2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
21 * Updated: Chad Sellers <csellers@tresys.com>
23 * Added validation of kernel classes and permissions
25 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
26 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
27 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
28 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation, version 2.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/string.h>
36 #include <linux/spinlock.h>
37 #include <linux/rcupdate.h>
38 #include <linux/errno.h>
40 #include <linux/sched.h>
41 #include <linux/audit.h>
42 #include <linux/mutex.h>
43 #include <net/netlabel.h>
53 #include "conditional.h"
60 extern void selnl_notify_policyload(u32 seqno
);
61 unsigned int policydb_loaded_version
;
63 int selinux_policycap_netpeer
;
66 * This is declared in avc.c
68 extern const struct selinux_class_perm selinux_class_perm
;
70 static DEFINE_RWLOCK(policy_rwlock
);
71 #define POLICY_RDLOCK read_lock(&policy_rwlock)
72 #define POLICY_WRLOCK write_lock_irq(&policy_rwlock)
73 #define POLICY_RDUNLOCK read_unlock(&policy_rwlock)
74 #define POLICY_WRUNLOCK write_unlock_irq(&policy_rwlock)
76 static DEFINE_MUTEX(load_mutex
);
77 #define LOAD_LOCK mutex_lock(&load_mutex)
78 #define LOAD_UNLOCK mutex_unlock(&load_mutex)
80 static struct sidtab sidtab
;
81 struct policydb policydb
;
82 int ss_initialized
= 0;
85 * The largest sequence number that has been used when
86 * providing an access decision to the access vector cache.
87 * The sequence number only changes when a policy change
90 static u32 latest_granting
= 0;
92 /* Forward declaration. */
93 static int context_struct_to_string(struct context
*context
, char **scontext
,
97 * Return the boolean value of a constraint expression
98 * when it is applied to the specified source and target
101 * xcontext is a special beast... It is used by the validatetrans rules
102 * only. For these rules, scontext is the context before the transition,
103 * tcontext is the context after the transition, and xcontext is the context
104 * of the process performing the transition. All other callers of
105 * constraint_expr_eval should pass in NULL for xcontext.
107 static int constraint_expr_eval(struct context
*scontext
,
108 struct context
*tcontext
,
109 struct context
*xcontext
,
110 struct constraint_expr
*cexpr
)
114 struct role_datum
*r1
, *r2
;
115 struct mls_level
*l1
, *l2
;
116 struct constraint_expr
*e
;
117 int s
[CEXPR_MAXDEPTH
];
120 for (e
= cexpr
; e
; e
= e
->next
) {
121 switch (e
->expr_type
) {
137 if (sp
== (CEXPR_MAXDEPTH
-1))
141 val1
= scontext
->user
;
142 val2
= tcontext
->user
;
145 val1
= scontext
->type
;
146 val2
= tcontext
->type
;
149 val1
= scontext
->role
;
150 val2
= tcontext
->role
;
151 r1
= policydb
.role_val_to_struct
[val1
- 1];
152 r2
= policydb
.role_val_to_struct
[val2
- 1];
155 s
[++sp
] = ebitmap_get_bit(&r1
->dominates
,
159 s
[++sp
] = ebitmap_get_bit(&r2
->dominates
,
163 s
[++sp
] = ( !ebitmap_get_bit(&r1
->dominates
,
165 !ebitmap_get_bit(&r2
->dominates
,
173 l1
= &(scontext
->range
.level
[0]);
174 l2
= &(tcontext
->range
.level
[0]);
177 l1
= &(scontext
->range
.level
[0]);
178 l2
= &(tcontext
->range
.level
[1]);
181 l1
= &(scontext
->range
.level
[1]);
182 l2
= &(tcontext
->range
.level
[0]);
185 l1
= &(scontext
->range
.level
[1]);
186 l2
= &(tcontext
->range
.level
[1]);
189 l1
= &(scontext
->range
.level
[0]);
190 l2
= &(scontext
->range
.level
[1]);
193 l1
= &(tcontext
->range
.level
[0]);
194 l2
= &(tcontext
->range
.level
[1]);
199 s
[++sp
] = mls_level_eq(l1
, l2
);
202 s
[++sp
] = !mls_level_eq(l1
, l2
);
205 s
[++sp
] = mls_level_dom(l1
, l2
);
208 s
[++sp
] = mls_level_dom(l2
, l1
);
211 s
[++sp
] = mls_level_incomp(l2
, l1
);
225 s
[++sp
] = (val1
== val2
);
228 s
[++sp
] = (val1
!= val2
);
236 if (sp
== (CEXPR_MAXDEPTH
-1))
239 if (e
->attr
& CEXPR_TARGET
)
241 else if (e
->attr
& CEXPR_XTARGET
) {
248 if (e
->attr
& CEXPR_USER
)
250 else if (e
->attr
& CEXPR_ROLE
)
252 else if (e
->attr
& CEXPR_TYPE
)
261 s
[++sp
] = ebitmap_get_bit(&e
->names
, val1
- 1);
264 s
[++sp
] = !ebitmap_get_bit(&e
->names
, val1
- 1);
282 * Compute access vectors based on a context structure pair for
283 * the permissions in a particular class.
285 static int context_struct_compute_av(struct context
*scontext
,
286 struct context
*tcontext
,
289 struct av_decision
*avd
)
291 struct constraint_node
*constraint
;
292 struct role_allow
*ra
;
293 struct avtab_key avkey
;
294 struct avtab_node
*node
;
295 struct class_datum
*tclass_datum
;
296 struct ebitmap
*sattr
, *tattr
;
297 struct ebitmap_node
*snode
, *tnode
;
298 const struct selinux_class_perm
*kdefs
= &selinux_class_perm
;
302 * Remap extended Netlink classes for old policy versions.
303 * Do this here rather than socket_type_to_security_class()
304 * in case a newer policy version is loaded, allowing sockets
305 * to remain in the correct class.
307 if (policydb_loaded_version
< POLICYDB_VERSION_NLCLASS
)
308 if (tclass
>= SECCLASS_NETLINK_ROUTE_SOCKET
&&
309 tclass
<= SECCLASS_NETLINK_DNRT_SOCKET
)
310 tclass
= SECCLASS_NETLINK_SOCKET
;
313 * Initialize the access vectors to the default values.
316 avd
->decided
= 0xffffffff;
318 avd
->auditdeny
= 0xffffffff;
319 avd
->seqno
= latest_granting
;
322 * Check for all the invalid cases.
324 * - tclass > policy and > kernel
325 * - tclass > policy but is a userspace class
326 * - tclass > policy but we do not allow unknowns
328 if (unlikely(!tclass
))
330 if (unlikely(tclass
> policydb
.p_classes
.nprim
))
331 if (tclass
> kdefs
->cts_len
||
332 !kdefs
->class_to_string
[tclass
- 1] ||
333 !policydb
.allow_unknown
)
337 * Kernel class and we allow unknown so pad the allow decision
338 * the pad will be all 1 for unknown classes.
340 if (tclass
<= kdefs
->cts_len
&& policydb
.allow_unknown
)
341 avd
->allowed
= policydb
.undefined_perms
[tclass
- 1];
344 * Not in policy. Since decision is completed (all 1 or all 0) return.
346 if (unlikely(tclass
> policydb
.p_classes
.nprim
))
349 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
352 * If a specific type enforcement rule was defined for
353 * this permission check, then use it.
