1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
33 #include <asm/uaccess.h>
35 extern char e1000_driver_name
[];
36 extern char e1000_driver_version
[];
38 extern int e1000_up(struct e1000_adapter
*adapter
);
39 extern void e1000_down(struct e1000_adapter
*adapter
);
40 extern void e1000_reinit_locked(struct e1000_adapter
*adapter
);
41 extern void e1000_reset(struct e1000_adapter
*adapter
);
42 extern int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, uint16_t spddplx
);
43 extern int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
);
44 extern int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
);
45 extern void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
);
46 extern void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
);
47 extern void e1000_update_stats(struct e1000_adapter
*adapter
);
51 char stat_string
[ETH_GSTRING_LEN
];
56 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
57 offsetof(struct e1000_adapter, m)
58 static const struct e1000_stats e1000_gstrings_stats
[] = {
59 { "rx_packets", E1000_STAT(stats
.gprc
) },
60 { "tx_packets", E1000_STAT(stats
.gptc
) },
61 { "rx_bytes", E1000_STAT(stats
.gorcl
) },
62 { "tx_bytes", E1000_STAT(stats
.gotcl
) },
63 { "rx_broadcast", E1000_STAT(stats
.bprc
) },
64 { "tx_broadcast", E1000_STAT(stats
.bptc
) },
65 { "rx_multicast", E1000_STAT(stats
.mprc
) },
66 { "tx_multicast", E1000_STAT(stats
.mptc
) },
67 { "rx_errors", E1000_STAT(stats
.rxerrc
) },
68 { "tx_errors", E1000_STAT(stats
.txerrc
) },
69 { "tx_dropped", E1000_STAT(net_stats
.tx_dropped
) },
70 { "multicast", E1000_STAT(stats
.mprc
) },
71 { "collisions", E1000_STAT(stats
.colc
) },
72 { "rx_length_errors", E1000_STAT(stats
.rlerrc
) },
73 { "rx_over_errors", E1000_STAT(net_stats
.rx_over_errors
) },
74 { "rx_crc_errors", E1000_STAT(stats
.crcerrs
) },
75 { "rx_frame_errors", E1000_STAT(net_stats
.rx_frame_errors
) },
76 { "rx_no_buffer_count", E1000_STAT(stats
.rnbc
) },
77 { "rx_missed_errors", E1000_STAT(stats
.mpc
) },
78 { "tx_aborted_errors", E1000_STAT(stats
.ecol
) },
79 { "tx_carrier_errors", E1000_STAT(stats
.tncrs
) },
80 { "tx_fifo_errors", E1000_STAT(net_stats
.tx_fifo_errors
) },
81 { "tx_heartbeat_errors", E1000_STAT(net_stats
.tx_heartbeat_errors
) },
82 { "tx_window_errors", E1000_STAT(stats
.latecol
) },
83 { "tx_abort_late_coll", E1000_STAT(stats
.latecol
) },
84 { "tx_deferred_ok", E1000_STAT(stats
.dc
) },
85 { "tx_single_coll_ok", E1000_STAT(stats
.scc
) },
86 { "tx_multi_coll_ok", E1000_STAT(stats
.mcc
) },
87 { "tx_timeout_count", E1000_STAT(tx_timeout_count
) },
88 { "tx_restart_queue", E1000_STAT(restart_queue
) },
89 { "rx_long_length_errors", E1000_STAT(stats
.roc
) },
90 { "rx_short_length_errors", E1000_STAT(stats
.ruc
) },
91 { "rx_align_errors", E1000_STAT(stats
.algnerrc
) },
92 { "tx_tcp_seg_good", E1000_STAT(stats
.tsctc
) },
93 { "tx_tcp_seg_failed", E1000_STAT(stats
.tsctfc
) },
94 { "rx_flow_control_xon", E1000_STAT(stats
.xonrxc
) },
95 { "rx_flow_control_xoff", E1000_STAT(stats
.xoffrxc
) },
96 { "tx_flow_control_xon", E1000_STAT(stats
.xontxc
) },
97 { "tx_flow_control_xoff", E1000_STAT(stats
.xofftxc
) },
98 { "rx_long_byte_count", E1000_STAT(stats
.gorcl
) },
99 { "rx_csum_offload_good", E1000_STAT(hw_csum_good
) },
100 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err
) },
101 { "rx_header_split", E1000_STAT(rx_hdr_split
) },
102 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed
) },
103 { "tx_smbus", E1000_STAT(stats
.mgptc
) },
104 { "rx_smbus", E1000_STAT(stats
.mgprc
) },
105 { "dropped_smbus", E1000_STAT(stats
.mgpdc
) },
108 #define E1000_QUEUE_STATS_LEN 0
109 #define E1000_GLOBAL_STATS_LEN \
110 sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
111 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
112 static const char e1000_gstrings_test
[][ETH_GSTRING_LEN
] = {
113 "Register test (offline)", "Eeprom test (offline)",
114 "Interrupt test (offline)", "Loopback test (offline)",
115 "Link test (on/offline)"
117 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
120 e1000_get_settings(struct net_device
*netdev
, struct ethtool_cmd
*ecmd
)
122 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
123 struct e1000_hw
*hw
= &adapter
->hw
;
125 if (hw
->media_type
== e1000_media_type_copper
) {
127 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
128 SUPPORTED_10baseT_Full
|
129 SUPPORTED_100baseT_Half
|
130 SUPPORTED_100baseT_Full
|
131 SUPPORTED_1000baseT_Full
|
134 if (hw
->phy_type
== e1000_phy_ife
)
135 ecmd
->supported
&= ~SUPPORTED_1000baseT_Full
;
136 ecmd
->advertising
= ADVERTISED_TP
;
138 if (hw
->autoneg
== 1) {
139 ecmd
->advertising
|= ADVERTISED_Autoneg
;
140 /* the e1000 autoneg seems to match ethtool nicely */
141 ecmd
->advertising
|= hw
->autoneg_advertised
;
144 ecmd
->port
= PORT_TP
;
145 ecmd
->phy_address
= hw
->phy_addr
;
147 if (hw
->mac_type
== e1000_82543
)
148 ecmd
->transceiver
= XCVR_EXTERNAL
;
150 ecmd
->transceiver
= XCVR_INTERNAL
;
153 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
157 ecmd
->advertising
= (ADVERTISED_1000baseT_Full
|
161 ecmd
->port
= PORT_FIBRE
;
163 if (hw
->mac_type
>= e1000_82545
)
164 ecmd
->transceiver
= XCVR_INTERNAL
;
166 ecmd
->transceiver
= XCVR_EXTERNAL
;
169 if (E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_LU
) {
171 e1000_get_speed_and_duplex(hw
, &adapter
->link_speed
,
172 &adapter
->link_duplex
);
173 ecmd
->speed
= adapter
->link_speed
;
175 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
176 * and HALF_DUPLEX != DUPLEX_HALF */
178 if (adapter
->link_duplex
== FULL_DUPLEX
)
179 ecmd
->duplex
= DUPLEX_FULL
;
181 ecmd
->duplex
= DUPLEX_HALF
;
187 ecmd
->autoneg
= ((hw
->media_type
== e1000_media_type_fiber
) ||
188 hw
->autoneg
) ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
193 e1000_set_settings(struct net_device
*netdev
, struct ethtool_cmd
*ecmd
)
195 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
196 struct e1000_hw
*hw
= &adapter
->hw
;
198 /* When SoL/IDER sessions are active, autoneg/speed/duplex
199 * cannot be changed */
200 if (e1000_check_phy_reset_block(hw
)) {
201 DPRINTK(DRV
, ERR
, "Cannot change link characteristics "
202 "when SoL/IDER is active.\n");
206 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
209 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
211 if (hw
->media_type
== e1000_media_type_fiber
)
212 hw
->autoneg_advertised
= ADVERTISED_1000baseT_Full
|
216 hw
->autoneg_advertised
= ecmd
->advertising
|
219 ecmd
->advertising
= hw
->autoneg_advertised
;
221 if (e1000_set_spd_dplx(adapter
, ecmd
->speed
+ ecmd
->duplex
)) {
222 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
228 if (netif_running(adapter
->netdev
)) {
232 e1000_reset(adapter
);
234 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
239 e1000_get_pauseparam(struct net_device
*netdev
,
240 struct ethtool_pauseparam
*pause
)
242 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
243 struct e1000_hw
*hw
= &adapter
->hw
;
246 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
248 if (hw
->fc
== E1000_FC_RX_PAUSE
)
250 else if (hw
->fc
== E1000_FC_TX_PAUSE
)
252 else if (hw
->fc
== E1000_FC_FULL
) {
259 e1000_set_pauseparam(struct net_device
*netdev
,
260 struct ethtool_pauseparam
*pause
)
262 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
263 struct e1000_hw
*hw
= &adapter
->hw
;
266 adapter
->fc_autoneg
= pause
->autoneg
;
268 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
271 if (pause
->rx_pause
&& pause
->tx_pause
)
272 hw
->fc
= E1000_FC_FULL
;
273 else if (pause
->rx_pause
&& !pause
->tx_pause
)
274 hw
->fc
= E1000_FC_RX_PAUSE
;
275 else if (!pause
->rx_pause
&& pause
->tx_pause
)
276 hw
->fc
= E1000_FC_TX_PAUSE
;
277 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
278 hw
->fc
= E1000_FC_NONE
;
280 hw
->original_fc
= hw
->fc
;
282 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
283 if (netif_running(adapter
->netdev
)) {
287 e1000_reset(adapter
);
289 retval
= ((hw
->media_type
== e1000_media_type_fiber
) ?
