IRQ
6343 * @sht: scsi_host_template to use when registering the host
6345 * After allocating an ATA host and initializing it, most libata
6346 * LLDs perform three steps to activate the host - start host,
6347 * request IRQ and register it. This helper takes necessasry
6348 * arguments and performs the three steps in one go.
6351 * Inherited from calling layer (may sleep).
6354 * 0 on success, -errno otherwise.
6356 int ata_host_activate(struct ata_host
*host
, int irq
,
6357 irq_handler_t irq_handler
, unsigned long irq_flags
,
6358 struct scsi_host_template
*sht
)
6362 rc
= ata_host_start(host
);
6366 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
6367 dev_driver_string(host
->dev
), host
);
6371 rc
= ata_host_register(host
, sht
);
6372 /* if failed, just free the IRQ and leave ports alone */
6374 devm_free_irq(host
->dev
, irq
, host
);
6380 * ata_port_detach - Detach ATA port in prepration of device removal
6381 * @ap: ATA port to be detached
6383 * Detach all ATA devices and the associated SCSI devices of @ap;
6384 * then, remove the associated SCSI host. @ap is guaranteed to
6385 * be quiescent on return from this function.
6388 * Kernel thread context (may sleep).
6390 void ata_port_detach(struct ata_port
*ap
)
6392 unsigned long flags
;
6395 if (!ap
->ops
->error_handler
)
6398 /* tell EH we're leaving & flush EH */
6399 spin_lock_irqsave(ap
->lock
, flags
);
6400 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
6401 spin_unlock_irqrestore(ap
->lock
, flags
);
6403 ata_port_wait_eh(ap
);
6405 /* EH is now guaranteed to see UNLOADING, so no new device
6406 * will be attached. Disable all existing devices.
6408 spin_lock_irqsave(ap
->lock
, flags
);
6410 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
6411 ata_dev_disable(&ap
->device
[i
]);
6413 spin_unlock_irqrestore(ap
->lock
, flags
);
6415 /* Final freeze & EH. All in-flight commands are aborted. EH
6416 * will be skipped and retrials will be terminated with bad
6419 spin_lock_irqsave(ap
->lock
, flags
);
6420 ata_port_freeze(ap
); /* won't be thawed */
6421 spin_unlock_irqrestore(ap
->lock
, flags
);
6423 ata_port_wait_eh(ap
);
6425 /* Flush hotplug task. The sequence is similar to
6426 * ata_port_flush_task().
6428 flush_workqueue(ata_aux_wq
);
6429 cancel_delayed_work(&ap
->hotplug_task
);
6430 flush_workqueue(ata_aux_wq
);
6433 /* remove the associated SCSI host */
6434 scsi_remove_host(ap
->scsi_host
);
6438 * ata_host_detach - Detach all ports of an ATA host
6439 * @host: Host to detach
6441 * Detach all ports of @host.
6444 * Kernel thread context (may sleep).
6446 void ata_host_detach(struct ata_host
*host
)
6450 for (i
= 0; i
< host
->n_ports
; i
++)
6451 ata_port_detach(host
->ports
[i
]);
6455 * ata_std_ports - initialize ioaddr with standard port offsets.
6456 * @ioaddr: IO address structure to be initialized
6458 * Utility function which initializes data_addr, error_addr,
6459 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6460 * device_addr, status_addr, and command_addr to standard offsets
6461 * relative to cmd_addr.
6463 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6466 void ata_std_ports(struct ata_ioports
*ioaddr
)
6468 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
6469 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
6470 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
6471 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
6472 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
6473 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
6474 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
6475 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
6476 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
6477 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
6484 * ata_pci_remove_one - PCI layer callback for device removal
6485 * @pdev: PCI device that was removed
6487 * PCI layer indicates to libata via this hook that hot-unplug or
6488 * module unload event has occurred. Detach all ports. Resource
6489 * release is handled via devres.
6492 * Inherited from PCI layer (may sleep).