355 avkey
.target_class
= tclass
;
356 avkey
.specified
= AVTAB_AV
;
357 sattr
= &policydb
.type_attr_map
[scontext
->type
- 1];
358 tattr
= &policydb
.type_attr_map
[tcontext
->type
- 1];
359 ebitmap_for_each_positive_bit(sattr
, snode
, i
) {
360 ebitmap_for_each_positive_bit(tattr
, tnode
, j
) {
361 avkey
.source_type
= i
+ 1;
362 avkey
.target_type
= j
+ 1;
363 for (node
= avtab_search_node(&policydb
.te_avtab
, &avkey
);
365 node
= avtab_search_node_next(node
, avkey
.specified
)) {
366 if (node
->key
.specified
== AVTAB_ALLOWED
)
367 avd
->allowed
|= node
->datum
.data
;
368 else if (node
->key
.specified
== AVTAB_AUDITALLOW
)
369 avd
->auditallow
|= node
->datum
.data
;
370 else if (node
->key
.specified
== AVTAB_AUDITDENY
)
371 avd
->auditdeny
&= node
->datum
.data
;
374 /* Check conditional av table for additional permissions */
375 cond_compute_av(&policydb
.te_cond_avtab
, &avkey
, avd
);
381 * Remove any permissions prohibited by a constraint (this includes
384 constraint
= tclass_datum
->constraints
;
386 if ((constraint
->permissions
& (avd
->allowed
)) &&
387 !constraint_expr_eval(scontext
, tcontext
, NULL
,
389 avd
->allowed
= (avd
->allowed
) & ~(constraint
->permissions
);
391 constraint
= constraint
->next
;
395 * If checking process transition permission and the
396 * role is changing, then check the (current_role, new_role)
399 if (tclass
== SECCLASS_PROCESS
&&
400 (avd
->allowed
& (PROCESS__TRANSITION
| PROCESS__DYNTRANSITION
)) &&
401 scontext
->role
!= tcontext
->role
) {
402 for (ra
= policydb
.role_allow
; ra
; ra
= ra
->next
) {
403 if (scontext
->role
== ra
->role
&&
404 tcontext
->role
== ra
->new_role
)
408 avd
->allowed
= (avd
->allowed
) & ~(PROCESS__TRANSITION
|
409 PROCESS__DYNTRANSITION
);
415 printk(KERN_ERR
"%s: unrecognized class %d\n", __FUNCTION__
, tclass
);
419 static int security_validtrans_handle_fail(struct context
*ocontext
,
420 struct context
*ncontext
,
421 struct context
*tcontext
,
424 char *o
= NULL
, *n
= NULL
, *t
= NULL
;
425 u32 olen
, nlen
, tlen
;
427 if (context_struct_to_string(ocontext
, &o
, &olen
) < 0)
429 if (context_struct_to_string(ncontext
, &n
, &nlen
) < 0)
431 if (context_struct_to_string(tcontext
, &t
, &tlen
) < 0)
433 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
434 "security_validate_transition: denied for"
435 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
436 o
, n
, t
, policydb
.p_class_val_to_name
[tclass
-1]);
442 if (!selinux_enforcing
)
447 int security_validate_transition(u32 oldsid
, u32 newsid
, u32 tasksid
,
450 struct context
*ocontext
;
451 struct context
*ncontext
;
452 struct context
*tcontext
;
453 struct class_datum
*tclass_datum
;
454 struct constraint_node
*constraint
;
463 * Remap extended Netlink classes for old policy versions.
464 * Do this here rather than socket_type_to_security_class()
465 * in case a newer policy version is loaded, allowing sockets
466 * to remain in the correct class.
468 if (policydb_loaded_version
< POLICYDB_VERSION_NLCLASS
)
469 if (tclass
>= SECCLASS_NETLINK_ROUTE_SOCKET
&&
470 tclass
<= SECCLASS_NETLINK_DNRT_SOCKET
)
471 tclass
= SECCLASS_NETLINK_SOCKET
;
473 if (!tclass
|| tclass
> policydb
.p_classes
.nprim
) {
474 printk(KERN_ERR
"security_validate_transition: "
475 "unrecognized class %d\n", tclass
);
479 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
481 ocontext
= sidtab_search(&sidtab
, oldsid
);
483 printk(KERN_ERR
"security_validate_transition: "
484 " unrecognized SID %d\n", oldsid
);
489 ncontext
= sidtab_search(&sidtab
, newsid
);
491 printk(KERN_ERR
"security_validate_transition: "
492 " unrecognized SID %d\n", newsid
);
497 tcontext
= sidtab_search(&sidtab
, tasksid
);
499 printk(KERN_ERR
"security_validate_transition: "
500 " unrecognized SID %d\n", tasksid
);
505 constraint
= tclass_datum
->validatetrans
;
507 if (!constraint_expr_eval(ocontext
, ncontext
, tcontext
,
509 rc
= security_validtrans_handle_fail(ocontext
, ncontext
,
513 constraint
= constraint
->next
;
522 * security_compute_av - Compute access vector decisions.
523 * @ssid: source security identifier
524 * @tsid: target security identifier
525 * @tclass: target security class
526 * @requested: requested permissions
527 * @avd: access vector decisions
529 * Compute a set of access vector decisions based on the
530 * SID pair (@ssid, @tsid) for the permissions in @tclass.
531 * Return -%EINVAL if any of the parameters are invalid or %0
532 * if the access vector decisions were computed successfully.
534 int security_compute_av(u32 ssid
,
538 struct av_decision
*avd
)
540 struct context
*scontext
= NULL
, *tcontext
= NULL
;
543 if (!ss_initialized
) {
544 avd
->allowed
= 0xffffffff;
545 avd
->decided
= 0xffffffff;
547 avd
->auditdeny
= 0xffffffff;
548 avd
->seqno
= latest_granting
;
554 scontext
= sidtab_search(&sidtab
, ssid
);
556 printk(KERN_ERR
"security_compute_av: unrecognized SID %d\n",
561 tcontext
= sidtab_search(&sidtab
, tsid
);
563 printk(KERN_ERR
"security_compute_av: unrecognized SID %d\n",
569 rc
= context_struct_compute_av(scontext
, tcontext
, tclass
,
577 * Write the security context string representation of
578 * the context structure `context' into a dynamically
579 * allocated string of the correct size. Set `*scontext'
580 * to point to this string and set `*scontext_len' to
581 * the length of the string.
583 static int context_struct_to_string(struct context
*context
, char **scontext
, u32
*scontext_len
)
590 /* Compute the size of the context. */
591 *scontext_len
+= strlen(policydb
.p_user_val_to_name
[context
->user
- 1]) + 1;
592 *scontext_len
+= strlen(policydb
.p_role_val_to_name
[context
->role
- 1]) + 1;
593 *scontext_len
+= strlen(policydb
.p_type_val_to_name
[context
->type
- 1]) + 1;
594 *scontext_len
+= mls_compute_context_len(context
);
596 /* Allocate space for the context; caller must free this space. */
597 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
601 *scontext
= scontextp
;
604 * Copy the user name, role name and type name into the context.
606 sprintf(scontextp
, "%s:%s:%s",
607 policydb
.p_user_val_to_name
[context
->user
- 1],
608 policydb
.p_role_val_to_name
[context
->role
- 1],
609 policydb
.p_type_val_to_name
[context
->type
- 1]);
610 scontextp
+= strlen(policydb
.p_user_val_to_name
[context
->user
- 1]) +
611 1 + strlen(policydb
.p_role_val_to_name
[context
->role
- 1]) +
612 1 + strlen(policydb
.p_type_val_to_name
[context
->type
- 1]);
614 mls_sid_to_context(context
, &scontextp
);
621 #include "initial_sid_to_string.h"
623 const char *security_get_initial_sid_context(u32 sid
)
625 if (unlikely(sid
> SECINITSID_NUM
))
627 return initial_sid_to_string
[sid
];
631 * security_sid_to_context - Obtain a context for a given SID.
632 * @sid: security identifier, SID
633 * @scontext: security context
634 * @scontext_len: length in bytes
636 * Write the string representation of the context associated with @sid
637 * into a dynamically allocated string of the correct size. Set @scontext
638 * to point to this string and set @scontext_len to the length of the string.
