[SCSI] ibmvscsi: convert kmalloc + memset to kcalloc
[wrt350n-kernel.git] / arch / arm / mm / consistent.c
blob50e6b6bfb2e231edd8321e3dea7be4cc5fffa6b8
1 /*
2 * linux/arch/arm/mm/consistent.c
4 * Copyright (C) 2000-2004 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * DMA uncached mapping support.
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
21 #include <asm/memory.h>
22 #include <asm/cacheflush.h>
23 #include <asm/tlbflush.h>
24 #include <asm/sizes.h>
26 /* Sanity check size */
27 #if (CONSISTENT_DMA_SIZE % SZ_2M)
28 #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
29 #endif
31 #define CONSISTENT_END (0xffe00000)
32 #define CONSISTENT_BASE (CONSISTENT_END - CONSISTENT_DMA_SIZE)
34 #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
35 #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
36 #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
40 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
42 static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
43 static DEFINE_SPINLOCK(consistent_lock);
46 * VM region handling support.
48 * This should become something generic, handling VM region allocations for
49 * vmalloc and similar (ioremap, module space, etc).
51 * I envisage vmalloc()'s supporting vm_struct becoming:
53 * struct vm_struct {
54 * struct vm_region region;
55 * unsigned long flags;
56 * struct page **pages;
57 * unsigned int nr_pages;
58 * unsigned long phys_addr;
59 * };
61 * get_vm_area() would then call vm_region_alloc with an appropriate
62 * struct vm_region head (eg):
64 * struct vm_region vmalloc_head = {
65 * .vm_list = LIST_HEAD_INIT(vmalloc_head.vm_list),
66 * .vm_start = VMALLOC_START,
67 * .vm_end = VMALLOC_END,
68 * };
70 * However, vmalloc_head.vm_start is variable (typically, it is dependent on
71 * the amount of RAM found at boot time.) I would imagine that get_vm_area()
72 * would have to initialise this each time prior to calling vm_region_alloc().
74 struct vm_region {
75 struct list_head vm_list;
76 unsigned long vm_start;
77 unsigned long vm_end;
78 struct page *vm_pages;
79 int vm_active;
82 static struct vm_region consistent_head = {
83 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
84 .vm_start = CONSISTENT_BASE,
85 .vm_end = CONSISTENT_END,
88 static struct vm_region *
89 vm_region_alloc(struct vm_region *head, size_t size, gfp_t gfp)
91 unsigned long addr = head->vm_start, end = head->vm_end - size;
92 unsigned long flags;
93 struct vm_region *c, *new;
95 new = kmalloc(sizeof(struct vm_region), gfp);
96 if (!new)
97 goto out;
99 spin_lock_irqsave(&consistent_lock, flags);
101 list_for_each_entry(c, &head->vm_list, vm_list) {
102 if ((addr + size) < addr)
103 goto nospc;
104 if ((addr + size) <= c->vm_start)
105 goto found;
106 addr = c->vm_end;
107 if (addr > end)
108 goto nospc;
111 found:
113 * Insert this entry _before_ the one we found.
115 list_add_tail(&new->vm_list, &c->vm_list);
116 new->vm_start = addr;
117 new->vm_end = addr + size;
118 new->vm_active = 1;
120 spin_unlock_irqrestore(&consistent_lock, flags);
121 return new;
123 nospc:
124 spin_unlock_irqrestore(&consistent_lock, flags);
125 kfree(new);
126 out:
127 return NULL;
130 static struct vm_region *vm_region_find(struct vm_region *head, unsigned long addr)
132 struct vm_region *c;
134 list_for_each_entry(c, &head->vm_list, vm_list) {
135 if (c->vm_active && c->vm_start == addr)
136 goto out;
138 c = NULL;
139 out:
140 return c;
143 #ifdef CONFIG_HUGETLB_PAGE
144 #error ARM Coherent DMA allocator does not (yet) support huge TLB
145 #endif
147 static void *
148 __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
149 pgprot_t prot)
151 struct page *page;
152 struct vm_region *c;
153 unsigned long order;
154 u64 mask = ISA_DMA_THRESHOLD, limit;
156 if (!consistent_pte[0]) {
157 printk(KERN_ERR "%s: not initialised\n", __func__);
158 dump_stack();
159 return NULL;
162 if (dev) {
163 mask = dev->coherent_dma_mask;
166 * Sanity check the DMA mask - it must be non-zero, and
167 * must be able to be satisfied by a DMA allocation.
