2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
23 #include <linux/types.h>
24 #include <linux/string.h>
26 #include <linux/highmem.h>
27 #include <linux/module.h>
30 #include <asm/cmpxchg.h>
37 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, const char *msg
);
39 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, const char *msg
) {}
44 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
45 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
49 #define pgprintk(x...) do { } while (0)
50 #define rmap_printk(x...) do { } while (0)
54 #if defined(MMU_DEBUG) || defined(AUDIT)
59 #define ASSERT(x) do { } while (0)
63 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
64 __FILE__, __LINE__, #x); \
68 #define PT64_PT_BITS 9
69 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
70 #define PT32_PT_BITS 10
71 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
73 #define PT_WRITABLE_SHIFT 1
75 #define PT_PRESENT_MASK (1ULL << 0)
76 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
77 #define PT_USER_MASK (1ULL << 2)
78 #define PT_PWT_MASK (1ULL << 3)
79 #define PT_PCD_MASK (1ULL << 4)
80 #define PT_ACCESSED_MASK (1ULL << 5)
81 #define PT_DIRTY_MASK (1ULL << 6)
82 #define PT_PAGE_SIZE_MASK (1ULL << 7)
83 #define PT_PAT_MASK (1ULL << 7)
84 #define PT_GLOBAL_MASK (1ULL << 8)
85 #define PT64_NX_MASK (1ULL << 63)
87 #define PT_PAT_SHIFT 7
88 #define PT_DIR_PAT_SHIFT 12
89 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
91 #define PT32_DIR_PSE36_SIZE 4
92 #define PT32_DIR_PSE36_SHIFT 13
93 #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
96 #define PT_FIRST_AVAIL_BITS_SHIFT 9
97 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
99 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
101 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
103 #define PT64_LEVEL_BITS 9
105 #define PT64_LEVEL_SHIFT(level) \
106 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
108 #define PT64_LEVEL_MASK(level) \
109 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
111 #define PT64_INDEX(address, level)\
112 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
115 #define PT32_LEVEL_BITS 10
117 #define PT32_LEVEL_SHIFT(level) \
118 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
120 #define PT32_LEVEL_MASK(level) \
121 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
123 #define PT32_INDEX(address, level)\
124 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
127 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
128 #define PT64_DIR_BASE_ADDR_MASK \
129 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
131 #define PT32_BASE_ADDR_MASK PAGE_MASK
132 #define PT32_DIR_BASE_ADDR_MASK \
133 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
136 #define PFERR_PRESENT_MASK (1U << 0)
137 #define PFERR_WRITE_MASK (1U << 1)
138 #define PFERR_USER_MASK (1U << 2)
139 #define PFERR_FETCH_MASK (1U << 4)
141 #define PT64_ROOT_LEVEL 4
142 #define PT32_ROOT_LEVEL 2
143 #define PT32E_ROOT_LEVEL 3
145 #define PT_DIRECTORY_LEVEL 2
146 #define PT_PAGE_TABLE_LEVEL 1
150 struct kvm_rmap_desc
{
151 u64
*shadow_ptes
[RMAP_EXT
];
152 struct kvm_rmap_desc
*more
;
155 static struct kmem_cache
*pte_chain_cache
;
156 static struct kmem_cache
*rmap_desc_cache
;
157 static struct kmem_cache
*mmu_page_header_cache
;
159 static int is_write_protection(struct kvm_vcpu
*vcpu
)
161 return vcpu
->cr0
& X86_CR0_WP
;
164 static int is_cpuid_PSE36(void)
169 static int is_nx(struct kvm_vcpu
*vcpu
)
171 return vcpu
->shadow_efer
& EFER_NX
;
174 static int is_present_pte(unsigned long pte
)
176 return pte
& PT_PRESENT_MASK
;
179 static int is_writeble_pte(unsigned long pte
)
181 return pte
& PT_WRITABLE_MASK
;
184 static int is_io_pte(unsigned long pte
)
186 return pte
& PT_SHADOW_IO_MARK
;
189 static int is_rmap_pte(u64 pte
)
191 return (pte
& (PT_WRITABLE_MASK
| PT_PRESENT_MASK
))
192 == (PT_WRITABLE_MASK
| PT_PRESENT_MASK
);
195 static void set_shadow_pte(u64
*sptep
, u64 spte
)
198 set_64bit((unsigned long *)sptep
, spte
);
200 set_64bit((unsigned long long *)sptep
, spte
);
204 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*cache
,
205 struct kmem_cache
*base_cache
, int min
)
209 if (cache
->nobjs
>= min
)
211 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
212 obj
= kmem_cache_zalloc(base_cache
, GFP_KERNEL
);
215 cache
->objects
[cache
->nobjs
++] = obj
;
220 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache
*mc
)
223 kfree(mc
->objects
[--mc
->nobjs
]);
226 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache
*cache
,
231 if (cache
->nobjs
>= min
)
233 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
234 page
= alloc_page(GFP_KERNEL
);
237 set_page_private(page
, 0);
238 cache
->objects
[cache
->nobjs
++] = page_address(page
);
243 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache
*mc
)
246 free_page((unsigned long)mc
->objects
[--mc
->nobjs
]);
249 static int mmu_topup_memory_caches(struct kvm_vcpu
*vcpu
)
253 kvm_mmu_free_some_pages(vcpu
);
254 r
= mmu_topup_memory_cache(&vcpu
->mmu_pte_chain_cache
,
258 r
= mmu_topup_memory_cache(&vcpu
->mmu_rmap_desc_cache
,
262 r
= mmu_topup_memory_cache_page(&vcpu
->mmu_page_cache
, 4);
265 r
= mmu_topup_memory_cache(&vcpu
->mmu_page_header_cache
,
266 mmu_page_header_cache
, 4);
271 static void mmu_free_memory_caches(struct kvm_vcpu
*vcpu
)
273 mmu_free_memory_cache(&vcpu
->mmu_pte_chain_cache
);
274 mmu_free_memory_cache(&vcpu
->mmu_rmap_desc_cache
);
275 mmu_free_memory_cache_page(&vcpu
->mmu_page_cache
);
276 mmu_free_memory_cache(&vcpu
->mmu_page_header_cache
);
279 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache
*mc
,
285 p
= mc
->objects
[--mc
->nobjs
];
290 static struct kvm_pte_chain
*mmu_alloc_pte_chain(struct kvm_vcpu
*vcpu
)
292 return mmu_memory_cache_alloc(&vcpu
->mmu_pte_chain_cache
,
293 sizeof(struct kvm_pte_chain
));
296 static void mmu_free_pte_chain(struct kvm_pte_chain
*pc
)
301 static struct kvm_rmap_desc
*mmu_alloc_rmap_desc(struct kvm_vcpu
*vcpu
)
303 return mmu_memory_cache_alloc(&vcpu
->mmu_rmap_desc_cache
,
304 sizeof(struct kvm_rmap_desc
));
307 static void mmu_free_rmap_desc(struct kvm_rmap_desc
*rd
)
313 * Reverse mapping data structures:
315 * If page->private bit zero is zero, then page->private points to the
316 * shadow page table entry that points to page_address(page).
