x86: use _ASM_EXTABLE macro in include/asm-x86/uaccess_64.h
[wrt350n-kernel.git] / drivers / mtd / onenand / onenand_base.c
blob1b0b3201141592f130d2ee6433194476cc36f2bd
1 /*
2 * linux/drivers/mtd/onenand/onenand_base.c
4 * Copyright (C) 2005-2007 Samsung Electronics
5 * Kyungmin Park <kyungmin.park@samsung.com>
7 * Credits:
8 * Adrian Hunter <ext-adrian.hunter@nokia.com>:
9 * auto-placement support, read-while load support, various fixes
10 * Copyright (C) Nokia Corporation, 2007
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/sched.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/onenand.h>
25 #include <linux/mtd/partitions.h>
27 #include <asm/io.h>
29 /**
30 * onenand_oob_64 - oob info for large (2KB) page
32 static struct nand_ecclayout onenand_oob_64 = {
33 .eccbytes = 20,
34 .eccpos = {
35 8, 9, 10, 11, 12,
36 24, 25, 26, 27, 28,
37 40, 41, 42, 43, 44,
38 56, 57, 58, 59, 60,
40 .oobfree = {
41 {2, 3}, {14, 2}, {18, 3}, {30, 2},
42 {34, 3}, {46, 2}, {50, 3}, {62, 2}
46 /**
47 * onenand_oob_32 - oob info for middle (1KB) page
49 static struct nand_ecclayout onenand_oob_32 = {
50 .eccbytes = 10,
51 .eccpos = {
52 8, 9, 10, 11, 12,
53 24, 25, 26, 27, 28,
55 .oobfree = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
58 static const unsigned char ffchars[] = {
59 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
60 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
61 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
62 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
63 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
64 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
65 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
66 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
69 /**
70 * onenand_readw - [OneNAND Interface] Read OneNAND register
71 * @param addr address to read
73 * Read OneNAND register
75 static unsigned short onenand_readw(void __iomem *addr)
77 return readw(addr);
80 /**
81 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
82 * @param value value to write
83 * @param addr address to write
85 * Write OneNAND register with value
87 static void onenand_writew(unsigned short value, void __iomem *addr)
89 writew(value, addr);
92 /**
93 * onenand_block_address - [DEFAULT] Get block address
94 * @param this onenand chip data structure
95 * @param block the block
96 * @return translated block address if DDP, otherwise same
98 * Setup Start Address 1 Register (F100h)
100 static int onenand_block_address(struct onenand_chip *this, int block)
102 /* Device Flash Core select, NAND Flash Block Address */
103 if (block & this->density_mask)
104 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
106 return block;
110 * onenand_bufferram_address - [DEFAULT] Get bufferram address
111 * @param this onenand chip data structure
112 * @param block the block
113 * @return set DBS value if DDP, otherwise 0
115 * Setup Start Address 2 Register (F101h) for DDP
117 static int onenand_bufferram_address(struct onenand_chip *this, int block)
119 /* Device BufferRAM Select */
120 if (block & this->density_mask)
121 return ONENAND_DDP_CHIP1;
123 return ONENAND_DDP_CHIP0;
127 * onenand_page_address - [DEFAULT] Get page address
128 * @param page the page address
129 * @param sector the sector address
130 * @return combined page and sector address
132 * Setup Start Address 8 Register (F107h)
134 static int onenand_page_address(int page, int sector)
136 /* Flash Page Address, Flash Sector Address */
137 int fpa, fsa;
139 fpa = page & ONENAND_FPA_MASK;
140 fsa = sector & ONENAND_FSA_MASK;
142 return ((fpa << ONENAND_FPA_SHIFT) | fsa);
146 * onenand_buffer_address - [DEFAULT] Get buffer address
147 * @param dataram1 DataRAM index
148 * @param sectors the sector address
149 * @param count the number of sectors
150 * @return the start buffer value
152 * Setup Start Buffer Register (F200h)
154 static int onenand_buffer_address(int dataram1, int sectors, int count)
156 int bsa, bsc;
158 /* BufferRAM Sector Address */
159 bsa = sectors & ONENAND_BSA_MASK;
161 if (dataram1)
162 bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */
163 else
164 bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */
166 /* BufferRAM Sector Count */
167 bsc = count & ONENAND_BSC_MASK;
169 return ((bsa << ONENAND_BSA_SHIFT) | bsc);
173 * onenand_command - [DEFAULT] Send command to OneNAND device
174 * @param mtd MTD device structure
175 * @param cmd the command to be sent
176 * @param addr offset to read from or write to
177 * @param len number of bytes to read or write
179 * Send command to OneNAND device. This function is used for middle/large page
180 * devices (1KB/2KB Bytes per page)
182 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
184 struct onenand_chip *this = mtd->priv;
185 int value, readcmd = 0, block_cmd = 0;
186 int block, page;
188 /* Address translation */
189 switch (cmd) {
190 case ONENAND_CMD_UNLOCK:
191 case ONENAND_CMD_LOCK:
192 case ONENAND_CMD_LOCK_TIGHT:
193 case ONENAND_CMD_UNLOCK_ALL:
194 block = -1;
195 page = -1;
196 break;
198 case ONENAND_CMD_ERASE:
199 case ONENAND_CMD_BUFFERRAM:
200 case ONENAND_CMD_OTP_ACCESS:
201 block_cmd = 1;
202 block = (int) (addr >> this->erase_shift);
203 page = -1;
204 break;
206 default:
207 block = (int) (addr >> this->erase_shift);
208 page = (int) (addr >> this->page_shift);
210 if (ONENAND_IS_2PLANE(this)) {
211 /* Make the even block number */
212 block &= ~1;
213 /* Is it the odd plane? */
214 if (addr & this->writesize)
215 block++;
216 page >>= 1;
218 page &= this->page_mask;
219 break;
222 /* NOTE: The setting order of the registers is very important! */
223 if (cmd == ONENAND_CMD_BUFFERRAM) {
224 /* Select DataRAM for DDP */
225 value = onenand_bufferram_address(this, block);
226 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
228 if (ONENAND_IS_2PLANE(this))
229 /* It is always BufferRAM0 */
230 ONENAND_SET_BUFFERRAM0(this);
231 else
232 /* Switch to the next data buffer */
233 ONENAND_SET_NEXT_BUFFERRAM(this);
235 return 0;
238 if (block != -1) {
239 /* Write 'DFS, FBA' of Flash */
240 value = onenand_block_address(this, block);
241 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
243 if (block_cmd) {
244 /* Select DataRAM for DDP */
245 value = onenand_bufferram_address(this, block);
246 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
250 if (page != -1) {
251 /* Now we use page size operation */
252 int sectors = 4, count = 4;
253 int dataram;
255 switch (cmd) {
256 case ONENAND_CMD_READ:
257 case ONENAND_CMD_READOOB:
258 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
259 readcmd = 1;
260 break;
262 default:
263 if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
264 cmd = ONENAND_CMD_2X_PROG;
265 dataram = ONENAND_CURRENT_BUFFERRAM(this);
266 break;
269 /* Write 'FPA, FSA' of Flash */
270 value = onenand_page_address(page, sectors);
271 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
273 /* Write 'BSA, BSC' of DataRAM */
274 value = onenand_buffer_address(dataram, sectors, count);
275 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
277 if (readcmd) {
278 /* Select DataRAM for DDP */
279 value = onenand_bufferram_address(this, block);
280 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
284 /* Interrupt clear */
285 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
287 /* Write command */
288 this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
290 return 0;
294 * onenand_wait - [DEFAULT] wait until the command is done
295 * @param mtd MTD device structure
296 * @param state state to select the max. timeout value
298 * Wait for command done. This applies to all OneNAND command
299 * Read can take up to 30us, erase up to 2ms and program up to 350us
300 * according to general OneNAND specs
302 static int onenand_wait(struct mtd_info *mtd, int state)
304 struct onenand_chip * this = mtd->priv;
305 unsigned long timeout;
306 unsigned int flags = ONENAND_INT_MASTER;
307 unsigned int interrupt = 0;
308 unsigned int ctrl;
310 /* The 20 msec is enough */
311 timeout = jiffies + msecs_to_jiffies(20);
312 while (time_before(jiffies, timeout)) {
313 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
315 if (interrupt & flags)
316 break;
318 if (state != FL_READING)
319 cond_resched();
321 /* To get correct interrupt status in timeout case */
322 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
324 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
326 if (ctrl & ONENAND_CTRL_ERROR) {
327 printk(KERN_ERR "onenand_wait: controller error = 0x%04x\n", ctrl);
328 if (ctrl & ONENAND_CTRL_LOCK)
329 printk(KERN_ERR "onenand_wait: it's locked error.\n");
330 return -EIO;
333 if (interrupt & ONENAND_INT_READ) {
334 int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
335 if (ecc) {
336 if (ecc & ONENAND_ECC_2BIT_ALL) {
337 printk(KERN_ERR "onenand_wait: ECC error = 0x%04x\n", ecc);
338 mtd->ecc_stats.failed++;
339 return -EBADMSG;
340 } else if (ecc & ONENAND_ECC_1BIT_ALL) {
341 printk(KERN_INFO "onenand_wait: correctable ECC error = 0x%04x\n", ecc);
342 mtd->ecc_stats.corrected++;
345 } else if (state == FL_READING) {
346 printk(KERN_ERR "onenand_wait: read timeout! ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
347 return -EIO;
350 return 0;
354 * onenand_interrupt - [DEFAULT] onenand interrupt handler
355 * @param irq onenand interrupt number
356 * @param dev_id interrupt data
358 * complete the work
360 static irqreturn_t onenand_interrupt(int irq, void *data)
362 struct onenand_chip *this = data;
364 /* To handle shared interrupt */
365 if (!this->complete.done)
366 complete(&this->complete);
368 return IRQ_HANDLED;
372 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
373 * @param mtd MTD device structure
374 * @param state state to select the max. timeout value
376 * Wait for command done.
