2 * NAND flash simulator.
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
6 * Copyright (C) 2004 Nokia Corporation
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
25 * $Id: nandsim.c,v 1.8 2005/03/19 15:33:56 dedekind Exp $
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/vmalloc.h>
33 #include <linux/slab.h>
34 #include <linux/errno.h>
35 #include <linux/string.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/delay.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
43 /* Default simulator parameters values */
44 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
45 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
46 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
47 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
48 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
49 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
50 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
51 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
54 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
55 #define CONFIG_NANDSIM_ACCESS_DELAY 25
57 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
58 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
60 #ifndef CONFIG_NANDSIM_ERASE_DELAY
61 #define CONFIG_NANDSIM_ERASE_DELAY 2
63 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
64 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
66 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
67 #define CONFIG_NANDSIM_INPUT_CYCLE 50
69 #ifndef CONFIG_NANDSIM_BUS_WIDTH
70 #define CONFIG_NANDSIM_BUS_WIDTH 8
72 #ifndef CONFIG_NANDSIM_DO_DELAYS
73 #define CONFIG_NANDSIM_DO_DELAYS 0
75 #ifndef CONFIG_NANDSIM_LOG
76 #define CONFIG_NANDSIM_LOG 0
78 #ifndef CONFIG_NANDSIM_DBG
79 #define CONFIG_NANDSIM_DBG 0
82 static uint first_id_byte
= CONFIG_NANDSIM_FIRST_ID_BYTE
;
83 static uint second_id_byte
= CONFIG_NANDSIM_SECOND_ID_BYTE
;
84 static uint third_id_byte
= CONFIG_NANDSIM_THIRD_ID_BYTE
;
85 static uint fourth_id_byte
= CONFIG_NANDSIM_FOURTH_ID_BYTE
;
86 static uint access_delay
= CONFIG_NANDSIM_ACCESS_DELAY
;
87 static uint programm_delay
= CONFIG_NANDSIM_PROGRAMM_DELAY
;
88 static uint erase_delay
= CONFIG_NANDSIM_ERASE_DELAY
;
89 static uint output_cycle
= CONFIG_NANDSIM_OUTPUT_CYCLE
;
90 static uint input_cycle
= CONFIG_NANDSIM_INPUT_CYCLE
;
91 static uint bus_width
= CONFIG_NANDSIM_BUS_WIDTH
;
92 static uint do_delays
= CONFIG_NANDSIM_DO_DELAYS
;
93 static uint log
= CONFIG_NANDSIM_LOG
;
94 static uint dbg
= CONFIG_NANDSIM_DBG
;
95 static unsigned long parts
[MAX_MTD_DEVICES
];
96 static unsigned int parts_num
;
97 static char *badblocks
= NULL
;
98 static char *weakblocks
= NULL
;
99 static char *weakpages
= NULL
;
100 static unsigned int bitflips
= 0;
101 static char *gravepages
= NULL
;
102 static unsigned int rptwear
= 0;
103 static unsigned int overridesize
= 0;
105 module_param(first_id_byte
, uint
, 0400);
106 module_param(second_id_byte
, uint
, 0400);
107 module_param(third_id_byte
, uint
, 0400);
108 module_param(fourth_id_byte
, uint
, 0400);
109 module_param(access_delay
, uint
, 0400);
110 module_param(programm_delay
, uint
, 0400);
111 module_param(erase_delay
, uint
, 0400);
112 module_param(output_cycle
, uint
, 0400);
113 module_param(input_cycle
, uint
, 0400);
114 module_param(bus_width
, uint
, 0400);
115 module_param(do_delays
, uint
, 0400);
116 module_param(log
, uint
, 0400);
117 module_param(dbg
, uint
, 0400);
118 module_param_array(parts
, ulong
, &parts_num
, 0400);
119 module_param(badblocks
, charp
, 0400);
120 module_param(weakblocks
, charp
, 0400);
121 module_param(weakpages
, charp
, 0400);
122 module_param(bitflips
, uint
, 0400);
123 module_param(gravepages
, charp
, 0400);
124 module_param(rptwear
, uint
, 0400);
125 module_param(overridesize
, uint
, 0400);
127 MODULE_PARM_DESC(first_id_byte
, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
128 MODULE_PARM_DESC(second_id_byte
, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
129 MODULE_PARM_DESC(third_id_byte
, "The third byte returned by NAND Flash 'read ID' command");
130 MODULE_PARM_DESC(fourth_id_byte
, "The fourth byte returned by NAND Flash 'read ID' command");
131 MODULE_PARM_DESC(access_delay
, "Initial page access delay (microiseconds)");
132 MODULE_PARM_DESC(programm_delay
, "Page programm delay (microseconds");
133 MODULE_PARM_DESC(erase_delay
, "Sector erase delay (milliseconds)");
134 MODULE_PARM_DESC(output_cycle
, "Word output (from flash) time (nanodeconds)");
135 MODULE_PARM_DESC(input_cycle
, "Word input (to flash) time (nanodeconds)");
136 MODULE_PARM_DESC(bus_width
, "Chip's bus width (8- or 16-bit)");
137 MODULE_PARM_DESC(do_delays
, "Simulate NAND delays using busy-waits if not zero");
138 MODULE_PARM_DESC(log
, "Perform logging if not zero");
139 MODULE_PARM_DESC(dbg
, "Output debug information if not zero");
140 MODULE_PARM_DESC(parts
, "Partition sizes (in erase blocks) separated by commas");
141 /* Page and erase block positions for the following parameters are independent of any partitions */
142 MODULE_PARM_DESC(badblocks
, "Erase blocks that are initially marked bad, separated by commas");
143 MODULE_PARM_DESC(weakblocks
, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
144 " separated by commas e.g. 113:2 means eb 113"
145 " can be erased only twice before failing");
146 MODULE_PARM_DESC(weakpages
, "Weak pages [: maximum writes (defaults to 3)]"
147 " separated by commas e.g. 1401:2 means page 1401"
148 " can be written only twice before failing");
149 MODULE_PARM_DESC(bitflips
, "Maximum number of random bit flips per page (zero by default)");
150 MODULE_PARM_DESC(gravepages
, "Pages that lose data [: maximum reads (defaults to 3)]"
151 " separated by commas e.g. 1401:2 means page 1401"
152 " can be read only twice before failing");
153 MODULE_PARM_DESC(rptwear
, "Number of erases inbetween reporting wear, if not zero");
154 MODULE_PARM_DESC(overridesize
, "Specifies the NAND Flash size overriding the ID bytes. "
155 "The size is specified in erase blocks and as the exponent of a power of two"
156 " e.g. 5 means a size of 32 erase blocks");
158 /* The largest possible page size */
159 #define NS_LARGEST_PAGE_SIZE 2048
161 /* The prefix for simulator output */
162 #define NS_OUTPUT_PREFIX "[nandsim]"
164 /* Simulator's output macros (logging, debugging, warning, error) */
165 #define NS_LOG(args...) \
166 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
167 #define NS_DBG(args...) \
168 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
169 #define NS_WARN(args...) \
170 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
171 #define NS_ERR(args...) \
172 do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
173 #define NS_INFO(args...) \
174 do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
176 /* Busy-wait delay macros (microseconds, milliseconds) */
177 #define NS_UDELAY(us) \
178 do { if (do_delays) udelay(us); } while(0)
179 #define NS_MDELAY(us) \
180 do { if (do_delays) mdelay(us); } while(0)
182 /* Is the nandsim structure initialized ? */
183 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
185 /* Good operation completion status */
186 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
188 /* Operation failed completion status */
189 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
191 /* Calculate the page offset in flash RAM image by (row, column) address */
192 #define NS_RAW_OFFSET(ns) \
193 (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
195 /* Calculate the OOB offset in flash RAM image by (row, column) address */
196 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
198 /* After a command is input, the simulator goes to one of the following states */
199 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
200 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
201 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
202 #define STATE_CMD_PAGEPROG 0x00000004 /* start page programm */
203 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
204 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
205 #define STATE_CMD_STATUS 0x00000007 /* read status */
206 #define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
207 #define STATE_CMD_SEQIN 0x00000009 /* sequential data imput */
208 #define STATE_CMD_READID 0x0000000A /* read ID */
209 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
210 #define STATE_CMD_RESET 0x0000000C /* reset */
211 #define STATE_CMD_MASK 0x0000000F /* command states mask */
213 /* After an addres is input, the simulator goes to one of these states */
214 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
215 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
216 #define STATE_ADDR_ZERO 0x00000030 /* one byte zero address was accepted */
217 #define STATE_ADDR_MASK 0x00000030 /* address states mask */
219 /* Durind data input/output the simulator is in these states */
220 #define STATE_DATAIN 0x00000100 /* waiting for data input */
221 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
223 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
224 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
225 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
226 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
227 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
229 /* Previous operation is done, ready to accept new requests */
230 #define STATE_READY 0x00000000
232 /* This state is used to mark that the next state isn't known yet */
233 #define STATE_UNKNOWN 0x10000000
235 /* Simulator's actions bit masks */
236 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
237 #define ACTION_PRGPAGE 0x00200000 /* programm the internal buffer to flash */
238 #define ACTION_SECERASE 0x00300000 /* erase sector */
239 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
240 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
241 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
242 #define ACTION_MASK 0x00700000 /* action mask */
244 #define NS_OPER_NUM 12 /* Number of operations supported by the simulator */
245 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
247 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
248 #define OPT_PAGE256 0x00000001 /* 256-byte page chips */
249 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
250 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
251 #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
252 #define OPT_AUTOINCR 0x00000020 /* page number auto inctimentation is possible */
253 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
254 #define OPT_LARGEPAGE (OPT_PAGE2048) /* 2048-byte page chips */
255 #define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
257 /* Remove action bits ftom state */
258 #define NS_STATE(x) ((x) & ~ACTION_MASK)
261 * Maximum previous states which need to be saved. Currently saving is
262 * only needed for page programm operation with preceeded read command
263 * (which is only valid for 512-byte pages).