318 * If page->private bit zero is one, (then page->private & ~1) points
319 * to a struct kvm_rmap_desc containing more mappings.
321 static void rmap_add(struct kvm_vcpu
*vcpu
, u64
*spte
)
324 struct kvm_rmap_desc
*desc
;
327 if (!is_rmap_pte(*spte
))
329 page
= pfn_to_page((*spte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
);
330 if (!page_private(page
)) {
331 rmap_printk("rmap_add: %p %llx 0->1\n", spte
, *spte
);
332 set_page_private(page
,(unsigned long)spte
);
333 } else if (!(page_private(page
) & 1)) {
334 rmap_printk("rmap_add: %p %llx 1->many\n", spte
, *spte
);
335 desc
= mmu_alloc_rmap_desc(vcpu
);
336 desc
->shadow_ptes
[0] = (u64
*)page_private(page
);
337 desc
->shadow_ptes
[1] = spte
;
338 set_page_private(page
,(unsigned long)desc
| 1);
340 rmap_printk("rmap_add: %p %llx many->many\n", spte
, *spte
);
341 desc
= (struct kvm_rmap_desc
*)(page_private(page
) & ~1ul);
342 while (desc
->shadow_ptes
[RMAP_EXT
-1] && desc
->more
)
344 if (desc
->shadow_ptes
[RMAP_EXT
-1]) {
345 desc
->more
= mmu_alloc_rmap_desc(vcpu
);
348 for (i
= 0; desc
->shadow_ptes
[i
]; ++i
)
350 desc
->shadow_ptes
[i
] = spte
;
354 static void rmap_desc_remove_entry(struct page
*page
,
355 struct kvm_rmap_desc
*desc
,
357 struct kvm_rmap_desc
*prev_desc
)
361 for (j
= RMAP_EXT
- 1; !desc
->shadow_ptes
[j
] && j
> i
; --j
)
363 desc
->shadow_ptes
[i
] = desc
->shadow_ptes
[j
];
364 desc
->shadow_ptes
[j
] = NULL
;
367 if (!prev_desc
&& !desc
->more
)
368 set_page_private(page
,(unsigned long)desc
->shadow_ptes
[0]);
371 prev_desc
->more
= desc
->more
;
373 set_page_private(page
,(unsigned long)desc
->more
| 1);
374 mmu_free_rmap_desc(desc
);
377 static void rmap_remove(u64
*spte
)
380 struct kvm_rmap_desc
*desc
;
381 struct kvm_rmap_desc
*prev_desc
;
384 if (!is_rmap_pte(*spte
))
386 page
= pfn_to_page((*spte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
);
387 if (!page_private(page
)) {
388 printk(KERN_ERR
"rmap_remove: %p %llx 0->BUG\n", spte
, *spte
);
390 } else if (!(page_private(page
) & 1)) {
391 rmap_printk("rmap_remove: %p %llx 1->0\n", spte
, *spte
);
392 if ((u64
*)page_private(page
) != spte
) {
393 printk(KERN_ERR
"rmap_remove: %p %llx 1->BUG\n",
397 set_page_private(page
,0);
399 rmap_printk("rmap_remove: %p %llx many->many\n", spte
, *spte
);
400 desc
= (struct kvm_rmap_desc
*)(page_private(page
) & ~1ul);
403 for (i
= 0; i
< RMAP_EXT
&& desc
->shadow_ptes
[i
]; ++i
)
404 if (desc
->shadow_ptes
[i
] == spte
) {
405 rmap_desc_remove_entry(page
,
417 static void rmap_write_protect(struct kvm_vcpu
*vcpu
, u64 gfn
)
419 struct kvm
*kvm
= vcpu
->kvm
;
421 struct kvm_rmap_desc
*desc
;
424 page
= gfn_to_page(kvm
, gfn
);
427 while (page_private(page
)) {
428 if (!(page_private(page
) & 1))
429 spte
= (u64
*)page_private(page
);
431 desc
= (struct kvm_rmap_desc
*)(page_private(page
) & ~1ul);
432 spte
= desc
->shadow_ptes
[0];
435 BUG_ON((*spte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
436 != page_to_pfn(page
));
437 BUG_ON(!(*spte
& PT_PRESENT_MASK
));
438 BUG_ON(!(*spte
& PT_WRITABLE_MASK
));
439 rmap_printk("rmap_write_protect: spte %p %llx\n", spte
, *spte
);
441 set_shadow_pte(spte
, *spte
& ~PT_WRITABLE_MASK
);
442 kvm_flush_remote_tlbs(vcpu
->kvm
);
447 static int is_empty_shadow_page(u64
*spt
)
452 for (pos
= spt
, end
= pos
+ PAGE_SIZE
/ sizeof(u64
); pos
!= end
; pos
++)
454 printk(KERN_ERR
"%s: %p %llx\n", __FUNCTION__
,
462 static void kvm_mmu_free_page(struct kvm
*kvm
,
463 struct kvm_mmu_page
*page_head
)
465 ASSERT(is_empty_shadow_page(page_head
->spt
));