6494 void ata_pci_remove_one(struct pci_dev
*pdev
)
6496 struct device
*dev
= pci_dev_to_dev(pdev
);
6497 struct ata_host
*host
= dev_get_drvdata(dev
);
6499 ata_host_detach(host
);
6502 /* move to PCI subsystem */
6503 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
6505 unsigned long tmp
= 0;
6507 switch (bits
->width
) {
6510 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
6516 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
6522 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
6533 return (tmp
== bits
->val
) ? 1 : 0;
6537 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6539 pci_save_state(pdev
);
6540 pci_disable_device(pdev
);
6542 if (mesg
.event
== PM_EVENT_SUSPEND
)
6543 pci_set_power_state(pdev
, PCI_D3hot
);
6546 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
6550 pci_set_power_state(pdev
, PCI_D0
);
6551 pci_restore_state(pdev
);
6553 rc
= pcim_enable_device(pdev
);
6555 dev_printk(KERN_ERR
, &pdev
->dev
,
6556 "failed to enable device after resume (%d)\n", rc
);
6560 pci_set_master(pdev
);
6564 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6566 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6569 rc
= ata_host_suspend(host
, mesg
);
6573 ata_pci_device_do_suspend(pdev
, mesg
);
6578 int ata_pci_device_resume(struct pci_dev
*pdev
)
6580 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6583 rc
= ata_pci_device_do_resume(pdev
);
6585 ata_host_resume(host
);
6588 #endif /* CONFIG_PM */
6590 #endif /* CONFIG_PCI */
6593 static int __init
ata_init(void)
6595 ata_probe_timeout
*= HZ
;
6596 ata_wq
= create_workqueue("ata");
6600 ata_aux_wq
= create_singlethread_workqueue("ata_aux");
6602 destroy_workqueue(ata_wq
);
6606 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
6610 static void __exit
ata_exit(void)
6612 destroy_workqueue(ata_wq
);
6613 destroy_workqueue(ata_aux_wq
);
6616 subsys_initcall(ata_init
);
6617 module_exit(ata_exit
);
6619 static unsigned long ratelimit_time
;
6620 static DEFINE_SPINLOCK(ata_ratelimit_lock
);
6622 int ata_ratelimit(void)
6625 unsigned long flags
;
6627 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
6629 if (time_after(jiffies
, ratelimit_time
)) {
6631 ratelimit_time
= jiffies
+ (HZ
/5);
6635 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
6641 * ata_wait_register - wait until register value changes
6642 * @reg: IO-mapped register
6643 * @mask: Mask to apply to read register value
6644 * @val: Wait condition
6645 * @interval_msec: polling interval in milliseconds
6646 * @timeout_msec: timeout in milliseconds
6648 * Waiting for some bits of register to change is a common
6649 * operation for ATA controllers. This function reads 32bit LE
6650 * IO-mapped register @reg and tests for the following condition.
6652 * (*@reg & mask) != val
6654 * If the condition is met, it returns; otherwise, the process is
6655 * repeated after @interval_msec until timeout.
6658 * Kernel thread context (may sleep)
6661 * The final register value.
6663 u32
ata_wait_register(void __iomem
*reg
, u32 mask
, u32 val
,
6664 unsigned long interval_msec
,
6665 unsigned long timeout_msec
)
6667 unsigned long timeout
;
6670 tmp
= ioread32(reg
);
6672 /* Calculate timeout _after_ the first read to make sure
6673 * preceding writes reach the controller before starting to
6674 * eat away the timeout.