290 e1000_setup_link(hw
) : e1000_force_mac_fc(hw
));
292 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
297 e1000_get_rx_csum(struct net_device
*netdev
)
299 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
300 return adapter
->rx_csum
;
304 e1000_set_rx_csum(struct net_device
*netdev
, uint32_t data
)
306 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
307 adapter
->rx_csum
= data
;
309 if (netif_running(netdev
))
310 e1000_reinit_locked(adapter
);
312 e1000_reset(adapter
);
317 e1000_get_tx_csum(struct net_device
*netdev
)
319 return (netdev
->features
& NETIF_F_HW_CSUM
) != 0;
323 e1000_set_tx_csum(struct net_device
*netdev
, uint32_t data
)
325 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
327 if (adapter
->hw
.mac_type
< e1000_82543
) {
334 netdev
->features
|= NETIF_F_HW_CSUM
;
336 netdev
->features
&= ~NETIF_F_HW_CSUM
;
342 e1000_set_tso(struct net_device
*netdev
, uint32_t data
)
344 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
345 if ((adapter
->hw
.mac_type
< e1000_82544
) ||
346 (adapter
->hw
.mac_type
== e1000_82547
))
347 return data
? -EINVAL
: 0;
350 netdev
->features
|= NETIF_F_TSO
;
352 netdev
->features
&= ~NETIF_F_TSO
;
355 netdev
->features
|= NETIF_F_TSO6
;
357 netdev
->features
&= ~NETIF_F_TSO6
;
359 DPRINTK(PROBE
, INFO
, "TSO is %s\n", data
? "Enabled" : "Disabled");
360 adapter
->tso_force
= TRUE
;
365 e1000_get_msglevel(struct net_device
*netdev
)
367 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
368 return adapter
->msg_enable
;
372 e1000_set_msglevel(struct net_device
*netdev
, uint32_t data
)
374 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
375 adapter
->msg_enable
= data
;
379 e1000_get_regs_len(struct net_device
*netdev
)
381 #define E1000_REGS_LEN 32
382 return E1000_REGS_LEN
* sizeof(uint32_t);
386 e1000_get_regs(struct net_device
*netdev
,
387 struct ethtool_regs
*regs
, void *p
)
389 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
390 struct e1000_hw
*hw
= &adapter
->hw
;
391 uint32_t *regs_buff
= p
;
394 memset(p
, 0, E1000_REGS_LEN
* sizeof(uint32_t));
396 regs
->version
= (1 << 24) | (hw
->revision_id
<< 16) | hw
->device_id
;
398 regs_buff
[0] = E1000_READ_REG(hw
, CTRL
);
399 regs_buff
[1] = E1000_READ_REG(hw
, STATUS
);
401 regs_buff
[2] = E1000_READ_REG(hw
, RCTL
);
402 regs_buff
[3] = E1000_READ_REG(hw
, RDLEN
);
403 regs_buff
[4] = E1000_READ_REG(hw
, RDH
);
404 regs_buff
[5] = E1000_READ_REG(hw
, RDT
);
405 regs_buff
[6] = E1000_READ_REG(hw
, RDTR
);
407 regs_buff
[7] = E1000_READ_REG(hw
, TCTL
);
408 regs_buff
[8] = E1000_READ_REG(hw
, TDLEN
);
409 regs_buff
[9] = E1000_READ_REG(hw
, TDH
);
410 regs_buff
[10] = E1000_READ_REG(hw
, TDT
);
411 regs_buff
[11] = E1000_READ_REG(hw
, TIDV
);
413 regs_buff
[12] = adapter
->hw
.phy_type
; /* PHY type (IGP=1, M88=0) */
414 if (hw
->phy_type
== e1000_phy_igp
) {
415 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
416 IGP01E1000_PHY_AGC_A
);
417 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_A
&
418 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
419 regs_buff
[13] = (uint32_t)phy_data
; /* cable length */
420 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
421 IGP01E1000_PHY_AGC_B
);
422 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_B
&
423 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
424 regs_buff
[14] = (uint32_t)phy_data
; /* cable length */
425 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
426 IGP01E1000_PHY_AGC_C
);
427 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_C
&
428 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
429 regs_buff
[15] = (uint32_t)phy_data
; /* cable length */
430 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
431 IGP01E1000_PHY_AGC_D
);
432 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_D
&
433 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
434 regs_buff
[16] = (uint32_t)phy_data
; /* cable length */
435 regs_buff
[17] = 0; /* extended 10bt distance (not needed) */
436 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
437 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PORT_STATUS
&
438 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
439 regs_buff
[18] = (uint32_t)phy_data
; /* cable polarity */
440 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
441 IGP01E1000_PHY_PCS_INIT_REG
);
442 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PCS_INIT_REG
&
443 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
444 regs_buff
[19] = (uint32_t)phy_data
; /* cable polarity */
445 regs_buff
[20] = 0; /* polarity correction enabled (always) */
446 regs_buff
[22] = 0; /* phy receive errors (unavailable) */
447 regs_buff
[23] = regs_buff
[18]; /* mdix mode */
448 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
450 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
451 regs_buff
[13] = (uint32_t)phy_data
; /* cable length */
452 regs_buff
[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
453 regs_buff
[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
454 regs_buff
[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
455 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
456 regs_buff
[17] = (uint32_t)phy_data
; /* extended 10bt distance */
457 regs_buff
[18] = regs_buff
[13]; /* cable polarity */
458 regs_buff
[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
459 regs_buff
[20] = regs_buff
[17]; /* polarity correction */
460 /* phy receive errors */
461 regs_buff
[22] = adapter
->phy_stats
.receive_errors
;
462 regs_buff
[23] = regs_buff
[13]; /* mdix mode */
464 regs_buff
[21] = adapter
->phy_stats
.idle_errors
; /* phy idle errors */
465 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_data
);
466 regs_buff
[24] = (uint32_t)phy_data
; /* phy local receiver status */
467 regs_buff
[25] = regs_buff
[24]; /* phy remote receiver status */
468 if (hw
->mac_type
>= e1000_82540
&&
469 hw
->mac_type
< e1000_82571
&&
470 hw
->media_type
== e1000_media_type_copper
) {
471 regs_buff
[26] = E1000_READ_REG(hw
, MANC
);
476 e1000_get_eeprom_len(struct net_device
*netdev
)
478 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
479 return adapter
->hw
.eeprom
.word_size
* 2;
483 e1000_get_eeprom(struct net_device
*netdev
,
484 struct ethtool_eeprom
*eeprom
, uint8_t *bytes
)
486 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
487 struct e1000_hw
*hw
= &adapter
->hw
;
488 uint16_t *eeprom_buff
;
489 int first_word
, last_word
;
493 if (eeprom
->len
== 0)
496 eeprom
->magic
= hw
->vendor_id
| (hw
->device_id
<< 16);
498 first_word
= eeprom
->offset
>> 1;
499 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
501 eeprom_buff
= kmalloc(sizeof(uint16_t) *
502 (last_word
- first_word
+ 1), GFP_KERNEL
);
506 if (hw
->eeprom
.type
== e1000_eeprom_spi
)
507 ret_val
= e1000_read_eeprom(hw
, first_word
,
508 last_word
- first_word
+ 1,
511 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
512 if ((ret_val
= e1000_read_eeprom(hw
, first_word
+ i
, 1,
517 /* Device's eeprom is always little-endian, word addressable */