169 if (mask == 0) {
170 dev_warn(dev, "coherent DMA mask is unset\n");
171 goto no_page;
174 if ((~mask) & ISA_DMA_THRESHOLD) {
175 dev_warn(dev, "coherent DMA mask %#llx is smaller "
176 "than system GFP_DMA mask %#llx\n",
177 mask, (unsigned long long)ISA_DMA_THRESHOLD);
178 goto no_page;
183 * Sanity check the allocation size.
185 size = PAGE_ALIGN(size);
186 limit = (mask + 1) & ~mask;
187 if ((limit && size >= limit) ||
188 size >= (CONSISTENT_END - CONSISTENT_BASE)) {
189 printk(KERN_WARNING "coherent allocation too big "
190 "(requested %#x mask %#llx)\n", size, mask);
191 goto no_page;
194 order = get_order(size);
196 if (mask != 0xffffffff)
197 gfp |= GFP_DMA;
199 page = alloc_pages(gfp, order);
200 if (!page)
201 goto no_page;
204 * Invalidate any data that might be lurking in the
205 * kernel direct-mapped region for device DMA.
208 unsigned long kaddr = (unsigned long)page_address(page);
209 memset(page_address(page), 0, size);
210 dmac_flush_range(kaddr, kaddr + size);
214 * Allocate a virtual address in the consistent mapping region.
216 c = vm_region_alloc(&consistent_head, size,
217 gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
218 if (c) {
219 pte_t *pte;
220 struct page *end = page + (1 << order);
221 int idx = CONSISTENT_PTE_INDEX(c->vm_start);
222 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
224 pte = consistent_pte[idx] + off;
225 c->vm_pages = page;
227 split_page(page, order);
230 * Set the "dma handle"
232 *handle = page_to_dma(dev, page);
234 do {
235 BUG_ON(!pte_none(*pte));
238 * x86 does not mark the pages reserved...
240 SetPageReserved(page);
241 set_pte(pte, mk_pte(page, prot));
242 page++;
243 pte++;
244 off++;
245 if (off >= PTRS_PER_PTE) {
246 off = 0;
247 pte = consistent_pte[++idx];
249 } while (size -= PAGE_SIZE);
252 * Free the otherwise unused pages.
254 while (page < end) {
255 __free_page(page);
256 page++;
259 return (void *)c->vm_start;
262 if (page)
263 __free_pages(page, order);
264 no_page:
265 *handle = ~0;
266 return NULL;
270 * Allocate DMA-coherent memory space and return both the kernel remapped
271 * virtual and bus address for that space.
273 void *
274 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
276 if (arch_is_coherent()) {
277 void *virt;
279 virt = kmalloc(size, gfp);
280 if (!virt)
281 return NULL;
282 *handle = virt_to_dma(dev, virt);
284 return virt;
287 return __dma_alloc(dev, size, handle, gfp,
288 pgprot_noncached(pgprot_kernel));
290 EXPORT_SYMBOL(dma_alloc_coherent);
293 * Allocate a writecombining region, in much the same way as
294 * dma_alloc_coherent above.
296 void *
297 dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
299 return __dma_alloc(dev, size, handle, gfp,
300 pgprot_writecombine(pgprot_kernel));
302 EXPORT_SYMBOL(dma_alloc_writecombine);
304 static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
305 void *cpu_addr, dma_addr_t dma_addr, size_t size)
307 unsigned long flags, user_size, kern_size;
308 struct vm_region *c;
309 int ret = -ENXIO;
311 user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
313 spin_lock_irqsave(&consistent_lock, flags);
314 c = vm_region_find(&consistent_head, (unsigned long)cpu_addr);
315 spin_unlock_irqrestore(&consistent_lock, flags);
317 if (c) {
318 unsigned long off = vma->vm_pgoff;
320 kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
322 if (off < kern_size &&
323 user_size <= (kern_size - off)) {
324 vma->vm_flags |= VM_RESERVED;
325 ret = remap_pfn_range(vma, vma->vm_start,
326 page_to_pfn(c->vm_pages) + off,
327 user_size << PAGE_SHIFT,
328 vma->vm_page_prot);
332 return ret;
335 int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
336 void *cpu_addr, dma_addr_t dma_addr, size_t size)
338 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
339 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
341 EXPORT_SYMBOL(dma_mmap_coherent);
343 int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
344 void *cpu_addr, dma_addr_t dma_addr, size_t size)
346 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
347 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
349 EXPORT_SYMBOL(dma_mmap_writecombine);
352 * free a page as defined by the above mapping.