640 int security_sid_to_context(u32 sid
, char **scontext
, u32
*scontext_len
)
642 struct context
*context
;
648 if (!ss_initialized
) {
649 if (sid
<= SECINITSID_NUM
) {
652 *scontext_len
= strlen(initial_sid_to_string
[sid
]) + 1;
653 scontextp
= kmalloc(*scontext_len
,GFP_ATOMIC
);
658 strcpy(scontextp
, initial_sid_to_string
[sid
]);
659 *scontext
= scontextp
;
662 printk(KERN_ERR
"security_sid_to_context: called before initial "
663 "load_policy on unknown SID %d\n", sid
);
668 context
= sidtab_search(&sidtab
, sid
);
670 printk(KERN_ERR
"security_sid_to_context: unrecognized SID "
675 rc
= context_struct_to_string(context
, scontext
, scontext_len
);
683 static int security_context_to_sid_core(char *scontext
, u32 scontext_len
, u32
*sid
, u32 def_sid
)
686 struct context context
;
687 struct role_datum
*role
;
688 struct type_datum
*typdatum
;
689 struct user_datum
*usrdatum
;
690 char *scontextp
, *p
, oldc
;
693 if (!ss_initialized
) {
696 for (i
= 1; i
< SECINITSID_NUM
; i
++) {
697 if (!strcmp(initial_sid_to_string
[i
], scontext
)) {
702 *sid
= SECINITSID_KERNEL
;
707 /* Copy the string so that we can modify the copy as we parse it.
708 The string should already by null terminated, but we append a
709 null suffix to the copy to avoid problems with the existing
710 attr package, which doesn't view the null terminator as part
711 of the attribute value. */
712 scontext2
= kmalloc(scontext_len
+1,GFP_KERNEL
);
717 memcpy(scontext2
, scontext
, scontext_len
);
718 scontext2
[scontext_len
] = 0;
720 context_init(&context
);
725 /* Parse the security context. */
728 scontextp
= (char *) scontext2
;
730 /* Extract the user. */
732 while (*p
&& *p
!= ':')
740 usrdatum
= hashtab_search(policydb
.p_users
.table
, scontextp
);
744 context
.user
= usrdatum
->value
;
748 while (*p
&& *p
!= ':')
756 role
= hashtab_search(policydb
.p_roles
.table
, scontextp
);
759 context
.role
= role
->value
;
763 while (*p
&& *p
!= ':')
768 typdatum
= hashtab_search(policydb
.p_types
.table
, scontextp
);
772 context
.type
= typdatum
->value
;
774 rc
= mls_context_to_sid(oldc
, &p
, &context
, &sidtab
, def_sid
);
778 if ((p
- scontext2
) < scontext_len
) {
783 /* Check the validity of the new context. */
784 if (!policydb_context_isvalid(&policydb
, &context
)) {
788 /* Obtain the new sid. */
789 rc
= sidtab_context_to_sid(&sidtab
, &context
, sid
);
792 context_destroy(&context
);
799 * security_context_to_sid - Obtain a SID for a given security context.
800 * @scontext: security context
801 * @scontext_len: length in bytes
802 * @sid: security identifier, SID
804 * Obtains a SID associated with the security context that
805 * has the string representation specified by @scontext.
806 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
807 * memory is available, or 0 on success.
809 int security_context_to_sid(char *scontext
, u32 scontext_len
, u32
*sid
)
811 return security_context_to_sid_core(scontext
, scontext_len
,
816 * security_context_to_sid_default - Obtain a SID for a given security context,
817 * falling back to specified default if needed.
819 * @scontext: security context
820 * @scontext_len: length in bytes
821 * @sid: security identifier, SID
822 * @def_sid: default SID to assign on error
824 * Obtains a SID associated with the security context that
825 * has the string representation specified by @scontext.
826 * The default SID is passed to the MLS layer to be used to allow
827 * kernel labeling of the MLS field if the MLS field is not present
828 * (for upgrading to MLS without full relabel).
829 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
830 * memory is available, or 0 on success.
832 int security_context_to_sid_default(char *scontext
, u32 scontext_len
, u32
*sid
, u32 def_sid
)
834 return security_context_to_sid_core(scontext
, scontext_len
,
838 static int compute_sid_handle_invalid_context(
839 struct context
*scontext
,
840 struct context
*tcontext
,
842 struct context
*newcontext
)
844 char *s
= NULL
, *t
= NULL
, *n
= NULL
;
845 u32 slen
, tlen
, nlen
;
847 if (context_struct_to_string(scontext
, &s
, &slen
) < 0)
849 if (context_struct_to_string(tcontext
, &t
, &tlen
) < 0)
851 if (context_struct_to_string(newcontext
, &n
, &nlen
) < 0)
853 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
854 "security_compute_sid: invalid context %s"
858 n
, s
, t
, policydb
.p_class_val_to_name
[tclass
-1]);
863 if (!selinux_enforcing
)
868 static int security_compute_sid(u32 ssid
,
874 struct context
*scontext
= NULL
, *tcontext
= NULL
, newcontext
;
875 struct role_trans
*roletr
= NULL
;
876 struct avtab_key avkey
;
877 struct avtab_datum
*avdatum
;
878 struct avtab_node
*node
;
881 if (!ss_initialized
) {
883 case SECCLASS_PROCESS
:
893 context_init(&newcontext
);
897 scontext
= sidtab_search(&sidtab
, ssid
);
899 printk(KERN_ERR
"security_compute_sid: unrecognized SID %d\n",
904 tcontext
= sidtab_search(&sidtab
, tsid
);
906 printk(KERN_ERR
"security_compute_sid: unrecognized SID %d\n",
912 /* Set the user identity. */
914 case AVTAB_TRANSITION
:
916 /* Use the process user identity. */
917 newcontext
.user
= scontext
->user
;
920 /* Use the related object owner. */
921 newcontext
.user
= tcontext
->user
;
925 /* Set the role and type to default values. */
927 case SECCLASS_PROCESS
:
928 /* Use the current role and type of process. */
929 newcontext
.role
= scontext
->role
;
930 newcontext
.type
= scontext
->type
;
933 /* Use the well-defined object role. */
934 newcontext
.role
= OBJECT_R_VAL
;
935 /* Use the type of the related object. */
936 newcontext
.type
= tcontext
->type
;
939 /* Look for a type transition/member/change rule. */
940 avkey
.source_type
= scontext
->type
;
941 avkey
.target_type
= tcontext
->type
;
942 avkey
.target_class
= tclass
;
943 avkey
.specified
= specified
;
944 avdatum
= avtab_search(&policydb
.te_avtab
, &avkey
);
946 /* If no permanent rule, also check for enabled conditional rules */
948 node
= avtab_search_node(&policydb
.te_cond_avtab
, &avkey
);
949 for (; node
!= NULL
; node
= avtab_search_node_next(node
, specified
)) {
950 if (node
->key
.specified
& AVTAB_ENABLED
) {
951 avdatum
= &node
->datum
;
958 /* Use the type from the type transition/member/change rule. */
959 newcontext
.type
= avdatum
->data
;
962 /* Check for class-specific changes. */
964 case SECCLASS_PROCESS
:
965 if (specified
& AVTAB_TRANSITION
) {
966 /* Look for a role transition rule. */
967 for (roletr
= policydb
.role_tr
; roletr
;
968 roletr
= roletr
->next
) {
969 if (roletr
->role
== scontext
->role
&&
970 roletr
->type
== tcontext
->type
) {
971 /* Use the role transition rule. */
972 newcontext
.role
= roletr
->new_role
;
982 /* Set the MLS attributes.
983 This is done last because it may allocate memory. */
984 rc
= mls_compute_sid(scontext
, tcontext
, tclass
, specified
, &newcontext
);
988 /* Check the validity of the context. */
989 if (!policydb_context_isvalid(&policydb
, &newcontext
)) {
990 rc
= compute_sid_handle_invalid_context(scontext
,
997 /* Obtain the sid for the context. */
998 rc
= sidtab_context_to_sid(&sidtab
, &newcontext
, out_sid
);
1001 context_destroy(&newcontext
);
1007 * security_transition_sid - Compute the SID for a new subject/object.