378 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
380 struct onenand_chip *this = mtd->priv;
382 wait_for_completion(&this->complete);
384 return onenand_wait(mtd, state);
388 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
389 * @param mtd MTD device structure
390 * @param state state to select the max. timeout value
392 * Try interrupt based wait (It is used one-time)
394 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
396 struct onenand_chip *this = mtd->priv;
397 unsigned long remain, timeout;
399 /* We use interrupt wait first */
400 this->wait = onenand_interrupt_wait;
402 timeout = msecs_to_jiffies(100);
403 remain = wait_for_completion_timeout(&this->complete, timeout);
404 if (!remain) {
405 printk(KERN_INFO "OneNAND: There's no interrupt. "
406 "We use the normal wait\n");
408 /* Release the irq */
409 free_irq(this->irq, this);
411 this->wait = onenand_wait;
414 return onenand_wait(mtd, state);
418 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
419 * @param mtd MTD device structure
421 * There's two method to wait onenand work
422 * 1. polling - read interrupt status register
423 * 2. interrupt - use the kernel interrupt method
425 static void onenand_setup_wait(struct mtd_info *mtd)
427 struct onenand_chip *this = mtd->priv;
428 int syscfg;
430 init_completion(&this->complete);
432 if (this->irq <= 0) {
433 this->wait = onenand_wait;
434 return;
437 if (request_irq(this->irq, &onenand_interrupt,
438 IRQF_SHARED, "onenand", this)) {
439 /* If we can't get irq, use the normal wait */
440 this->wait = onenand_wait;
441 return;
444 /* Enable interrupt */
445 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
446 syscfg |= ONENAND_SYS_CFG1_IOBE;
447 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
449 this->wait = onenand_try_interrupt_wait;
453 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
454 * @param mtd MTD data structure
455 * @param area BufferRAM area
456 * @return offset given area
458 * Return BufferRAM offset given area
460 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
462 struct onenand_chip *this = mtd->priv;
464 if (ONENAND_CURRENT_BUFFERRAM(this)) {
465 /* Note: the 'this->writesize' is a real page size */
466 if (area == ONENAND_DATARAM)
467 return this->writesize;
468 if (area == ONENAND_SPARERAM)
469 return mtd->oobsize;
472 return 0;
476 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
477 * @param mtd MTD data structure
478 * @param area BufferRAM area
479 * @param buffer the databuffer to put/get data
480 * @param offset offset to read from or write to
481 * @param count number of bytes to read/write
483 * Read the BufferRAM area
485 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
486 unsigned char *buffer, int offset, size_t count)
488 struct onenand_chip *this = mtd->priv;
489 void __iomem *bufferram;
491 bufferram = this->base + area;
493 bufferram += onenand_bufferram_offset(mtd, area);
495 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
496 unsigned short word;
498 /* Align with word(16-bit) size */
499 count--;
501 /* Read word and save byte */
502 word = this->read_word(bufferram + offset + count);
503 buffer[count] = (word & 0xff);
506 memcpy(buffer, bufferram + offset, count);
508 return 0;
512 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
513 * @param mtd MTD data structure
514 * @param area BufferRAM area
515 * @param buffer the databuffer to put/get data
516 * @param offset offset to read from or write to
517 * @param count number of bytes to read/write
519 * Read the BufferRAM area with Sync. Burst Mode
521 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
522 unsigned char *buffer, int offset, size_t count)
524 struct onenand_chip *this = mtd->priv;
525 void __iomem *bufferram;
527 bufferram = this->base + area;
529 bufferram += onenand_bufferram_offset(mtd, area);
531 this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
533 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
534 unsigned short word;
536 /* Align with word(16-bit) size */
537 count--;
539 /* Read word and save byte */
540 word = this->read_word(bufferram + offset + count);
541 buffer[count] = (word & 0xff);
544 memcpy(buffer, bufferram + offset, count);
546 this->mmcontrol(mtd, 0);
548 return 0;
552 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
553 * @param mtd MTD data structure
554 * @param area BufferRAM area
555 * @param buffer the databuffer to put/get data
556 * @param offset offset to read from or write to
557 * @param count number of bytes to read/write
559 * Write the BufferRAM area
561 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
562 const unsigned char *buffer, int offset, size_t count)
564 struct onenand_chip *this = mtd->priv;
565 void __iomem *bufferram;
567 bufferram = this->base + area;
569 bufferram += onenand_bufferram_offset(mtd, area);
571 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
572 unsigned short word;
573 int byte_offset;
575 /* Align with word(16-bit) size */
576 count--;
578 /* Calculate byte access offset */
579 byte_offset = offset + count;
581 /* Read word and save byte */
582 word = this->read_word(bufferram + byte_offset);
583 word = (word & ~0xff) | buffer[count];
584 this->write_word(word, bufferram + byte_offset);
587 memcpy(bufferram + offset, buffer, count);
589 return 0;
593 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
594 * @param mtd MTD data structure
595 * @param addr address to check
596 * @return blockpage address
598 * Get blockpage address at 2x program mode
600 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
602 struct onenand_chip *this = mtd->priv;
603 int blockpage, block, page;
605 /* Calculate the even block number */
606 block = (int) (addr >> this->erase_shift) & ~1;
607 /* Is it the odd plane? */
608 if (addr & this->writesize)
609 block++;
610 page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
611 blockpage = (block << 7) | page;
613 return blockpage;
617 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
618 * @param mtd MTD data structure
619 * @param addr address to check
620 * @return 1 if there are valid data, otherwise 0
622 * Check bufferram if there is data we required
624 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
626 struct onenand_chip *this = mtd->priv;
627 int blockpage, found = 0;
628 unsigned int i;
630 if (ONENAND_IS_2PLANE(this))
631 blockpage = onenand_get_2x_blockpage(mtd, addr);
632 else
633 blockpage = (int) (addr >> this->page_shift);
635 /* Is there valid data? */
636 i = ONENAND_CURRENT_BUFFERRAM(this);
637 if (this->bufferram[i].blockpage == blockpage)
638 found = 1;
639 else {
640 /* Check another BufferRAM */
641 i = ONENAND_NEXT_BUFFERRAM(this);
642 if (this->bufferram[i].blockpage == blockpage) {
643 ONENAND_SET_NEXT_BUFFERRAM(this);
644 found = 1;
648 if (found && ONENAND_IS_DDP(this)) {
649 /* Select DataRAM for DDP */
650 int block = (int) (addr >> this->erase_shift);
651 int value = onenand_bufferram_address(this, block);
652 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
655 return found;
659 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
660 * @param mtd MTD data structure
661 * @param addr address to update
662 * @param valid valid flag
664 * Update BufferRAM information
666 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
667 int valid)
669 struct onenand_chip *this = mtd->priv;
670 int blockpage;
671 unsigned int i;
673 if (ONENAND_IS_2PLANE(this))
674 blockpage = onenand_get_2x_blockpage(mtd, addr);
675 else
676 blockpage = (int) (addr >> this->page_shift);
678 /* Invalidate another BufferRAM */
679 i = ONENAND_NEXT_BUFFERRAM(this);
680 if (this->bufferram[i].blockpage == blockpage)
681 this->bufferram[i].blockpage = -1;
683 /* Update BufferRAM */
684 i = ONENAND_CURRENT_BUFFERRAM(this);
685 if (valid)
686 this->bufferram[i].blockpage = blockpage;
687 else
688 this->bufferram[i].blockpage = -1;
692 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
693 * @param mtd MTD data structure
694 * @param addr start address to invalidate
695 * @param len length to invalidate
697 * Invalidate BufferRAM information
699 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
700 unsigned int len)
702 struct onenand_chip *this = mtd->priv;
703 int i;
704 loff_t end_addr = addr + len;
706 /* Invalidate BufferRAM */
707 for (i = 0; i < MAX_BUFFERRAM; i++) {
708 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
709 if (buf_addr >= addr && buf_addr < end_addr)
710 this->bufferram[i].blockpage = -1;
715 * onenand_get_device - [GENERIC] Get chip for selected access
716 * @param mtd MTD device structure
717 * @param new_state the state which is requested
719 * Get the device and lock it for exclusive access
721 static int onenand_get_device(struct mtd_info *mtd, int new_state)
723 struct onenand_chip *this = mtd->priv;
724 DECLARE_WAITQUEUE(wait, current);
727 * Grab the lock and see if the device is available
729 while (1) {
730 spin_lock(&this->chip_lock);
731 if (this->state == FL_READY) {
732 this->state = new_state;
733 spin_unlock(&this->chip_lock);
734 break;
