2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms * ilog(ncpus), units: nanoseconds)
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length
29 * and have no persistent notion like in traditional, time-slice
30 * based scheduling concepts.
32 * (to see the precise effective timeslice length of your workload,
33 * run vmstat and monitor the context-switches (cs) field)
35 unsigned int sysctl_sched_latency
= 20000000ULL;
38 * Minimal preemption granularity for CPU-bound tasks:
39 * (default: 1 msec * ilog(ncpus), units: nanoseconds)
41 unsigned int sysctl_sched_min_granularity
= 1000000ULL;
44 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
46 unsigned int sched_nr_latency
= 20;
49 * After fork, child runs first. (default) If set to 0 then
50 * parent will (try to) run first.
52 const_debug
unsigned int sysctl_sched_child_runs_first
= 1;
55 * sys_sched_yield() compat mode
57 * This option switches the agressive yield implementation of the
58 * old scheduler back on.
60 unsigned int __read_mostly sysctl_sched_compat_yield
;
63 * SCHED_BATCH wake-up granularity.
64 * (default: 10 msec * ilog(ncpus), units: nanoseconds)
66 * This option delays the preemption effects of decoupled workloads
67 * and reduces their over-scheduling. Synchronous workloads will still
68 * have immediate wakeup/sleep latencies.
70 unsigned int sysctl_sched_batch_wakeup_granularity
= 10000000UL;
73 * SCHED_OTHER wake-up granularity.
74 * (default: 10 msec * ilog(ncpus), units: nanoseconds)
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
80 unsigned int sysctl_sched_wakeup_granularity
= 10000000UL;
82 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
84 /**************************************************************
85 * CFS operations on generic schedulable entities:
88 #ifdef CONFIG_FAIR_GROUP_SCHED
90 /* cpu runqueue to which this cfs_rq is attached */
91 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
96 /* An entity is a task if it doesn't "own" a runqueue */
97 #define entity_is_task(se) (!se->my_q)
99 #else /* CONFIG_FAIR_GROUP_SCHED */
101 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
103 return container_of(cfs_rq
, struct rq
, cfs
);
106 #define entity_is_task(se) 1
108 #endif /* CONFIG_FAIR_GROUP_SCHED */
110 static inline struct task_struct
*task_of(struct sched_entity
*se
)
112 return container_of(se
, struct task_struct
, se
);
116 /**************************************************************
117 * Scheduling class tree data structure manipulation methods:
120 static inline u64
max_vruntime(u64 min_vruntime
, u64 vruntime
)
122 s64 delta
= (s64
)(vruntime
- min_vruntime
);
124 min_vruntime
= vruntime
;
129 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
131 s64 delta
= (s64
)(vruntime
- min_vruntime
);
133 min_vruntime
= vruntime
;
138 static inline s64
entity_key(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
140 return se
->vruntime
- cfs_rq
->min_vruntime
;
144 * Enqueue an entity into the rb-tree:
146 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
148 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
149 struct rb_node
*parent
= NULL
;
150 struct sched_entity
*entry
;
151 s64 key
= entity_key(cfs_rq
, se
);
155 * Find the right place in the rbtree:
159 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
161 * We dont care about collisions. Nodes with
162 * the same key stay together.
164 if (key
< entity_key(cfs_rq
, entry
)) {
165 link
= &parent
->rb_left
;
167 link
= &parent
->rb_right
;
173 * Maintain a cache of leftmost tree entries (it is frequently
177 cfs_rq
->rb_leftmost
= &se
->run_node
;
179 rb_link_node(&se
->run_node
, parent
, link
);
180 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
183 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
185 if (cfs_rq
->rb_leftmost
== &se
->run_node
)
186 cfs_rq
->rb_leftmost
= rb_next(&se
->run_node
);
188 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
191 static inline struct rb_node
*first_fair(struct cfs_rq
*cfs_rq
)
193 return cfs_rq
->rb_leftmost
;
196 static struct sched_entity
*__pick_next_entity(struct cfs_rq
*cfs_rq
)
198 return rb_entry(first_fair(cfs_rq
), struct sched_entity
, run_node
);
201 static inline struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
203 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
204 struct sched_entity
*se
= NULL
;
205 struct rb_node
*parent
;
209 se
= rb_entry(parent
, struct sched_entity
, run_node
);
210 link
= &parent
->rb_right
;
216 /**************************************************************
217 * Scheduling class statistics methods:
220 #ifdef CONFIG_SCHED_DEBUG
221 int sched_nr_latency_handler(struct ctl_table
*table
, int write
,
222 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
225 int ret
= proc_dointvec_minmax(table
, write
, filp
, buffer
, lenp
, ppos
);
230 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
231 sysctl_sched_min_granularity
);
238 * The idea is to set a period in which each task runs once.