1008 * @ssid: source security identifier
1009 * @tsid: target security identifier
1010 * @tclass: target security class
1011 * @out_sid: security identifier for new subject/object
1013 * Compute a SID to use for labeling a new subject or object in the
1014 * class @tclass based on a SID pair (@ssid, @tsid).
1015 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1016 * if insufficient memory is available, or %0 if the new SID was
1017 * computed successfully.
1019 int security_transition_sid(u32 ssid
,
1024 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
, out_sid
);
1028 * security_member_sid - Compute the SID for member selection.
1029 * @ssid: source security identifier
1030 * @tsid: target security identifier
1031 * @tclass: target security class
1032 * @out_sid: security identifier for selected member
1034 * Compute a SID to use when selecting a member of a polyinstantiated
1035 * object of class @tclass based on a SID pair (@ssid, @tsid).
1036 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1037 * if insufficient memory is available, or %0 if the SID was
1038 * computed successfully.
1040 int security_member_sid(u32 ssid
,
1045 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_MEMBER
, out_sid
);
1049 * security_change_sid - Compute the SID for object relabeling.
1050 * @ssid: source security identifier
1051 * @tsid: target security identifier
1052 * @tclass: target security class
1053 * @out_sid: security identifier for selected member
1055 * Compute a SID to use for relabeling an object of class @tclass
1056 * based on a SID pair (@ssid, @tsid).
1057 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1058 * if insufficient memory is available, or %0 if the SID was
1059 * computed successfully.
1061 int security_change_sid(u32 ssid
,
1066 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_CHANGE
, out_sid
);
1070 * Verify that each kernel class that is defined in the
1073 static int validate_classes(struct policydb
*p
)
1076 struct class_datum
*cladatum
;
1077 struct perm_datum
*perdatum
;
1078 u32 nprim
, tmp
, common_pts_len
, perm_val
, pol_val
;
1080 const struct selinux_class_perm
*kdefs
= &selinux_class_perm
;
1081 const char *def_class
, *def_perm
, *pol_class
;
1082 struct symtab
*perms
;
1084 if (p
->allow_unknown
) {
1085 u32 num_classes
= kdefs
->cts_len
;
1086 p
->undefined_perms
= kcalloc(num_classes
, sizeof(u32
), GFP_KERNEL
);
1087 if (!p
->undefined_perms
)
1091 for (i
= 1; i
< kdefs
->cts_len
; i
++) {
1092 def_class
= kdefs
->class_to_string
[i
];
1095 if (i
> p
->p_classes
.nprim
) {
1097 "security: class %s not defined in policy\n",
1099 if (p
->reject_unknown
)
1101 if (p
->allow_unknown
)
1102 p
->undefined_perms
[i
-1] = ~0U;
1105 pol_class
= p
->p_class_val_to_name
[i
-1];
1106 if (strcmp(pol_class
, def_class
)) {
1108 "security: class %d is incorrect, found %s but should be %s\n",
1109 i
, pol_class
, def_class
);
1113 for (i
= 0; i
< kdefs
->av_pts_len
; i
++) {
1114 class_val
= kdefs
->av_perm_to_string
[i
].tclass
;
1115 perm_val
= kdefs
->av_perm_to_string
[i
].value
;
1116 def_perm
= kdefs
->av_perm_to_string
[i
].name
;
1117 if (class_val
> p
->p_classes
.nprim
)
1119 pol_class
= p
->p_class_val_to_name
[class_val
-1];
1120 cladatum
= hashtab_search(p
->p_classes
.table
, pol_class
);
1122 perms
= &cladatum
->permissions
;
1123 nprim
= 1 << (perms
->nprim
- 1);
1124 if (perm_val
> nprim
) {
1126 "security: permission %s in class %s not defined in policy\n",
1127 def_perm
, pol_class
);
1128 if (p
->reject_unknown
)
1130 if (p
->allow_unknown
)
1131 p
->undefined_perms
[class_val
-1] |= perm_val
;
1134 perdatum
= hashtab_search(perms
->table
, def_perm
);
1135 if (perdatum
== NULL
) {
1137 "security: permission %s in class %s not found in policy, bad policy\n",
1138 def_perm
, pol_class
);
1141 pol_val
= 1 << (perdatum
->value
- 1);
1142 if (pol_val
!= perm_val
) {
1144 "security: permission %s in class %s has incorrect value\n",
1145 def_perm
, pol_class
);
1149 for (i
= 0; i
< kdefs
->av_inherit_len
; i
++) {
1150 class_val
= kdefs
->av_inherit
[i
].tclass
;
1151 if (class_val
> p
->p_classes
.nprim
)
1153 pol_class
= p
->p_class_val_to_name
[class_val
-1];
1154 cladatum
= hashtab_search(p
->p_classes
.table
, pol_class
);
1156 if (!cladatum
->comdatum
) {
1158 "security: class %s should have an inherits clause but does not\n",
1162 tmp
= kdefs
->av_inherit
[i
].common_base
;
1164 while (!(tmp
& 0x01)) {
1168 perms
= &cladatum
->comdatum
->permissions
;
1169 for (j
= 0; j
< common_pts_len
; j
++) {
1170 def_perm
= kdefs
->av_inherit
[i
].common_pts
[j
];
1171 if (j
>= perms
->nprim
) {
1173 "security: permission %s in class %s not defined in policy\n",
1174 def_perm
, pol_class
);
1175 if (p
->reject_unknown
)
1177 if (p
->allow_unknown
)
1178 p
->undefined_perms
[class_val
-1] |= (1 << j
);
1181 perdatum
= hashtab_search(perms
->table
, def_perm
);
1182 if (perdatum
== NULL
) {
1184 "security: permission %s in class %s not found in policy, bad policy\n",
1185 def_perm
, pol_class
);
1188 if (perdatum
->value
!= j
+ 1) {
1190 "security: permission %s in class %s has incorrect value\n",
1191 def_perm
, pol_class
);
1199 /* Clone the SID into the new SID table. */
1200 static int clone_sid(u32 sid
,
1201 struct context
*context
,
1204 struct sidtab
*s
= arg
;
1206 return sidtab_insert(s
, sid
, context
);
1209 static inline int convert_context_handle_invalid_context(struct context
*context
)
1213 if (selinux_enforcing
) {
1219 context_struct_to_string(context
, &s
, &len
);
1220 printk(KERN_ERR
"security: context %s is invalid\n", s
);
1226 struct convert_context_args
{
1227 struct policydb
*oldp
;
1228 struct policydb
*newp
;
1232 * Convert the values in the security context
1233 * structure `c' from the values specified
1234 * in the policy `p->oldp' to the values specified
1235 * in the policy `p->newp'. Verify that the
1236 * context is valid under the new policy.
1238 static int convert_context(u32 key
,
1242 struct convert_context_args
*args
;
1243 struct context oldc
;
1244 struct role_datum
*role
;
1245 struct type_datum
*typdatum
;
1246 struct user_datum
*usrdatum
;
1253 rc
= context_cpy(&oldc
, c
);
1259 /* Convert the user. */
1260 usrdatum
= hashtab_search(args
->newp
->p_users
.table
,
1261 args
->oldp
->p_user_val_to_name
[c
->user
- 1]);
1265 c
->user
= usrdatum
->value
;
1267 /* Convert the role. */
1268 role
= hashtab_search(args
->newp
->p_roles
.table
,
1269 args
->oldp
->p_role_val_to_name
[c
->role
- 1]);
1273 c
->role
= role
->value
;
1275 /* Convert the type. */
1276 typdatum
= hashtab_search(args
->newp
->p_types
.table
,
1277 args
->oldp
->p_type_val_to_name
[c
->type
- 1]);
1281 c
->type
= typdatum
->value
;
1283 rc
= mls_convert_context(args
->oldp
, args
->newp
, c
);
1287 /* Check the validity of the new context. */
1288 if (!policydb_context_isvalid(args
->newp
, c
)) {
1289 rc
= convert_context_handle_invalid_context(&oldc
);
1294 context_destroy(&oldc
);
1298 context_struct_to_string(&oldc
, &s
, &len
);
1299 context_destroy(&oldc
);
1300 printk(KERN_ERR
"security: invalidating context %s\n", s
);
1305 static void security_load_policycaps(void)
1307 selinux_policycap_netpeer
= ebitmap_get_bit(&policydb
.policycaps
,
1308 POLICYDB_CAPABILITY_NETPEER
);
1311 extern void selinux_complete_init(void);
1312 static int security_preserve_bools(struct policydb
*p
);
1315 * security_load_policy - Load a security policy configuration.