736 if (new_state == FL_PM_SUSPENDED) {
737 spin_unlock(&this->chip_lock);
738 return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
740 set_current_state(TASK_UNINTERRUPTIBLE);
741 add_wait_queue(&this->wq, &wait);
742 spin_unlock(&this->chip_lock);
743 schedule();
744 remove_wait_queue(&this->wq, &wait);
747 return 0;
751 * onenand_release_device - [GENERIC] release chip
752 * @param mtd MTD device structure
754 * Deselect, release chip lock and wake up anyone waiting on the device
756 static void onenand_release_device(struct mtd_info *mtd)
758 struct onenand_chip *this = mtd->priv;
760 /* Release the chip */
761 spin_lock(&this->chip_lock);
762 this->state = FL_READY;
763 wake_up(&this->wq);
764 spin_unlock(&this->chip_lock);
768 * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
769 * @param mtd MTD device structure
770 * @param buf destination address
771 * @param column oob offset to read from
772 * @param thislen oob length to read
774 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
775 int thislen)
777 struct onenand_chip *this = mtd->priv;
778 struct nand_oobfree *free;
779 int readcol = column;
780 int readend = column + thislen;
781 int lastgap = 0;
782 unsigned int i;
783 uint8_t *oob_buf = this->oob_buf;
785 free = this->ecclayout->oobfree;
786 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
787 if (readcol >= lastgap)
788 readcol += free->offset - lastgap;
789 if (readend >= lastgap)
790 readend += free->offset - lastgap;
791 lastgap = free->offset + free->length;
793 this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
794 free = this->ecclayout->oobfree;
795 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
796 int free_end = free->offset + free->length;
797 if (free->offset < readend && free_end > readcol) {
798 int st = max_t(int,free->offset,readcol);
799 int ed = min_t(int,free_end,readend);
800 int n = ed - st;
801 memcpy(buf, oob_buf + st, n);
802 buf += n;
803 } else if (column == 0)
804 break;
806 return 0;
810 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
811 * @param mtd MTD device structure
812 * @param from offset to read from
813 * @param ops: oob operation description structure
815 * OneNAND read main and/or out-of-band data
817 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
818 struct mtd_oob_ops *ops)
820 struct onenand_chip *this = mtd->priv;
821 struct mtd_ecc_stats stats;
822 size_t len = ops->len;
823 size_t ooblen = ops->ooblen;
824 u_char *buf = ops->datbuf;
825 u_char *oobbuf = ops->oobbuf;
826 int read = 0, column, thislen;
827 int oobread = 0, oobcolumn, thisooblen, oobsize;
828 int ret = 0, boundary = 0;
829 int writesize = this->writesize;
831 DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
833 if (ops->mode == MTD_OOB_AUTO)
834 oobsize = this->ecclayout->oobavail;
835 else
836 oobsize = mtd->oobsize;
838 oobcolumn = from & (mtd->oobsize - 1);
840 /* Do not allow reads past end of device */
841 if ((from + len) > mtd->size) {
842 printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
843 ops->retlen = 0;
844 ops->oobretlen = 0;
845 return -EINVAL;
848 stats = mtd->ecc_stats;
850 /* Read-while-load method */
852 /* Do first load to bufferRAM */
853 if (read < len) {
854 if (!onenand_check_bufferram(mtd, from)) {
855 this->command(mtd, ONENAND_CMD_READ, from, writesize);
856 ret = this->wait(mtd, FL_READING);
857 onenand_update_bufferram(mtd, from, !ret);
861 thislen = min_t(int, writesize, len - read);
862 column = from & (writesize - 1);
863 if (column + thislen > writesize)
864 thislen = writesize - column;
866 while (!ret) {
867 /* If there is more to load then start next load */
868 from += thislen;
869 if (read + thislen < len) {
870 this->command(mtd, ONENAND_CMD_READ, from, writesize);
872 * Chip boundary handling in DDP
873 * Now we issued chip 1 read and pointed chip 1
874 * bufferam so we have to point chip 0 bufferam.
876 if (ONENAND_IS_DDP(this) &&
877 unlikely(from == (this->chipsize >> 1))) {
878 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
879 boundary = 1;
880 } else
881 boundary = 0;
882 ONENAND_SET_PREV_BUFFERRAM(this);
884 /* While load is going, read from last bufferRAM */
885 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
887 /* Read oob area if needed */
888 if (oobbuf) {
889 thisooblen = oobsize - oobcolumn;
890 thisooblen = min_t(int, thisooblen, ooblen - oobread);
892 if (ops->mode == MTD_OOB_AUTO)
893 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
894 else
895 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
896 oobread += thisooblen;
897 oobbuf += thisooblen;
898 oobcolumn = 0;
901 /* See if we are done */
902 read += thislen;
903 if (read == len)
904 break;
905 /* Set up for next read from bufferRAM */
906 if (unlikely(boundary))
907 this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
908 ONENAND_SET_NEXT_BUFFERRAM(this);
909 buf += thislen;
910 thislen = min_t(int, writesize, len - read);
911 column = 0;
912 cond_resched();
913 /* Now wait for load */
914 ret = this->wait(mtd, FL_READING);
915 onenand_update_bufferram(mtd, from, !ret);
919 * Return success, if no ECC failures, else -EBADMSG
920 * fs driver will take care of that, because
921 * retlen == desired len and result == -EBADMSG
923 ops->retlen = read;
924 ops->oobretlen = oobread;
926 if (mtd->ecc_stats.failed - stats.failed)
927 return -EBADMSG;
929 if (ret)
930 return ret;
932 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
936 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
937 * @param mtd MTD device structure
938 * @param from offset to read from
939 * @param ops: oob operation description structure
941 * OneNAND read out-of-band data from the spare area
943 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
944 struct mtd_oob_ops *ops)
946 struct onenand_chip *this = mtd->priv;
947 int read = 0, thislen, column, oobsize;
948 size_t len = ops->ooblen;
949 mtd_oob_mode_t mode = ops->mode;
950 u_char *buf = ops->oobbuf;
951 int ret = 0;
953 from += ops->ooboffs;
955 DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
957 /* Initialize return length value */
958 ops->oobretlen = 0;
960 if (mode == MTD_OOB_AUTO)
961 oobsize = this->ecclayout->oobavail;
962 else
963 oobsize = mtd->oobsize;
965 column = from & (mtd->oobsize - 1);
967 if (unlikely(column >= oobsize)) {
968 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
969 return -EINVAL;
972 /* Do not allow reads past end of device */
973 if (unlikely(from >= mtd->size ||
974 column + len > ((mtd->size >> this->page_shift) -
975 (from >> this->page_shift)) * oobsize)) {
976 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
977 return -EINVAL;
980 while (read < len) {
981 cond_resched();
983 thislen = oobsize - column;
984 thislen = min_t(int, thislen, len);
986 this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
988 onenand_update_bufferram(mtd, from, 0);
990 ret = this->wait(mtd, FL_READING);
991 /* First copy data and check return value for ECC handling */
993 if (mode == MTD_OOB_AUTO)
994 onenand_transfer_auto_oob(mtd, buf, column, thislen);
995 else
996 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
998 if (ret) {
999 printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1000 break;
1003 read += thislen;
1005 if (read == len)
1006 break;
1008 buf += thislen;
1010 /* Read more? */
1011 if (read < len) {
1012 /* Page size */
1013 from += mtd->writesize;
1014 column = 0;
1018 ops->oobretlen = read;
1019 return ret;
1023 * onenand_read - [MTD Interface] Read data from flash
1024 * @param mtd MTD device structure
1025 * @param from offset to read from
1026 * @param len number of bytes to read
1027 * @param retlen pointer to variable to store the number of read bytes
1028 * @param buf the databuffer to put data
1030 * Read with ecc
1032 static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1033 size_t *retlen, u_char *buf)
1035 struct mtd_oob_ops ops = {
1036 .len = len,
1037 .ooblen = 0,
1038 .datbuf = buf,
1039 .oobbuf = NULL,
1041 int ret;
1043 onenand_get_device(mtd, FL_READING);
1044 ret = onenand_read_ops_nolock(mtd, from, &ops);
1045 onenand_release_device(mtd);
1047 *retlen = ops.retlen;
1048 return ret;
1052 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1053 * @param mtd: MTD device structure
1054 * @param from: offset to read from
1055 * @param ops: oob operation description structure
1057 * Read main and/or out-of-band
1059 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1060 struct mtd_oob_ops *ops)
1062 int ret;
1064 switch (ops->mode) {
1065 case MTD_OOB_PLACE:
1066 case MTD_OOB_AUTO:
1067 break;
1068 case MTD_OOB_RAW:
1069 /* Not implemented yet */
1070 default:
1071 return -EINVAL;
1074 onenand_get_device(mtd, FL_READING);
1075 if (ops->datbuf)
1076 ret = onenand_read_ops_nolock(mtd, from, ops);
1077 else
1078 ret = onenand_read_oob_nolock(mtd, from, ops);
1079 onenand_release_device(mtd);
1081 return ret;
1085 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1086 * @param mtd MTD device structure
1087 * @param state state to select the max. timeout value
1089 * Wait for command done.