240 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
241 * this period because otherwise the slices get too small.
243 * p = (nr <= nl) ? l : l*nr/nl
245 static u64
__sched_period(unsigned long nr_running
)
247 u64 period
= sysctl_sched_latency
;
248 unsigned long nr_latency
= sched_nr_latency
;
250 if (unlikely(nr_running
> nr_latency
)) {
251 period
*= nr_running
;
252 do_div(period
, nr_latency
);
259 * We calculate the wall-time slice from the period by taking a part
260 * proportional to the weight.
264 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
266 u64 slice
= __sched_period(cfs_rq
->nr_running
);
268 slice
*= se
->load
.weight
;
269 do_div(slice
, cfs_rq
->load
.weight
);
275 * We calculate the vruntime slice.
279 static u64
__sched_vslice(unsigned long rq_weight
, unsigned long nr_running
)
281 u64 vslice
= __sched_period(nr_running
);
283 vslice
*= NICE_0_LOAD
;
284 do_div(vslice
, rq_weight
);
289 static u64
sched_vslice(struct cfs_rq
*cfs_rq
)
291 return __sched_vslice(cfs_rq
->load
.weight
, cfs_rq
->nr_running
);
294 static u64
sched_vslice_add(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
296 return __sched_vslice(cfs_rq
->load
.weight
+ se
->load
.weight
,
297 cfs_rq
->nr_running
+ 1);
301 * Update the current task's runtime statistics. Skip current tasks that
302 * are not in our scheduling class.
305 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
,
306 unsigned long delta_exec
)
308 unsigned long delta_exec_weighted
;
311 schedstat_set(curr
->exec_max
, max((u64
)delta_exec
, curr
->exec_max
));
313 curr
->sum_exec_runtime
+= delta_exec
;
314 schedstat_add(cfs_rq
, exec_clock
, delta_exec
);
315 delta_exec_weighted
= delta_exec
;
316 if (unlikely(curr
->load
.weight
!= NICE_0_LOAD
)) {
317 delta_exec_weighted
= calc_delta_fair(delta_exec_weighted
,
320 curr
->vruntime
+= delta_exec_weighted
;
323 * maintain cfs_rq->min_vruntime to be a monotonic increasing
324 * value tracking the leftmost vruntime in the tree.
326 if (first_fair(cfs_rq
)) {
327 vruntime
= min_vruntime(curr
->vruntime
,
328 __pick_next_entity(cfs_rq
)->vruntime
);
330 vruntime
= curr
->vruntime
;
332 cfs_rq
->min_vruntime
=
333 max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
336 static void update_curr(struct cfs_rq
*cfs_rq
)
338 struct sched_entity
*curr
= cfs_rq
->curr
;
339 u64 now
= rq_of(cfs_rq
)->clock
;
340 unsigned long delta_exec
;
346 * Get the amount of time the current task was running
347 * since the last time we changed load (this cannot
348 * overflow on 32 bits):
350 delta_exec
= (unsigned long)(now
- curr
->exec_start
);
352 __update_curr(cfs_rq
, curr
, delta_exec
);
353 curr
->exec_start
= now
;
357 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
359 schedstat_set(se
->wait_start
, rq_of(cfs_rq
)->clock
);
363 * Task is being enqueued - update stats:
365 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
368 * Are we enqueueing a waiting task? (for current tasks
369 * a dequeue/enqueue event is a NOP)
371 if (se
!= cfs_rq
->curr
)
372 update_stats_wait_start(cfs_rq
, se
);
376 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
378 schedstat_set(se
->wait_max
, max(se
->wait_max
,
379 rq_of(cfs_rq
)->clock
- se
->wait_start
));
380 schedstat_set(se
->wait_start
, 0);