265 #define NS_MAX_PREVSTATES 1
268 * A union to represent flash memory contents and flash buffer.
271 u_char
*byte
; /* for byte access */
272 uint16_t *word
; /* for 16-bit word access */
276 * The structure which describes all the internal simulator data.
279 struct mtd_partition partitions
[MAX_MTD_DEVICES
];
280 unsigned int nbparts
;
282 uint busw
; /* flash chip bus width (8 or 16) */
283 u_char ids
[4]; /* chip's ID bytes */
284 uint32_t options
; /* chip's characteristic bits */
285 uint32_t state
; /* current chip state */
286 uint32_t nxstate
; /* next expected state */
288 uint32_t *op
; /* current operation, NULL operations isn't known yet */
289 uint32_t pstates
[NS_MAX_PREVSTATES
]; /* previous states */
290 uint16_t npstates
; /* number of previous states saved */
291 uint16_t stateidx
; /* current state index */
293 /* The simulated NAND flash pages array */
296 /* Internal buffer of page + OOB size bytes */
299 /* NAND flash "geometry" */
300 struct nandsin_geometry
{
301 uint32_t totsz
; /* total flash size, bytes */
302 uint32_t secsz
; /* flash sector (erase block) size, bytes */
303 uint pgsz
; /* NAND flash page size, bytes */
304 uint oobsz
; /* page OOB area size, bytes */
305 uint32_t totszoob
; /* total flash size including OOB, bytes */
306 uint pgszoob
; /* page size including OOB , bytes*/
307 uint secszoob
; /* sector size including OOB, bytes */
308 uint pgnum
; /* total number of pages */
309 uint pgsec
; /* number of pages per sector */
310 uint secshift
; /* bits number in sector size */
311 uint pgshift
; /* bits number in page size */
312 uint oobshift
; /* bits number in OOB size */
313 uint pgaddrbytes
; /* bytes per page address */
314 uint secaddrbytes
; /* bytes per sector address */
315 uint idbytes
; /* the number ID bytes that this chip outputs */
318 /* NAND flash internal registers */
319 struct nandsim_regs
{
320 unsigned command
; /* the command register */
321 u_char status
; /* the status register */
322 uint row
; /* the page number */
323 uint column
; /* the offset within page */
324 uint count
; /* internal counter */
325 uint num
; /* number of bytes which must be processed */
326 uint off
; /* fixed page offset */
329 /* NAND flash lines state */
330 struct ns_lines_status
{
331 int ce
; /* chip Enable */
332 int cle
; /* command Latch Enable */
333 int ale
; /* address Latch Enable */
334 int wp
; /* write Protect */
339 * Operations array. To perform any operation the simulator must pass
340 * through the correspondent states chain.
342 static struct nandsim_operations
{
343 uint32_t reqopts
; /* options which are required to perform the operation */
344 uint32_t states
[NS_OPER_STATES
]; /* operation's states */
345 } ops
[NS_OPER_NUM
] = {
346 /* Read page + OOB from the beginning */
347 {OPT_SMALLPAGE
, {STATE_CMD_READ0
| ACTION_ZEROOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
348 STATE_DATAOUT
, STATE_READY
}},
349 /* Read page + OOB from the second half */
350 {OPT_PAGE512_8BIT
, {STATE_CMD_READ1
| ACTION_HALFOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
351 STATE_DATAOUT
, STATE_READY
}},
353 {OPT_SMALLPAGE
, {STATE_CMD_READOOB
| ACTION_OOBOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
354 STATE_DATAOUT
, STATE_READY
}},
355 /* Programm page starting from the beginning */
356 {OPT_ANY
, {STATE_CMD_SEQIN
, STATE_ADDR_PAGE
, STATE_DATAIN
,
357 STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
358 /* Programm page starting from the beginning */
359 {OPT_SMALLPAGE
, {STATE_CMD_READ0
, STATE_CMD_SEQIN
| ACTION_ZEROOFF
, STATE_ADDR_PAGE
,
360 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
361 /* Programm page starting from the second half */
362 {OPT_PAGE512
, {STATE_CMD_READ1
, STATE_CMD_SEQIN
| ACTION_HALFOFF
, STATE_ADDR_PAGE
,
363 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
365 {OPT_SMALLPAGE
, {STATE_CMD_READOOB
, STATE_CMD_SEQIN
| ACTION_OOBOFF
, STATE_ADDR_PAGE
,
366 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
368 {OPT_ANY
, {STATE_CMD_ERASE1
, STATE_ADDR_SEC
, STATE_CMD_ERASE2
| ACTION_SECERASE
, STATE_READY
}},
370 {OPT_ANY
, {STATE_CMD_STATUS
, STATE_DATAOUT_STATUS
, STATE_READY
}},
371 /* Read multi-plane status */
372 {OPT_SMARTMEDIA
, {STATE_CMD_STATUS_M
, STATE_DATAOUT_STATUS_M
, STATE_READY
}},
374 {OPT_ANY
, {STATE_CMD_READID
, STATE_ADDR_ZERO
, STATE_DATAOUT_ID
, STATE_READY
}},
375 /* Large page devices read page */
376 {OPT_LARGEPAGE
, {STATE_CMD_READ0
, STATE_ADDR_PAGE
, STATE_CMD_READSTART
| ACTION_CPY
,
377 STATE_DATAOUT
, STATE_READY
}}
381 struct list_head list
;
382 unsigned int erase_block_no
;
383 unsigned int max_erases
;
384 unsigned int erases_done
;
387 static LIST_HEAD(weak_blocks
);
390 struct list_head list
;
391 unsigned int page_no
;
392 unsigned int max_writes
;
393 unsigned int writes_done
;
396 static LIST_HEAD(weak_pages
);
399 struct list_head list
;
400 unsigned int page_no
;
401 unsigned int max_reads
;
402 unsigned int reads_done
;
405 static LIST_HEAD(grave_pages
);
407 static unsigned long *erase_block_wear
= NULL
;
408 static unsigned int wear_eb_count
= 0;
409 static unsigned long total_wear
= 0;
410 static unsigned int rptwear_cnt
= 0;
412 /* MTD structure for NAND controller */
413 static struct mtd_info
*nsmtd
;
415 static u_char ns_verify_buf
[NS_LARGEST_PAGE_SIZE
];
418 * Allocate array of page pointers and initialize the array to NULL
421 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
423 static int alloc_device(struct nandsim
*ns
)
427 ns
->pages
= vmalloc(ns
->geom
.pgnum
* sizeof(union ns_mem
));
429 NS_ERR("alloc_map: unable to allocate page array\n");
432 for (i
= 0; i
< ns
->geom
.pgnum
; i
++) {
433 ns
->pages
[i
].byte
= NULL
;
440 * Free any allocated pages, and free the array of page pointers.