518 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
519 le16_to_cpus(&eeprom_buff
[i
]);
521 memcpy(bytes
, (uint8_t *)eeprom_buff
+ (eeprom
->offset
& 1),
529 e1000_set_eeprom(struct net_device
*netdev
,
530 struct ethtool_eeprom
*eeprom
, uint8_t *bytes
)
532 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
533 struct e1000_hw
*hw
= &adapter
->hw
;
534 uint16_t *eeprom_buff
;
536 int max_len
, first_word
, last_word
, ret_val
= 0;
539 if (eeprom
->len
== 0)
542 if (eeprom
->magic
!= (hw
->vendor_id
| (hw
->device_id
<< 16)))
545 max_len
= hw
->eeprom
.word_size
* 2;
547 first_word
= eeprom
->offset
>> 1;
548 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
549 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
553 ptr
= (void *)eeprom_buff
;
555 if (eeprom
->offset
& 1) {
556 /* need read/modify/write of first changed EEPROM word */
557 /* only the second byte of the word is being modified */
558 ret_val
= e1000_read_eeprom(hw
, first_word
, 1,
562 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0)) {
563 /* need read/modify/write of last changed EEPROM word */
564 /* only the first byte of the word is being modified */
565 ret_val
= e1000_read_eeprom(hw
, last_word
, 1,
566 &eeprom_buff
[last_word
- first_word
]);
569 /* Device's eeprom is always little-endian, word addressable */
570 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
571 le16_to_cpus(&eeprom_buff
[i
]);
573 memcpy(ptr
, bytes
, eeprom
->len
);
575 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
576 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
578 ret_val
= e1000_write_eeprom(hw
, first_word
,
579 last_word
- first_word
+ 1, eeprom_buff
);
581 /* Update the checksum over the first part of the EEPROM if needed
582 * and flush shadow RAM for 82573 conrollers */
583 if ((ret_val
== 0) && ((first_word
<= EEPROM_CHECKSUM_REG
) ||
584 (hw
->mac_type
== e1000_82573
)))
585 e1000_update_eeprom_checksum(hw
);
592 e1000_get_drvinfo(struct net_device
*netdev
,
593 struct ethtool_drvinfo
*drvinfo
)
595 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
596 char firmware_version
[32];
597 uint16_t eeprom_data
;
599 strncpy(drvinfo
->driver
, e1000_driver_name
, 32);
600 strncpy(drvinfo
->version
, e1000_driver_version
, 32);
602 /* EEPROM image version # is reported as firmware version # for
603 * 8257{1|2|3} controllers */
604 e1000_read_eeprom(&adapter
->hw
, 5, 1, &eeprom_data
);
605 switch (adapter
->hw
.mac_type
) {
609 case e1000_80003es2lan
:
611 sprintf(firmware_version
, "%d.%d-%d",
612 (eeprom_data
& 0xF000) >> 12,
613 (eeprom_data
& 0x0FF0) >> 4,
614 eeprom_data
& 0x000F);
617 sprintf(firmware_version
, "N/A");
620 strncpy(drvinfo
->fw_version
, firmware_version
, 32);
621 strncpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
), 32);
622 drvinfo
->n_stats
= E1000_STATS_LEN
;
623 drvinfo
->testinfo_len
= E1000_TEST_LEN
;
624 drvinfo
->regdump_len
= e1000_get_regs_len(netdev
);
625 drvinfo
->eedump_len
= e1000_get_eeprom_len(netdev
);
629 e1000_get_ringparam(struct net_device
*netdev
,
630 struct ethtool_ringparam
*ring
)
632 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
633 e1000_mac_type mac_type
= adapter
->hw
.mac_type
;
634 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
635 struct e1000_rx_ring
*rxdr
= adapter
->rx_ring
;
637 ring
->rx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_RXD
:
639 ring
->tx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_TXD
:
641 ring
->rx_mini_max_pending
= 0;
642 ring
->rx_jumbo_max_pending
= 0;
643 ring
->rx_pending
= rxdr
->count
;
644 ring
->tx_pending
= txdr
->count
;
645 ring
->rx_mini_pending
= 0;
646 ring
->rx_jumbo_pending
= 0;
650 e1000_set_ringparam(struct net_device
*netdev
,
651 struct ethtool_ringparam
*ring
)
653 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
654 e1000_mac_type mac_type
= adapter
->hw
.mac_type
;
655 struct e1000_tx_ring
*txdr
, *tx_old
;
656 struct e1000_rx_ring
*rxdr
, *rx_old
;
659 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
662 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
665 if (netif_running(adapter
->netdev
))
668 tx_old
= adapter
->tx_ring
;
669 rx_old
= adapter
->rx_ring
;
672 txdr
= kcalloc(adapter
->num_tx_queues
, sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
676 rxdr
= kcalloc(adapter
->num_rx_queues
, sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
680 adapter
->tx_ring
= txdr
;
681 adapter
->rx_ring
= rxdr
;
683 rxdr
->count
= max(ring
->rx_pending
,(uint32_t)E1000_MIN_RXD
);
684 rxdr
->count
= min(rxdr
->count
,(uint32_t)(mac_type
< e1000_82544
?
685 E1000_MAX_RXD
: E1000_MAX_82544_RXD
));
686 rxdr
->count
= ALIGN(rxdr
->count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
688 txdr
->count
= max(ring
->tx_pending
,(uint32_t)E1000_MIN_TXD
);
689 txdr
->count
= min(txdr
->count
,(uint32_t)(mac_type
< e1000_82544
?
690 E1000_MAX_TXD
: E1000_MAX_82544_TXD
));
691 txdr
->count
= ALIGN(txdr
->count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
693 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
694 txdr
[i
].count
= txdr
->count
;
695 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
696 rxdr
[i
].count
= rxdr
->count
;
698 if (netif_running(adapter
->netdev
)) {
699 /* Try to get new resources before deleting old */
700 if ((err
= e1000_setup_all_rx_resources(adapter
)))
702 if ((err
= e1000_setup_all_tx_resources(adapter
)))
705 /* save the new, restore the old in order to free it,
706 * then restore the new back again */
708 adapter
->rx_ring
= rx_old
;
709 adapter
->tx_ring
= tx_old
;
710 e1000_free_all_rx_resources(adapter
);
711 e1000_free_all_tx_resources(adapter
);
714 adapter
->rx_ring
= rxdr
;
715 adapter
->tx_ring
= txdr
;
716 if ((err
= e1000_up(adapter
)))
720 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
723 e1000_free_all_rx_resources(adapter
);
725 adapter
->rx_ring
= rx_old
;
726 adapter
->tx_ring
= tx_old
;
733 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
737 #define REG_PATTERN_TEST(R, M, W) \
739 uint32_t pat, value; \
741 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
742 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { \
743 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
744 value = E1000_READ_REG(&adapter->hw, R); \
745 if (value != (test[pat] & W & M)) { \
746 DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
747 "0x%08X expected 0x%08X\n", \
748 E1000_##R, value, (test[pat] & W & M)); \
749 *data = (adapter->hw.mac_type < e1000_82543) ? \
750 E1000_82542_##R : E1000_##R; \
756 #define REG_SET_AND_CHECK(R, M, W) \
759 E1000_WRITE_REG(&adapter->hw, R, W & M); \
760 value = E1000_READ_REG(&adapter->hw, R); \
761 if ((W & M) != (value & M)) { \
762 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
763 "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
764 *data = (adapter->hw.mac_type < e1000_82543) ? \
765 E1000_82542_##R : E1000_##R; \
771 e1000_reg_test(struct e1000_adapter
*adapter
, uint64_t *data
)
773 uint32_t value
, before
, after
;
776 /* The status register is Read Only, so a write should fail.