466 list_del(&page_head
->link
);
467 __free_page(virt_to_page(page_head
->spt
));
469 ++kvm
->n_free_mmu_pages
;
472 static unsigned kvm_page_table_hashfn(gfn_t gfn
)
477 static struct kvm_mmu_page
*kvm_mmu_alloc_page(struct kvm_vcpu
*vcpu
,
480 struct kvm_mmu_page
*page
;
482 if (!vcpu
->kvm
->n_free_mmu_pages
)
485 page
= mmu_memory_cache_alloc(&vcpu
->mmu_page_header_cache
,
487 page
->spt
= mmu_memory_cache_alloc(&vcpu
->mmu_page_cache
, PAGE_SIZE
);
488 set_page_private(virt_to_page(page
->spt
), (unsigned long)page
);
489 list_add(&page
->link
, &vcpu
->kvm
->active_mmu_pages
);
490 ASSERT(is_empty_shadow_page(page
->spt
));
491 page
->slot_bitmap
= 0;
492 page
->multimapped
= 0;
493 page
->parent_pte
= parent_pte
;
494 --vcpu
->kvm
->n_free_mmu_pages
;
498 static void mmu_page_add_parent_pte(struct kvm_vcpu
*vcpu
,
499 struct kvm_mmu_page
*page
, u64
*parent_pte
)
501 struct kvm_pte_chain
*pte_chain
;
502 struct hlist_node
*node
;
507 if (!page
->multimapped
) {
508 u64
*old
= page
->parent_pte
;
511 page
->parent_pte
= parent_pte
;
514 page
->multimapped
= 1;
515 pte_chain
= mmu_alloc_pte_chain(vcpu
);
516 INIT_HLIST_HEAD(&page
->parent_ptes
);
517 hlist_add_head(&pte_chain
->link
, &page
->parent_ptes
);
518 pte_chain
->parent_ptes
[0] = old
;
520 hlist_for_each_entry(pte_chain
, node
, &page
->parent_ptes
, link
) {
521 if (pte_chain
->parent_ptes
[NR_PTE_CHAIN_ENTRIES
-1])
523 for (i
= 0; i
< NR_PTE_CHAIN_ENTRIES
; ++i
)
524 if (!pte_chain
->parent_ptes
[i
]) {
525 pte_chain
->parent_ptes
[i
] = parent_pte
;
529 pte_chain
= mmu_alloc_pte_chain(vcpu
);
531 hlist_add_head(&pte_chain
->link
, &page
->parent_ptes
);
532 pte_chain
->parent_ptes
[0] = parent_pte
;
535 static void mmu_page_remove_parent_pte(struct kvm_mmu_page
*page
,
538 struct kvm_pte_chain
*pte_chain
;
539 struct hlist_node
*node
;
542 if (!page
->multimapped
) {
543 BUG_ON(page
->parent_pte
!= parent_pte
);
544 page
->parent_pte
= NULL
;
547 hlist_for_each_entry(pte_chain
, node
, &page
->parent_ptes
, link
)
548 for (i
= 0; i
< NR_PTE_CHAIN_ENTRIES
; ++i
) {
549 if (!pte_chain
->parent_ptes
[i
])
551 if (pte_chain
->parent_ptes
[i
] != parent_pte
)
553 while (i
+ 1 < NR_PTE_CHAIN_ENTRIES
554 && pte_chain
->parent_ptes
[i
+ 1]) {
555 pte_chain
->parent_ptes
[i
]
556 = pte_chain
->parent_ptes
[i
+ 1];
559 pte_chain
->parent_ptes
[i
] = NULL
;
561 hlist_del(&pte_chain
->link
);
562 mmu_free_pte_chain(pte_chain
);
563 if (hlist_empty(&page
->parent_ptes
)) {
564 page
->multimapped
= 0;
565 page
->parent_pte
= NULL
;
573 static struct kvm_mmu_page
*kvm_mmu_lookup_page(struct kvm_vcpu
*vcpu
,
577 struct hlist_head
*bucket
;
578 struct kvm_mmu_page
*page
;
579 struct hlist_node
*node
;
581 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__
, gfn
);
582 index
= kvm_page_table_hashfn(gfn
) % KVM_NUM_MMU_PAGES
;
583 bucket
= &vcpu
->kvm
->mmu_page_hash
[index
];
584 hlist_for_each_entry(page
, node
, bucket
, hash_link
)
585 if (page
->gfn
== gfn
&& !page
->role
.metaphysical
) {
586 pgprintk("%s: found role %x\n",
587 __FUNCTION__
, page
->role
.word
);
593 static struct kvm_mmu_page
*kvm_mmu_get_page(struct kvm_vcpu
*vcpu
,
598 unsigned hugepage_access
,
601 union kvm_mmu_page_role role
;
604 struct hlist_head
*bucket
;
605 struct kvm_mmu_page
*page
;
606 struct hlist_node
*node
;
609 role
.glevels
= vcpu
->mmu
.root_level
;
611 role
.metaphysical
= metaphysical
;
612 role
.hugepage_access
= hugepage_access
;
613 if (vcpu
->mmu
.root_level
<= PT32_ROOT_LEVEL
) {
614 quadrant
= gaddr
>> (PAGE_SHIFT
+ (PT64_PT_BITS
* level
));