1316 * @data: binary policy data
1317 * @len: length of data in bytes
1319 * Load a new set of security policy configuration data,
1320 * validate it and convert the SID table as necessary.
1321 * This function will flush the access vector cache after
1322 * loading the new policy.
1324 int security_load_policy(void *data
, size_t len
)
1326 struct policydb oldpolicydb
, newpolicydb
;
1327 struct sidtab oldsidtab
, newsidtab
;
1328 struct convert_context_args args
;
1331 struct policy_file file
= { data
, len
}, *fp
= &file
;
1335 if (!ss_initialized
) {
1337 if (policydb_read(&policydb
, fp
)) {
1339 avtab_cache_destroy();
1342 if (policydb_load_isids(&policydb
, &sidtab
)) {
1344 policydb_destroy(&policydb
);
1345 avtab_cache_destroy();
1348 /* Verify that the kernel defined classes are correct. */
1349 if (validate_classes(&policydb
)) {
1351 "security: the definition of a class is incorrect\n");
1353 sidtab_destroy(&sidtab
);
1354 policydb_destroy(&policydb
);
1355 avtab_cache_destroy();
1358 security_load_policycaps();
1359 policydb_loaded_version
= policydb
.policyvers
;
1361 seqno
= ++latest_granting
;
1363 selinux_complete_init();
1364 avc_ss_reset(seqno
);
1365 selnl_notify_policyload(seqno
);
1366 selinux_netlbl_cache_invalidate();
1367 selinux_xfrm_notify_policyload();
1372 sidtab_hash_eval(&sidtab
, "sids");
1375 if (policydb_read(&newpolicydb
, fp
)) {
1380 sidtab_init(&newsidtab
);
1382 /* Verify that the kernel defined classes are correct. */
1383 if (validate_classes(&newpolicydb
)) {
1385 "security: the definition of a class is incorrect\n");
1390 rc
= security_preserve_bools(&newpolicydb
);
1392 printk(KERN_ERR
"security: unable to preserve booleans\n");
1396 /* Clone the SID table. */
1397 sidtab_shutdown(&sidtab
);
1398 if (sidtab_map(&sidtab
, clone_sid
, &newsidtab
)) {
1403 /* Convert the internal representations of contexts
1404 in the new SID table and remove invalid SIDs. */
1405 args
.oldp
= &policydb
;
1406 args
.newp
= &newpolicydb
;
1407 sidtab_map_remove_on_error(&newsidtab
, convert_context
, &args
);
1409 /* Save the old policydb and SID table to free later. */
1410 memcpy(&oldpolicydb
, &policydb
, sizeof policydb
);
1411 sidtab_set(&oldsidtab
, &sidtab
);
1413 /* Install the new policydb and SID table. */
1415 memcpy(&policydb
, &newpolicydb
, sizeof policydb
);
1416 sidtab_set(&sidtab
, &newsidtab
);
1417 security_load_policycaps();
1418 seqno
= ++latest_granting
;
1419 policydb_loaded_version
= policydb
.policyvers
;
1423 /* Free the old policydb and SID table. */
1424 policydb_destroy(&oldpolicydb
);
1425 sidtab_destroy(&oldsidtab
);
1427 avc_ss_reset(seqno
);
1428 selnl_notify_policyload(seqno
);
1429 selinux_netlbl_cache_invalidate();
1430 selinux_xfrm_notify_policyload();
1436 sidtab_destroy(&newsidtab
);
1437 policydb_destroy(&newpolicydb
);
1443 * security_port_sid - Obtain the SID for a port.
1444 * @domain: communication domain aka address family
1445 * @type: socket type
1446 * @protocol: protocol number
1447 * @port: port number
1448 * @out_sid: security identifier
1450 int security_port_sid(u16 domain
,
1461 c
= policydb
.ocontexts
[OCON_PORT
];
1463 if (c
->u
.port
.protocol
== protocol
&&
1464 c
->u
.port
.low_port
<= port
&&
1465 c
->u
.port
.high_port
>= port
)
1472 rc
= sidtab_context_to_sid(&sidtab
,
1478 *out_sid
= c
->sid
[0];
1480 *out_sid
= SECINITSID_PORT
;
1489 * security_netif_sid - Obtain the SID for a network interface.
1490 * @name: interface name
1491 * @if_sid: interface SID
1493 int security_netif_sid(char *name
, u32
*if_sid
)
1500 c
= policydb
.ocontexts
[OCON_NETIF
];
1502 if (strcmp(name
, c
->u
.name
) == 0)
1508 if (!c
->sid
[0] || !c
->sid
[1]) {
1509 rc
= sidtab_context_to_sid(&sidtab
,
1514 rc
= sidtab_context_to_sid(&sidtab
,
1520 *if_sid
= c
->sid
[0];
1522 *if_sid
= SECINITSID_NETIF
;
1529 static int match_ipv6_addrmask(u32
*input
, u32
*addr
, u32
*mask
)
1533 for(i
= 0; i
< 4; i
++)
1534 if(addr
[i
] != (input
[i
] & mask
[i
])) {
1543 * security_node_sid - Obtain the SID for a node (host).
1544 * @domain: communication domain aka address family
1546 * @addrlen: address length in bytes
1547 * @out_sid: security identifier
1549 int security_node_sid(u16 domain
,
1563 if (addrlen
!= sizeof(u32
)) {
1568 addr
= *((u32
*)addrp
);
1570 c
= policydb
.ocontexts
[OCON_NODE
];
1572 if (c
->u
.node
.addr
== (addr
& c
->u
.node
.mask
))
1580 if (addrlen
!= sizeof(u64
) * 2) {
1584 c
= policydb
.ocontexts
[OCON_NODE6
];
1586 if (match_ipv6_addrmask(addrp
, c
->u
.node6
.addr
,
1594 *out_sid
= SECINITSID_NODE
;
1600 rc
= sidtab_context_to_sid(&sidtab
,
1606 *out_sid
= c
->sid
[0];
1608 *out_sid
= SECINITSID_NODE
;
1619 * security_get_user_sids - Obtain reachable SIDs for a user.
1620 * @fromsid: starting SID
1621 * @username: username
1622 * @sids: array of reachable SIDs for user
1623 * @nel: number of elements in @sids
1625 * Generate the set of SIDs for legal security contexts
1626 * for a given user that can be reached by @fromsid.
1627 * Set *@sids to point to a dynamically allocated
1628 * array containing the set of SIDs. Set *@nel to the
1629 * number of elements in the array.