777 * Some bits that get toggled are ignored.
779 switch (adapter
->hw
.mac_type
) {
780 /* there are several bits on newer hardware that are r/w */
783 case e1000_80003es2lan
:
795 before
= E1000_READ_REG(&adapter
->hw
, STATUS
);
796 value
= (E1000_READ_REG(&adapter
->hw
, STATUS
) & toggle
);
797 E1000_WRITE_REG(&adapter
->hw
, STATUS
, toggle
);
798 after
= E1000_READ_REG(&adapter
->hw
, STATUS
) & toggle
;
799 if (value
!= after
) {
800 DPRINTK(DRV
, ERR
, "failed STATUS register test got: "
801 "0x%08X expected: 0x%08X\n", after
, value
);
805 /* restore previous status */
806 E1000_WRITE_REG(&adapter
->hw
, STATUS
, before
);
808 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
809 REG_PATTERN_TEST(FCAL
, 0xFFFFFFFF, 0xFFFFFFFF);
810 REG_PATTERN_TEST(FCAH
, 0x0000FFFF, 0xFFFFFFFF);
811 REG_PATTERN_TEST(FCT
, 0x0000FFFF, 0xFFFFFFFF);
812 REG_PATTERN_TEST(VET
, 0x0000FFFF, 0xFFFFFFFF);
815 REG_PATTERN_TEST(RDTR
, 0x0000FFFF, 0xFFFFFFFF);
816 REG_PATTERN_TEST(RDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
817 REG_PATTERN_TEST(RDLEN
, 0x000FFF80, 0x000FFFFF);
818 REG_PATTERN_TEST(RDH
, 0x0000FFFF, 0x0000FFFF);
819 REG_PATTERN_TEST(RDT
, 0x0000FFFF, 0x0000FFFF);
820 REG_PATTERN_TEST(FCRTH
, 0x0000FFF8, 0x0000FFF8);
821 REG_PATTERN_TEST(FCTTV
, 0x0000FFFF, 0x0000FFFF);
822 REG_PATTERN_TEST(TIPG
, 0x3FFFFFFF, 0x3FFFFFFF);
823 REG_PATTERN_TEST(TDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
824 REG_PATTERN_TEST(TDLEN
, 0x000FFF80, 0x000FFFFF);
826 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x00000000);
828 before
= (adapter
->hw
.mac_type
== e1000_ich8lan
?
829 0x06C3B33E : 0x06DFB3FE);
830 REG_SET_AND_CHECK(RCTL
, before
, 0x003FFFFB);
831 REG_SET_AND_CHECK(TCTL
, 0xFFFFFFFF, 0x00000000);
833 if (adapter
->hw
.mac_type
>= e1000_82543
) {
835 REG_SET_AND_CHECK(RCTL
, before
, 0xFFFFFFFF);
836 REG_PATTERN_TEST(RDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
837 if (adapter
->hw
.mac_type
!= e1000_ich8lan
)
838 REG_PATTERN_TEST(TXCW
, 0xC000FFFF, 0x0000FFFF);
839 REG_PATTERN_TEST(TDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
840 REG_PATTERN_TEST(TIDV
, 0x0000FFFF, 0x0000FFFF);
841 value
= (adapter
->hw
.mac_type
== e1000_ich8lan
?
842 E1000_RAR_ENTRIES_ICH8LAN
: E1000_RAR_ENTRIES
);
843 for (i
= 0; i
< value
; i
++) {
844 REG_PATTERN_TEST(RA
+ (((i
<< 1) + 1) << 2), 0x8003FFFF,
850 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x01FFFFFF);
851 REG_PATTERN_TEST(RDBAL
, 0xFFFFF000, 0xFFFFFFFF);
852 REG_PATTERN_TEST(TXCW
, 0x0000FFFF, 0x0000FFFF);
853 REG_PATTERN_TEST(TDBAL
, 0xFFFFF000, 0xFFFFFFFF);
857 value
= (adapter
->hw
.mac_type
== e1000_ich8lan
?
858 E1000_MC_TBL_SIZE_ICH8LAN
: E1000_MC_TBL_SIZE
);
859 for (i
= 0; i
< value
; i
++)
860 REG_PATTERN_TEST(MTA
+ (i
<< 2), 0xFFFFFFFF, 0xFFFFFFFF);
867 e1000_eeprom_test(struct e1000_adapter
*adapter
, uint64_t *data
)
870 uint16_t checksum
= 0;
874 /* Read and add up the contents of the EEPROM */
875 for (i
= 0; i
< (EEPROM_CHECKSUM_REG
+ 1); i
++) {
876 if ((e1000_read_eeprom(&adapter
->hw
, i
, 1, &temp
)) < 0) {
883 /* If Checksum is not Correct return error else test passed */
884 if ((checksum
!= (uint16_t) EEPROM_SUM
) && !(*data
))
891 e1000_test_intr(int irq
, void *data
)
893 struct net_device
*netdev
= (struct net_device
*) data
;
894 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
896 adapter
->test_icr
|= E1000_READ_REG(&adapter
->hw
, ICR
);
902 e1000_intr_test(struct e1000_adapter
*adapter
, uint64_t *data
)
904 struct net_device
*netdev
= adapter
->netdev
;
905 uint32_t mask
, i
=0, shared_int
= TRUE
;
906 uint32_t irq
= adapter
->pdev
->irq
;
910 /* NOTE: we don't test MSI interrupts here, yet */
911 /* Hook up test interrupt handler just for this test */
912 if (!request_irq(irq
, &e1000_test_intr
, IRQF_PROBE_SHARED
, netdev
->name
,
915 else if (request_irq(irq
, &e1000_test_intr
, IRQF_SHARED
,
916 netdev
->name
, netdev
)) {
920 DPRINTK(HW
, INFO
, "testing %s interrupt\n",
921 (shared_int
? "shared" : "unshared"));
923 /* Disable all the interrupts */
924 E1000_WRITE_REG(&adapter
->hw
, IMC
, 0xFFFFFFFF);
927 /* Test each interrupt */
928 for (; i
< 10; i
++) {
930 if (adapter
->hw
.mac_type
== e1000_ich8lan
&& i
== 8)
933 /* Interrupt to test */
937 /* Disable the interrupt to be reported in
938 * the cause register and then force the same
939 * interrupt and see if one gets posted. If
940 * an interrupt was posted to the bus, the
943 adapter
->test_icr
= 0;
944 E1000_WRITE_REG(&adapter
->hw
, IMC
, mask
);
945 E1000_WRITE_REG(&adapter
->hw
, ICS
, mask
);
948 if (adapter
->test_icr
& mask
) {
954 /* Enable the interrupt to be reported in
955 * the cause register and then force the same
956 * interrupt and see if one gets posted. If
957 * an interrupt was not posted to the bus, the
960 adapter
->test_icr
= 0;
961 E1000_WRITE_REG(&adapter
->hw
, IMS
, mask
);
962 E1000_WRITE_REG(&adapter
->hw
, ICS
, mask
);
965 if (!(adapter
->test_icr
& mask
)) {
971 /* Disable the other interrupts to be reported in
972 * the cause register and then force the other
973 * interrupts and see if any get posted. If
974 * an interrupt was posted to the bus, the
977 adapter
->test_icr
= 0;
978 E1000_WRITE_REG(&adapter
->hw
, IMC
, ~mask
& 0x00007FFF);
979 E1000_WRITE_REG(&adapter
->hw
, ICS
, ~mask
& 0x00007FFF);
982 if (adapter
->test_icr
) {
989 /* Disable all the interrupts */
990 E1000_WRITE_REG(&adapter
->hw
, IMC
, 0xFFFFFFFF);