384 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
387 * Mark the end of the wait period if dequeueing a
390 if (se
!= cfs_rq
->curr
)
391 update_stats_wait_end(cfs_rq
, se
);
395 * We are picking a new current task - update its stats:
398 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
401 * We are starting a new run period:
403 se
->exec_start
= rq_of(cfs_rq
)->clock
;
406 /**************************************************
407 * Scheduling class queueing methods:
411 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
413 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
414 cfs_rq
->nr_running
++;
419 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
421 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
422 cfs_rq
->nr_running
--;
426 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
428 #ifdef CONFIG_SCHEDSTATS
429 if (se
->sleep_start
) {
430 u64 delta
= rq_of(cfs_rq
)->clock
- se
->sleep_start
;
435 if (unlikely(delta
> se
->sleep_max
))
436 se
->sleep_max
= delta
;
439 se
->sum_sleep_runtime
+= delta
;
441 if (se
->block_start
) {
442 u64 delta
= rq_of(cfs_rq
)->clock
- se
->block_start
;
447 if (unlikely(delta
> se
->block_max
))
448 se
->block_max
= delta
;
451 se
->sum_sleep_runtime
+= delta
;
454 * Blocking time is in units of nanosecs, so shift by 20 to
455 * get a milliseconds-range estimation of the amount of
456 * time that the task spent sleeping:
458 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
459 struct task_struct
*tsk
= task_of(se
);
461 profile_hits(SLEEP_PROFILING
, (void *)get_wchan(tsk
),
468 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
470 #ifdef CONFIG_SCHED_DEBUG
471 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
476 if (d
> 3*sysctl_sched_latency
)
477 schedstat_inc(cfs_rq
, nr_spread_over
);
482 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
486 vruntime
= cfs_rq
->min_vruntime
;
488 if (sched_feat(TREE_AVG
)) {
489 struct sched_entity
*last
= __pick_last_entity(cfs_rq
);
491 vruntime
+= last
->vruntime
;
494 } else if (sched_feat(APPROX_AVG
) && cfs_rq
->nr_running
)
495 vruntime
+= sched_vslice(cfs_rq
)/2;
498 * The 'current' period is already promised to the current tasks,
499 * however the extra weight of the new task will slow them down a
500 * little, place the new task so that it fits in the slot that
501 * stays open at the end.
503 if (initial
&& sched_feat(START_DEBIT
))
504 vruntime
+= sched_vslice_add(cfs_rq
, se
);
507 /* sleeps upto a single latency don't count. */
508 if (sched_feat(NEW_FAIR_SLEEPERS
) && entity_is_task(se
) &&
509 task_of(se
)->policy
!= SCHED_BATCH
)
510 vruntime
-= sysctl_sched_latency
;
512 /* ensure we never gain time by being placed backwards. */
513 vruntime
= max_vruntime(se
->vruntime
, vruntime
);
516 se
->vruntime
= vruntime
;
520 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int wakeup
)
523 * Update run-time statistics of the 'current'.
528 place_entity(cfs_rq
, se
, 0);
529 enqueue_sleeper(cfs_rq
, se
);
532 update_stats_enqueue(cfs_rq
, se
);
533 check_spread(cfs_rq
, se
);
534 if (se
!= cfs_rq
->curr
)
535 __enqueue_entity(cfs_rq
, se
);
536 account_entity_enqueue(cfs_rq
, se
);
540 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int sleep
)
543 * Update run-time statistics of the 'current'.