442 static void free_device(struct nandsim
*ns
)
447 for (i
= 0; i
< ns
->geom
.pgnum
; i
++) {
448 if (ns
->pages
[i
].byte
)
449 kfree(ns
->pages
[i
].byte
);
455 static char *get_partition_name(int i
)
458 sprintf(buf
, "NAND simulator partition %d", i
);
459 return kstrdup(buf
, GFP_KERNEL
);
463 * Initialize the nandsim structure.
465 * RETURNS: 0 if success, -ERRNO if failure.
467 static int init_nandsim(struct mtd_info
*mtd
)
469 struct nand_chip
*chip
= (struct nand_chip
*)mtd
->priv
;
470 struct nandsim
*ns
= (struct nandsim
*)(chip
->priv
);
473 u_int32_t next_offset
;
475 if (NS_IS_INITIALIZED(ns
)) {
476 NS_ERR("init_nandsim: nandsim is already initialized\n");
480 /* Force mtd to not do delays */
481 chip
->chip_delay
= 0;
483 /* Initialize the NAND flash parameters */
484 ns
->busw
= chip
->options
& NAND_BUSWIDTH_16
? 16 : 8;
485 ns
->geom
.totsz
= mtd
->size
;
486 ns
->geom
.pgsz
= mtd
->writesize
;
487 ns
->geom
.oobsz
= mtd
->oobsize
;
488 ns
->geom
.secsz
= mtd
->erasesize
;
489 ns
->geom
.pgszoob
= ns
->geom
.pgsz
+ ns
->geom
.oobsz
;
490 ns
->geom
.pgnum
= ns
->geom
.totsz
/ ns
->geom
.pgsz
;
491 ns
->geom
.totszoob
= ns
->geom
.totsz
+ ns
->geom
.pgnum
* ns
->geom
.oobsz
;
492 ns
->geom
.secshift
= ffs(ns
->geom
.secsz
) - 1;
493 ns
->geom
.pgshift
= chip
->page_shift
;
494 ns
->geom
.oobshift
= ffs(ns
->geom
.oobsz
) - 1;
495 ns
->geom
.pgsec
= ns
->geom
.secsz
/ ns
->geom
.pgsz
;
496 ns
->geom
.secszoob
= ns
->geom
.secsz
+ ns
->geom
.oobsz
* ns
->geom
.pgsec
;
499 if (ns
->geom
.pgsz
== 256) {
500 ns
->options
|= OPT_PAGE256
;
502 else if (ns
->geom
.pgsz
== 512) {
503 ns
->options
|= (OPT_PAGE512
| OPT_AUTOINCR
);
505 ns
->options
|= OPT_PAGE512_8BIT
;
506 } else if (ns
->geom
.pgsz
== 2048) {
507 ns
->options
|= OPT_PAGE2048
;
509 NS_ERR("init_nandsim: unknown page size %u\n", ns
->geom
.pgsz
);
513 if (ns
->options
& OPT_SMALLPAGE
) {
514 if (ns
->geom
.totsz
< (32 << 20)) {
515 ns
->geom
.pgaddrbytes
= 3;
516 ns
->geom
.secaddrbytes
= 2;
518 ns
->geom
.pgaddrbytes
= 4;
519 ns
->geom
.secaddrbytes
= 3;
522 if (ns
->geom
.totsz
<= (128 << 20)) {
523 ns
->geom
.pgaddrbytes
= 4;
524 ns
->geom
.secaddrbytes
= 2;
526 ns
->geom
.pgaddrbytes
= 5;
527 ns
->geom
.secaddrbytes
= 3;
531 /* Fill the partition_info structure */
532 if (parts_num
> ARRAY_SIZE(ns
->partitions
)) {
533 NS_ERR("too many partitions.\n");
537 remains
= ns
->geom
.totsz
;
539 for (i
= 0; i
< parts_num
; ++i
) {
540 unsigned long part
= parts
[i
];
541 if (!part
|| part
> remains
/ ns
->geom
.secsz
) {
542 NS_ERR("bad partition size.\n");
546 ns
->partitions
[i
].name
= get_partition_name(i
);
547 ns
->partitions
[i
].offset
= next_offset
;
548 ns
->partitions
[i
].size
= part
* ns
->geom
.secsz
;
549 next_offset
+= ns
->partitions
[i
].size
;
550 remains
-= ns
->partitions
[i
].size
;
552 ns
->nbparts
= parts_num
;
554 if (parts_num
+ 1 > ARRAY_SIZE(ns
->partitions
)) {
555 NS_ERR("too many partitions.\n");
559 ns
->partitions
[i
].name
= get_partition_name(i
);
560 ns
->partitions
[i
].offset
= next_offset
;
561 ns
->partitions
[i
].size
= remains
;
565 /* Detect how many ID bytes the NAND chip outputs */
566 for (i
= 0; nand_flash_ids
[i
].name
!= NULL
; i
++) {
567 if (second_id_byte
!= nand_flash_ids
[i
].id
)
569 if (!(nand_flash_ids
[i
].options
& NAND_NO_AUTOINCR
))
570 ns
->options
|= OPT_AUTOINCR
;
574 NS_WARN("16-bit flashes support wasn't tested\n");
576 printk("flash size: %u MiB\n", ns
->geom
.totsz
>> 20);
577 printk("page size: %u bytes\n", ns
->geom
.pgsz
);
578 printk("OOB area size: %u bytes\n", ns
->geom
.oobsz
);
579 printk("sector size: %u KiB\n", ns
->geom
.secsz
>> 10);
580 printk("pages number: %u\n", ns
->geom
.pgnum
);
581 printk("pages per sector: %u\n", ns
->geom
.pgsec
);
582 printk("bus width: %u\n", ns
->busw
);
583 printk("bits in sector size: %u\n", ns
->geom
.secshift
);
584 printk("bits in page size: %u\n", ns
->geom
.pgshift
);
585 printk("bits in OOB size: %u\n", ns
->geom
.oobshift
);
586 printk("flash size with OOB: %u KiB\n", ns
->geom
.totszoob
>> 10);
587 printk("page address bytes: %u\n", ns
->geom
.pgaddrbytes
);
588 printk("sector address bytes: %u\n", ns
->geom
.secaddrbytes
);
589 printk("options: %#x\n", ns
->options
);
591 if ((ret
= alloc_device(ns
)) != 0)
594 /* Allocate / initialize the internal buffer */
595 ns
->buf
.byte
= kmalloc(ns
->geom
.pgszoob
, GFP_KERNEL
);
597 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
602 memset(ns
->buf
.byte
, 0xFF, ns
->geom
.pgszoob
);
613 * Free the nandsim structure.