1091 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1093 struct onenand_chip *this = mtd->priv;
1094 unsigned long timeout;
1095 unsigned int interrupt;
1096 unsigned int ctrl;
1098 /* The 20 msec is enough */
1099 timeout = jiffies + msecs_to_jiffies(20);
1100 while (time_before(jiffies, timeout)) {
1101 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1102 if (interrupt & ONENAND_INT_MASTER)
1103 break;
1105 /* To get correct interrupt status in timeout case */
1106 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1107 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1109 if (ctrl & ONENAND_CTRL_ERROR) {
1110 printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1111 /* Initial bad block case */
1112 if (ctrl & ONENAND_CTRL_LOAD)
1113 return ONENAND_BBT_READ_ERROR;
1114 return ONENAND_BBT_READ_FATAL_ERROR;
1117 if (interrupt & ONENAND_INT_READ) {
1118 int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
1119 if (ecc & ONENAND_ECC_2BIT_ALL)
1120 return ONENAND_BBT_READ_ERROR;
1121 } else {
1122 printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1123 "ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1124 return ONENAND_BBT_READ_FATAL_ERROR;
1127 return 0;
1131 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1132 * @param mtd MTD device structure
1133 * @param from offset to read from
1134 * @param ops oob operation description structure
1136 * OneNAND read out-of-band data from the spare area for bbt scan
1138 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1139 struct mtd_oob_ops *ops)
1141 struct onenand_chip *this = mtd->priv;
1142 int read = 0, thislen, column;
1143 int ret = 0;
1144 size_t len = ops->ooblen;
1145 u_char *buf = ops->oobbuf;
1147 DEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1149 /* Initialize return value */
1150 ops->oobretlen = 0;
1152 /* Do not allow reads past end of device */
1153 if (unlikely((from + len) > mtd->size)) {
1154 printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1155 return ONENAND_BBT_READ_FATAL_ERROR;
1158 /* Grab the lock and see if the device is available */
1159 onenand_get_device(mtd, FL_READING);
1161 column = from & (mtd->oobsize - 1);
1163 while (read < len) {
1164 cond_resched();
1166 thislen = mtd->oobsize - column;
1167 thislen = min_t(int, thislen, len);
1169 this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
1171 onenand_update_bufferram(mtd, from, 0);
1173 ret = onenand_bbt_wait(mtd, FL_READING);
1174 if (ret)
1175 break;
1177 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1178 read += thislen;
1179 if (read == len)
1180 break;
1182 buf += thislen;
1184 /* Read more? */
1185 if (read < len) {
1186 /* Update Page size */
1187 from += this->writesize;
1188 column = 0;
1192 /* Deselect and wake up anyone waiting on the device */
1193 onenand_release_device(mtd);
1195 ops->oobretlen = read;
1196 return ret;
1199 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1201 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1202 * @param mtd MTD device structure
1203 * @param buf the databuffer to verify
1204 * @param to offset to read from
1206 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1208 struct onenand_chip *this = mtd->priv;
1209 char oobbuf[64];
1210 int status, i;
1212 this->command(mtd, ONENAND_CMD_READOOB, to, mtd->oobsize);
1213 onenand_update_bufferram(mtd, to, 0);
1214 status = this->wait(mtd, FL_READING);
1215 if (status)
1216 return status;
1218 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1219 for (i = 0; i < mtd->oobsize; i++)
1220 if (buf[i] != 0xFF && buf[i] != oobbuf[i])
1221 return -EBADMSG;
1223 return 0;
1227 * onenand_verify - [GENERIC] verify the chip contents after a write
1228 * @param mtd MTD device structure
1229 * @param buf the databuffer to verify
1230 * @param addr offset to read from
1231 * @param len number of bytes to read and compare
1233 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1235 struct onenand_chip *this = mtd->priv;
1236 void __iomem *dataram;
1237 int ret = 0;
1238 int thislen, column;
1240 while (len != 0) {
1241 thislen = min_t(int, this->writesize, len);
1242 column = addr & (this->writesize - 1);
1243 if (column + thislen > this->writesize)
1244 thislen = this->writesize - column;
1246 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1248 onenand_update_bufferram(mtd, addr, 0);
1250 ret = this->wait(mtd, FL_READING);
1251 if (ret)
1252 return ret;
1254 onenand_update_bufferram(mtd, addr, 1);
1256 dataram = this->base + ONENAND_DATARAM;
1257 dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1259 if (memcmp(buf, dataram + column, thislen))
1260 return -EBADMSG;
1262 len -= thislen;
1263 buf += thislen;
1264 addr += thislen;
1267 return 0;
1269 #else
1270 #define onenand_verify(...) (0)
1271 #define onenand_verify_oob(...) (0)
1272 #endif
1274 #define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0)
1277 * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1278 * @param mtd MTD device structure
1279 * @param oob_buf oob buffer
1280 * @param buf source address
1281 * @param column oob offset to write to
1282 * @param thislen oob length to write
1284 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1285 const u_char *buf, int column, int thislen)
1287 struct onenand_chip *this = mtd->priv;
1288 struct nand_oobfree *free;
1289 int writecol = column;
1290 int writeend = column + thislen;
1291 int lastgap = 0;
1292 unsigned int i;
1294 free = this->ecclayout->oobfree;
1295 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1296 if (writecol >= lastgap)
1297 writecol += free->offset - lastgap;
1298 if (writeend >= lastgap)
1299 writeend += free->offset - lastgap;
1300 lastgap = free->offset + free->length;
1302 free = this->ecclayout->oobfree;
1303 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1304 int free_end = free->offset + free->length;
1305 if (free->offset < writeend && free_end > writecol) {
1306 int st = max_t(int,free->offset,writecol);
1307 int ed = min_t(int,free_end,writeend);
1308 int n = ed - st;
1309 memcpy(oob_buf + st, buf, n);
1310 buf += n;
1311 } else if (column == 0)
1312 break;
1314 return 0;
1318 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1319 * @param mtd MTD device structure
1320 * @param to offset to write to
1321 * @param ops oob operation description structure
1323 * Write main and/or oob with ECC
1325 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1326 struct mtd_oob_ops *ops)
1328 struct onenand_chip *this = mtd->priv;
1329 int written = 0, column, thislen, subpage;
1330 int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1331 size_t len = ops->len;
1332 size_t ooblen = ops->ooblen;
1333 const u_char *buf = ops->datbuf;
1334 const u_char *oob = ops->oobbuf;
1335 u_char *oobbuf;
1336 int ret = 0;
1338 DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1340 /* Initialize retlen, in case of early exit */
1341 ops->retlen = 0;
1342 ops->oobretlen = 0;
1344 /* Do not allow writes past end of device */
1345 if (unlikely((to + len) > mtd->size)) {
1346 printk(KERN_ERR "onenand_write_ops_nolock: Attempt write to past end of device\n");
1347 return -EINVAL;
1350 /* Reject writes, which are not page aligned */
1351 if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(len))) {
1352 printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1353 return -EINVAL;
1356 if (ops->mode == MTD_OOB_AUTO)
1357 oobsize = this->ecclayout->oobavail;
1358 else
1359 oobsize = mtd->oobsize;
1361 oobcolumn = to & (mtd->oobsize - 1);
1363 column = to & (mtd->writesize - 1);
1365 /* Loop until all data write */
1366 while (written < len) {
1367 u_char *wbuf = (u_char *) buf;
1369 thislen = min_t(int, mtd->writesize - column, len - written);
1370 thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1372 cond_resched();
1374 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1376 /* Partial page write */
1377 subpage = thislen < mtd->writesize;
1378 if (subpage) {
1379 memset(this->page_buf, 0xff, mtd->writesize);
1380 memcpy(this->page_buf + column, buf, thislen);
1381 wbuf = this->page_buf;
1384 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1386 if (oob) {
1387 oobbuf = this->oob_buf;
1389 /* We send data to spare ram with oobsize
1390 * to prevent byte access */
1391 memset(oobbuf, 0xff, mtd->oobsize);
1392 if (ops->mode == MTD_OOB_AUTO)
1393 onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1394 else
1395 memcpy(oobbuf + oobcolumn, oob, thisooblen);
1397 oobwritten += thisooblen;
1398 oob += thisooblen;
1399 oobcolumn = 0;
1400 } else
1401 oobbuf = (u_char *) ffchars;
1403 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1405 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1407 ret = this->wait(mtd, FL_WRITING);
1409 /* In partial page write we don't update bufferram */
1410 onenand_update_bufferram(mtd, to, !ret && !subpage);
1411 if (ONENAND_IS_2PLANE(this)) {