615 quadrant
&= (1 << ((PT32_PT_BITS
- PT64_PT_BITS
) * level
)) - 1;
616 role
.quadrant
= quadrant
;
618 pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__
,
620 index
= kvm_page_table_hashfn(gfn
) % KVM_NUM_MMU_PAGES
;
621 bucket
= &vcpu
->kvm
->mmu_page_hash
[index
];
622 hlist_for_each_entry(page
, node
, bucket
, hash_link
)
623 if (page
->gfn
== gfn
&& page
->role
.word
== role
.word
) {
624 mmu_page_add_parent_pte(vcpu
, page
, parent_pte
);
625 pgprintk("%s: found\n", __FUNCTION__
);
628 page
= kvm_mmu_alloc_page(vcpu
, parent_pte
);
631 pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__
, gfn
, role
.word
);
634 hlist_add_head(&page
->hash_link
, bucket
);
636 rmap_write_protect(vcpu
, gfn
);
640 static void kvm_mmu_page_unlink_children(struct kvm
*kvm
,
641 struct kvm_mmu_page
*page
)
649 if (page
->role
.level
== PT_PAGE_TABLE_LEVEL
) {
650 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
651 if (pt
[i
] & PT_PRESENT_MASK
)
655 kvm_flush_remote_tlbs(kvm
);
659 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
663 if (!(ent
& PT_PRESENT_MASK
))
665 ent
&= PT64_BASE_ADDR_MASK
;
666 mmu_page_remove_parent_pte(page_header(ent
), &pt
[i
]);
668 kvm_flush_remote_tlbs(kvm
);
671 static void kvm_mmu_put_page(struct kvm_mmu_page
*page
,
674 mmu_page_remove_parent_pte(page
, parent_pte
);
677 static void kvm_mmu_zap_page(struct kvm
*kvm
,
678 struct kvm_mmu_page
*page
)
682 while (page
->multimapped
|| page
->parent_pte
) {
683 if (!page
->multimapped
)
684 parent_pte
= page
->parent_pte
;
686 struct kvm_pte_chain
*chain
;
688 chain
= container_of(page
->parent_ptes
.first
,
689 struct kvm_pte_chain
, link
);
690 parent_pte
= chain
->parent_ptes
[0];
693 kvm_mmu_put_page(page
, parent_pte
);
694 set_shadow_pte(parent_pte
, 0);
696 kvm_mmu_page_unlink_children(kvm
, page
);
697 if (!page
->root_count
) {
698 hlist_del(&page
->hash_link
);
699 kvm_mmu_free_page(kvm
, page
);
701 list_move(&page
->link
, &kvm
->active_mmu_pages
);
704 static int kvm_mmu_unprotect_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
707 struct hlist_head
*bucket
;
708 struct kvm_mmu_page
*page
;
709 struct hlist_node
*node
, *n
;
712 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__
, gfn
);
714 index
= kvm_page_table_hashfn(gfn
) % KVM_NUM_MMU_PAGES
;
715 bucket
= &vcpu
->kvm
->mmu_page_hash
[index
];
716 hlist_for_each_entry_safe(page
, node
, n
, bucket
, hash_link
)
717 if (page
->gfn
== gfn
&& !page
->role
.metaphysical
) {
718 pgprintk("%s: gfn %lx role %x\n", __FUNCTION__
, gfn
,
720 kvm_mmu_zap_page(vcpu
->kvm
, page
);
726 static void mmu_unshadow(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
728 struct kvm_mmu_page
*page
;
730 while ((page
= kvm_mmu_lookup_page(vcpu
, gfn
)) != NULL
) {
731 pgprintk("%s: zap %lx %x\n",
732 __FUNCTION__
, gfn
, page
->role
.word
);
733 kvm_mmu_zap_page(vcpu
->kvm
, page
);
737 static void page_header_update_slot(struct kvm
*kvm
, void *pte
, gpa_t gpa
)
739 int slot
= memslot_id(kvm
, gfn_to_memslot(kvm
, gpa
>> PAGE_SHIFT
));
740 struct kvm_mmu_page
*page_head
= page_header(__pa(pte
));
742 __set_bit(slot
, &page_head
->slot_bitmap
);
745 hpa_t
safe_gpa_to_hpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
)
747 hpa_t hpa
= gpa_to_hpa(vcpu
, gpa
);
749 return is_error_hpa(hpa
) ? bad_page_address
| (gpa
& ~PAGE_MASK
): hpa
;
752 hpa_t
gpa_to_hpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
)
756 ASSERT((gpa
& HPA_ERR_MASK
) == 0);
757 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
759 return gpa
| HPA_ERR_MASK
;