615 static void free_nandsim(struct nandsim
*ns
)
623 static int parse_badblocks(struct nandsim
*ns
, struct mtd_info
*mtd
)
627 unsigned int erase_block_no
;
634 zero_ok
= (*w
== '0' ? 1 : 0);
635 erase_block_no
= simple_strtoul(w
, &w
, 0);
636 if (!zero_ok
&& !erase_block_no
) {
637 NS_ERR("invalid badblocks.\n");
640 offset
= erase_block_no
* ns
->geom
.secsz
;
641 if (mtd
->block_markbad(mtd
, offset
)) {
642 NS_ERR("invalid badblocks.\n");
651 static int parse_weakblocks(void)
655 unsigned int erase_block_no
;
656 unsigned int max_erases
;
657 struct weak_block
*wb
;
663 zero_ok
= (*w
== '0' ? 1 : 0);
664 erase_block_no
= simple_strtoul(w
, &w
, 0);
665 if (!zero_ok
&& !erase_block_no
) {
666 NS_ERR("invalid weakblocks.\n");
672 max_erases
= simple_strtoul(w
, &w
, 0);
676 wb
= kzalloc(sizeof(*wb
), GFP_KERNEL
);
678 NS_ERR("unable to allocate memory.\n");
681 wb
->erase_block_no
= erase_block_no
;
682 wb
->max_erases
= max_erases
;
683 list_add(&wb
->list
, &weak_blocks
);
688 static int erase_error(unsigned int erase_block_no
)
690 struct weak_block
*wb
;
692 list_for_each_entry(wb
, &weak_blocks
, list
)
693 if (wb
->erase_block_no
== erase_block_no
) {
694 if (wb
->erases_done
>= wb
->max_erases
)
696 wb
->erases_done
+= 1;
702 static int parse_weakpages(void)
706 unsigned int page_no
;
707 unsigned int max_writes
;
708 struct weak_page
*wp
;
714 zero_ok
= (*w
== '0' ? 1 : 0);
715 page_no
= simple_strtoul(w
, &w
, 0);
716 if (!zero_ok
&& !page_no
) {
717 NS_ERR("invalid weakpagess.\n");
723 max_writes
= simple_strtoul(w
, &w
, 0);
727 wp
= kzalloc(sizeof(*wp
), GFP_KERNEL
);
729 NS_ERR("unable to allocate memory.\n");
732 wp
->page_no
= page_no
;
733 wp
->max_writes
= max_writes
;
734 list_add(&wp
->list
, &weak_pages
);
739 static int write_error(unsigned int page_no
)
741 struct weak_page
*wp
;
743 list_for_each_entry(wp
, &weak_pages
, list
)
744 if (wp
->page_no
== page_no
) {
745 if (wp
->writes_done
>= wp
->max_writes
)
747 wp
->writes_done
+= 1;
753 static int parse_gravepages(void)
757 unsigned int page_no
;
758 unsigned int max_reads
;
759 struct grave_page
*gp
;
765 zero_ok
= (*g
== '0' ? 1 : 0);
766 page_no
= simple_strtoul(g
, &g
, 0);
767 if (!zero_ok
&& !page_no
) {
768 NS_ERR("invalid gravepagess.\n");
774 max_reads
= simple_strtoul(g
, &g
, 0);
778 gp
= kzalloc(sizeof(*gp
), GFP_KERNEL
);
780 NS_ERR("unable to allocate memory.\n");
783 gp
->page_no
= page_no
;
784 gp
->max_reads
= max_reads
;
785 list_add(&gp
->list
, &grave_pages
);
790 static int read_error(unsigned int page_no
)
792 struct grave_page
*gp
;
794 list_for_each_entry(gp
, &grave_pages
, list
)
795 if (gp
->page_no
== page_no
) {
796 if (gp
->reads_done
>= gp
->max_reads
)
804 static void free_lists(void)
806 struct list_head
*pos
, *n
;
807 list_for_each_safe(pos
, n
, &weak_blocks
) {
809 kfree(list_entry(pos
, struct weak_block
, list
));
811 list_for_each_safe(pos
, n
, &weak_pages
) {
813 kfree(list_entry(pos
, struct weak_page
, list
));
815 list_for_each_safe(pos
, n
, &grave_pages
) {
817 kfree(list_entry(pos
, struct grave_page
, list
));
819 kfree(erase_block_wear
);
822 static int setup_wear_reporting(struct mtd_info
*mtd
)
828 wear_eb_count
= mtd
->size
/ mtd
->erasesize
;
829 mem
= wear_eb_count
* sizeof(unsigned long);
830 if (mem
/ sizeof(unsigned long) != wear_eb_count
) {
831 NS_ERR("Too many erase blocks for wear reporting\n");
834 erase_block_wear
= kzalloc(mem
, GFP_KERNEL
);
835 if (!erase_block_wear
) {
836 NS_ERR("Too many erase blocks for wear reporting\n");
842 static void update_wear(unsigned int erase_block_no
)
844 unsigned long wmin
= -1, wmax
= 0, avg
;
845 unsigned long deciles
[10], decile_max
[10], tot
= 0;
848 if (!erase_block_wear
)
852 NS_ERR("Erase counter total overflow\n");
853 erase_block_wear
[erase_block_no
] += 1;
854 if (erase_block_wear
[erase_block_no
] == 0)
855 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no
);
857 if (rptwear_cnt
< rptwear
)
860 /* Calc wear stats */
861 for (i
= 0; i
< wear_eb_count
; ++i
) {
862 unsigned long wear
= erase_block_wear
[i
];
869 for (i
= 0; i
< 9; ++i
) {
871 decile_max
[i
] = (wmax
* (i
+ 1) + 5) / 10;
874 decile_max
[9] = wmax
;
875 for (i
= 0; i
< wear_eb_count
; ++i
) {
877 unsigned long wear
= erase_block_wear
[i
];
878 for (d
= 0; d
< 10; ++d
)
879 if (wear
<= decile_max
[d
]) {
884 avg
= tot
/ wear_eb_count
;
885 /* Output wear report */
886 NS_INFO("*** Wear Report ***\n");
887 NS_INFO("Total numbers of erases: %lu\n", tot
);
888 NS_INFO("Number of erase blocks: %u\n", wear_eb_count
);
889 NS_INFO("Average number of erases: %lu\n", avg
);
890 NS_INFO("Maximum number of erases: %lu\n", wmax
);
891 NS_INFO("Minimum number of erases: %lu\n", wmin
);
892 for (i
= 0; i
< 10; ++i
) {
893 unsigned long from
= (i
? decile_max
[i
- 1] + 1 : 0);
894 if (from
> decile_max
[i
])
896 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
901 NS_INFO("*** End of Wear Report ***\n");
905 * Returns the string representation of 'state' state.
907 static char *get_state_name(uint32_t state
)
909 switch (NS_STATE(state
)) {
910 case STATE_CMD_READ0
:
911 return "STATE_CMD_READ0";
912 case STATE_CMD_READ1
:
913 return "STATE_CMD_READ1";
914 case STATE_CMD_PAGEPROG
:
915 return "STATE_CMD_PAGEPROG";
916 case STATE_CMD_READOOB
:
917 return "STATE_CMD_READOOB";
918 case STATE_CMD_READSTART
:
919 return "STATE_CMD_READSTART";
920 case STATE_CMD_ERASE1
:
921 return "STATE_CMD_ERASE1";
922 case STATE_CMD_STATUS
:
923 return "STATE_CMD_STATUS";
924 case STATE_CMD_STATUS_M
:
925 return "STATE_CMD_STATUS_M";
926 case STATE_CMD_SEQIN
:
927 return "STATE_CMD_SEQIN";
928 case STATE_CMD_READID
:
929 return "STATE_CMD_READID";
930 case STATE_CMD_ERASE2
:
931 return "STATE_CMD_ERASE2";
932 case STATE_CMD_RESET
:
933 return "STATE_CMD_RESET";
934 case STATE_ADDR_PAGE
:
935 return "STATE_ADDR_PAGE";
937 return "STATE_ADDR_SEC";
938 case STATE_ADDR_ZERO
:
939 return "STATE_ADDR_ZERO";
941 return "STATE_DATAIN";
943 return "STATE_DATAOUT";
944 case STATE_DATAOUT_ID
:
945 return "STATE_DATAOUT_ID";
946 case STATE_DATAOUT_STATUS
:
947 return "STATE_DATAOUT_STATUS";
948 case STATE_DATAOUT_STATUS_M
:
949 return "STATE_DATAOUT_STATUS_M";
951 return "STATE_READY";
953 return "STATE_UNKNOWN";
956 NS_ERR("get_state_name: unknown state, BUG\n");
961 * Check if command is valid.
963 * RETURNS: 1 if wrong command, 0 if right.
965 static int check_command(int cmd
)
970 case NAND_CMD_READSTART
:
971 case NAND_CMD_PAGEPROG
:
972 case NAND_CMD_READOOB
:
973 case NAND_CMD_ERASE1
:
974 case NAND_CMD_STATUS
:
976 case NAND_CMD_READID
:
977 case NAND_CMD_ERASE2
:
982 case NAND_CMD_STATUS_MULTI
:
989 * Returns state after command is accepted by command number.