547 update_stats_dequeue(cfs_rq
, se
);
549 #ifdef CONFIG_SCHEDSTATS
550 if (entity_is_task(se
)) {
551 struct task_struct
*tsk
= task_of(se
);
553 if (tsk
->state
& TASK_INTERRUPTIBLE
)
554 se
->sleep_start
= rq_of(cfs_rq
)->clock
;
555 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
556 se
->block_start
= rq_of(cfs_rq
)->clock
;
561 if (se
!= cfs_rq
->curr
)
562 __dequeue_entity(cfs_rq
, se
);
563 account_entity_dequeue(cfs_rq
, se
);
567 * Preempt the current task with a newly woken task if needed:
570 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
572 unsigned long ideal_runtime
, delta_exec
;
574 ideal_runtime
= sched_slice(cfs_rq
, curr
);
575 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
576 if (delta_exec
> ideal_runtime
)
577 resched_task(rq_of(cfs_rq
)->curr
);
581 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
583 /* 'current' is not kept within the tree. */
586 * Any task has to be enqueued before it get to execute on
587 * a CPU. So account for the time it spent waiting on the
590 update_stats_wait_end(cfs_rq
, se
);
591 __dequeue_entity(cfs_rq
, se
);
594 update_stats_curr_start(cfs_rq
, se
);
596 #ifdef CONFIG_SCHEDSTATS
598 * Track our maximum slice length, if the CPU's load is at
599 * least twice that of our own weight (i.e. dont track it
600 * when there are only lesser-weight tasks around):
602 if (rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
603 se
->slice_max
= max(se
->slice_max
,
604 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
);
607 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
610 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
612 struct sched_entity
*se
= NULL
;
614 if (first_fair(cfs_rq
)) {
615 se
= __pick_next_entity(cfs_rq
);
616 set_next_entity(cfs_rq
, se
);
622 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
625 * If still on the runqueue then deactivate_task()
626 * was not called and update_curr() has to be done:
631 check_spread(cfs_rq
, prev
);
633 update_stats_wait_start(cfs_rq
, prev
);
634 /* Put 'current' back into the tree. */
635 __enqueue_entity(cfs_rq
, prev
);
640 static void entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
643 * Update run-time statistics of the 'current'.
647 if (cfs_rq
->nr_running
> 1 || !sched_feat(WAKEUP_PREEMPT
))
648 check_preempt_tick(cfs_rq
, curr
);
651 /**************************************************
652 * CFS operations on tasks:
655 #ifdef CONFIG_FAIR_GROUP_SCHED
657 /* Walk up scheduling entities hierarchy */
658 #define for_each_sched_entity(se) \
659 for (; se; se = se->parent)
661 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
666 /* runqueue on which this entity is (to be) queued */
667 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
672 /* runqueue "owned" by this group */
673 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
678 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
679 * another cpu ('this_cpu')
681 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
683 return cfs_rq
->tg
->cfs_rq
[this_cpu
];
686 /* Iterate thr' all leaf cfs_rq's on a runqueue */
687 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
688 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
690 /* Do the two (enqueued) entities belong to the same group ? */
692 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
694 if (se
->cfs_rq
== pse
->cfs_rq
)
700 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
705 #else /* CONFIG_FAIR_GROUP_SCHED */
707 #define for_each_sched_entity(se) \
708 for (; se; se = NULL)
710 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
712 return &task_rq(p
)->cfs
;
715 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
717 struct task_struct
*p
= task_of(se
);
718 struct rq
*rq
= task_rq(p
);
723 /* runqueue "owned" by this group */
724 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
729 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
731 return &cpu_rq(this_cpu
)->cfs
;
734 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
735 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
738 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
743 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
748 #endif /* CONFIG_FAIR_GROUP_SCHED */
751 * The enqueue_task method is called before nr_running is
752 * increased. Here we update the fair scheduling stats and
753 * then put the task into the rbtree:
755 static void enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
757 struct cfs_rq
*cfs_rq
;
758 struct sched_entity
*se
= &p
->se
;
760 for_each_sched_entity(se
) {
763 cfs_rq
= cfs_rq_of(se
);
764 enqueue_entity(cfs_rq
, se
, wakeup
);
770 * The dequeue_task method is called before nr_running is
771 * decreased. We remove the task from the rbtree and
772 * update the fair scheduling stats:
774 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int sleep
)
776 struct cfs_rq
*cfs_rq
;
777 struct sched_entity
*se
= &p
->se
;
779 for_each_sched_entity(se
) {
780 cfs_rq
= cfs_rq_of(se
);
781 dequeue_entity(cfs_rq
, se
, sleep
);
782 /* Don't dequeue parent if it has other entities besides us */
783 if (cfs_rq
->load
.weight
)
790 * sched_yield() support is very simple - we dequeue and enqueue.
792 * If compat_yield is turned on then we requeue to the end of the tree.
794 static void yield_task_fair(struct rq
*rq
)
796 struct cfs_rq
*cfs_rq
= task_cfs_rq(rq
->curr
);
797 struct sched_entity
*rightmost
, *se
= &rq
->curr
->se
;
800 * Are we the only task in the tree?
802 if (unlikely(cfs_rq
->nr_running
== 1))
805 if (likely(!sysctl_sched_compat_yield
)) {
806 __update_rq_clock(rq
);
808 * Update run-time statistics of the 'current'.