1632 int security_get_user_sids(u32 fromsid
,
1637 struct context
*fromcon
, usercon
;
1638 u32
*mysids
= NULL
, *mysids2
, sid
;
1639 u32 mynel
= 0, maxnel
= SIDS_NEL
;
1640 struct user_datum
*user
;
1641 struct role_datum
*role
;
1642 struct ebitmap_node
*rnode
, *tnode
;
1648 if (!ss_initialized
)
1653 fromcon
= sidtab_search(&sidtab
, fromsid
);
1659 user
= hashtab_search(policydb
.p_users
.table
, username
);
1664 usercon
.user
= user
->value
;
1666 mysids
= kcalloc(maxnel
, sizeof(*mysids
), GFP_ATOMIC
);
1672 ebitmap_for_each_positive_bit(&user
->roles
, rnode
, i
) {
1673 role
= policydb
.role_val_to_struct
[i
];
1675 ebitmap_for_each_positive_bit(&role
->types
, tnode
, j
) {
1678 if (mls_setup_user_range(fromcon
, user
, &usercon
))
1681 rc
= sidtab_context_to_sid(&sidtab
, &usercon
, &sid
);
1684 if (mynel
< maxnel
) {
1685 mysids
[mynel
++] = sid
;
1688 mysids2
= kcalloc(maxnel
, sizeof(*mysids2
), GFP_ATOMIC
);
1693 memcpy(mysids2
, mysids
, mynel
* sizeof(*mysids2
));
1696 mysids
[mynel
++] = sid
;
1708 mysids2
= kcalloc(mynel
, sizeof(*mysids2
), GFP_KERNEL
);
1714 for (i
= 0, j
= 0; i
< mynel
; i
++) {
1715 rc
= avc_has_perm_noaudit(fromsid
, mysids
[i
],
1717 PROCESS__TRANSITION
, AVC_STRICT
,
1720 mysids2
[j
++] = mysids
[i
];
1732 * security_genfs_sid - Obtain a SID for a file in a filesystem
1733 * @fstype: filesystem type
1734 * @path: path from root of mount
1735 * @sclass: file security class
1736 * @sid: SID for path
1738 * Obtain a SID to use for a file in a filesystem that
1739 * cannot support xattr or use a fixed labeling behavior like
1740 * transition SIDs or task SIDs.
1742 int security_genfs_sid(const char *fstype
,
1748 struct genfs
*genfs
;
1750 int rc
= 0, cmp
= 0;
1752 while (path
[0] == '/' && path
[1] == '/')
1757 for (genfs
= policydb
.genfs
; genfs
; genfs
= genfs
->next
) {
1758 cmp
= strcmp(fstype
, genfs
->fstype
);
1763 if (!genfs
|| cmp
) {
1764 *sid
= SECINITSID_UNLABELED
;
1769 for (c
= genfs
->head
; c
; c
= c
->next
) {
1770 len
= strlen(c
->u
.name
);
1771 if ((!c
->v
.sclass
|| sclass
== c
->v
.sclass
) &&
1772 (strncmp(c
->u
.name
, path
, len
) == 0))
1777 *sid
= SECINITSID_UNLABELED
;
1783 rc
= sidtab_context_to_sid(&sidtab
,
1797 * security_fs_use - Determine how to handle labeling for a filesystem.
1798 * @fstype: filesystem type
1799 * @behavior: labeling behavior
1800 * @sid: SID for filesystem (superblock)
1802 int security_fs_use(
1804 unsigned int *behavior
,
1812 c
= policydb
.ocontexts
[OCON_FSUSE
];
1814 if (strcmp(fstype
, c
->u
.name
) == 0)
1820 *behavior
= c
->v
.behavior
;
1822 rc
= sidtab_context_to_sid(&sidtab
,
1830 rc
= security_genfs_sid(fstype
, "/", SECCLASS_DIR
, sid
);
1832 *behavior
= SECURITY_FS_USE_NONE
;
1835 *behavior
= SECURITY_FS_USE_GENFS
;
1844 int security_get_bools(int *len
, char ***names
, int **values
)
1846 int i
, rc
= -ENOMEM
;
1852 *len
= policydb
.p_bools
.nprim
;
1858 *names
= kcalloc(*len
, sizeof(char*), GFP_ATOMIC
);
1862 *values
= kcalloc(*len
, sizeof(int), GFP_ATOMIC
);
1866 for (i
= 0; i
< *len
; i
++) {
1868 (*values
)[i
] = policydb
.bool_val_to_struct
[i
]->state
;
1869 name_len
= strlen(policydb
.p_bool_val_to_name
[i
]) + 1;
1870 (*names
)[i
] = kmalloc(sizeof(char) * name_len
, GFP_ATOMIC
);
1873 strncpy((*names
)[i
], policydb
.p_bool_val_to_name
[i
], name_len
);
1874 (*names
)[i
][name_len
- 1] = 0;
1882 for (i
= 0; i
< *len
; i
++)
1890 int security_set_bools(int len
, int *values
)
1893 int lenp
, seqno
= 0;
1894 struct cond_node
*cur
;
1898 lenp
= policydb
.p_bools
.nprim
;
1904 for (i
= 0; i
< len
; i
++) {
1905 if (!!values
[i
] != policydb
.bool_val_to_struct
[i
]->state
) {
1906 audit_log(current
->audit_context
, GFP_ATOMIC
,
1907 AUDIT_MAC_CONFIG_CHANGE
,
1908 "bool=%s val=%d old_val=%d auid=%u ses=%u",
1909 policydb
.p_bool_val_to_name
[i
],
1911 policydb
.bool_val_to_struct
[i
]->state
,
1912 audit_get_loginuid(current
),
1913 audit_get_sessionid(current
));
1916 policydb
.bool_val_to_struct
[i
]->state
= 1;
1918 policydb
.bool_val_to_struct
[i
]->state
= 0;
1922 for (cur
= policydb
.cond_list
; cur
!= NULL
; cur
= cur
->next
) {
1923 rc
= evaluate_cond_node(&policydb
, cur
);
1928 seqno
= ++latest_granting
;
1933 avc_ss_reset(seqno
);
1934 selnl_notify_policyload(seqno
);
1935 selinux_xfrm_notify_policyload();
1940 int security_get_bool_value(int bool)
1947 len
= policydb
.p_bools
.nprim
;
1953 rc
= policydb
.bool_val_to_struct
[bool]->state
;
1959 static int security_preserve_bools(struct policydb
*p
)
1961 int rc
, nbools
= 0, *bvalues
= NULL
, i
;
1962 char **bnames
= NULL
;
1963 struct cond_bool_datum
*booldatum
;
1964 struct cond_node
*cur
;
1966 rc
= security_get_bools(&nbools
, &bnames
, &bvalues
);
1969 for (i
= 0; i
< nbools
; i
++) {
1970 booldatum
= hashtab_search(p
->p_bools
.table
, bnames
[i
]);
1972 booldatum
->state
= bvalues
[i
];
1974 for (cur
= p
->cond_list
; cur
!= NULL
; cur
= cur
->next
) {
1975 rc
= evaluate_cond_node(p
, cur
);
1982 for (i
= 0; i
< nbools
; i
++)
1991 * security_sid_mls_copy() - computes a new sid based on the given
1992 * sid and the mls portion of mls_sid.