760 return ((hpa_t
)page_to_pfn(page
) << PAGE_SHIFT
)
761 | (gpa
& (PAGE_SIZE
-1));
764 hpa_t
gva_to_hpa(struct kvm_vcpu
*vcpu
, gva_t gva
)
766 gpa_t gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, gva
);
768 if (gpa
== UNMAPPED_GVA
)
770 return gpa_to_hpa(vcpu
, gpa
);
773 struct page
*gva_to_page(struct kvm_vcpu
*vcpu
, gva_t gva
)
775 gpa_t gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, gva
);
777 if (gpa
== UNMAPPED_GVA
)
779 return pfn_to_page(gpa_to_hpa(vcpu
, gpa
) >> PAGE_SHIFT
);
782 static void nonpaging_new_cr3(struct kvm_vcpu
*vcpu
)
786 static int nonpaging_map(struct kvm_vcpu
*vcpu
, gva_t v
, hpa_t p
)
788 int level
= PT32E_ROOT_LEVEL
;
789 hpa_t table_addr
= vcpu
->mmu
.root_hpa
;
792 u32 index
= PT64_INDEX(v
, level
);
796 ASSERT(VALID_PAGE(table_addr
));
797 table
= __va(table_addr
);
801 if (is_present_pte(pte
) && is_writeble_pte(pte
))
803 mark_page_dirty(vcpu
->kvm
, v
>> PAGE_SHIFT
);
804 page_header_update_slot(vcpu
->kvm
, table
, v
);
805 table
[index
] = p
| PT_PRESENT_MASK
| PT_WRITABLE_MASK
|
807 rmap_add(vcpu
, &table
[index
]);
811 if (table
[index
] == 0) {
812 struct kvm_mmu_page
*new_table
;
815 pseudo_gfn
= (v
& PT64_DIR_BASE_ADDR_MASK
)
817 new_table
= kvm_mmu_get_page(vcpu
, pseudo_gfn
,
819 1, 0, &table
[index
]);
821 pgprintk("nonpaging_map: ENOMEM\n");
825 table
[index
] = __pa(new_table
->spt
) | PT_PRESENT_MASK
826 | PT_WRITABLE_MASK
| PT_USER_MASK
;
828 table_addr
= table
[index
] & PT64_BASE_ADDR_MASK
;
832 static void mmu_free_roots(struct kvm_vcpu
*vcpu
)
835 struct kvm_mmu_page
*page
;
837 if (!VALID_PAGE(vcpu
->mmu
.root_hpa
))
840 if (vcpu
->mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
841 hpa_t root
= vcpu
->mmu
.root_hpa
;
843 page
= page_header(root
);
845 vcpu
->mmu
.root_hpa
= INVALID_PAGE
;
849 for (i
= 0; i
< 4; ++i
) {
850 hpa_t root
= vcpu
->mmu
.pae_root
[i
];
853 root
&= PT64_BASE_ADDR_MASK
;
854 page
= page_header(root
);
857 vcpu
->mmu
.pae_root
[i
] = INVALID_PAGE
;
859 vcpu
->mmu
.root_hpa
= INVALID_PAGE
;
862 static void mmu_alloc_roots(struct kvm_vcpu
*vcpu
)
866 struct kvm_mmu_page
*page
;
868 root_gfn
= vcpu
->cr3
>> PAGE_SHIFT
;
871 if (vcpu
->mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
872 hpa_t root
= vcpu
->mmu
.root_hpa
;
874 ASSERT(!VALID_PAGE(root
));
875 page
= kvm_mmu_get_page(vcpu
, root_gfn
, 0,
876 PT64_ROOT_LEVEL
, 0, 0, NULL
);
877 root
= __pa(page
->spt
);
879 vcpu
->mmu
.root_hpa
= root
;
883 for (i
= 0; i
< 4; ++i
) {
884 hpa_t root
= vcpu
->mmu
.pae_root
[i
];
886 ASSERT(!VALID_PAGE(root
));
887 if (vcpu
->mmu
.root_level
== PT32E_ROOT_LEVEL
) {
888 if (!is_present_pte(vcpu
->pdptrs
[i
])) {
889 vcpu
->mmu
.pae_root
[i
] = 0;
892 root_gfn
= vcpu
->pdptrs
[i
] >> PAGE_SHIFT
;
893 } else if (vcpu
->mmu
.root_level
== 0)
895 page
= kvm_mmu_get_page(vcpu
, root_gfn
, i
<< 30,
896 PT32_ROOT_LEVEL
, !is_paging(vcpu
),
898 root
= __pa(page
->spt
);
900 vcpu
->mmu
.pae_root
[i
] = root
| PT_PRESENT_MASK
;
902 vcpu
->mmu
.root_hpa
= __pa(vcpu
->mmu
.pae_root
);
905 static gpa_t
nonpaging_gva_to_gpa(struct kvm_vcpu
*vcpu
, gva_t vaddr
)
910 static int nonpaging_page_fault(struct kvm_vcpu
*vcpu
, gva_t gva
,
917 r
= mmu_topup_memory_caches(vcpu
);
922 ASSERT(VALID_PAGE(vcpu
->mmu
.root_hpa
));
925 paddr
= gpa_to_hpa(vcpu
, addr
& PT64_BASE_ADDR_MASK
);
927 if (is_error_hpa(paddr
))
930 return nonpaging_map(vcpu
, addr
& PAGE_MASK
, paddr
);
933 static void nonpaging_free(struct kvm_vcpu
*vcpu
)
935 mmu_free_roots(vcpu
);
938 static int nonpaging_init_context(struct kvm_vcpu
*vcpu
)