991 static uint32_t get_state_by_command(unsigned command
)
995 return STATE_CMD_READ0
;
997 return STATE_CMD_READ1
;
998 case NAND_CMD_PAGEPROG
:
999 return STATE_CMD_PAGEPROG
;
1000 case NAND_CMD_READSTART
:
1001 return STATE_CMD_READSTART
;
1002 case NAND_CMD_READOOB
:
1003 return STATE_CMD_READOOB
;
1004 case NAND_CMD_ERASE1
:
1005 return STATE_CMD_ERASE1
;
1006 case NAND_CMD_STATUS
:
1007 return STATE_CMD_STATUS
;
1008 case NAND_CMD_STATUS_MULTI
:
1009 return STATE_CMD_STATUS_M
;
1010 case NAND_CMD_SEQIN
:
1011 return STATE_CMD_SEQIN
;
1012 case NAND_CMD_READID
:
1013 return STATE_CMD_READID
;
1014 case NAND_CMD_ERASE2
:
1015 return STATE_CMD_ERASE2
;
1016 case NAND_CMD_RESET
:
1017 return STATE_CMD_RESET
;
1020 NS_ERR("get_state_by_command: unknown command, BUG\n");
1025 * Move an address byte to the correspondent internal register.
1027 static inline void accept_addr_byte(struct nandsim
*ns
, u_char bt
)
1029 uint byte
= (uint
)bt
;
1031 if (ns
->regs
.count
< (ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
))
1032 ns
->regs
.column
|= (byte
<< 8 * ns
->regs
.count
);
1034 ns
->regs
.row
|= (byte
<< 8 * (ns
->regs
.count
-
1035 ns
->geom
.pgaddrbytes
+
1036 ns
->geom
.secaddrbytes
));
1043 * Switch to STATE_READY state.
1045 static inline void switch_to_ready_state(struct nandsim
*ns
, u_char status
)
1047 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY
));
1049 ns
->state
= STATE_READY
;
1050 ns
->nxstate
= STATE_UNKNOWN
;
1058 ns
->regs
.column
= 0;
1059 ns
->regs
.status
= status
;
1063 * If the operation isn't known yet, try to find it in the global array
1064 * of supported operations.
1066 * Operation can be unknown because of the following.
1067 * 1. New command was accepted and this is the firs call to find the
1068 * correspondent states chain. In this case ns->npstates = 0;
1069 * 2. There is several operations which begin with the same command(s)
1070 * (for example program from the second half and read from the
1071 * second half operations both begin with the READ1 command). In this
1072 * case the ns->pstates[] array contains previous states.
1074 * Thus, the function tries to find operation containing the following
1075 * states (if the 'flag' parameter is 0):
1076 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1078 * If (one and only one) matching operation is found, it is accepted (
1079 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1082 * If there are several maches, the current state is pushed to the
1085 * The operation can be unknown only while commands are input to the chip.
1086 * As soon as address command is accepted, the operation must be known.
1087 * In such situation the function is called with 'flag' != 0, and the
1088 * operation is searched using the following pattern:
1089 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1091 * It is supposed that this pattern must either match one operation on
1092 * none. There can't be ambiguity in that case.
1094 * If no matches found, the functions does the following:
1095 * 1. if there are saved states present, try to ignore them and search
1096 * again only using the last command. If nothing was found, switch
1097 * to the STATE_READY state.
1098 * 2. if there are no saved states, switch to the STATE_READY state.
1100 * RETURNS: -2 - no matched operations found.
1101 * -1 - several matches.
1102 * 0 - operation is found.
1104 static int find_operation(struct nandsim
*ns
, uint32_t flag
)
1109 for (i
= 0; i
< NS_OPER_NUM
; i
++) {
1113 if (!(ns
->options
& ops
[i
].reqopts
))
1114 /* Ignore operations we can't perform */
1118 if (!(ops
[i
].states
[ns
->npstates
] & STATE_ADDR_MASK
))
1121 if (NS_STATE(ns
->state
) != NS_STATE(ops
[i
].states
[ns
->npstates
]))
1125 for (j
= 0; j
< ns
->npstates
; j
++)
1126 if (NS_STATE(ops
[i
].states
[j
]) != NS_STATE(ns
->pstates
[j
])
1127 && (ns
->options
& ops
[idx
].reqopts
)) {
1138 if (opsfound
== 1) {
1140 ns
->op
= &ops
[idx
].states
[0];
1143 * In this case the find_operation function was
1144 * called when address has just began input. But it isn't
1145 * yet fully input and the current state must
1146 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1147 * state must be the next state (ns->nxstate).
1149 ns
->stateidx
= ns
->npstates
- 1;
1151 ns
->stateidx
= ns
->npstates
;
1154 ns
->state
= ns
->op
[ns
->stateidx
];
1155 ns
->nxstate
= ns
->op
[ns
->stateidx
+ 1];
1156 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1157 idx
, get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
1161 if (opsfound
== 0) {
1162 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1163 if (ns
->npstates
!= 0) {
1164 NS_DBG("find_operation: no operation found, try again with state %s\n",
1165 get_state_name(ns
->state
));
1167 return find_operation(ns
, 0);
1170 NS_DBG("find_operation: no operations found\n");
1171 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1176 /* This shouldn't happen */
1177 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1181 NS_DBG("find_operation: there is still ambiguity\n");
1183 ns
->pstates
[ns
->npstates
++] = ns
->state
;
1189 * Returns a pointer to the current page.
1191 static inline union ns_mem
*NS_GET_PAGE(struct nandsim
*ns
)
1193 return &(ns
->pages
[ns
->regs
.row
]);
1197 * Retuns a pointer to the current byte, within the current page.
1199 static inline u_char
*NS_PAGE_BYTE_OFF(struct nandsim
*ns
)
1201 return NS_GET_PAGE(ns
)->byte
+ ns
->regs
.column
+ ns
->regs
.off
;
1205 * Fill the NAND buffer with data read from the specified page.
1207 static void read_page(struct nandsim
*ns
, int num
)
1209 union ns_mem
*mypage
;
1211 mypage
= NS_GET_PAGE(ns
);
1212 if (mypage
->byte
== NULL
) {
1213 NS_DBG("read_page: page %d not allocated\n", ns
->regs
.row
);
1214 memset(ns
->buf
.byte
, 0xFF, num
);
1216 unsigned int page_no
= ns
->regs
.row
;
1217 NS_DBG("read_page: page %d allocated, reading from %d\n",
1218 ns
->regs
.row
, ns
->regs
.column
+ ns
->regs
.off
);
1219 if (read_error(page_no
)) {
1221 memset(ns
->buf
.byte
, 0xFF, num
);
1222 for (i
= 0; i
< num
; ++i
)
1223 ns
->buf
.byte
[i
] = random32();
1224 NS_WARN("simulating read error in page %u\n", page_no
);
1227 memcpy(ns
->buf
.byte
, NS_PAGE_BYTE_OFF(ns
), num
);
1228 if (bitflips
&& random32() < (1 << 22)) {
1231 flips
= (random32() % (int) bitflips
) + 1;
1233 int pos
= random32() % (num
* 8);
1234 ns
->buf
.byte
[pos
/ 8] ^= (1 << (pos
% 8));
1235 NS_WARN("read_page: flipping bit %d in page %d "
1236 "reading from %d ecc: corrected=%u failed=%u\n",
1237 pos
, ns
->regs
.row
, ns
->regs
.column
+ ns
->regs
.off
,
1238 nsmtd
->ecc_stats
.corrected
, nsmtd
->ecc_stats
.failed
);
1245 * Erase all pages in the specified sector.
1247 static void erase_sector(struct nandsim
*ns
)
1249 union ns_mem
*mypage
;
1252 mypage
= NS_GET_PAGE(ns
);
1253 for (i
= 0; i
< ns
->geom
.pgsec
; i
++) {
1254 if (mypage
->byte
!= NULL
) {
1255 NS_DBG("erase_sector: freeing page %d\n", ns
->regs
.row
+i
);
1256 kfree(mypage
->byte
);
1257 mypage
->byte
= NULL
;
1264 * Program the specified page with the contents from the NAND buffer.