353 * Must not be called with IRQs disabled.
355 void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
357 struct vm_region *c;
358 unsigned long flags, addr;
359 pte_t *ptep;
360 int idx;
361 u32 off;
363 WARN_ON(irqs_disabled());
365 if (arch_is_coherent()) {
366 kfree(cpu_addr);
367 return;
370 size = PAGE_ALIGN(size);
372 spin_lock_irqsave(&consistent_lock, flags);
373 c = vm_region_find(&consistent_head, (unsigned long)cpu_addr);
374 if (!c)
375 goto no_area;
377 c->vm_active = 0;
378 spin_unlock_irqrestore(&consistent_lock, flags);
380 if ((c->vm_end - c->vm_start) != size) {
381 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
382 __func__, c->vm_end - c->vm_start, size);
383 dump_stack();
384 size = c->vm_end - c->vm_start;
387 idx = CONSISTENT_PTE_INDEX(c->vm_start);
388 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
389 ptep = consistent_pte[idx] + off;
390 addr = c->vm_start;
391 do {
392 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
393 unsigned long pfn;
395 ptep++;
396 addr += PAGE_SIZE;
397 off++;
398 if (off >= PTRS_PER_PTE) {
399 off = 0;
400 ptep = consistent_pte[++idx];
403 if (!pte_none(pte) && pte_present(pte)) {
404 pfn = pte_pfn(pte);
406 if (pfn_valid(pfn)) {
407 struct page *page = pfn_to_page(pfn);
410 * x86 does not mark the pages reserved...
412 ClearPageReserved(page);
414 __free_page(page);
415 continue;
419 printk(KERN_CRIT "%s: bad page in kernel page table\n",
420 __func__);
421 } while (size -= PAGE_SIZE);
423 flush_tlb_kernel_range(c->vm_start, c->vm_end);
425 spin_lock_irqsave(&consistent_lock, flags);
426 list_del(&c->vm_list);
427 spin_unlock_irqrestore(&consistent_lock, flags);
429 kfree(c);
430 return;
432 no_area:
433 spin_unlock_irqrestore(&consistent_lock, flags);
434 printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
435 __func__, cpu_addr);
436 dump_stack();
438 EXPORT_SYMBOL(dma_free_coherent);
441 * Initialise the consistent memory allocation.
443 static int __init consistent_init(void)
445 pgd_t *pgd;
446 pmd_t *pmd;
447 pte_t *pte;
448 int ret = 0, i = 0;
449 u32 base = CONSISTENT_BASE;
451 do {
452 pgd = pgd_offset(&init_mm, base);
453 pmd = pmd_alloc(&init_mm, pgd, base);
454 if (!pmd) {
455 printk(KERN_ERR "%s: no pmd tables\n", __func__);
456 ret = -ENOMEM;
457 break;
459 WARN_ON(!pmd_none(*pmd));
461 pte = pte_alloc_kernel(pmd, base);
462 if (!pte) {
463 printk(KERN_ERR "%s: no pte tables\n", __func__);
464 ret = -ENOMEM;
465 break;
468 consistent_pte[i++] = pte;
469 base += (1 << PGDIR_SHIFT);
470 } while (base < CONSISTENT_END);
472 return ret;
475 core_initcall(consistent_init);
478 * Make an area consistent for devices.
480 void consistent_sync(void *vaddr, size_t size, int direction)
482 unsigned long start = (unsigned long)vaddr;
483 unsigned long end = start + size;
485 switch (direction) {
486 case DMA_FROM_DEVICE: /* invalidate only */
487 dmac_inv_range(start, end);
488 break;
489 case DMA_TO_DEVICE: /* writeback only */
490 dmac_clean_range(start, end);
491 break;
492 case DMA_BIDIRECTIONAL: /* writeback and invalidate */
493 dmac_flush_range(start, end);
494 break;
495 default:
496 BUG();
499 EXPORT_SYMBOL(consistent_sync);