6676 timeout
= jiffies
+ (timeout_msec
* HZ
) / 1000;
6678 while ((tmp
& mask
) == val
&& time_before(jiffies
, timeout
)) {
6679 msleep(interval_msec
);
6680 tmp
= ioread32(reg
);
6689 static void ata_dummy_noret(struct ata_port
*ap
) { }
6690 static int ata_dummy_ret0(struct ata_port
*ap
) { return 0; }
6691 static void ata_dummy_qc_noret(struct ata_queued_cmd
*qc
) { }
6693 static u8
ata_dummy_check_status(struct ata_port
*ap
)
6698 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
6700 return AC_ERR_SYSTEM
;
6703 const struct ata_port_operations ata_dummy_port_ops
= {
6704 .port_disable
= ata_port_disable
,
6705 .check_status
= ata_dummy_check_status
,
6706 .check_altstatus
= ata_dummy_check_status
,
6707 .dev_select
= ata_noop_dev_select
,
6708 .qc_prep
= ata_noop_qc_prep
,
6709 .qc_issue
= ata_dummy_qc_issue
,
6710 .freeze
= ata_dummy_noret
,
6711 .thaw
= ata_dummy_noret
,
6712 .error_handler
= ata_dummy_noret
,
6713 .post_internal_cmd
= ata_dummy_qc_noret
,
6714 .irq_clear
= ata_dummy_noret
,
6715 .port_start
= ata_dummy_ret0
,
6716 .port_stop
= ata_dummy_noret
,
6719 const struct ata_port_info ata_dummy_port_info
= {
6720 .port_ops
= &ata_dummy_port_ops
,
6724 * libata is essentially a library of internal helper functions for
6725 * low-level ATA host controller drivers. As such, the API/ABI is
6726 * likely to change as new drivers are added and updated.
6727 * Do not depend on ABI/API stability.
6730 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
6731 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
6732 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
6733 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
6734 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
6735 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
6736 EXPORT_SYMBOL_GPL(ata_std_ports
);
6737 EXPORT_SYMBOL_GPL(ata_host_init
);
6738 EXPORT_SYMBOL_GPL(ata_host_alloc
);
6739 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
6740 EXPORT_SYMBOL_GPL(ata_host_start
);
6741 EXPORT_SYMBOL_GPL(ata_host_register
);
6742 EXPORT_SYMBOL_GPL(ata_host_activate
);
6743 EXPORT_SYMBOL_GPL(ata_host_detach
);
6744 EXPORT_SYMBOL_GPL(ata_sg_init
);
6745 EXPORT_SYMBOL_GPL(ata_sg_init_one
);
6746 EXPORT_SYMBOL_GPL(ata_hsm_move
);
6747 EXPORT_SYMBOL_GPL(ata_qc_complete
);
6748 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
6749 EXPORT_SYMBOL_GPL(ata_qc_issue_prot
);
6750 EXPORT_SYMBOL_GPL(ata_tf_load
);
6751 EXPORT_SYMBOL_GPL(ata_tf_read
);
6752 EXPORT_SYMBOL_GPL(ata_noop_dev_select
);
6753 EXPORT_SYMBOL_GPL(ata_std_dev_select
);
6754 EXPORT_SYMBOL_GPL(sata_print_link_status
);
6755 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
6756 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
6757 EXPORT_SYMBOL_GPL(ata_check_status
);
6758 EXPORT_SYMBOL_GPL(ata_altstatus
);
6759 EXPORT_SYMBOL_GPL(ata_exec_command
);
6760 EXPORT_SYMBOL_GPL(ata_port_start
);
6761 EXPORT_SYMBOL_GPL(ata_interrupt
);
6762 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
6763 EXPORT_SYMBOL_GPL(ata_data_xfer
);
6764 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq
);
6765 EXPORT_SYMBOL_GPL(ata_qc_prep
);
6766 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
6767 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
6768 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
6769 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
6770 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
6771 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
6772 EXPORT_SYMBOL_GPL(ata_bmdma_freeze
);
6773 EXPORT_SYMBOL_GPL(ata_bmdma_thaw
);
6774 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh
);
6775 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler
);