815 * Find the rightmost entry in the rbtree:
817 rightmost
= __pick_last_entity(cfs_rq
);
819 * Already in the rightmost position?
821 if (unlikely(rightmost
->vruntime
< se
->vruntime
))
825 * Minimally necessary key value to be last in the tree:
826 * Upon rescheduling, sched_class::put_prev_task() will place
827 * 'current' within the tree based on its new key value.
829 se
->vruntime
= rightmost
->vruntime
+ 1;
833 * Preempt the current task with a newly woken task if needed:
835 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
)
837 struct task_struct
*curr
= rq
->curr
;
838 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
839 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
842 if (unlikely(rt_prio(p
->prio
))) {
849 * Batch tasks do not preempt (their preemption is driven by
852 if (unlikely(p
->policy
== SCHED_BATCH
))
855 if (!sched_feat(WAKEUP_PREEMPT
))
858 while (!is_same_group(se
, pse
)) {
859 se
= parent_entity(se
);
860 pse
= parent_entity(pse
);
863 gran
= sysctl_sched_wakeup_granularity
;
864 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
865 gran
= calc_delta_fair(gran
, &se
->load
);
867 if (pse
->vruntime
+ gran
< se
->vruntime
)
871 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
873 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
874 struct sched_entity
*se
;
876 if (unlikely(!cfs_rq
->nr_running
))
880 se
= pick_next_entity(cfs_rq
);
881 cfs_rq
= group_cfs_rq(se
);
888 * Account for a descheduled task:
890 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
892 struct sched_entity
*se
= &prev
->se
;
893 struct cfs_rq
*cfs_rq
;
895 for_each_sched_entity(se
) {
896 cfs_rq
= cfs_rq_of(se
);
897 put_prev_entity(cfs_rq
, se
);
902 /**************************************************
903 * Fair scheduling class load-balancing methods:
907 * Load-balancing iterator. Note: while the runqueue stays locked
908 * during the whole iteration, the current task might be
909 * dequeued so the iterator has to be dequeue-safe. Here we
910 * achieve that by always pre-iterating before returning
913 static struct task_struct
*
914 __load_balance_iterator(struct cfs_rq
*cfs_rq
, struct rb_node
*curr
)
916 struct task_struct
*p
;
921 p
= rb_entry(curr
, struct task_struct
, se
.run_node
);
922 cfs_rq
->rb_load_balance_curr
= rb_next(curr
);
927 static struct task_struct
*load_balance_start_fair(void *arg
)
929 struct cfs_rq
*cfs_rq
= arg
;
931 return __load_balance_iterator(cfs_rq
, first_fair(cfs_rq
));
934 static struct task_struct
*load_balance_next_fair(void *arg
)
936 struct cfs_rq
*cfs_rq
= arg
;
938 return __load_balance_iterator(cfs_rq
, cfs_rq
->rb_load_balance_curr
);
941 #ifdef CONFIG_FAIR_GROUP_SCHED
942 static int cfs_rq_best_prio(struct cfs_rq
*cfs_rq
)
944 struct sched_entity
*curr
;
945 struct task_struct
*p
;
947 if (!cfs_rq
->nr_running
)
952 curr
= __pick_next_entity(cfs_rq
);
961 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
962 unsigned long max_load_move
,
963 struct sched_domain
*sd
, enum cpu_idle_type idle
,
964 int *all_pinned
, int *this_best_prio
)
966 struct cfs_rq
*busy_cfs_rq
;
967 long rem_load_move
= max_load_move
;
968 struct rq_iterator cfs_rq_iterator
;
970 cfs_rq_iterator
.start
= load_balance_start_fair
;
971 cfs_rq_iterator
.next
= load_balance_next_fair
;
973 for_each_leaf_cfs_rq(busiest
, busy_cfs_rq
) {
974 #ifdef CONFIG_FAIR_GROUP_SCHED
975 struct cfs_rq
*this_cfs_rq
;
977 unsigned long maxload
;
979 this_cfs_rq
= cpu_cfs_rq(busy_cfs_rq
, this_cpu
);
981 imbalance
= busy_cfs_rq
->load
.weight
- this_cfs_rq
->load
.weight
;
982 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
986 /* Don't pull more than imbalance/2 */