993 /* Unhook test interrupt handler */
994 free_irq(irq
, netdev
);
1000 e1000_free_desc_rings(struct e1000_adapter
*adapter
)
1002 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
1003 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
1004 struct pci_dev
*pdev
= adapter
->pdev
;
1007 if (txdr
->desc
&& txdr
->buffer_info
) {
1008 for (i
= 0; i
< txdr
->count
; i
++) {
1009 if (txdr
->buffer_info
[i
].dma
)
1010 pci_unmap_single(pdev
, txdr
->buffer_info
[i
].dma
,
1011 txdr
->buffer_info
[i
].length
,
1013 if (txdr
->buffer_info
[i
].skb
)
1014 dev_kfree_skb(txdr
->buffer_info
[i
].skb
);
1018 if (rxdr
->desc
&& rxdr
->buffer_info
) {
1019 for (i
= 0; i
< rxdr
->count
; i
++) {
1020 if (rxdr
->buffer_info
[i
].dma
)
1021 pci_unmap_single(pdev
, rxdr
->buffer_info
[i
].dma
,
1022 rxdr
->buffer_info
[i
].length
,
1023 PCI_DMA_FROMDEVICE
);
1024 if (rxdr
->buffer_info
[i
].skb
)
1025 dev_kfree_skb(rxdr
->buffer_info
[i
].skb
);
1030 pci_free_consistent(pdev
, txdr
->size
, txdr
->desc
, txdr
->dma
);
1034 pci_free_consistent(pdev
, rxdr
->size
, rxdr
->desc
, rxdr
->dma
);
1038 kfree(txdr
->buffer_info
);
1039 txdr
->buffer_info
= NULL
;
1040 kfree(rxdr
->buffer_info
);
1041 rxdr
->buffer_info
= NULL
;
1047 e1000_setup_desc_rings(struct e1000_adapter
*adapter
)
1049 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
1050 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
1051 struct pci_dev
*pdev
= adapter
->pdev
;
1055 /* Setup Tx descriptor ring and Tx buffers */
1058 txdr
->count
= E1000_DEFAULT_TXD
;
1060 if (!(txdr
->buffer_info
= kcalloc(txdr
->count
,
1061 sizeof(struct e1000_buffer
),
1067 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1068 txdr
->size
= ALIGN(txdr
->size
, 4096);
1069 if (!(txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
,
1074 memset(txdr
->desc
, 0, txdr
->size
);
1075 txdr
->next_to_use
= txdr
->next_to_clean
= 0;
1077 E1000_WRITE_REG(&adapter
->hw
, TDBAL
,
1078 ((uint64_t) txdr
->dma
& 0x00000000FFFFFFFF));
1079 E1000_WRITE_REG(&adapter
->hw
, TDBAH
, ((uint64_t) txdr
->dma
>> 32));
1080 E1000_WRITE_REG(&adapter
->hw
, TDLEN
,
1081 txdr
->count
* sizeof(struct e1000_tx_desc
));
1082 E1000_WRITE_REG(&adapter
->hw
, TDH
, 0);
1083 E1000_WRITE_REG(&adapter
->hw
, TDT
, 0);
1084 E1000_WRITE_REG(&adapter
->hw
, TCTL
,
1085 E1000_TCTL_PSP
| E1000_TCTL_EN
|
1086 E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
|
1087 E1000_FDX_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
);
1089 for (i
= 0; i
< txdr
->count
; i
++) {
1090 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*txdr
, i
);
1091 struct sk_buff
*skb
;
1092 unsigned int size
= 1024;
1094 if (!(skb
= alloc_skb(size
, GFP_KERNEL
))) {
1099 txdr
->buffer_info
[i
].skb
= skb
;
1100 txdr
->buffer_info
[i
].length
= skb
->len
;
1101 txdr
->buffer_info
[i
].dma
=
1102 pci_map_single(pdev
, skb
->data
, skb
->len
,
1104 tx_desc
->buffer_addr
= cpu_to_le64(txdr
->buffer_info
[i
].dma
);
1105 tx_desc
->lower
.data
= cpu_to_le32(skb
->len
);
1106 tx_desc
->lower
.data
|= cpu_to_le32(E1000_TXD_CMD_EOP
|
1107 E1000_TXD_CMD_IFCS
|
1109 tx_desc
->upper
.data
= 0;
1112 /* Setup Rx descriptor ring and Rx buffers */
1115 rxdr
->count
= E1000_DEFAULT_RXD
;
1117 if (!(rxdr
->buffer_info
= kcalloc(rxdr
->count
,
1118 sizeof(struct e1000_buffer
),
1124 rxdr
->size
= rxdr
->count
* sizeof(struct e1000_rx_desc
);
1125 if (!(rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
))) {
1129 memset(rxdr
->desc
, 0, rxdr
->size
);
1130 rxdr
->next_to_use
= rxdr
->next_to_clean
= 0;
1132 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
1133 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
1134 E1000_WRITE_REG(&adapter
->hw
, RDBAL
,
1135 ((uint64_t) rxdr
->dma
& 0xFFFFFFFF));
1136 E1000_WRITE_REG(&adapter
->hw
, RDBAH
, ((uint64_t) rxdr
->dma
>> 32));
1137 E1000_WRITE_REG(&adapter
->hw
, RDLEN
, rxdr
->size
);
1138 E1000_WRITE_REG(&adapter
->hw
, RDH
, 0);
1139 E1000_WRITE_REG(&adapter
->hw
, RDT
, 0);
1140 rctl
= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_SZ_2048
|
1141 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1142 (adapter
->hw
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1143 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
1145 for (i
= 0; i
< rxdr
->count
; i
++) {
1146 struct e1000_rx_desc
*rx_desc
= E1000_RX_DESC(*rxdr
, i
);
1147 struct sk_buff
*skb
;
1149 if (!(skb
= alloc_skb(E1000_RXBUFFER_2048
+ NET_IP_ALIGN
,
1154 skb_reserve(skb
, NET_IP_ALIGN
);
1155 rxdr
->buffer_info
[i
].skb
= skb
;
1156 rxdr
->buffer_info
[i
].length
= E1000_RXBUFFER_2048
;
1157 rxdr
->buffer_info
[i
].dma
=
1158 pci_map_single(pdev
, skb
->data
, E1000_RXBUFFER_2048
,
1159 PCI_DMA_FROMDEVICE
);
1160 rx_desc
->buffer_addr
= cpu_to_le64(rxdr
->buffer_info
[i
].dma
);
1161 memset(skb
->data
, 0x00, skb
->len
);
1167 e1000_free_desc_rings(adapter
);
1172 e1000_phy_disable_receiver(struct e1000_adapter
*adapter
)
1174 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1175 e1000_write_phy_reg(&adapter
->hw
, 29, 0x001F);
1176 e1000_write_phy_reg(&adapter
->hw
, 30, 0x8FFC);
1177 e1000_write_phy_reg(&adapter
->hw
, 29, 0x001A);
1178 e1000_write_phy_reg(&adapter
->hw
, 30, 0x8FF0);
1182 e1000_phy_reset_clk_and_crs(struct e1000_adapter
*adapter
)
1186 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1187 * Extended PHY Specific Control Register to 25MHz clock. This
1188 * value defaults back to a 2.5MHz clock when the PHY is reset.