940 struct kvm_mmu
*context
= &vcpu
->mmu
;
942 context
->new_cr3
= nonpaging_new_cr3
;
943 context
->page_fault
= nonpaging_page_fault
;
944 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
945 context
->free
= nonpaging_free
;
946 context
->root_level
= 0;
947 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
948 context
->root_hpa
= INVALID_PAGE
;
952 static void kvm_mmu_flush_tlb(struct kvm_vcpu
*vcpu
)
954 ++vcpu
->stat
.tlb_flush
;
955 kvm_x86_ops
->tlb_flush(vcpu
);
958 static void paging_new_cr3(struct kvm_vcpu
*vcpu
)
960 pgprintk("%s: cr3 %lx\n", __FUNCTION__
, vcpu
->cr3
);
961 mmu_free_roots(vcpu
);
964 static void inject_page_fault(struct kvm_vcpu
*vcpu
,
968 kvm_x86_ops
->inject_page_fault(vcpu
, addr
, err_code
);
971 static void paging_free(struct kvm_vcpu
*vcpu
)
973 nonpaging_free(vcpu
);
977 #include "paging_tmpl.h"
981 #include "paging_tmpl.h"
984 static int paging64_init_context_common(struct kvm_vcpu
*vcpu
, int level
)
986 struct kvm_mmu
*context
= &vcpu
->mmu
;
988 ASSERT(is_pae(vcpu
));
989 context
->new_cr3
= paging_new_cr3
;
990 context
->page_fault
= paging64_page_fault
;
991 context
->gva_to_gpa
= paging64_gva_to_gpa
;
992 context
->free
= paging_free
;
993 context
->root_level
= level
;
994 context
->shadow_root_level
= level
;
995 context
->root_hpa
= INVALID_PAGE
;
999 static int paging64_init_context(struct kvm_vcpu
*vcpu
)
1001 return paging64_init_context_common(vcpu
, PT64_ROOT_LEVEL
);
1004 static int paging32_init_context(struct kvm_vcpu
*vcpu
)
1006 struct kvm_mmu
*context
= &vcpu
->mmu
;
1008 context
->new_cr3
= paging_new_cr3
;
1009 context
->page_fault
= paging32_page_fault
;
1010 context
->gva_to_gpa
= paging32_gva_to_gpa
;
1011 context
->free
= paging_free
;
1012 context
->root_level
= PT32_ROOT_LEVEL
;
1013 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
1014 context
->root_hpa
= INVALID_PAGE
;
1018 static int paging32E_init_context(struct kvm_vcpu
*vcpu
)
1020 return paging64_init_context_common(vcpu
, PT32E_ROOT_LEVEL
);
1023 static int init_kvm_mmu(struct kvm_vcpu
*vcpu
)
1026 ASSERT(!VALID_PAGE(vcpu
->mmu
.root_hpa
));
1028 if (!is_paging(vcpu
))
1029 return nonpaging_init_context(vcpu
);
1030 else if (is_long_mode(vcpu
))
1031 return paging64_init_context(vcpu
);
1032 else if (is_pae(vcpu
))
1033 return paging32E_init_context(vcpu
);
1035 return paging32_init_context(vcpu
);
1038 static void destroy_kvm_mmu(struct kvm_vcpu
*vcpu
)
1041 if (VALID_PAGE(vcpu
->mmu
.root_hpa
)) {
1042 vcpu
->mmu
.free(vcpu
);
1043 vcpu
->mmu
.root_hpa
= INVALID_PAGE
;
1047 int kvm_mmu_reset_context(struct kvm_vcpu
*vcpu
)
1049 destroy_kvm_mmu(vcpu
);
1050 return init_kvm_mmu(vcpu
);
1053 int kvm_mmu_load(struct kvm_vcpu
*vcpu
)
1057 mutex_lock(&vcpu
->kvm
->lock
);
1058 r
= mmu_topup_memory_caches(vcpu
);
1061 mmu_alloc_roots(vcpu
);
1062 kvm_x86_ops
->set_cr3(vcpu
, vcpu
->mmu
.root_hpa
);
1063 kvm_mmu_flush_tlb(vcpu
);
1065 mutex_unlock(&vcpu
->kvm
->lock
);
1068 EXPORT_SYMBOL_GPL(kvm_mmu_load
);
1070 void kvm_mmu_unload(struct kvm_vcpu
*vcpu
)
1072 mmu_free_roots(vcpu
);
1075 static void mmu_pte_write_zap_pte(struct kvm_vcpu
*vcpu
,
1076 struct kvm_mmu_page
*page
,
1080 struct kvm_mmu_page
*child
;
1083 if (is_present_pte(pte
)) {
1084 if (page
->role
.level
== PT_PAGE_TABLE_LEVEL
)
1087 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
1088 mmu_page_remove_parent_pte(child
, spte
);
1092 kvm_flush_remote_tlbs(vcpu
->kvm
);
1095 static void mmu_pte_write_new_pte(struct kvm_vcpu
*vcpu
,
1096 struct kvm_mmu_page
*page
,
1098 const void *new, int bytes
)