988 maxload
= min(rem_load_move
, imbalance
);
990 *this_best_prio
= cfs_rq_best_prio(this_cfs_rq
);
992 # define maxload rem_load_move
995 * pass busy_cfs_rq argument into
996 * load_balance_[start|next]_fair iterators
998 cfs_rq_iterator
.arg
= busy_cfs_rq
;
999 rem_load_move
-= balance_tasks(this_rq
, this_cpu
, busiest
,
1000 maxload
, sd
, idle
, all_pinned
,
1004 if (rem_load_move
<= 0)
1008 return max_load_move
- rem_load_move
;
1012 move_one_task_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1013 struct sched_domain
*sd
, enum cpu_idle_type idle
)
1015 struct cfs_rq
*busy_cfs_rq
;
1016 struct rq_iterator cfs_rq_iterator
;
1018 cfs_rq_iterator
.start
= load_balance_start_fair
;
1019 cfs_rq_iterator
.next
= load_balance_next_fair
;
1021 for_each_leaf_cfs_rq(busiest
, busy_cfs_rq
) {
1023 * pass busy_cfs_rq argument into
1024 * load_balance_[start|next]_fair iterators
1026 cfs_rq_iterator
.arg
= busy_cfs_rq
;
1027 if (iter_move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
,
1037 * scheduler tick hitting a task of our scheduling class:
1039 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
)
1041 struct cfs_rq
*cfs_rq
;
1042 struct sched_entity
*se
= &curr
->se
;
1044 for_each_sched_entity(se
) {
1045 cfs_rq
= cfs_rq_of(se
);
1046 entity_tick(cfs_rq
, se
);
1050 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1053 * Share the fairness runtime between parent and child, thus the
1054 * total amount of pressure for CPU stays equal - new tasks
1055 * get a chance to run but frequent forkers are not allowed to
1056 * monopolize the CPU. Note: the parent runqueue is locked,
1057 * the child is not running yet.
1059 static void task_new_fair(struct rq
*rq
, struct task_struct
*p
)
1061 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
1062 struct sched_entity
*se
= &p
->se
, *curr
= cfs_rq
->curr
;
1063 int this_cpu
= smp_processor_id();
1065 sched_info_queued(p
);
1067 update_curr(cfs_rq
);
1068 place_entity(cfs_rq
, se
, 1);
1070 /* 'curr' will be NULL if the child belongs to a different group */
1071 if (sysctl_sched_child_runs_first
&& this_cpu
== task_cpu(p
) &&
1072 curr
&& curr
->vruntime
< se
->vruntime
) {
1074 * Upon rescheduling, sched_class::put_prev_task() will place
1075 * 'current' within the tree based on its new key value.
1077 swap(curr
->vruntime
, se
->vruntime
);
1080 enqueue_task_fair(rq
, p
, 0);
1081 resched_task(rq
->curr
);
1084 /* Account for a task changing its policy or group.
1086 * This routine is mostly called to set cfs_rq->curr field when a task
1087 * migrates between groups/classes.
1089 static void set_curr_task_fair(struct rq
*rq
)
1091 struct sched_entity
*se
= &rq
->curr
->se
;
1093 for_each_sched_entity(se
)
1094 set_next_entity(cfs_rq_of(se
), se
);
1098 * All the scheduling class methods:
1100 static const struct sched_class fair_sched_class
= {
1101 .next
= &idle_sched_class
,
1102 .enqueue_task
= enqueue_task_fair
,
1103 .dequeue_task
= dequeue_task_fair
,
1104 .yield_task
= yield_task_fair
,
1106 .check_preempt_curr
= check_preempt_wakeup
,
1108 .pick_next_task
= pick_next_task_fair
,
1109 .put_prev_task
= put_prev_task_fair
,
1112 .load_balance
= load_balance_fair
,
1113 .move_one_task
= move_one_task_fair
,
1116 .set_curr_task
= set_curr_task_fair
,
1117 .task_tick
= task_tick_fair
,
1118 .task_new
= task_new_fair
,
1121 #ifdef CONFIG_SCHED_DEBUG
1122 static void print_cfs_stats(struct seq_file
*m
, int cpu
)
1124 struct cfs_rq
*cfs_rq
;
1126 #ifdef CONFIG_FAIR_GROUP_SCHED
1127 print_cfs_rq(m
, cpu
, &cpu_rq(cpu
)->cfs
);
1129 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
1130 print_cfs_rq(m
, cpu
, cfs_rq
);