6776 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd
);
6777 EXPORT_SYMBOL_GPL(ata_port_probe
);
6778 EXPORT_SYMBOL_GPL(ata_dev_disable
);
6779 EXPORT_SYMBOL_GPL(sata_set_spd
);
6780 EXPORT_SYMBOL_GPL(sata_phy_debounce
);
6781 EXPORT_SYMBOL_GPL(sata_phy_resume
);
6782 EXPORT_SYMBOL_GPL(sata_phy_reset
);
6783 EXPORT_SYMBOL_GPL(__sata_phy_reset
);
6784 EXPORT_SYMBOL_GPL(ata_bus_reset
);
6785 EXPORT_SYMBOL_GPL(ata_std_prereset
);
6786 EXPORT_SYMBOL_GPL(ata_std_softreset
);
6787 EXPORT_SYMBOL_GPL(sata_port_hardreset
);
6788 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
6789 EXPORT_SYMBOL_GPL(ata_std_postreset
);
6790 EXPORT_SYMBOL_GPL(ata_dev_classify
);
6791 EXPORT_SYMBOL_GPL(ata_dev_pair
);
6792 EXPORT_SYMBOL_GPL(ata_port_disable
);
6793 EXPORT_SYMBOL_GPL(ata_ratelimit
);
6794 EXPORT_SYMBOL_GPL(ata_wait_register
);
6795 EXPORT_SYMBOL_GPL(ata_busy_sleep
);
6796 EXPORT_SYMBOL_GPL(ata_port_queue_task
);
6797 EXPORT_SYMBOL_GPL(ata_scsi_ioctl
);
6798 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
6799 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
6800 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
6801 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
6802 EXPORT_SYMBOL_GPL(ata_host_intr
);
6803 EXPORT_SYMBOL_GPL(sata_scr_valid
);
6804 EXPORT_SYMBOL_GPL(sata_scr_read
);
6805 EXPORT_SYMBOL_GPL(sata_scr_write
);
6806 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
6807 EXPORT_SYMBOL_GPL(ata_port_online
);
6808 EXPORT_SYMBOL_GPL(ata_port_offline
);
6810 EXPORT_SYMBOL_GPL(ata_host_suspend
);
6811 EXPORT_SYMBOL_GPL(ata_host_resume
);
6812 #endif /* CONFIG_PM */
6813 EXPORT_SYMBOL_GPL(ata_id_string
);
6814 EXPORT_SYMBOL_GPL(ata_id_c_string
);
6815 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode
);
6816 EXPORT_SYMBOL_GPL(ata_device_blacklisted
);
6817 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
6819 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
6820 EXPORT_SYMBOL_GPL(ata_timing_compute
);
6821 EXPORT_SYMBOL_GPL(ata_timing_merge
);
6824 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
6825 EXPORT_SYMBOL_GPL(ata_pci_init_native_host
);
6826 EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host
);
6827 EXPORT_SYMBOL_GPL(ata_pci_init_one
);
6828 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
6830 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
6831 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
6832 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
6833 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
6834 #endif /* CONFIG_PM */
6835 EXPORT_SYMBOL_GPL(ata_pci_default_filter
);
6836 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex
);
6837 #endif /* CONFIG_PCI */
6840 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend
);
6841 EXPORT_SYMBOL_GPL(ata_scsi_device_resume
);
6842 #endif /* CONFIG_PM */
6844 EXPORT_SYMBOL_GPL(ata_eng_timeout
);
6845 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
6846 EXPORT_SYMBOL_GPL(ata_port_abort
);
6847 EXPORT_SYMBOL_GPL(ata_port_freeze
);
6848 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
6849 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
6850 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
6851 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
6852 EXPORT_SYMBOL_GPL(ata_do_eh
);
6853 EXPORT_SYMBOL_GPL(ata_irq_on
);
6854 EXPORT_SYMBOL_GPL(ata_dummy_irq_on
);
6855 EXPORT_SYMBOL_GPL(ata_irq_ack
);
6856 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack
);
6857 EXPORT_SYMBOL_GPL(ata_dev_try_classify
);
6859 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
6860 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
6861 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
6862 EXPORT_SYMBOL_GPL(ata_cable_sata
);