1100 if (page
->role
.level
!= PT_PAGE_TABLE_LEVEL
)
1103 if (page
->role
.glevels
== PT32_ROOT_LEVEL
)
1104 paging32_update_pte(vcpu
, page
, spte
, new, bytes
);
1106 paging64_update_pte(vcpu
, page
, spte
, new, bytes
);
1109 void kvm_mmu_pte_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1110 const u8
*new, int bytes
)
1112 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1113 struct kvm_mmu_page
*page
;
1114 struct hlist_node
*node
, *n
;
1115 struct hlist_head
*bucket
;
1118 unsigned offset
= offset_in_page(gpa
);
1120 unsigned page_offset
;
1121 unsigned misaligned
;
1127 pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__
, gpa
, bytes
);
1128 if (gfn
== vcpu
->last_pt_write_gfn
) {
1129 ++vcpu
->last_pt_write_count
;
1130 if (vcpu
->last_pt_write_count
>= 3)
1133 vcpu
->last_pt_write_gfn
= gfn
;
1134 vcpu
->last_pt_write_count
= 1;
1136 index
= kvm_page_table_hashfn(gfn
) % KVM_NUM_MMU_PAGES
;
1137 bucket
= &vcpu
->kvm
->mmu_page_hash
[index
];
1138 hlist_for_each_entry_safe(page
, node
, n
, bucket
, hash_link
) {
1139 if (page
->gfn
!= gfn
|| page
->role
.metaphysical
)
1141 pte_size
= page
->role
.glevels
== PT32_ROOT_LEVEL
? 4 : 8;
1142 misaligned
= (offset
^ (offset
+ bytes
- 1)) & ~(pte_size
- 1);
1143 misaligned
|= bytes
< 4;
1144 if (misaligned
|| flooded
) {
1146 * Misaligned accesses are too much trouble to fix
1147 * up; also, they usually indicate a page is not used
1150 * If we're seeing too many writes to a page,
1151 * it may no longer be a page table, or we may be
1152 * forking, in which case it is better to unmap the
1155 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1156 gpa
, bytes
, page
->role
.word
);
1157 kvm_mmu_zap_page(vcpu
->kvm
, page
);
1160 page_offset
= offset
;
1161 level
= page
->role
.level
;
1163 if (page
->role
.glevels
== PT32_ROOT_LEVEL
) {
1164 page_offset
<<= 1; /* 32->64 */
1166 * A 32-bit pde maps 4MB while the shadow pdes map
1167 * only 2MB. So we need to double the offset again
1168 * and zap two pdes instead of one.
1170 if (level
== PT32_ROOT_LEVEL
) {
1171 page_offset
&= ~7; /* kill rounding error */
1175 quadrant
= page_offset
>> PAGE_SHIFT
;
1176 page_offset
&= ~PAGE_MASK
;
1177 if (quadrant
!= page
->role
.quadrant
)
1180 spte
= &page
->spt
[page_offset
/ sizeof(*spte
)];
1182 mmu_pte_write_zap_pte(vcpu
, page
, spte
);
1183 mmu_pte_write_new_pte(vcpu
, page
, spte
, new, bytes
);
1189 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu
*vcpu
, gva_t gva
)
1191 gpa_t gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, gva
);
1193 return kvm_mmu_unprotect_page(vcpu
, gpa
>> PAGE_SHIFT
);
1196 void __kvm_mmu_free_some_pages(struct kvm_vcpu
*vcpu
)
1198 while (vcpu
->kvm
->n_free_mmu_pages
< KVM_REFILL_PAGES
) {
1199 struct kvm_mmu_page
*page
;
1201 page
= container_of(vcpu
->kvm
->active_mmu_pages
.prev
,
1202 struct kvm_mmu_page
, link
);
1203 kvm_mmu_zap_page(vcpu
->kvm
, page
);
1207 static void free_mmu_pages(struct kvm_vcpu
*vcpu
)
1209 struct kvm_mmu_page
*page
;
1211 while (!list_empty(&vcpu
->kvm
->active_mmu_pages
)) {
1212 page
= container_of(vcpu
->kvm
->active_mmu_pages
.next
,
1213 struct kvm_mmu_page
, link
);
1214 kvm_mmu_zap_page(vcpu
->kvm
, page
);
1216 free_page((unsigned long)vcpu
->mmu
.pae_root
);
1219 static int alloc_mmu_pages(struct kvm_vcpu
*vcpu
)
1226 vcpu
->kvm
->n_free_mmu_pages
= KVM_NUM_MMU_PAGES
;
1229 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1230 * Therefore we need to allocate shadow page tables in the first
1231 * 4GB of memory, which happens to fit the DMA32 zone.