1412 ONENAND_SET_BUFFERRAM1(this);
1413 onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1416 if (ret) {
1417 printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1418 break;
1421 /* Only check verify write turn on */
1422 ret = onenand_verify(mtd, (u_char *) wbuf, to, thislen);
1423 if (ret) {
1424 printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1425 break;
1428 written += thislen;
1430 if (written == len)
1431 break;
1433 column = 0;
1434 to += thislen;
1435 buf += thislen;
1438 /* Deselect and wake up anyone waiting on the device */
1439 onenand_release_device(mtd);
1441 ops->retlen = written;
1443 return ret;
1448 * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
1449 * @param mtd MTD device structure
1450 * @param to offset to write to
1451 * @param len number of bytes to write
1452 * @param retlen pointer to variable to store the number of written bytes
1453 * @param buf the data to write
1454 * @param mode operation mode
1456 * OneNAND write out-of-band
1458 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1459 struct mtd_oob_ops *ops)
1461 struct onenand_chip *this = mtd->priv;
1462 int column, ret = 0, oobsize;
1463 int written = 0;
1464 u_char *oobbuf;
1465 size_t len = ops->ooblen;
1466 const u_char *buf = ops->oobbuf;
1467 mtd_oob_mode_t mode = ops->mode;
1469 to += ops->ooboffs;
1471 DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1473 /* Initialize retlen, in case of early exit */
1474 ops->oobretlen = 0;
1476 if (mode == MTD_OOB_AUTO)
1477 oobsize = this->ecclayout->oobavail;
1478 else
1479 oobsize = mtd->oobsize;
1481 column = to & (mtd->oobsize - 1);
1483 if (unlikely(column >= oobsize)) {
1484 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1485 return -EINVAL;
1488 /* For compatibility with NAND: Do not allow write past end of page */
1489 if (unlikely(column + len > oobsize)) {
1490 printk(KERN_ERR "onenand_write_oob_nolock: "
1491 "Attempt to write past end of page\n");
1492 return -EINVAL;
1495 /* Do not allow reads past end of device */
1496 if (unlikely(to >= mtd->size ||
1497 column + len > ((mtd->size >> this->page_shift) -
1498 (to >> this->page_shift)) * oobsize)) {
1499 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1500 return -EINVAL;
1503 oobbuf = this->oob_buf;
1505 /* Loop until all data write */
1506 while (written < len) {
1507 int thislen = min_t(int, oobsize, len - written);
1509 cond_resched();
1511 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1513 /* We send data to spare ram with oobsize
1514 * to prevent byte access */
1515 memset(oobbuf, 0xff, mtd->oobsize);
1516 if (mode == MTD_OOB_AUTO)
1517 onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1518 else
1519 memcpy(oobbuf + column, buf, thislen);
1520 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1522 this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
1524 onenand_update_bufferram(mtd, to, 0);
1525 if (ONENAND_IS_2PLANE(this)) {
1526 ONENAND_SET_BUFFERRAM1(this);
1527 onenand_update_bufferram(mtd, to + this->writesize, 0);
1530 ret = this->wait(mtd, FL_WRITING);
1531 if (ret) {
1532 printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1533 break;
1536 ret = onenand_verify_oob(mtd, oobbuf, to);
1537 if (ret) {
1538 printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1539 break;
1542 written += thislen;
1543 if (written == len)
1544 break;
1546 to += mtd->writesize;
1547 buf += thislen;
1548 column = 0;
1551 ops->oobretlen = written;
1553 return ret;
1557 * onenand_write - [MTD Interface] write buffer to FLASH
1558 * @param mtd MTD device structure
1559 * @param to offset to write to
1560 * @param len number of bytes to write
1561 * @param retlen pointer to variable to store the number of written bytes
1562 * @param buf the data to write
1564 * Write with ECC
1566 static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1567 size_t *retlen, const u_char *buf)
1569 struct mtd_oob_ops ops = {
1570 .len = len,
1571 .ooblen = 0,
1572 .datbuf = (u_char *) buf,
1573 .oobbuf = NULL,
1575 int ret;
1577 onenand_get_device(mtd, FL_WRITING);
1578 ret = onenand_write_ops_nolock(mtd, to, &ops);
1579 onenand_release_device(mtd);
1581 *retlen = ops.retlen;
1582 return ret;
1586 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1587 * @param mtd: MTD device structure
1588 * @param to: offset to write
1589 * @param ops: oob operation description structure
1591 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1592 struct mtd_oob_ops *ops)
1594 int ret;
1596 switch (ops->mode) {
1597 case MTD_OOB_PLACE:
1598 case MTD_OOB_AUTO:
1599 break;
1600 case MTD_OOB_RAW:
1601 /* Not implemented yet */
1602 default:
1603 return -EINVAL;
1606 onenand_get_device(mtd, FL_WRITING);
1607 if (ops->datbuf)
1608 ret = onenand_write_ops_nolock(mtd, to, ops);
1609 else
1610 ret = onenand_write_oob_nolock(mtd, to, ops);
1611 onenand_release_device(mtd);
1613 return ret;
1617 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1618 * @param mtd MTD device structure
1619 * @param ofs offset from device start
1620 * @param allowbbt 1, if its allowed to access the bbt area
1622 * Check, if the block is bad. Either by reading the bad block table or
1623 * calling of the scan function.
1625 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1627 struct onenand_chip *this = mtd->priv;
1628 struct bbm_info *bbm = this->bbm;
1630 /* Return info from the table */
1631 return bbm->isbad_bbt(mtd, ofs, allowbbt);
1635 * onenand_erase - [MTD Interface] erase block(s)
1636 * @param mtd MTD device structure
1637 * @param instr erase instruction
1639 * Erase one ore more blocks
1641 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1643 struct onenand_chip *this = mtd->priv;
1644 unsigned int block_size;
1645 loff_t addr;
1646 int len;
1647 int ret = 0;
1649 DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
1651 block_size = (1 << this->erase_shift);
1653 /* Start address must align on block boundary */
1654 if (unlikely(instr->addr & (block_size - 1))) {
1655 printk(KERN_ERR "onenand_erase: Unaligned address\n");
1656 return -EINVAL;
1659 /* Length must align on block boundary */
1660 if (unlikely(instr->len & (block_size - 1))) {
1661 printk(KERN_ERR "onenand_erase: Length not block aligned\n");
1662 return -EINVAL;
1665 /* Do not allow erase past end of device */
1666 if (unlikely((instr->len + instr->addr) > mtd->size)) {
1667 printk(KERN_ERR "onenand_erase: Erase past end of device\n");
1668 return -EINVAL;
1671 instr->fail_addr = 0xffffffff;
1673 /* Grab the lock and see if the device is available */
1674 onenand_get_device(mtd, FL_ERASING);
1676 /* Loop throught the pages */
1677 len = instr->len;
1678 addr = instr->addr;
1680 instr->state = MTD_ERASING;
1682 while (len) {
1683 cond_resched();
1685 /* Check if we have a bad block, we do not erase bad blocks */
1686 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
1687 printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%08x\n", (unsigned int) addr);
1688 instr->state = MTD_ERASE_FAILED;
1689 goto erase_exit;
1692 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1694 onenand_invalidate_bufferram(mtd, addr, block_size);
1696 ret = this->wait(mtd, FL_ERASING);
1697 /* Check, if it is write protected */
1698 if (ret) {
1699 printk(KERN_ERR "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift));
1700 instr->state = MTD_ERASE_FAILED;
1701 instr->fail_addr = addr;
1702 goto erase_exit;
1705 len -= block_size;
1706 addr += block_size;
1709 instr->state = MTD_ERASE_DONE;
1711 erase_exit:
1713 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1715 /* Deselect and wake up anyone waiting on the device */
1716 onenand_release_device(mtd);
1718 /* Do call back function */
1719 if (!ret)
1720 mtd_erase_callback(instr);
1722 return ret;
1726 * onenand_sync - [MTD Interface] sync
1727 * @param mtd MTD device structure
1729 * Sync is actually a wait for chip ready function
1731 static void onenand_sync(struct mtd_info *mtd)
1733 DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1735 /* Grab the lock and see if the device is available */
1736 onenand_get_device(mtd, FL_SYNCING);
1738 /* Release it and go back */
1739 onenand_release_device(mtd);
1743 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1744 * @param mtd MTD device structure
1745 * @param ofs offset relative to mtd start
1747 * Check whether the block is bad
1749 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1751 int ret;
1753 /* Check for invalid offset */
1754 if (ofs > mtd->size)
1755 return -EINVAL;
1757 onenand_get_device(mtd, FL_READING);
1758 ret = onenand_block_isbad_nolock(mtd, ofs, 0);
1759 onenand_release_device(mtd);
1760 return ret;
1764 * onenand_default_block_markbad - [DEFAULT] mark a block bad
1765 * @param mtd MTD device structure
1766 * @param ofs offset from device start
1768 * This is the default implementation, which can be overridden by
1769 * a hardware specific driver.