1190 e1000_read_phy_reg(&adapter
->hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1191 phy_reg
|= M88E1000_EPSCR_TX_CLK_25
;
1192 e1000_write_phy_reg(&adapter
->hw
,
1193 M88E1000_EXT_PHY_SPEC_CTRL
, phy_reg
);
1195 /* In addition, because of the s/w reset above, we need to enable
1196 * CRS on TX. This must be set for both full and half duplex
1199 e1000_read_phy_reg(&adapter
->hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1200 phy_reg
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1201 e1000_write_phy_reg(&adapter
->hw
,
1202 M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1206 e1000_nonintegrated_phy_loopback(struct e1000_adapter
*adapter
)
1211 /* Setup the Device Control Register for PHY loopback test. */
1213 ctrl_reg
= E1000_READ_REG(&adapter
->hw
, CTRL
);
1214 ctrl_reg
|= (E1000_CTRL_ILOS
| /* Invert Loss-Of-Signal */
1215 E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1216 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1217 E1000_CTRL_SPD_1000
| /* Force Speed to 1000 */
1218 E1000_CTRL_FD
); /* Force Duplex to FULL */
1220 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl_reg
);
1222 /* Read the PHY Specific Control Register (0x10) */
1223 e1000_read_phy_reg(&adapter
->hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1225 /* Clear Auto-Crossover bits in PHY Specific Control Register
1228 phy_reg
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1229 e1000_write_phy_reg(&adapter
->hw
, M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1231 /* Perform software reset on the PHY */
1232 e1000_phy_reset(&adapter
->hw
);
1234 /* Have to setup TX_CLK and TX_CRS after software reset */
1235 e1000_phy_reset_clk_and_crs(adapter
);
1237 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, 0x8100);
1239 /* Wait for reset to complete. */
1242 /* Have to setup TX_CLK and TX_CRS after software reset */
1243 e1000_phy_reset_clk_and_crs(adapter
);
1245 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1246 e1000_phy_disable_receiver(adapter
);
1248 /* Set the loopback bit in the PHY control register. */
1249 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &phy_reg
);
1250 phy_reg
|= MII_CR_LOOPBACK
;
1251 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, phy_reg
);
1253 /* Setup TX_CLK and TX_CRS one more time. */
1254 e1000_phy_reset_clk_and_crs(adapter
);
1256 /* Check Phy Configuration */
1257 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &phy_reg
);
1258 if (phy_reg
!= 0x4100)
1261 e1000_read_phy_reg(&adapter
->hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1262 if (phy_reg
!= 0x0070)
1265 e1000_read_phy_reg(&adapter
->hw
, 29, &phy_reg
);
1266 if (phy_reg
!= 0x001A)
1273 e1000_integrated_phy_loopback(struct e1000_adapter
*adapter
)
1275 uint32_t ctrl_reg
= 0;
1276 uint32_t stat_reg
= 0;
1278 adapter
->hw
.autoneg
= FALSE
;
1280 if (adapter
->hw
.phy_type
== e1000_phy_m88
) {
1281 /* Auto-MDI/MDIX Off */
1282 e1000_write_phy_reg(&adapter
->hw
,
1283 M88E1000_PHY_SPEC_CTRL
, 0x0808);
1284 /* reset to update Auto-MDI/MDIX */
1285 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, 0x9140);
1287 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, 0x8140);
1288 } else if (adapter
->hw
.phy_type
== e1000_phy_gg82563
)
1289 e1000_write_phy_reg(&adapter
->hw
,
1290 GG82563_PHY_KMRN_MODE_CTRL
,
1293 ctrl_reg
= E1000_READ_REG(&adapter
->hw
, CTRL
);
1295 if (adapter
->hw
.phy_type
== e1000_phy_ife
) {
1296 /* force 100, set loopback */
1297 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, 0x6100);
1299 /* Now set up the MAC to the same speed/duplex as the PHY. */
1300 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1301 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1302 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1303 E1000_CTRL_SPD_100
|/* Force Speed to 100 */
1304 E1000_CTRL_FD
); /* Force Duplex to FULL */
1306 /* force 1000, set loopback */
1307 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, 0x4140);
1309 /* Now set up the MAC to the same speed/duplex as the PHY. */
1310 ctrl_reg
= E1000_READ_REG(&adapter
->hw
, CTRL
);
1311 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1312 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1313 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1314 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1315 E1000_CTRL_FD
); /* Force Duplex to FULL */
1318 if (adapter
->hw
.media_type
== e1000_media_type_copper
&&
1319 adapter
->hw
.phy_type
== e1000_phy_m88
)
1320 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1322 /* Set the ILOS bit on the fiber Nic is half
1323 * duplex link is detected. */
1324 stat_reg
= E1000_READ_REG(&adapter
->hw
, STATUS
);
1325 if ((stat_reg
& E1000_STATUS_FD
) == 0)
1326 ctrl_reg
|= (E1000_CTRL_ILOS
| E1000_CTRL_SLU
);
1329 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl_reg
);
1331 /* Disable the receiver on the PHY so when a cable is plugged in, the
1332 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1334 if (adapter
->hw
.phy_type
== e1000_phy_m88
)
1335 e1000_phy_disable_receiver(adapter
);
1343 e1000_set_phy_loopback(struct e1000_adapter
*adapter
)
1345 uint16_t phy_reg
= 0;
1348 switch (adapter
->hw
.mac_type
) {
1350 if (adapter
->hw
.media_type
== e1000_media_type_copper
) {
1351 /* Attempt to setup Loopback mode on Non-integrated PHY.
1352 * Some PHY registers get corrupted at random, so
1353 * attempt this 10 times.
1355 while (e1000_nonintegrated_phy_loopback(adapter
) &&
1365 case e1000_82545_rev_3
:
1367 case e1000_82546_rev_3
:
1369 case e1000_82541_rev_2
:
1371 case e1000_82547_rev_2
:
1375 case e1000_80003es2lan
:
1377 return e1000_integrated_phy_loopback(adapter
);
1381 /* Default PHY loopback work is to read the MII
1382 * control register and assert bit 14 (loopback mode).
1384 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &phy_reg
);
1385 phy_reg
|= MII_CR_LOOPBACK
;
1386 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, phy_reg
);
1395 e1000_setup_loopback_test(struct e1000_adapter
*adapter
)
1397 struct e1000_hw
*hw
= &adapter
->hw
;
1400 if (hw
->media_type
== e1000_media_type_fiber
||
1401 hw
->media_type
== e1000_media_type_internal_serdes
) {
1402 switch (hw
->mac_type
) {
1405 case e1000_82545_rev_3
:
1406 case e1000_82546_rev_3
:
1407 return e1000_set_phy_loopback(adapter
);
1411 #define E1000_SERDES_LB_ON 0x410
1412 e1000_set_phy_loopback(adapter
);
1413 E1000_WRITE_REG(hw
, SCTL
, E1000_SERDES_LB_ON
);
1418 rctl
= E1000_READ_REG(hw
, RCTL
);
1419 rctl
|= E1000_RCTL_LBM_TCVR
;
1420 E1000_WRITE_REG(hw
, RCTL
, rctl
);
1423 } else if (hw
->media_type
== e1000_media_type_copper
)
1424 return e1000_set_phy_loopback(adapter
);
1430 e1000_loopback_cleanup(struct e1000_adapter
*adapter
)
1432 struct e1000_hw
*hw
= &adapter
->hw
;
1436 rctl
= E1000_READ_REG(hw
, RCTL
);
1437 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1438 E1000_WRITE_REG(hw
, RCTL
, rctl
);
1440 switch (hw
->mac_type
) {
1443 if (hw
->media_type
== e1000_media_type_fiber
||
1444 hw
->media_type
== e1000_media_type_internal_serdes
) {
1445 #define E1000_SERDES_LB_OFF 0x400
1446 E1000_WRITE_REG(hw
, SCTL