1233 page
= alloc_page(GFP_KERNEL
| __GFP_DMA32
);
1236 vcpu
->mmu
.pae_root
= page_address(page
);
1237 for (i
= 0; i
< 4; ++i
)
1238 vcpu
->mmu
.pae_root
[i
] = INVALID_PAGE
;
1243 free_mmu_pages(vcpu
);
1247 int kvm_mmu_create(struct kvm_vcpu
*vcpu
)
1250 ASSERT(!VALID_PAGE(vcpu
->mmu
.root_hpa
));
1252 return alloc_mmu_pages(vcpu
);
1255 int kvm_mmu_setup(struct kvm_vcpu
*vcpu
)
1258 ASSERT(!VALID_PAGE(vcpu
->mmu
.root_hpa
));
1260 return init_kvm_mmu(vcpu
);
1263 void kvm_mmu_destroy(struct kvm_vcpu
*vcpu
)
1267 destroy_kvm_mmu(vcpu
);
1268 free_mmu_pages(vcpu
);
1269 mmu_free_memory_caches(vcpu
);
1272 void kvm_mmu_slot_remove_write_access(struct kvm
*kvm
, int slot
)
1274 struct kvm_mmu_page
*page
;
1276 list_for_each_entry(page
, &kvm
->active_mmu_pages
, link
) {
1280 if (!test_bit(slot
, &page
->slot_bitmap
))
1284 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
1286 if (pt
[i
] & PT_WRITABLE_MASK
) {
1287 rmap_remove(&pt
[i
]);
1288 pt
[i
] &= ~PT_WRITABLE_MASK
;
1293 void kvm_mmu_zap_all(struct kvm
*kvm
)
1295 struct kvm_mmu_page
*page
, *node
;
1297 list_for_each_entry_safe(page
, node
, &kvm
->active_mmu_pages
, link
)
1298 kvm_mmu_zap_page(kvm
, page
);
1300 kvm_flush_remote_tlbs(kvm
);
1303 void kvm_mmu_module_exit(void)
1305 if (pte_chain_cache
)
1306 kmem_cache_destroy(pte_chain_cache
);
1307 if (rmap_desc_cache
)
1308 kmem_cache_destroy(rmap_desc_cache
);
1309 if (mmu_page_header_cache
)
1310 kmem_cache_destroy(mmu_page_header_cache
);
1313 int kvm_mmu_module_init(void)
1315 pte_chain_cache
= kmem_cache_create("kvm_pte_chain",
1316 sizeof(struct kvm_pte_chain
),
1318 if (!pte_chain_cache
)
1320 rmap_desc_cache
= kmem_cache_create("kvm_rmap_desc",
1321 sizeof(struct kvm_rmap_desc
),
1323 if (!rmap_desc_cache
)
1326 mmu_page_header_cache
= kmem_cache_create("kvm_mmu_page_header",
1327 sizeof(struct kvm_mmu_page
),
1329 if (!mmu_page_header_cache
)
1335 kvm_mmu_module_exit();
1341 static const char *audit_msg
;
1343 static gva_t
canonicalize(gva_t gva
)
1345 #ifdef CONFIG_X86_64
1346 gva
= (long long)(gva
<< 16) >> 16;
1351 static void audit_mappings_page(struct kvm_vcpu
*vcpu
, u64 page_pte
,
1352 gva_t va
, int level
)
1354 u64
*pt
= __va(page_pte
& PT64_BASE_ADDR_MASK
);
1356 gva_t va_delta
= 1ul << (PAGE_SHIFT
+ 9 * (level
- 1));
1358 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
, va
+= va_delta
) {
1361 if (!(ent
& PT_PRESENT_MASK
))
1364 va
= canonicalize(va
);
1366 audit_mappings_page(vcpu
, ent
, va
, level
- 1);
1368 gpa_t gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, va
);
1369 hpa_t hpa
= gpa_to_hpa(vcpu
, gpa
);
1371 if ((ent
& PT_PRESENT_MASK
)
1372 && (ent
& PT64_BASE_ADDR_MASK
) != hpa
)
1373 printk(KERN_ERR
"audit error: (%s) levels %d"
1374 " gva %lx gpa %llx hpa %llx ent %llx\n",
1375 audit_msg
, vcpu
->mmu
.root_level
,
1381 static void audit_mappings(struct kvm_vcpu
*vcpu
)
1385 if (vcpu
->mmu
.root_level
== 4)
1386 audit_mappings_page(vcpu
, vcpu
->mmu
.root_hpa
, 0, 4);
1388 for (i
= 0; i
< 4; ++i
)
1389 if (vcpu
->mmu
.pae_root
[i
] & PT_PRESENT_MASK
)
1390 audit_mappings_page(vcpu
,
1391 vcpu
->mmu
.pae_root
[i
],
1396 static int count_rmaps(struct kvm_vcpu
*vcpu
)
1401 for (i
= 0; i
< KVM_MEMORY_SLOTS
; ++i
) {
1402 struct kvm_memory_slot
*m
= &vcpu
->kvm
->memslots
[i
];
1403 struct kvm_rmap_desc
*d
;
1405 for (j
= 0; j
< m
->npages
; ++j
) {
1406 struct page
*page
= m
->phys_mem
[j
];
1410 if (!(page
->private & 1)) {
1414 d
= (struct kvm_rmap_desc
*)(page
->private & ~1ul);
1416 for (k
= 0; k
< RMAP_EXT
; ++k
)
1417 if (d
->shadow_ptes
[k
])
1428 static int count_writable_mappings(struct kvm_vcpu
*vcpu
)
1431 struct kvm_mmu_page
*page
;
1434 list_for_each_entry(page
, &vcpu
->kvm
->active_mmu_pages
, link
) {
1435 u64
*pt
= page
->spt
;
1437 if (page
->role
.level
!= PT_PAGE_TABLE_LEVEL
)
1440 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
1443 if (!(ent
& PT_PRESENT_MASK
))
1445 if (!(ent
& PT_WRITABLE_MASK
))
1453 static void audit_rmap(struct kvm_vcpu
*vcpu
)
1455 int n_rmap
= count_rmaps(vcpu
);
1456 int n_actual
= count_writable_mappings(vcpu
);
1458 if (n_rmap
!= n_actual
)
1459 printk(KERN_ERR
"%s: (%s) rmap %d actual %d\n",
1460 __FUNCTION__
, audit_msg
, n_rmap
, n_actual
);
1463 static void audit_write_protection(struct kvm_vcpu
*vcpu
)
1465 struct kvm_mmu_page
*page
;
1467 list_for_each_entry(page
, &vcpu
->kvm
->active_mmu_pages
, link
) {
1471 if (page
->role
.metaphysical
)
1474 hfn
= gpa_to_hpa(vcpu
, (gpa_t
)page
->gfn
<< PAGE_SHIFT
)
1476 pg
= pfn_to_page(hfn
);
1478 printk(KERN_ERR
"%s: (%s) shadow page has writable"
1479 " mappings: gfn %lx role %x\n",
1480 __FUNCTION__
, audit_msg
, page
->gfn
,
1485 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, const char *msg
)
1492 audit_write_protection(vcpu
);
1493 audit_mappings(vcpu
);