1266 static int prog_page(struct nandsim
*ns
, int num
)
1269 union ns_mem
*mypage
;
1272 mypage
= NS_GET_PAGE(ns
);
1273 if (mypage
->byte
== NULL
) {
1274 NS_DBG("prog_page: allocating page %d\n", ns
->regs
.row
);
1276 * We allocate memory with GFP_NOFS because a flash FS may
1277 * utilize this. If it is holding an FS lock, then gets here,
1278 * then kmalloc runs writeback which goes to the FS again
1279 * and deadlocks. This was seen in practice.
1281 mypage
->byte
= kmalloc(ns
->geom
.pgszoob
, GFP_NOFS
);
1282 if (mypage
->byte
== NULL
) {
1283 NS_ERR("prog_page: error allocating memory for page %d\n", ns
->regs
.row
);
1286 memset(mypage
->byte
, 0xFF, ns
->geom
.pgszoob
);
1289 pg_off
= NS_PAGE_BYTE_OFF(ns
);
1290 for (i
= 0; i
< num
; i
++)
1291 pg_off
[i
] &= ns
->buf
.byte
[i
];
1297 * If state has any action bit, perform this action.
1299 * RETURNS: 0 if success, -1 if error.
1301 static int do_state_action(struct nandsim
*ns
, uint32_t action
)
1304 int busdiv
= ns
->busw
== 8 ? 1 : 2;
1305 unsigned int erase_block_no
, page_no
;
1307 action
&= ACTION_MASK
;
1309 /* Check that page address input is correct */
1310 if (action
!= ACTION_SECERASE
&& ns
->regs
.row
>= ns
->geom
.pgnum
) {
1311 NS_WARN("do_state_action: wrong page number (%#x)\n", ns
->regs
.row
);
1319 * Copy page data to the internal buffer.
1322 /* Column shouldn't be very large */
1323 if (ns
->regs
.column
>= (ns
->geom
.pgszoob
- ns
->regs
.off
)) {
1324 NS_ERR("do_state_action: column number is too large\n");
1327 num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1330 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1331 num
, NS_RAW_OFFSET(ns
) + ns
->regs
.off
);
1333 if (ns
->regs
.off
== 0)
1334 NS_LOG("read page %d\n", ns
->regs
.row
);
1335 else if (ns
->regs
.off
< ns
->geom
.pgsz
)
1336 NS_LOG("read page %d (second half)\n", ns
->regs
.row
);
1338 NS_LOG("read OOB of page %d\n", ns
->regs
.row
);
1340 NS_UDELAY(access_delay
);
1341 NS_UDELAY(input_cycle
* ns
->geom
.pgsz
/ 1000 / busdiv
);
1345 case ACTION_SECERASE
:
1351 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1355 if (ns
->regs
.row
>= ns
->geom
.pgnum
- ns
->geom
.pgsec
1356 || (ns
->regs
.row
& ~(ns
->geom
.secsz
- 1))) {
1357 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns
->regs
.row
);
1361 ns
->regs
.row
= (ns
->regs
.row
<<
1362 8 * (ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
)) | ns
->regs
.column
;
1363 ns
->regs
.column
= 0;
1365 erase_block_no
= ns
->regs
.row
>> (ns
->geom
.secshift
- ns
->geom
.pgshift
);
1367 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1368 ns
->regs
.row
, NS_RAW_OFFSET(ns
));
1369 NS_LOG("erase sector %u\n", erase_block_no
);
1373 NS_MDELAY(erase_delay
);
1375 if (erase_block_wear
)
1376 update_wear(erase_block_no
);
1378 if (erase_error(erase_block_no
)) {
1379 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no
);
1385 case ACTION_PRGPAGE
:
1387 * Programm page - move internal buffer data to the page.
1391 NS_WARN("do_state_action: device is write-protected, programm\n");
1395 num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1396 if (num
!= ns
->regs
.count
) {
1397 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1398 ns
->regs
.count
, num
);
1402 if (prog_page(ns
, num
) == -1)
1405 page_no
= ns
->regs
.row
;
1407 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1408 num
, ns
->regs
.row
, ns
->regs
.column
, NS_RAW_OFFSET(ns
) + ns
->regs
.off
);
1409 NS_LOG("programm page %d\n", ns
->regs
.row
);
1411 NS_UDELAY(programm_delay
);
1412 NS_UDELAY(output_cycle
* ns
->geom
.pgsz
/ 1000 / busdiv
);
1414 if (write_error(page_no
)) {
1415 NS_WARN("simulating write failure in page %u\n", page_no
);
1421 case ACTION_ZEROOFF
:
1422 NS_DBG("do_state_action: set internal offset to 0\n");
1426 case ACTION_HALFOFF
:
1427 if (!(ns
->options
& OPT_PAGE512_8BIT
)) {
1428 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1429 "byte page size 8x chips\n");
1432 NS_DBG("do_state_action: set internal offset to %d\n", ns
->geom
.pgsz
/2);
1433 ns
->regs
.off
= ns
->geom
.pgsz
/2;
1437 NS_DBG("do_state_action: set internal offset to %d\n", ns
->geom
.pgsz
);
1438 ns
->regs
.off
= ns
->geom
.pgsz
;
1442 NS_DBG("do_state_action: BUG! unknown action\n");
1449 * Switch simulator's state.
1451 static void switch_state(struct nandsim
*ns
)
1455 * The current operation have already been identified.
1456 * Just follow the states chain.
1460 ns
->state
= ns
->nxstate
;
1461 ns
->nxstate
= ns
->op
[ns
->stateidx
+ 1];
1463 NS_DBG("switch_state: operation is known, switch to the next state, "
1464 "state: %s, nxstate: %s\n",
1465 get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
1467 /* See, whether we need to do some action */
1468 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
1469 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1475 * We don't yet know which operation we perform.
1476 * Try to identify it.
1480 * The only event causing the switch_state function to
1481 * be called with yet unknown operation is new command.
1483 ns
->state
= get_state_by_command(ns
->regs
.command
);
1485 NS_DBG("switch_state: operation is unknown, try to find it\n");
1487 if (find_operation(ns
, 0) != 0)
1490 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
1491 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1496 /* For 16x devices column means the page offset in words */
1497 if ((ns
->nxstate
& STATE_ADDR_MASK
) && ns
->busw
== 16) {
1498 NS_DBG("switch_state: double the column number for 16x device\n");
1499 ns
->regs
.column
<<= 1;
1502 if (NS_STATE(ns
->nxstate
) == STATE_READY
) {
1504 * The current state is the last. Return to STATE_READY
1507 u_char status
= NS_STATUS_OK(ns
);
1509 /* In case of data states, see if all bytes were input/output */
1510 if ((ns
->state
& (STATE_DATAIN_MASK
| STATE_DATAOUT_MASK
))
1511 && ns
->regs
.count
!= ns
->regs
.num
) {
1512 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1513 ns
->regs
.num
- ns
->regs
.count
);
1514 status
= NS_STATUS_FAILED(ns
);
1517 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1519 switch_to_ready_state(ns
, status
);
1522 } else if (ns
->nxstate
& (STATE_DATAIN_MASK
| STATE_DATAOUT_MASK
)) {
1524 * If the next state is data input/output, switch to it now
1527 ns
->state
= ns
->nxstate
;
1528 ns
->nxstate
= ns
->op
[++ns
->stateidx
+ 1];
1529 ns
->regs
.num
= ns
->regs
.count
= 0;
1531 NS_DBG("switch_state: the next state is data I/O, switch, "
1532 "state: %s, nxstate: %s\n",
1533 get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
1536 * Set the internal register to the count of bytes which
1537 * are expected to be input or output
1539 switch (NS_STATE(ns
->state
)) {
1542 ns
->regs
.num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1545 case STATE_DATAOUT_ID
:
1546 ns
->regs
.num
= ns
->geom
.idbytes
;
1549 case STATE_DATAOUT_STATUS
:
1550 case STATE_DATAOUT_STATUS_M
:
1551 ns
->regs
.count
= ns
->regs
.num
= 0;
1555 NS_ERR("switch_state: BUG! unknown data state\n");
1558 } else if (ns
->nxstate
& STATE_ADDR_MASK
) {
1560 * If the next state is address input, set the internal
1561 * register to the number of expected address bytes
1566 switch (NS_STATE(ns
->nxstate
)) {
1567 case STATE_ADDR_PAGE
:
1568 ns
->regs
.num
= ns
->geom
.pgaddrbytes
;
1571 case STATE_ADDR_SEC
:
1572 ns
->regs
.num
= ns
->geom
.secaddrbytes
;
1575 case STATE_ADDR_ZERO
:
1580 NS_ERR("switch_state: BUG! unknown address state\n");
1584 * Just reset internal counters.