1994 int security_sid_mls_copy(u32 sid
, u32 mls_sid
, u32
*new_sid
)
1996 struct context
*context1
;
1997 struct context
*context2
;
1998 struct context newcon
;
2003 if (!ss_initialized
|| !selinux_mls_enabled
) {
2008 context_init(&newcon
);
2011 context1
= sidtab_search(&sidtab
, sid
);
2013 printk(KERN_ERR
"security_sid_mls_copy: unrecognized SID "
2019 context2
= sidtab_search(&sidtab
, mls_sid
);
2021 printk(KERN_ERR
"security_sid_mls_copy: unrecognized SID "
2027 newcon
.user
= context1
->user
;
2028 newcon
.role
= context1
->role
;
2029 newcon
.type
= context1
->type
;
2030 rc
= mls_context_cpy(&newcon
, context2
);
2034 /* Check the validity of the new context. */
2035 if (!policydb_context_isvalid(&policydb
, &newcon
)) {
2036 rc
= convert_context_handle_invalid_context(&newcon
);
2041 rc
= sidtab_context_to_sid(&sidtab
, &newcon
, new_sid
);
2045 if (!context_struct_to_string(&newcon
, &s
, &len
)) {
2046 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2047 "security_sid_mls_copy: invalid context %s", s
);
2053 context_destroy(&newcon
);
2059 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2060 * @nlbl_sid: NetLabel SID
2061 * @nlbl_type: NetLabel labeling protocol type
2062 * @xfrm_sid: XFRM SID
2065 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2066 * resolved into a single SID it is returned via @peer_sid and the function
2067 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2068 * returns a negative value. A table summarizing the behavior is below:
2070 * | function return | @sid
2071 * ------------------------------+-----------------+-----------------
2072 * no peer labels | 0 | SECSID_NULL
2073 * single peer label | 0 | <peer_label>
2074 * multiple, consistent labels | 0 | <peer_label>
2075 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2078 int security_net_peersid_resolve(u32 nlbl_sid
, u32 nlbl_type
,
2083 struct context
*nlbl_ctx
;
2084 struct context
*xfrm_ctx
;
2086 /* handle the common (which also happens to be the set of easy) cases
2087 * right away, these two if statements catch everything involving a
2088 * single or absent peer SID/label */
2089 if (xfrm_sid
== SECSID_NULL
) {
2090 *peer_sid
= nlbl_sid
;
2093 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2094 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2096 if (nlbl_sid
== SECSID_NULL
|| nlbl_type
== NETLBL_NLTYPE_UNLABELED
) {
2097 *peer_sid
= xfrm_sid
;
2101 /* we don't need to check ss_initialized here since the only way both
2102 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2103 * security server was initialized and ss_initialized was true */
2104 if (!selinux_mls_enabled
) {
2105 *peer_sid
= SECSID_NULL
;
2111 nlbl_ctx
= sidtab_search(&sidtab
, nlbl_sid
);
2114 "security_sid_mls_cmp: unrecognized SID %d\n",
2119 xfrm_ctx
= sidtab_search(&sidtab
, xfrm_sid
);
2122 "security_sid_mls_cmp: unrecognized SID %d\n",
2127 rc
= (mls_context_cmp(nlbl_ctx
, xfrm_ctx
) ? 0 : -EACCES
);
2132 /* at present NetLabel SIDs/labels really only carry MLS
2133 * information so if the MLS portion of the NetLabel SID
2134 * matches the MLS portion of the labeled XFRM SID/label
2135 * then pass along the XFRM SID as it is the most
2137 *peer_sid
= xfrm_sid
;
2139 *peer_sid
= SECSID_NULL
;
2143 static int get_classes_callback(void *k
, void *d
, void *args
)
2145 struct class_datum
*datum
= d
;
2146 char *name
= k
, **classes
= args
;
2147 int value
= datum
->value
- 1;
2149 classes
[value
] = kstrdup(name
, GFP_ATOMIC
);
2150 if (!classes
[value
])
2156 int security_get_classes(char ***classes
, int *nclasses
)
2162 *nclasses
= policydb
.p_classes
.nprim
;
2163 *classes
= kcalloc(*nclasses
, sizeof(*classes
), GFP_ATOMIC
);
2167 rc
= hashtab_map(policydb
.p_classes
.table
, get_classes_callback
,
2171 for (i
= 0; i
< *nclasses
; i
++)
2172 kfree((*classes
)[i
]);
2181 static int get_permissions_callback(void *k
, void *d
, void *args
)
2183 struct perm_datum
*datum
= d
;
2184 char *name
= k
, **perms
= args
;
2185 int value
= datum
->value
- 1;
2187 perms
[value
] = kstrdup(name
, GFP_ATOMIC
);
2194 int security_get_permissions(char *class, char ***perms
, int *nperms
)
2196 int rc
= -ENOMEM
, i
;
2197 struct class_datum
*match
;
2201 match
= hashtab_search(policydb
.p_classes
.table
, class);
2203 printk(KERN_ERR
"%s: unrecognized class %s\n",
2204 __FUNCTION__
, class);
2209 *nperms
= match
->permissions
.nprim
;
2210 *perms
= kcalloc(*nperms
, sizeof(*perms
), GFP_ATOMIC
);
2214 if (match
->comdatum
) {
2215 rc
= hashtab_map(match
->comdatum
->permissions
.table
,
2216 get_permissions_callback
, *perms
);
2221 rc
= hashtab_map(match
->permissions
.table
, get_permissions_callback
,
2232 for (i
= 0; i
< *nperms
; i
++)
2238 int security_get_reject_unknown(void)
2240 return policydb
.reject_unknown
;
2243 int security_get_allow_unknown(void)
2245 return policydb
.allow_unknown
;
2249 * security_policycap_supported - Check for a specific policy capability
2250 * @req_cap: capability
2253 * This function queries the currently loaded policy to see if it supports the
2254 * capability specified by @req_cap. Returns true (1) if the capability is
2255 * supported, false (0) if it isn't supported.
2258 int security_policycap_supported(unsigned int req_cap
)
2263 rc
= ebitmap_get_bit(&policydb
.policycaps
, req_cap
);
2269 struct selinux_audit_rule
{
2271 struct context au_ctxt
;
2274 void selinux_audit_rule_free(struct selinux_audit_rule
*rule
)
2277 context_destroy(&rule
->au_ctxt
);
2282 int selinux_audit_rule_init(u32 field
, u32 op
, char *rulestr
,
2283 struct selinux_audit_rule
**rule
)
2285 struct selinux_audit_rule
*tmprule
;
2286 struct role_datum
*roledatum
;
2287 struct type_datum
*typedatum
;
2288 struct user_datum
*userdatum
;
2293 if (!ss_initialized
)
2297 case AUDIT_SUBJ_USER
:
2298 case AUDIT_SUBJ_ROLE
:
2299 case AUDIT_SUBJ_TYPE
:
2300 case AUDIT_OBJ_USER
:
2301 case AUDIT_OBJ_ROLE
:
2302 case AUDIT_OBJ_TYPE
:
2303 /* only 'equals' and 'not equals' fit user, role, and type */
2304 if (op
!= AUDIT_EQUAL
&& op
!= AUDIT_NOT_EQUAL
)
2307 case AUDIT_SUBJ_SEN
:
2308 case AUDIT_SUBJ_CLR
:
2309 case AUDIT_OBJ_LEV_LOW
:
2310 case AUDIT_OBJ_LEV_HIGH
:
2311 /* we do not allow a range, indicated by the presense of '-' */
2312 if (strchr(rulestr
, '-'))
2316 /* only the above fields are valid */
2320 tmprule
= kzalloc(sizeof(struct selinux_audit_rule
), GFP_KERNEL
);
2324 context_init(&tmprule
->au_ctxt
);
2328 tmprule
->au_seqno
= latest_granting
;
2331 case AUDIT_SUBJ_USER
:
2332 case AUDIT_OBJ_USER
:
2333 userdatum
= hashtab_search(policydb
.p_users
.table
, rulestr
);
2337 tmprule
->au_ctxt
.user
= userdatum
->value
;
2339 case AUDIT_SUBJ_ROLE
:
2340 case AUDIT_OBJ_ROLE
:
2341 roledatum
= hashtab_search(policydb
.p_roles
.table
, rulestr
);
2345 tmprule
->au_ctxt
.role
= roledatum
->value
;
2347 case AUDIT_SUBJ_TYPE
:
2348 case AUDIT_OBJ_TYPE
:
2349 typedatum
= hashtab_search(policydb
.p_types
.table
, rulestr
);
2353 tmprule
->au_ctxt
.type
= typedatum
->value
;
2355 case AUDIT_SUBJ_SEN
:
2356 case AUDIT_SUBJ_CLR
:
2357 case AUDIT_OBJ_LEV_LOW
:
2358 case AUDIT_OBJ_LEV_HIGH
:
2359 rc
= mls_from_string(rulestr
, &tmprule
->au_ctxt
, GFP_ATOMIC
);
2366 selinux_audit_rule_free(tmprule
);
2375 int selinux_audit_rule_match(u32 sid
, u32 field
, u32 op
,
2376 struct selinux_audit_rule
*rule
,
2377 struct audit_context
*actx
)
2379 struct context
*ctxt
;
2380 struct mls_level
*level
;
2384 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2385 "selinux_audit_rule_match: missing rule\n");
2391 if (rule
->au_seqno
< latest_granting
) {
2392 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2393 "selinux_audit_rule_match: stale rule\n");
2398 ctxt
= sidtab_search(&sidtab
, sid
);
2400 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2401 "selinux_audit_rule_match: unrecognized SID %d\n",
2407 /* a field/op pair that is not caught here will simply fall through
2410 case AUDIT_SUBJ_USER
:
2411 case AUDIT_OBJ_USER
:
2414 match
= (ctxt
->user
== rule
->au_ctxt
.user
);
2416 case AUDIT_NOT_EQUAL
:
2417 match
= (ctxt
->user
!= rule
->au_ctxt
.user
);
2421 case AUDIT_SUBJ_ROLE
:
2422 case AUDIT_OBJ_ROLE
:
2425 match
= (ctxt
->role
== rule
->au_ctxt
.role
);
2427 case AUDIT_NOT_EQUAL
:
2428 match
= (ctxt
->role
!= rule
->au_ctxt
.role
);
2432 case AUDIT_SUBJ_TYPE
:
2433 case AUDIT_OBJ_TYPE
:
2436 match
= (ctxt
->type
== rule
->au_ctxt
.type
);
2438 case AUDIT_NOT_EQUAL
:
2439 match
= (ctxt
->type
!= rule
->au_ctxt
.type
);
2443 case AUDIT_SUBJ_SEN
:
2444 case AUDIT_SUBJ_CLR
:
2445 case AUDIT_OBJ_LEV_LOW
:
2446 case AUDIT_OBJ_LEV_HIGH
:
2447 level
= ((field
== AUDIT_SUBJ_SEN
||
2448 field
== AUDIT_OBJ_LEV_LOW
) ?