1771 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1773 struct onenand_chip *this = mtd->priv;
1774 struct bbm_info *bbm = this->bbm;
1775 u_char buf[2] = {0, 0};
1776 struct mtd_oob_ops ops = {
1777 .mode = MTD_OOB_PLACE,
1778 .ooblen = 2,
1779 .oobbuf = buf,
1780 .ooboffs = 0,
1782 int block;
1784 /* Get block number */
1785 block = ((int) ofs) >> bbm->bbt_erase_shift;
1786 if (bbm->bbt)
1787 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1789 /* We write two bytes, so we dont have to mess with 16 bit access */
1790 ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1791 return onenand_write_oob_nolock(mtd, ofs, &ops);
1795 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1796 * @param mtd MTD device structure
1797 * @param ofs offset relative to mtd start
1799 * Mark the block as bad
1801 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1803 struct onenand_chip *this = mtd->priv;
1804 int ret;
1806 ret = onenand_block_isbad(mtd, ofs);
1807 if (ret) {
1808 /* If it was bad already, return success and do nothing */
1809 if (ret > 0)
1810 return 0;
1811 return ret;
1814 onenand_get_device(mtd, FL_WRITING);
1815 ret = this->block_markbad(mtd, ofs);
1816 onenand_release_device(mtd);
1817 return ret;
1821 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1822 * @param mtd MTD device structure
1823 * @param ofs offset relative to mtd start
1824 * @param len number of bytes to lock or unlock
1825 * @param cmd lock or unlock command
1827 * Lock or unlock one or more blocks
1829 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1831 struct onenand_chip *this = mtd->priv;
1832 int start, end, block, value, status;
1833 int wp_status_mask;
1835 start = ofs >> this->erase_shift;
1836 end = len >> this->erase_shift;
1838 if (cmd == ONENAND_CMD_LOCK)
1839 wp_status_mask = ONENAND_WP_LS;
1840 else
1841 wp_status_mask = ONENAND_WP_US;
1843 /* Continuous lock scheme */
1844 if (this->options & ONENAND_HAS_CONT_LOCK) {
1845 /* Set start block address */
1846 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1847 /* Set end block address */
1848 this->write_word(start + end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1849 /* Write lock command */
1850 this->command(mtd, cmd, 0, 0);
1852 /* There's no return value */
1853 this->wait(mtd, FL_LOCKING);
1855 /* Sanity check */
1856 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1857 & ONENAND_CTRL_ONGO)
1858 continue;
1860 /* Check lock status */
1861 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1862 if (!(status & wp_status_mask))
1863 printk(KERN_ERR "wp status = 0x%x\n", status);
1865 return 0;
1868 /* Block lock scheme */
1869 for (block = start; block < start + end; block++) {
1870 /* Set block address */
1871 value = onenand_block_address(this, block);
1872 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1873 /* Select DataRAM for DDP */
1874 value = onenand_bufferram_address(this, block);
1875 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1876 /* Set start block address */
1877 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1878 /* Write lock command */
1879 this->command(mtd, cmd, 0, 0);
1881 /* There's no return value */
1882 this->wait(mtd, FL_LOCKING);
1884 /* Sanity check */
1885 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1886 & ONENAND_CTRL_ONGO)
1887 continue;
1889 /* Check lock status */
1890 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1891 if (!(status & wp_status_mask))
1892 printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
1895 return 0;
1899 * onenand_lock - [MTD Interface] Lock block(s)
1900 * @param mtd MTD device structure
1901 * @param ofs offset relative to mtd start
1902 * @param len number of bytes to unlock
1904 * Lock one or more blocks
1906 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
1908 int ret;
1910 onenand_get_device(mtd, FL_LOCKING);
1911 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
1912 onenand_release_device(mtd);
1913 return ret;
1917 * onenand_unlock - [MTD Interface] Unlock block(s)
1918 * @param mtd MTD device structure
1919 * @param ofs offset relative to mtd start
1920 * @param len number of bytes to unlock
1922 * Unlock one or more blocks
1924 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
1926 int ret;
1928 onenand_get_device(mtd, FL_LOCKING);
1929 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
1930 onenand_release_device(mtd);
1931 return ret;
1935 * onenand_check_lock_status - [OneNAND Interface] Check lock status
1936 * @param this onenand chip data structure
1938 * Check lock status
1940 static void onenand_check_lock_status(struct onenand_chip *this)
1942 unsigned int value, block, status;
1943 unsigned int end;
1945 end = this->chipsize >> this->erase_shift;
1946 for (block = 0; block < end; block++) {
1947 /* Set block address */
1948 value = onenand_block_address(this, block);
1949 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1950 /* Select DataRAM for DDP */
1951 value = onenand_bufferram_address(this, block);
1952 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1953 /* Set start block address */
1954 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1956 /* Check lock status */
1957 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1958 if (!(status & ONENAND_WP_US))
1959 printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
1964 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
1965 * @param mtd MTD device structure
1967 * Unlock all blocks
1969 static int onenand_unlock_all(struct mtd_info *mtd)
1971 struct onenand_chip *this = mtd->priv;
1973 if (this->options & ONENAND_HAS_UNLOCK_ALL) {
1974 /* Set start block address */
1975 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1976 /* Write unlock command */
1977 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
1979 /* There's no return value */
1980 this->wait(mtd, FL_LOCKING);
1982 /* Sanity check */
1983 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1984 & ONENAND_CTRL_ONGO)
1985 continue;
1987 /* Workaround for all block unlock in DDP */
1988 if (ONENAND_IS_DDP(this)) {
1989 /* 1st block on another chip */
1990 loff_t ofs = this->chipsize >> 1;
1991 size_t len = mtd->erasesize;
1993 onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
1996 onenand_check_lock_status(this);
1998 return 0;
2001 onenand_do_lock_cmd(mtd, 0x0, this->chipsize, ONENAND_CMD_UNLOCK);
2003 return 0;
2006 #ifdef CONFIG_MTD_ONENAND_OTP
2008 /* Interal OTP operation */
2009 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
2010 size_t *retlen, u_char *buf);
2013 * do_otp_read - [DEFAULT] Read OTP block area
2014 * @param mtd MTD device structure
2015 * @param from The offset to read
2016 * @param len number of bytes to read
2017 * @param retlen pointer to variable to store the number of readbytes
2018 * @param buf the databuffer to put/get data
2020 * Read OTP block area.
2022 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
2023 size_t *retlen, u_char *buf)
2025 struct onenand_chip *this = mtd->priv;
2026 struct mtd_oob_ops ops = {
2027 .len = len,
2028 .ooblen = 0,
2029 .datbuf = buf,
2030 .oobbuf = NULL,
2032 int ret;
2034 /* Enter OTP access mode */
2035 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2036 this->wait(mtd, FL_OTPING);
2038 ret = onenand_read_ops_nolock(mtd, from, &ops);
2040 /* Exit OTP access mode */
2041 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2042 this->wait(mtd, FL_RESETING);
2044 return ret;
2048 * do_otp_write - [DEFAULT] Write OTP block area
2049 * @param mtd MTD device structure
2050 * @param to The offset to write
2051 * @param len number of bytes to write
2052 * @param retlen pointer to variable to store the number of write bytes
2053 * @param buf the databuffer to put/get data
2055 * Write OTP block area.
2057 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
2058 size_t *retlen, u_char *buf)
2060 struct onenand_chip *this = mtd->priv;
2061 unsigned char *pbuf = buf;
2062 int ret;
2063 struct mtd_oob_ops ops;
2065 /* Force buffer page aligned */
2066 if (len < mtd->writesize) {
2067 memcpy(this->page_buf, buf, len);
2068 memset(this->page_buf + len, 0xff, mtd->writesize - len);
2069 pbuf = this->page_buf;
2070 len = mtd->writesize;
2073 /* Enter OTP access mode */
2074 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2075 this->wait(mtd, FL_OTPING);
2077 ops.len = len;
2078 ops.ooblen = 0;
2079 ops.datbuf = pbuf;
2080 ops.oobbuf = NULL;
2081 ret = onenand_write_ops_nolock(mtd, to, &ops);
2082 *retlen = ops.retlen;
2084 /* Exit OTP access mode */
2085 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2086 this->wait(mtd, FL_RESETING);
2088 return ret;
2092 * do_otp_lock - [DEFAULT] Lock OTP block area
2093 * @param mtd MTD device structure
2094 * @param from The offset to lock
2095 * @param len number of bytes to lock
2096 * @param retlen pointer to variable to store the number of lock bytes
2097 * @param buf the databuffer to put/get data
2099 * Lock OTP block area.