1592 static u_char
ns_nand_read_byte(struct mtd_info
*mtd
)
1594 struct nandsim
*ns
= (struct nandsim
*)((struct nand_chip
*)mtd
->priv
)->priv
;
1597 /* Sanity and correctness checks */
1598 if (!ns
->lines
.ce
) {
1599 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint
)outb
);
1602 if (ns
->lines
.ale
|| ns
->lines
.cle
) {
1603 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint
)outb
);
1606 if (!(ns
->state
& STATE_DATAOUT_MASK
)) {
1607 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1608 "return %#x\n", get_state_name(ns
->state
), (uint
)outb
);
1612 /* Status register may be read as many times as it is wanted */
1613 if (NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS
) {
1614 NS_DBG("read_byte: return %#x status\n", ns
->regs
.status
);
1615 return ns
->regs
.status
;
1618 /* Check if there is any data in the internal buffer which may be read */
1619 if (ns
->regs
.count
== ns
->regs
.num
) {
1620 NS_WARN("read_byte: no more data to output, return %#x\n", (uint
)outb
);
1624 switch (NS_STATE(ns
->state
)) {
1626 if (ns
->busw
== 8) {
1627 outb
= ns
->buf
.byte
[ns
->regs
.count
];
1628 ns
->regs
.count
+= 1;
1630 outb
= (u_char
)cpu_to_le16(ns
->buf
.word
[ns
->regs
.count
>> 1]);
1631 ns
->regs
.count
+= 2;
1634 case STATE_DATAOUT_ID
:
1635 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns
->regs
.count
, ns
->regs
.num
);
1636 outb
= ns
->ids
[ns
->regs
.count
];
1637 ns
->regs
.count
+= 1;
1643 if (ns
->regs
.count
== ns
->regs
.num
) {
1644 NS_DBG("read_byte: all bytes were read\n");
1647 * The OPT_AUTOINCR allows to read next conseqitive pages without
1648 * new read operation cycle.
1650 if ((ns
->options
& OPT_AUTOINCR
) && NS_STATE(ns
->state
) == STATE_DATAOUT
) {
1652 if (ns
->regs
.row
+ 1 < ns
->geom
.pgnum
)
1654 NS_DBG("read_byte: switch to the next page (%#x)\n", ns
->regs
.row
);
1655 do_state_action(ns
, ACTION_CPY
);
1657 else if (NS_STATE(ns
->nxstate
) == STATE_READY
)
1665 static void ns_nand_write_byte(struct mtd_info
*mtd
, u_char byte
)
1667 struct nandsim
*ns
= (struct nandsim
*)((struct nand_chip
*)mtd
->priv
)->priv
;
1669 /* Sanity and correctness checks */
1670 if (!ns
->lines
.ce
) {
1671 NS_ERR("write_byte: chip is disabled, ignore write\n");
1674 if (ns
->lines
.ale
&& ns
->lines
.cle
) {
1675 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1679 if (ns
->lines
.cle
== 1) {
1681 * The byte written is a command.
1684 if (byte
== NAND_CMD_RESET
) {
1685 NS_LOG("reset chip\n");
1686 switch_to_ready_state(ns
, NS_STATUS_OK(ns
));
1691 * Chip might still be in STATE_DATAOUT
1692 * (if OPT_AUTOINCR feature is supported), STATE_DATAOUT_STATUS or
1693 * STATE_DATAOUT_STATUS_M state. If so, switch state.
1695 if (NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS
1696 || NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS_M
1697 || ((ns
->options
& OPT_AUTOINCR
) && NS_STATE(ns
->state
) == STATE_DATAOUT
))
1700 /* Check if chip is expecting command */
1701 if (NS_STATE(ns
->nxstate
) != STATE_UNKNOWN
&& !(ns
->nxstate
& STATE_CMD_MASK
)) {
1703 * We are in situation when something else (not command)
1704 * was expected but command was input. In this case ignore
1705 * previous command(s)/state(s) and accept the last one.
1707 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1708 "ignore previous states\n", (uint
)byte
, get_state_name(ns
->nxstate
));
1709 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1712 /* Check that the command byte is correct */
1713 if (check_command(byte
)) {
1714 NS_ERR("write_byte: unknown command %#x\n", (uint
)byte
);
1718 NS_DBG("command byte corresponding to %s state accepted\n",
1719 get_state_name(get_state_by_command(byte
)));
1720 ns
->regs
.command
= byte
;
1723 } else if (ns
->lines
.ale
== 1) {
1725 * The byte written is an address.
1728 if (NS_STATE(ns
->nxstate
) == STATE_UNKNOWN
) {
1730 NS_DBG("write_byte: operation isn't known yet, identify it\n");
1732 if (find_operation(ns
, 1) < 0)
1735 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
1736 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1741 switch (NS_STATE(ns
->nxstate
)) {
1742 case STATE_ADDR_PAGE
:
1743 ns
->regs
.num
= ns
->geom
.pgaddrbytes
;
1745 case STATE_ADDR_SEC
:
1746 ns
->regs
.num
= ns
->geom
.secaddrbytes
;
1748 case STATE_ADDR_ZERO
:
1756 /* Check that chip is expecting address */
1757 if (!(ns
->nxstate
& STATE_ADDR_MASK
)) {
1758 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
1759 "switch to STATE_READY\n", (uint
)byte
, get_state_name(ns
->nxstate
));
1760 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1764 /* Check if this is expected byte */
1765 if (ns
->regs
.count
== ns
->regs
.num
) {
1766 NS_ERR("write_byte: no more address bytes expected\n");
1767 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1771 accept_addr_byte(ns
, byte
);
1773 ns
->regs
.count
+= 1;
1775 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
1776 (uint
)byte
, ns
->regs
.count
, ns
->regs
.num
);
1778 if (ns
->regs
.count
== ns
->regs
.num
) {
1779 NS_DBG("address (%#x, %#x) is accepted\n", ns
->regs
.row
, ns
->regs
.column
);
1785 * The byte written is an input data.