2449 &ctxt
->range
.level
[0] : &ctxt
->range
.level
[1]);
2452 match
= mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2455 case AUDIT_NOT_EQUAL
:
2456 match
= !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2459 case AUDIT_LESS_THAN
:
2460 match
= (mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
2462 !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2465 case AUDIT_LESS_THAN_OR_EQUAL
:
2466 match
= mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
2469 case AUDIT_GREATER_THAN
:
2470 match
= (mls_level_dom(level
,
2471 &rule
->au_ctxt
.range
.level
[0]) &&
2472 !mls_level_eq(level
,
2473 &rule
->au_ctxt
.range
.level
[0]));
2475 case AUDIT_GREATER_THAN_OR_EQUAL
:
2476 match
= mls_level_dom(level
,
2477 &rule
->au_ctxt
.range
.level
[0]);
2487 static int (*aurule_callback
)(void) = NULL
;
2489 static int aurule_avc_callback(u32 event
, u32 ssid
, u32 tsid
,
2490 u16
class, u32 perms
, u32
*retained
)
2494 if (event
== AVC_CALLBACK_RESET
&& aurule_callback
)
2495 err
= aurule_callback();
2499 static int __init
aurule_init(void)
2503 err
= avc_add_callback(aurule_avc_callback
, AVC_CALLBACK_RESET
,
2504 SECSID_NULL
, SECSID_NULL
, SECCLASS_NULL
, 0);
2506 panic("avc_add_callback() failed, error %d\n", err
);
2510 __initcall(aurule_init
);
2512 void selinux_audit_set_callback(int (*callback
)(void))
2514 aurule_callback
= callback
;
2517 #ifdef CONFIG_NETLABEL
2519 * security_netlbl_cache_add - Add an entry to the NetLabel cache
2520 * @secattr: the NetLabel packet security attributes
2521 * @sid: the SELinux SID
2524 * Attempt to cache the context in @ctx, which was derived from the packet in
2525 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
2526 * already been initialized.
2529 static void security_netlbl_cache_add(struct netlbl_lsm_secattr
*secattr
,
2534 sid_cache
= kmalloc(sizeof(*sid_cache
), GFP_ATOMIC
);
2535 if (sid_cache
== NULL
)
2537 secattr
->cache
= netlbl_secattr_cache_alloc(GFP_ATOMIC
);
2538 if (secattr
->cache
== NULL
) {
2544 secattr
->cache
->free
= kfree
;
2545 secattr
->cache
->data
= sid_cache
;
2546 secattr
->flags
|= NETLBL_SECATTR_CACHE
;
2550 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2551 * @secattr: the NetLabel packet security attributes
2552 * @sid: the SELinux SID
2555 * Convert the given NetLabel security attributes in @secattr into a
2556 * SELinux SID. If the @secattr field does not contain a full SELinux
2557 * SID/context then use SECINITSID_NETMSG as the foundation. If possibile the
2558 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
2559 * allow the @secattr to be used by NetLabel to cache the secattr to SID
2560 * conversion for future lookups. Returns zero on success, negative values on
2564 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr
*secattr
,
2568 struct context
*ctx
;
2569 struct context ctx_new
;
2571 if (!ss_initialized
) {
2578 if (secattr
->flags
& NETLBL_SECATTR_CACHE
) {
2579 *sid
= *(u32
*)secattr
->cache
->data
;
2581 } else if (secattr
->flags
& NETLBL_SECATTR_SECID
) {
2582 *sid
= secattr
->attr
.secid
;
2584 } else if (secattr
->flags
& NETLBL_SECATTR_MLS_LVL
) {
2585 ctx
= sidtab_search(&sidtab
, SECINITSID_NETMSG
);
2587 goto netlbl_secattr_to_sid_return
;
2589 ctx_new
.user
= ctx
->user
;
2590 ctx_new
.role
= ctx
->role
;
2591 ctx_new
.type
= ctx
->type
;
2592 mls_import_netlbl_lvl(&ctx_new
, secattr
);
2593 if (secattr
->flags
& NETLBL_SECATTR_MLS_CAT
) {
2594 if (ebitmap_netlbl_import(&ctx_new
.range
.level
[0].cat
,
2595 secattr
->attr
.mls
.cat
) != 0)
2596 goto netlbl_secattr_to_sid_return
;
2597 ctx_new
.range
.level
[1].cat
.highbit
=
2598 ctx_new
.range
.level
[0].cat
.highbit
;
2599 ctx_new
.range
.level
[1].cat
.node
=
2600 ctx_new
.range
.level
[0].cat
.node
;
2602 ebitmap_init(&ctx_new
.range
.level
[0].cat
);
2603 ebitmap_init(&ctx_new
.range
.level
[1].cat
);
2605 if (mls_context_isvalid(&policydb
, &ctx_new
) != 1)
2606 goto netlbl_secattr_to_sid_return_cleanup
;
2608 rc
= sidtab_context_to_sid(&sidtab
, &ctx_new
, sid
);
2610 goto netlbl_secattr_to_sid_return_cleanup
;
2612 security_netlbl_cache_add(secattr
, *sid
);
2614 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
2620 netlbl_secattr_to_sid_return
:
2623 netlbl_secattr_to_sid_return_cleanup
:
2624 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
2625 goto netlbl_secattr_to_sid_return
;
2629 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
2630 * @sid: the SELinux SID
2631 * @secattr: the NetLabel packet security attributes
2634 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
2635 * Returns zero on success, negative values on failure.
2638 int security_netlbl_sid_to_secattr(u32 sid
, struct netlbl_lsm_secattr
*secattr
)
2641 struct context
*ctx
;
2643 if (!ss_initialized
)
2647 ctx
= sidtab_search(&sidtab
, sid
);
2649 goto netlbl_sid_to_secattr_failure
;
2650 secattr
->domain
= kstrdup(policydb
.p_type_val_to_name
[ctx
->type
- 1],
2652 secattr
->flags
|= NETLBL_SECATTR_DOMAIN
;
2653 mls_export_netlbl_lvl(ctx
, secattr
);
2654 rc
= mls_export_netlbl_cat(ctx
, secattr
);
2656 goto netlbl_sid_to_secattr_failure
;
2661 netlbl_sid_to_secattr_failure
:
2665 #endif /* CONFIG_NETLABEL */