2101 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
2102 size_t *retlen, u_char *buf)
2104 struct onenand_chip *this = mtd->priv;
2105 struct mtd_oob_ops ops = {
2106 .mode = MTD_OOB_PLACE,
2107 .ooblen = len,
2108 .oobbuf = buf,
2109 .ooboffs = 0,
2111 int ret;
2113 /* Enter OTP access mode */
2114 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2115 this->wait(mtd, FL_OTPING);
2117 ret = onenand_write_oob_nolock(mtd, from, &ops);
2119 *retlen = ops.oobretlen;
2121 /* Exit OTP access mode */
2122 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2123 this->wait(mtd, FL_RESETING);
2125 return ret;
2129 * onenand_otp_walk - [DEFAULT] Handle OTP operation
2130 * @param mtd MTD device structure
2131 * @param from The offset to read/write
2132 * @param len number of bytes to read/write
2133 * @param retlen pointer to variable to store the number of read bytes
2134 * @param buf the databuffer to put/get data
2135 * @param action do given action
2136 * @param mode specify user and factory
2138 * Handle OTP operation.
2140 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2141 size_t *retlen, u_char *buf,
2142 otp_op_t action, int mode)
2144 struct onenand_chip *this = mtd->priv;
2145 int otp_pages;
2146 int density;
2147 int ret = 0;
2149 *retlen = 0;
2151 density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
2152 if (density < ONENAND_DEVICE_DENSITY_512Mb)
2153 otp_pages = 20;
2154 else
2155 otp_pages = 10;
2157 if (mode == MTD_OTP_FACTORY) {
2158 from += mtd->writesize * otp_pages;
2159 otp_pages = 64 - otp_pages;
2162 /* Check User/Factory boundary */
2163 if (((mtd->writesize * otp_pages) - (from + len)) < 0)
2164 return 0;
2166 onenand_get_device(mtd, FL_OTPING);
2167 while (len > 0 && otp_pages > 0) {
2168 if (!action) { /* OTP Info functions */
2169 struct otp_info *otpinfo;
2171 len -= sizeof(struct otp_info);
2172 if (len <= 0) {
2173 ret = -ENOSPC;
2174 break;
2177 otpinfo = (struct otp_info *) buf;
2178 otpinfo->start = from;
2179 otpinfo->length = mtd->writesize;
2180 otpinfo->locked = 0;
2182 from += mtd->writesize;
2183 buf += sizeof(struct otp_info);
2184 *retlen += sizeof(struct otp_info);
2185 } else {
2186 size_t tmp_retlen;
2187 int size = len;
2189 ret = action(mtd, from, len, &tmp_retlen, buf);
2191 buf += size;
2192 len -= size;
2193 *retlen += size;
2195 if (ret)
2196 break;
2198 otp_pages--;
2200 onenand_release_device(mtd);
2202 return ret;
2206 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
2207 * @param mtd MTD device structure
2208 * @param buf the databuffer to put/get data
2209 * @param len number of bytes to read
2211 * Read factory OTP info.
2213 static int onenand_get_fact_prot_info(struct mtd_info *mtd,
2214 struct otp_info *buf, size_t len)
2216 size_t retlen;
2217 int ret;
2219 ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
2221 return ret ? : retlen;
2225 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
2226 * @param mtd MTD device structure
2227 * @param from The offset to read
2228 * @param len number of bytes to read
2229 * @param retlen pointer to variable to store the number of read bytes
2230 * @param buf the databuffer to put/get data
2232 * Read factory OTP area.
2234 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2235 size_t len, size_t *retlen, u_char *buf)
2237 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
2241 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
2242 * @param mtd MTD device structure
2243 * @param buf the databuffer to put/get data
2244 * @param len number of bytes to read
2246 * Read user OTP info.
2248 static int onenand_get_user_prot_info(struct mtd_info *mtd,
2249 struct otp_info *buf, size_t len)
2251 size_t retlen;
2252 int ret;
2254 ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
2256 return ret ? : retlen;
2260 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
2261 * @param mtd MTD device structure
2262 * @param from The offset to read
2263 * @param len number of bytes to read
2264 * @param retlen pointer to variable to store the number of read bytes
2265 * @param buf the databuffer to put/get data
2267 * Read user OTP area.
2269 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2270 size_t len, size_t *retlen, u_char *buf)
2272 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
2276 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
2277 * @param mtd MTD device structure
2278 * @param from The offset to write
2279 * @param len number of bytes to write
2280 * @param retlen pointer to variable to store the number of write bytes
2281 * @param buf the databuffer to put/get data
2283 * Write user OTP area.
2285 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2286 size_t len, size_t *retlen, u_char *buf)
2288 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
2292 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
2293 * @param mtd MTD device structure
2294 * @param from The offset to lock
2295 * @param len number of bytes to unlock
2297 * Write lock mark on spare area in page 0 in OTP block
2299 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
2300 size_t len)
2302 unsigned char oob_buf[64];
2303 size_t retlen;
2304 int ret;
2306 memset(oob_buf, 0xff, mtd->oobsize);
2308 * Note: OTP lock operation
2309 * OTP block : 0xXXFC
2310 * 1st block : 0xXXF3 (If chip support)
2311 * Both : 0xXXF0 (If chip support)
2313 oob_buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;
2316 * Write lock mark to 8th word of sector0 of page0 of the spare0.
2317 * We write 16 bytes spare area instead of 2 bytes.
2319 from = 0;
2320 len = 16;
2322 ret = onenand_otp_walk(mtd, from, len, &retlen, oob_buf, do_otp_lock, MTD_OTP_USER);
2324 return ret ? : retlen;
2326 #endif /* CONFIG_MTD_ONENAND_OTP */
2329 * onenand_check_features - Check and set OneNAND features
2330 * @param mtd MTD data structure
2332 * Check and set OneNAND features
2333 * - lock scheme
2334 * - two plane
2336 static void onenand_check_features(struct mtd_info *mtd)
2338 struct onenand_chip *this = mtd->priv;
2339 unsigned int density, process;
2341 /* Lock scheme depends on density and process */
2342 density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
2343 process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2345 /* Lock scheme */
2346 switch (density) {
2347 case ONENAND_DEVICE_DENSITY_4Gb:
2348 this->options |= ONENAND_HAS_2PLANE;
2350 case ONENAND_DEVICE_DENSITY_2Gb:
2351 /* 2Gb DDP don't have 2 plane */
2352 if (!ONENAND_IS_DDP(this))
2353 this->options |= ONENAND_HAS_2PLANE;
2354 this->options |= ONENAND_HAS_UNLOCK_ALL;
2356 case ONENAND_DEVICE_DENSITY_1Gb:
2357 /* A-Die has all block unlock */
2358 if (process)
2359 this->options |= ONENAND_HAS_UNLOCK_ALL;
2360 break;
2362 default:
2363 /* Some OneNAND has continuous lock scheme */
2364 if (!process)
2365 this->options |= ONENAND_HAS_CONT_LOCK;
2366 break;
2369 if (this->options & ONENAND_HAS_CONT_LOCK)
2370 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2371 if (this->options & ONENAND_HAS_UNLOCK_ALL)
2372 printk(KERN_DEBUG "Chip support all block unlock\n");
2373 if (this->options & ONENAND_HAS_2PLANE)
2374 printk(KERN_DEBUG "Chip has 2 plane\n");
2378 * onenand_print_device_info - Print device & version ID
2379 * @param device device ID
2380 * @param version version ID
2382 * Print device & version ID
2384 static void onenand_print_device_info(int device, int version)
2386 int vcc, demuxed, ddp, density;
2388 vcc = device & ONENAND_DEVICE_VCC_MASK;
2389 demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2390 ddp = device & ONENAND_DEVICE_IS_DDP;
2391 density = device >> ONENAND_DEVICE_DENSITY_SHIFT;
2392 printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
2393 demuxed ? "" : "Muxed ",
2394 ddp ? "(DDP)" : "",
2395 (16 << density),
2396 vcc ? "2.65/3.3" : "1.8",
2397 device);
2398 printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
2401 static const struct onenand_manufacturers onenand_manuf_ids[] = {
2402 {ONENAND_MFR_SAMSUNG, "Samsung"},
2406 * onenand_check_maf - Check manufacturer ID
2407 * @param manuf manufacturer ID
2409 * Check manufacturer ID
2411 static int onenand_check_maf(int manuf)
2413 int size = ARRAY_SIZE(onenand_manuf_ids);
2414 char *name;
2415 int i;
2417 for (i = 0; i < size; i++)
2418 if (manuf == onenand_manuf_ids[i].id)
2419 break;
2421 if (i < size)
2422 name = onenand_manuf_ids[i].name;
2423 else
2424 name = "Unknown";
2426 printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2428 return (i == size);
2432 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2433 * @param mtd MTD device structure
2435 * OneNAND detection method:
2436 * Compare the values from command with ones from register
2438 static int onenand_probe(struct mtd_info *mtd)
2440 struct onenand_chip *this = mtd->priv;
2441 int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
2442 int density;
2443 int syscfg;
2445 /* Save system configuration 1 */
2446 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2447 /* Clear Sync. Burst Read mode to read BootRAM */
2448 this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), this->base + ONENAND_REG_SYS_CFG1);
2450 /* Send the command for reading device ID from BootRAM */
2451 this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2453 /* Read manufacturer and device IDs from BootRAM */
2454 bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2455 bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2457 /* Reset OneNAND to read default register values */
2458 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2459 /* Wait reset */
2460 this->wait(mtd, FL_RESETING);
2462 /* Restore system configuration 1 */
2463 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2465 /* Check manufacturer ID */
2466 if (onenand_check_maf(bram_maf_id))
2467 return -ENXIO;
2469 /* Read manufacturer and device IDs from Register */
2470 maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2471 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2472 ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2474 /* Check OneNAND device */
2475 if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2476 return -ENXIO;
2478 /* Flash device information */
2479 onenand_print_device_info(dev_id, ver_id);
2480 this->device_id = dev_id;
2481 this->version_id = ver_id;
2483 density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
2484 this->chipsize = (16 << density) << 20;
2485 /* Set density mask. it is used for DDP */
2486 if (ONENAND_IS_DDP(this))
2487 this->density_mask = (1 << (density + 6));
2488 else
2489 this->density_mask = 0;
2491 /* OneNAND page size & block size */
2492 /* The data buffer size is equal to page size */
2493 mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2494 mtd->oobsize = mtd->writesize >> 5;
2495 /* Pages per a block are always 64 in OneNAND */
2496 mtd->erasesize = mtd->writesize << 6;
2498 this->erase_shift = ffs(mtd->erasesize) - 1;
2499 this->page_shift = ffs(mtd->writesize) - 1;
2500 this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
2501 /* It's real page size */
2502 this->writesize = mtd->writesize;
2504 /* REVIST: Multichip handling */
2506 mtd->size = this->chipsize;
2508 /* Check OneNAND features */
2509 onenand_check_features(mtd);
2512 * We emulate the 4KiB page and 256KiB erase block size
2513 * But oobsize is still 64 bytes.