1788 /* Check that chip is expecting data input */
1789 if (!(ns
->state
& STATE_DATAIN_MASK
)) {
1790 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
1791 "switch to %s\n", (uint
)byte
,
1792 get_state_name(ns
->state
), get_state_name(STATE_READY
));
1793 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1797 /* Check if this is expected byte */
1798 if (ns
->regs
.count
== ns
->regs
.num
) {
1799 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
1804 if (ns
->busw
== 8) {
1805 ns
->buf
.byte
[ns
->regs
.count
] = byte
;
1806 ns
->regs
.count
+= 1;
1808 ns
->buf
.word
[ns
->regs
.count
>> 1] = cpu_to_le16((uint16_t)byte
);
1809 ns
->regs
.count
+= 2;
1816 static void ns_hwcontrol(struct mtd_info
*mtd
, int cmd
, unsigned int bitmask
)
1818 struct nandsim
*ns
= ((struct nand_chip
*)mtd
->priv
)->priv
;
1820 ns
->lines
.cle
= bitmask
& NAND_CLE
? 1 : 0;
1821 ns
->lines
.ale
= bitmask
& NAND_ALE
? 1 : 0;
1822 ns
->lines
.ce
= bitmask
& NAND_NCE
? 1 : 0;
1824 if (cmd
!= NAND_CMD_NONE
)
1825 ns_nand_write_byte(mtd
, cmd
);
1828 static int ns_device_ready(struct mtd_info
*mtd
)
1830 NS_DBG("device_ready\n");
1834 static uint16_t ns_nand_read_word(struct mtd_info
*mtd
)
1836 struct nand_chip
*chip
= (struct nand_chip
*)mtd
->priv
;
1838 NS_DBG("read_word\n");
1840 return chip
->read_byte(mtd
) | (chip
->read_byte(mtd
) << 8);
1843 static void ns_nand_write_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
1845 struct nandsim
*ns
= (struct nandsim
*)((struct nand_chip
*)mtd
->priv
)->priv
;
1847 /* Check that chip is expecting data input */
1848 if (!(ns
->state
& STATE_DATAIN_MASK
)) {
1849 NS_ERR("write_buf: data input isn't expected, state is %s, "
1850 "switch to STATE_READY\n", get_state_name(ns
->state
));
1851 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1855 /* Check if these are expected bytes */
1856 if (ns
->regs
.count
+ len
> ns
->regs
.num
) {
1857 NS_ERR("write_buf: too many input bytes\n");
1858 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1862 memcpy(ns
->buf
.byte
+ ns
->regs
.count
, buf
, len
);
1863 ns
->regs
.count
+= len
;
1865 if (ns
->regs
.count
== ns
->regs
.num
) {
1866 NS_DBG("write_buf: %d bytes were written\n", ns
->regs
.count
);
1870 static void ns_nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
1872 struct nandsim
*ns
= (struct nandsim
*)((struct nand_chip
*)mtd
->priv
)->priv
;
1874 /* Sanity and correctness checks */
1875 if (!ns
->lines
.ce
) {
1876 NS_ERR("read_buf: chip is disabled\n");
1879 if (ns
->lines
.ale
|| ns
->lines
.cle
) {
1880 NS_ERR("read_buf: ALE or CLE pin is high\n");
1883 if (!(ns
->state
& STATE_DATAOUT_MASK
)) {
1884 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
1885 get_state_name(ns
->state
));
1889 if (NS_STATE(ns
->state
) != STATE_DATAOUT
) {
1892 for (i
= 0; i
< len
; i
++)
1893 buf
[i
] = ((struct nand_chip
*)mtd
->priv
)->read_byte(mtd
);
1898 /* Check if these are expected bytes */
1899 if (ns
->regs
.count
+ len
> ns
->regs
.num
) {
1900 NS_ERR("read_buf: too many bytes to read\n");
1901 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1905 memcpy(buf
, ns
->buf
.byte
+ ns
->regs
.count
, len
);
1906 ns
->regs
.count
+= len
;
1908 if (ns
->regs
.count
== ns
->regs
.num
) {
1909 if ((ns
->options
& OPT_AUTOINCR
) && NS_STATE(ns
->state
) == STATE_DATAOUT
) {
1911 if (ns
->regs
.row
+ 1 < ns
->geom
.pgnum
)
1913 NS_DBG("read_buf: switch to the next page (%#x)\n", ns
->regs
.row
);
1914 do_state_action(ns
, ACTION_CPY
);
1916 else if (NS_STATE(ns
->nxstate
) == STATE_READY
)
1923 static int ns_nand_verify_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
1925 ns_nand_read_buf(mtd
, (u_char
*)&ns_verify_buf
[0], len
);
1927 if (!memcmp(buf
, &ns_verify_buf
[0], len
)) {
1928 NS_DBG("verify_buf: the buffer is OK\n");
1931 NS_DBG("verify_buf: the buffer is wrong\n");
1937 * Module initialization function
1939 static int __init
ns_init_module(void)
1941 struct nand_chip
*chip
;
1942 struct nandsim
*nand
;
1943 int retval
= -ENOMEM
, i
;
1945 if (bus_width
!= 8 && bus_width
!= 16) {
1946 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width
);
1950 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
1951 nsmtd
= kzalloc(sizeof(struct mtd_info
) + sizeof(struct nand_chip
)
1952 + sizeof(struct nandsim
), GFP_KERNEL
);
1954 NS_ERR("unable to allocate core structures.\n");
1957 chip
= (struct nand_chip
*)(nsmtd
+ 1);
1958 nsmtd
->priv
= (void *)chip
;
1959 nand
= (struct nandsim
*)(chip
+ 1);
1960 chip
->priv
= (void *)nand
;
1963 * Register simulator's callbacks.
1965 chip
->cmd_ctrl
= ns_hwcontrol
;
1966 chip
->read_byte
= ns_nand_read_byte
;
1967 chip
->dev_ready
= ns_device_ready
;
1968 chip
->write_buf
= ns_nand_write_buf
;
1969 chip
->read_buf
= ns_nand_read_buf
;
1970 chip
->verify_buf
= ns_nand_verify_buf
;
1971 chip
->read_word
= ns_nand_read_word
;
1972 chip
->ecc
.mode
= NAND_ECC_SOFT
;
1973 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
1974 /* and 'badblocks' parameters to work */
1975 chip
->options
|= NAND_SKIP_BBTSCAN
;
1978 * Perform minimum nandsim structure initialization to handle
1979 * the initial ID read command correctly
1981 if (third_id_byte
!= 0xFF || fourth_id_byte
!= 0xFF)
1982 nand
->geom
.idbytes
= 4;
1984 nand
->geom
.idbytes
= 2;
1985 nand
->regs
.status
= NS_STATUS_OK(nand
);
1986 nand
->nxstate
= STATE_UNKNOWN
;
1987 nand
->options
|= OPT_PAGE256
; /* temporary value */
1988 nand
->ids
[0] = first_id_byte
;
1989 nand
->ids
[1] = second_id_byte
;
1990 nand
->ids
[2] = third_id_byte
;
1991 nand
->ids
[3] = fourth_id_byte
;
1992 if (bus_width
== 16) {
1994 chip
->options
|= NAND_BUSWIDTH_16
;
1997 nsmtd
->owner
= THIS_MODULE
;
1999 if ((retval
= parse_weakblocks()) != 0)
2002 if ((retval
= parse_weakpages()) != 0)
2005 if ((retval
= parse_gravepages()) != 0)
2008 if ((retval
= nand_scan(nsmtd
, 1)) != 0) {
2009 NS_ERR("can't register NAND Simulator\n");
2016 u_int32_t new_size
= nsmtd
->erasesize
<< overridesize
;
2017 if (new_size
>> overridesize
!= nsmtd
->erasesize
) {
2018 NS_ERR("overridesize is too big\n");
2021 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2022 nsmtd
->size
= new_size
;
2023 chip
->chipsize
= new_size
;
2024 chip
->chip_shift
= ffs(new_size
) - 1;
2027 if ((retval
= setup_wear_reporting(nsmtd
)) != 0)
2030 if ((retval
= init_nandsim(nsmtd
)) != 0)
2033 if ((retval
= parse_badblocks(nand
, nsmtd
)) != 0)
2036 if ((retval
= nand_default_bbt(nsmtd
)) != 0)
2039 /* Register NAND partitions */
2040 if ((retval
= add_mtd_partitions(nsmtd
, &nand
->partitions
[0], nand
->nbparts
)) != 0)
2047 nand_release(nsmtd
);
2048 for (i
= 0;i
< ARRAY_SIZE(nand
->partitions
); ++i
)
2049 kfree(nand
->partitions
[i
].name
);
2057 module_init(ns_init_module
);
2060 * Module clean-up function
2062 static void __exit
ns_cleanup_module(void)
2064 struct nandsim
*ns
= (struct nandsim
*)(((struct nand_chip
*)nsmtd
->priv
)->priv
);
2067 free_nandsim(ns
); /* Free nandsim private resources */
2068 nand_release(nsmtd
); /* Unregister driver */
2069 for (i
= 0;i
< ARRAY_SIZE(ns
->partitions
); ++i
)
2070 kfree(ns
->partitions
[i
].name
);
2071 kfree(nsmtd
); /* Free other structures */
2075 module_exit(ns_cleanup_module
);
2077 MODULE_LICENSE ("GPL");
2078 MODULE_AUTHOR ("Artem B. Bityuckiy");
2079 MODULE_DESCRIPTION ("The NAND flash simulator");