, E1000_SERDES_LB_OFF
);
1453 case e1000_82545_rev_3
:
1454 case e1000_82546_rev_3
:
1457 if (hw
->phy_type
== e1000_phy_gg82563
)
1458 e1000_write_phy_reg(hw
,
1459 GG82563_PHY_KMRN_MODE_CTRL
,
1461 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1462 if (phy_reg
& MII_CR_LOOPBACK
) {
1463 phy_reg
&= ~MII_CR_LOOPBACK
;
1464 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1465 e1000_phy_reset(hw
);
1472 e1000_create_lbtest_frame(struct sk_buff
*skb
, unsigned int frame_size
)
1474 memset(skb
->data
, 0xFF, frame_size
);
1476 memset(&skb
->data
[frame_size
/ 2], 0xAA, frame_size
/ 2 - 1);
1477 memset(&skb
->data
[frame_size
/ 2 + 10], 0xBE, 1);
1478 memset(&skb
->data
[frame_size
/ 2 + 12], 0xAF, 1);
1482 e1000_check_lbtest_frame(struct sk_buff
*skb
, unsigned int frame_size
)
1485 if (*(skb
->data
+ 3) == 0xFF) {
1486 if ((*(skb
->data
+ frame_size
/ 2 + 10) == 0xBE) &&
1487 (*(skb
->data
+ frame_size
/ 2 + 12) == 0xAF)) {
1495 e1000_run_loopback_test(struct e1000_adapter
*adapter
)
1497 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
1498 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
1499 struct pci_dev
*pdev
= adapter
->pdev
;
1500 int i
, j
, k
, l
, lc
, good_cnt
, ret_val
=0;
1503 E1000_WRITE_REG(&adapter
->hw
, RDT
, rxdr
->count
- 1);
1505 /* Calculate the loop count based on the largest descriptor ring
1506 * The idea is to wrap the largest ring a number of times using 64
1507 * send/receive pairs during each loop
1510 if (rxdr
->count
<= txdr
->count
)
1511 lc
= ((txdr
->count
/ 64) * 2) + 1;
1513 lc
= ((rxdr
->count
/ 64) * 2) + 1;
1516 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1517 for (i
= 0; i
< 64; i
++) { /* send the packets */
1518 e1000_create_lbtest_frame(txdr
->buffer_info
[i
].skb
,
1520 pci_dma_sync_single_for_device(pdev
,
1521 txdr
->buffer_info
[k
].dma
,
1522 txdr
->buffer_info
[k
].length
,
1524 if (unlikely(++k
== txdr
->count
)) k
= 0;
1526 E1000_WRITE_REG(&adapter
->hw
, TDT
, k
);
1528 time
= jiffies
; /* set the start time for the receive */
1530 do { /* receive the sent packets */
1531 pci_dma_sync_single_for_cpu(pdev
,
1532 rxdr
->buffer_info
[l
].dma
,
1533 rxdr
->buffer_info
[l
].length
,
1534 PCI_DMA_FROMDEVICE
);
1536 ret_val
= e1000_check_lbtest_frame(
1537 rxdr
->buffer_info
[l
].skb
,
1541 if (unlikely(++l
== rxdr
->count
)) l
= 0;
1542 /* time + 20 msecs (200 msecs on 2.4) is more than
1543 * enough time to complete the receives, if it's
1544 * exceeded, break and error off
1546 } while (good_cnt
< 64 && jiffies
< (time
+ 20));
1547 if (good_cnt
!= 64) {
1548 ret_val
= 13; /* ret_val is the same as mis-compare */
1551 if (jiffies
>= (time
+ 2)) {
1552 ret_val
= 14; /* error code for time out error */
1555 } /* end loop count loop */
1560 e1000_loopback_test(struct e1000_adapter
*adapter
, uint64_t *data
)
1562 /* PHY loopback cannot be performed if SoL/IDER
1563 * sessions are active */
1564 if (e1000_check_phy_reset_block(&adapter
->hw
)) {
1565 DPRINTK(DRV
, ERR
, "Cannot do PHY loopback test "
1566 "when SoL/IDER is active.\n");
1571 if ((*data
= e1000_setup_desc_rings(adapter
)))
1573 if ((*data
= e1000_setup_loopback_test(adapter
)))
1575 *data
= e1000_run_loopback_test(adapter
);
1576 e1000_loopback_cleanup(adapter
);
1579 e1000_free_desc_rings(adapter
);
1585 e1000_link_test(struct e1000_adapter
*adapter
, uint64_t *data
)
1588 if (adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) {
1590 adapter
->hw
.serdes_link_down
= TRUE
;
1592 /* On some blade server designs, link establishment
1593 * could take as long as 2-3 minutes */
1595 e1000_check_for_link(&adapter
->hw
);
1596 if (adapter
->hw
.serdes_link_down
== FALSE
)
1599 } while (i
++ < 3750);
1603 e1000_check_for_link(&adapter
->hw
);
1604 if (adapter
->hw
.autoneg
) /* if auto_neg is set wait for it */
1607 if (!(E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_LU
)) {
1615 e1000_diag_test_count(struct net_device
*netdev
)
1617 return E1000_TEST_LEN
;
1620 extern void e1000_power_up_phy(struct e1000_adapter
*);
1623 e1000_diag_test(struct net_device
*netdev
,
1624 struct ethtool_test
*eth_test
, uint64_t *data
)
1626 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1627 boolean_t if_running
= netif_running(netdev
);
1629 set_bit(__E1000_TESTING
, &adapter
->flags
);
1630 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1633 /* save speed, duplex, autoneg settings */
1634 uint16_t autoneg_advertised
= adapter
->hw
.autoneg_advertised
;
1635 uint8_t forced_speed_duplex
= adapter
->hw
.forced_speed_duplex
;
1636 uint8_t autoneg
= adapter
->hw
.autoneg
;
1638 DPRINTK(HW
, INFO
, "offline testing starting\n");
1640 /* Link test performed before hardware reset so autoneg doesn't
1641 * interfere with test result */
1642 if (e1000_link_test(adapter
, &data
[4]))
1643 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1646 /* indicate we're in test mode */
1649 e1000_reset(adapter
);
1651 if (e1000_reg_test(adapter
, &data
[0]))
1652 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1654 e1000_reset(adapter
);
1655 if (e1000_eeprom_test(adapter
, &data
[1]))
1656 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1658 e1000_reset(adapter
);
1659 if (e1000_intr_test(adapter
, &data
[2]))
1660 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1662 e1000_reset(adapter
);
1663 /* make sure the phy is powered up */
1664 e1000_power_up_phy(adapter
);
1665 if (e1000_loopback_test(adapter
, &data
[3]))
1666 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1668 /* restore speed, duplex, autoneg settings */
1669 adapter
->hw
.autoneg_advertised
= autoneg_advertised
;
1670 adapter
->hw
.forced_speed_duplex
= forced_speed_duplex
;
1671 adapter
->hw
.autoneg
= autoneg
;
1673 e1000_reset(adapter
);
1674 clear_bit(__E1000_TESTING
, &adapter
->flags
);
1678 DPRINTK(HW
, INFO
, "online testing starting\n");
1680 if (e1000_link_test(adapter
, &data
[4]))
1681 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1683 /* Online tests aren't run; pass by default */
1689 clear_bit(__E1000_TESTING
, &adapter
->flags
);
1691 msleep_interruptible(4 * 1000);
1694 static int e1000_wol_exclusion(struct e1000_adapter
*adapter
, struct ethtool_wolinfo
*wol
)
1696 struct e1000_hw
*hw
= &adapter
->hw
;
1697 int retval
= 1; /* fail by default */
1699 switch (hw
->device_id
) {
1700 case E1000_DEV_ID_82542
:
1701 case E1000_DEV_ID_82543GC_FIBER
:
1702 case E1000_DEV_ID_82543GC_COPPER
:
1703 case E1000_DEV_ID_82544EI_FIBER
:
1704 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
1705 case E1000_DEV_ID_82545EM_FIBER
:
1706 case E1000_DEV_ID_82545EM_COPPER
:
1707 case E1000_DEV_ID_82546GB_QUAD_COPPER
:
1708 case E1000_DEV_ID_82546GB_PCIE
:
1709 case E1000_DEV_ID_82571EB_SERDES_QUAD
:
1710 /* these don't support WoL at all */
1713 case E1000_DEV_ID_82546EB_FIBER
:
1714 case E1000_DEV_ID_82546GB_FIBER
:
1715 case E1000_DEV_ID_82571EB_FIBER
:
1716 case E1000_DEV_ID_82571EB_SERDES
:
1717 case E1000_DEV_ID_82571EB_COPPER
:
1718 /* Wake events not supported on port B */
1719 if (E1000_READ_REG(hw
, STATUS
) & E1000_STATUS_FUNC_1
) {
1723 /* return success for non excluded adapter ports */
1726 case E1000_DEV_ID_82571EB_QUAD_COPPER