2514 * It is only valid if you turn on 2X program support,
2515 * Otherwise it will be ignored by compiler.
2517 if (ONENAND_IS_2PLANE(this)) {
2518 mtd->writesize <<= 1;
2519 mtd->erasesize <<= 1;
2522 return 0;
2526 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
2527 * @param mtd MTD device structure
2529 static int onenand_suspend(struct mtd_info *mtd)
2531 return onenand_get_device(mtd, FL_PM_SUSPENDED);
2535 * onenand_resume - [MTD Interface] Resume the OneNAND flash
2536 * @param mtd MTD device structure
2538 static void onenand_resume(struct mtd_info *mtd)
2540 struct onenand_chip *this = mtd->priv;
2542 if (this->state == FL_PM_SUSPENDED)
2543 onenand_release_device(mtd);
2544 else
2545 printk(KERN_ERR "resume() called for the chip which is not"
2546 "in suspended state\n");
2550 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2551 * @param mtd MTD device structure
2552 * @param maxchips Number of chips to scan for
2554 * This fills out all the not initialized function pointers
2555 * with the defaults.
2556 * The flash ID is read and the mtd/chip structures are
2557 * filled with the appropriate values.
2559 int onenand_scan(struct mtd_info *mtd, int maxchips)
2561 int i;
2562 struct onenand_chip *this = mtd->priv;
2564 if (!this->read_word)
2565 this->read_word = onenand_readw;
2566 if (!this->write_word)
2567 this->write_word = onenand_writew;
2569 if (!this->command)
2570 this->command = onenand_command;
2571 if (!this->wait)
2572 onenand_setup_wait(mtd);
2574 if (!this->read_bufferram)
2575 this->read_bufferram = onenand_read_bufferram;
2576 if (!this->write_bufferram)
2577 this->write_bufferram = onenand_write_bufferram;
2579 if (!this->block_markbad)
2580 this->block_markbad = onenand_default_block_markbad;
2581 if (!this->scan_bbt)
2582 this->scan_bbt = onenand_default_bbt;
2584 if (onenand_probe(mtd))
2585 return -ENXIO;
2587 /* Set Sync. Burst Read after probing */
2588 if (this->mmcontrol) {
2589 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2590 this->read_bufferram = onenand_sync_read_bufferram;
2593 /* Allocate buffers, if necessary */
2594 if (!this->page_buf) {
2595 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2596 if (!this->page_buf) {
2597 printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2598 return -ENOMEM;
2600 this->options |= ONENAND_PAGEBUF_ALLOC;
2602 if (!this->oob_buf) {
2603 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2604 if (!this->oob_buf) {
2605 printk(KERN_ERR "onenand_scan(): Can't allocate oob_buf\n");
2606 if (this->options & ONENAND_PAGEBUF_ALLOC) {
2607 this->options &= ~ONENAND_PAGEBUF_ALLOC;
2608 kfree(this->page_buf);
2610 return -ENOMEM;
2612 this->options |= ONENAND_OOBBUF_ALLOC;
2615 this->state = FL_READY;
2616 init_waitqueue_head(&this->wq);
2617 spin_lock_init(&this->chip_lock);
2620 * Allow subpage writes up to oobsize.
2622 switch (mtd->oobsize) {
2623 case 64:
2624 this->ecclayout = &onenand_oob_64;
2625 mtd->subpage_sft = 2;
2626 break;
2628 case 32:
2629 this->ecclayout = &onenand_oob_32;
2630 mtd->subpage_sft = 1;
2631 break;
2633 default:
2634 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2635 mtd->oobsize);
2636 mtd->subpage_sft = 0;
2637 /* To prevent kernel oops */
2638 this->ecclayout = &onenand_oob_32;
2639 break;
2642 this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2645 * The number of bytes available for a client to place data into
2646 * the out of band area
2648 this->ecclayout->oobavail = 0;
2649 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
2650 this->ecclayout->oobfree[i].length; i++)
2651 this->ecclayout->oobavail +=
2652 this->ecclayout->oobfree[i].length;
2653 mtd->oobavail = this->ecclayout->oobavail;
2655 mtd->ecclayout = this->ecclayout;
2657 /* Fill in remaining MTD driver data */
2658 mtd->type = MTD_NANDFLASH;
2659 mtd->flags = MTD_CAP_NANDFLASH;
2660 mtd->erase = onenand_erase;
2661 mtd->point = NULL;
2662 mtd->unpoint = NULL;
2663 mtd->read = onenand_read;
2664 mtd->write = onenand_write;
2665 mtd->read_oob = onenand_read_oob;
2666 mtd->write_oob = onenand_write_oob;
2667 #ifdef CONFIG_MTD_ONENAND_OTP
2668 mtd->get_fact_prot_info = onenand_get_fact_prot_info;
2669 mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
2670 mtd->get_user_prot_info = onenand_get_user_prot_info;
2671 mtd->read_user_prot_reg = onenand_read_user_prot_reg;
2672 mtd->write_user_prot_reg = onenand_write_user_prot_reg;
2673 mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
2674 #endif
2675 mtd->sync = onenand_sync;
2676 mtd->lock = onenand_lock;
2677 mtd->unlock = onenand_unlock;
2678 mtd->suspend = onenand_suspend;
2679 mtd->resume = onenand_resume;
2680 mtd->block_isbad = onenand_block_isbad;
2681 mtd->block_markbad = onenand_block_markbad;
2682 mtd->owner = THIS_MODULE;
2684 /* Unlock whole block */
2685 onenand_unlock_all(mtd);
2687 return this->scan_bbt(mtd);
2691 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2692 * @param mtd MTD device structure
2694 void onenand_release(struct mtd_info *mtd)
2696 struct onenand_chip *this = mtd->priv;
2698 #ifdef CONFIG_MTD_PARTITIONS
2699 /* Deregister partitions */
2700 del_mtd_partitions (mtd);
2701 #endif
2702 /* Deregister the device */
2703 del_mtd_device (mtd);
2705 /* Free bad block table memory, if allocated */
2706 if (this->bbm) {
2707 struct bbm_info *bbm = this->bbm;
2708 kfree(bbm->bbt);
2709 kfree(this->bbm);
2711 /* Buffers allocated by onenand_scan */
2712 if (this->options & ONENAND_PAGEBUF_ALLOC)
2713 kfree(this->page_buf);
2714 if (this->options & ONENAND_OOBBUF_ALLOC)
2715 kfree(this->oob_buf);
2718 EXPORT_SYMBOL_GPL(onenand_scan);
2719 EXPORT_SYMBOL_GPL(onenand_release);
2721 MODULE_LICENSE("GPL");
2722 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
2723 MODULE_DESCRIPTION("Generic OneNAND flash driver code");