:
1727 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
1728 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE
:
1729 case E1000_DEV_ID_82571PT_QUAD_COPPER
:
1730 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1731 /* quad port adapters only support WoL on port A */
1732 if (!adapter
->quad_port_a
) {
1736 /* return success for non excluded adapter ports */
1740 /* dual port cards only support WoL on port A from now on
1741 * unless it was enabled in the eeprom for port B
1742 * so exclude FUNC_1 ports from having WoL enabled */
1743 if (E1000_READ_REG(hw
, STATUS
) & E1000_STATUS_FUNC_1
&&
1744 !adapter
->eeprom_wol
) {
1756 e1000_get_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1758 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1760 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1761 WAKE_BCAST
| WAKE_MAGIC
;
1764 /* this function will set ->supported = 0 and return 1 if wol is not
1765 * supported by this hardware */
1766 if (e1000_wol_exclusion(adapter
, wol
))
1769 /* apply any specific unsupported masks here */
1770 switch (adapter
->hw
.device_id
) {
1771 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1772 /* KSP3 does not suppport UCAST wake-ups */
1773 wol
->supported
&= ~WAKE_UCAST
;
1775 if (adapter
->wol
& E1000_WUFC_EX
)
1776 DPRINTK(DRV
, ERR
, "Interface does not support "
1777 "directed (unicast) frame wake-up packets\n");
1783 if (adapter
->wol
& E1000_WUFC_EX
)
1784 wol
->wolopts
|= WAKE_UCAST
;
1785 if (adapter
->wol
& E1000_WUFC_MC
)
1786 wol
->wolopts
|= WAKE_MCAST
;
1787 if (adapter
->wol
& E1000_WUFC_BC
)
1788 wol
->wolopts
|= WAKE_BCAST
;
1789 if (adapter
->wol
& E1000_WUFC_MAG
)
1790 wol
->wolopts
|= WAKE_MAGIC
;
1796 e1000_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1798 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1799 struct e1000_hw
*hw
= &adapter
->hw
;
1801 if (wol
->wolopts
& (WAKE_PHY
| WAKE_ARP
| WAKE_MAGICSECURE
))
1804 if (e1000_wol_exclusion(adapter
, wol
))
1805 return wol
->wolopts
? -EOPNOTSUPP
: 0;
1807 switch (hw
->device_id
) {
1808 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1809 if (wol
->wolopts
& WAKE_UCAST
) {
1810 DPRINTK(DRV
, ERR
, "Interface does not support "
1811 "directed (unicast) frame wake-up packets\n");
1819 /* these settings will always override what we currently have */
1822 if (wol
->wolopts
& WAKE_UCAST
)
1823 adapter
->wol
|= E1000_WUFC_EX
;
1824 if (wol
->wolopts
& WAKE_MCAST
)
1825 adapter
->wol
|= E1000_WUFC_MC
;
1826 if (wol
->wolopts
& WAKE_BCAST
)
1827 adapter
->wol
|= E1000_WUFC_BC
;
1828 if (wol
->wolopts
& WAKE_MAGIC
)
1829 adapter
->wol
|= E1000_WUFC_MAG
;
1834 /* toggle LED 4 times per second = 2 "blinks" per second */
1835 #define E1000_ID_INTERVAL (HZ/4)
1837 /* bit defines for adapter->led_status */
1838 #define E1000_LED_ON 0
1841 e1000_led_blink_callback(unsigned long data
)
1843 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
1845 if (test_and_change_bit(E1000_LED_ON
, &adapter
->led_status
))
1846 e1000_led_off(&adapter
->hw
);
1848 e1000_led_on(&adapter
->hw
);
1850 mod_timer(&adapter
->blink_timer
, jiffies
+ E1000_ID_INTERVAL
);
1854 e1000_phys_id(struct net_device
*netdev
, uint32_t data
)
1856 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1858 if (!data
|| data
> (uint32_t)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
1859 data
= (uint32_t)(MAX_SCHEDULE_TIMEOUT
/ HZ
);
1861 if (adapter
->hw
.mac_type
< e1000_82571
) {
1862 if (!adapter
->blink_timer
.function
) {
1863 init_timer(&adapter
->blink_timer
);
1864 adapter
->blink_timer
.function
= e1000_led_blink_callback
;
1865 adapter
->blink_timer
.data
= (unsigned long) adapter
;
1867 e1000_setup_led(&adapter
->hw
);
1868 mod_timer(&adapter
->blink_timer
, jiffies
);
1869 msleep_interruptible(data
* 1000);
1870 del_timer_sync(&adapter
->blink_timer
);
1871 } else if (adapter
->hw
.phy_type
== e1000_phy_ife
) {
1872 if (!adapter
->blink_timer
.function
) {
1873 init_timer(&adapter
->blink_timer
);
1874 adapter
->blink_timer
.function
= e1000_led_blink_callback
;
1875 adapter
->blink_timer
.data
= (unsigned long) adapter
;
1877 mod_timer(&adapter
->blink_timer
, jiffies
);
1878 msleep_interruptible(data
* 1000);
1879 del_timer_sync(&adapter
->blink_timer
);
1880 e1000_write_phy_reg(&(adapter
->hw
), IFE_PHY_SPECIAL_CONTROL_LED
, 0);
1882 e1000_blink_led_start(&adapter
->hw
);
1883 msleep_interruptible(data
* 1000);
1886 e1000_led_off(&adapter
->hw
);
1887 clear_bit(E1000_LED_ON
, &adapter
->led_status
);
1888 e1000_cleanup_led(&adapter
->hw
);
1894 e1000_nway_reset(struct net_device
*netdev
)
1896 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1897 if (netif_running(netdev
))
1898 e1000_reinit_locked(adapter
);
1903 e1000_get_stats_count(struct net_device
*netdev
)
1905 return E1000_STATS_LEN
;
1909 e1000_get_ethtool_stats(struct net_device
*netdev
,
1910 struct ethtool_stats
*stats
, uint64_t *data
)
1912 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1915 e1000_update_stats(adapter
);
1916 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1917 char *p
= (char *)adapter
+e1000_gstrings_stats
[i
].stat_offset
;
1918 data
[i
] = (e1000_gstrings_stats
[i
].sizeof_stat
==
1919 sizeof(uint64_t)) ? *(uint64_t *)p
: *(uint32_t *)p
;
1921 /* BUG_ON(i != E1000_STATS_LEN); */
1925 e1000_get_strings(struct net_device
*netdev
, uint32_t stringset
, uint8_t *data
)
1930 switch (stringset
) {
1932 memcpy(data
, *e1000_gstrings_test
,
1933 E1000_TEST_LEN
*ETH_GSTRING_LEN
);
1936 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1937 memcpy(p
, e1000_gstrings_stats
[i
].stat_string
,
1939 p
+= ETH_GSTRING_LEN
;
1941 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1946 static const struct ethtool_ops e1000_ethtool_ops
= {
1947 .get_settings
= e1000_get_settings
,
1948 .set_settings
= e1000_set_settings
,
1949 .get_drvinfo
= e1000_get_drvinfo
,
1950 .get_regs_len
= e1000_get_regs_len
,
1951 .get_regs
= e1000_get_regs
,
1952 .get_wol
= e1000_get_wol
,
1953 .set_wol
= e1000_set_wol
,
1954 .get_msglevel
= e1000_get_msglevel
,
1955 .set_msglevel
= e1000_set_msglevel
,
1956 .nway_reset
= e1000_nway_reset
,
1957 .get_link
= ethtool_op_get_link
,
1958 .get_eeprom_len
= e1000_get_eeprom_len
,
1959 .get_eeprom
= e1000_get_eeprom
,
1960 .set_eeprom
= e1000_set_eeprom
,
1961 .get_ringparam
= e1000_get_ringparam
,
1962 .set_ringparam
= e1000_set_ringparam
,
1963 .get_pauseparam
= e1000_get_pauseparam
,
1964 .set_pauseparam
= e1000_set_pauseparam
,
1965 .get_rx_csum
= e1000_get_rx_csum
,
1966 .set_rx_csum
= e1000_set_rx_csum
,
1967 .get_tx_csum
= e1000_get_tx_csum
,
1968 .set_tx_csum
= e1000_set_tx_csum
,
1969 .get_sg
= ethtool_op_get_sg
,
1970 .set_sg
= ethtool_op_set_sg
,
1971 .get_tso
= ethtool_op_get_tso
,
1972 .set_tso
= e1000_set_tso
,
1973 .self_test_count
= e1000_diag_test_count
,
1974 .self_test
= e1000_diag_test
,
1975 .get_strings
= e1000_get_strings
,
1976 .phys_id
= e1000_phys_id
,
1977 .get_stats_count
= e1000_get_stats_count
,
1978 .get_ethtool_stats
= e1000_get_ethtool_stats
,
1981 void e1000_set_ethtool_ops(struct net_device
*netdev
)
1983 SET_ETHTOOL_OPS(netdev
, &e1000_ethtool_ops
);