2 * This file contains the routines for handling the MMU on those
3 * PowerPC implementations where the MMU substantially follows the
4 * architecture specification. This includes the 6xx, 7xx, 7xxx,
5 * 8260, and POWER3 implementations but excludes the 8xx and 4xx.
8 * Derived from arch/ppc/mm/init.c:
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
12 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
13 * Copyright (C) 1996 Paul Mackerras
15 * Derived from "arch/i386/mm/init.c"
16 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
25 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/highmem.h>
32 #include <asm/machdep.h>
37 struct hash_pte
*Hash
, *Hash_end
;
38 unsigned long Hash_size
, Hash_mask
;
41 union ubat
{ /* BAT register values to be loaded */
44 } BATS
[8][2]; /* 8 pairs of IBAT, DBAT */
46 struct batrange
{ /* stores address ranges mapped by BATs */
53 * Return PA for this VA if it is mapped by a BAT, or 0
55 unsigned long v_mapped_by_bats(unsigned long va
)
58 for (b
= 0; b
< 4; ++b
)
59 if (va
>= bat_addrs
[b
].start
&& va
< bat_addrs
[b
].limit
)
60 return bat_addrs
[b
].phys
+ (va
- bat_addrs
[b
].start
);
65 * Return VA for a given PA or 0 if not mapped
67 unsigned long p_mapped_by_bats(unsigned long pa
)
70 for (b
= 0; b
< 4; ++b
)
71 if (pa
>= bat_addrs
[b
].phys
72 && pa
< (bat_addrs
[b
].limit
-bat_addrs
[b
].start
)
74 return bat_addrs
[b
].start
+(pa
-bat_addrs
[b
].phys
);
78 unsigned long __init
mmu_mapin_ram(void)
83 unsigned long tot
, bl
, done
;
84 unsigned long max_size
= (256<<20);
87 if (__map_without_bats
) {
88 printk(KERN_DEBUG
"RAM mapped without BATs\n");
92 /* Set up BAT2 and if necessary BAT3 to cover RAM. */
94 /* Make sure we don't map a block larger than the
95 smallest alignment of the physical address. */
96 /* alignment of PPC_MEMSTART */
97 align
= ~(PPC_MEMSTART
-1) & PPC_MEMSTART
;
98 /* set BAT block size to MIN(max_size, align) */
99 if (align
&& align
< max_size
)
103 for (bl
= 128<<10; bl
< max_size
; bl
<<= 1) {
108 setbat(2, KERNELBASE
, PPC_MEMSTART
, bl
, _PAGE_RAM
);
109 done
= (unsigned long)bat_addrs
[2].limit
- KERNELBASE
+ 1;
110 if ((done
< tot
) && !bat_addrs
[3].limit
) {
111 /* use BAT3 to cover a bit more */
113 for (bl
= 128<<10; bl
< max_size
; bl
<<= 1)
116 setbat(3, KERNELBASE
+done
, PPC_MEMSTART
+done
, bl
, _PAGE_RAM
);
117 done
= (unsigned long)bat_addrs
[3].limit
- KERNELBASE
+ 1;
125 * Set up one of the I/D BAT (block address translation) register pairs.
126 * The parameters are not checked; in particular size must be a power
127 * of 2 between 128k and 256M.
129 void __init
setbat(int index
, unsigned long virt
, unsigned long phys
,
130 unsigned int size
, int flags
)
134 union ubat
*bat
= BATS
[index
];
136 if (((flags
& _PAGE_NO_CACHE
) == 0) &&
137 cpu_has_feature(CPU_FTR_NEED_COHERENT
))
138 flags
|= _PAGE_COHERENT
;
140 bl
= (size
>> 17) - 1;
141 if (PVR_VER(mfspr(SPRN_PVR
)) != 1) {
144 wimgxpp
= flags
& (_PAGE_WRITETHRU
| _PAGE_NO_CACHE
145 | _PAGE_COHERENT
| _PAGE_GUARDED
);
146 wimgxpp
|= (flags
& _PAGE_RW
)? BPP_RW
: BPP_RX
;
147 bat
[1].word
[0] = virt
| (bl
<< 2) | 2; /* Vs=1, Vp=0 */
148 bat
[1].word
[1] = phys
| wimgxpp
;
149 #ifndef CONFIG_KGDB /* want user access for breakpoints */
150 if (flags
& _PAGE_USER
)
152 bat
[1].bat
.batu
.vp
= 1;
153 if (flags
& _PAGE_GUARDED
) {
154 /* G bit must be zero in IBATs */
155 bat
[0].word
[0] = bat
[0].word
[1] = 0;
157 /* make IBAT same as DBAT */
164 wimgxpp
= flags
& (_PAGE_WRITETHRU
| _PAGE_NO_CACHE
166 wimgxpp
|= (flags
& _PAGE_RW
)?
167 ((flags
& _PAGE_USER
)? PP_RWRW
: PP_RWXX
): PP_RXRX
;
168 bat
->word
[0] = virt
| wimgxpp
| 4; /* Ks=0, Ku=1 */
169 bat
->word
[1] = phys
| bl
| 0x40; /* V=1 */
172 bat_addrs
[index
].start
= virt
;
173 bat_addrs
[index
].limit
= virt
+ ((bl
+ 1) << 17) - 1;
174 bat_addrs
[index
].phys
= phys
;
178 * Preload a translation in the hash table
180 void hash_preload(struct mm_struct
*mm
, unsigned long ea
,
181 unsigned long access
, unsigned long trap
)
187 pmd
= pmd_offset(pud_offset(pgd_offset(mm
, ea
), ea
), ea
);
189 add_hash_page(mm
->context
.id
, ea
, pmd_val(*pmd
));
193 * Initialize the hash table and patch the instructions in hashtable.S.
195 void __init
MMU_init_hw(void)
197 unsigned int hmask
, mb
, mb2
;
198 unsigned int n_hpteg
, lg_n_hpteg
;
200 extern unsigned int hash_page_patch_A
[];
201 extern unsigned int hash_page_patch_B
[], hash_page_patch_C
[];
202 extern unsigned int hash_page
[];
203 extern unsigned int flush_hash_patch_A
[], flush_hash_patch_B
[];
205 if (!cpu_has_feature(CPU_FTR_HPTE_TABLE
)) {
207 * Put a blr (procedure return) instruction at the
208 * start of hash_page, since we can still get DSI
209 * exceptions on a 603.
211 hash_page
[0] = 0x4e800020;
212 flush_icache_range((unsigned long) &hash_page
[0],
213 (unsigned long) &hash_page
[1]);
217 if ( ppc_md
.progress
) ppc_md
.progress("hash:enter", 0x105);
219 #define LG_HPTEG_SIZE 6 /* 64 bytes per HPTEG */
220 #define SDR1_LOW_BITS ((n_hpteg - 1) >> 10)
221 #define MIN_N_HPTEG 1024 /* min 64kB hash table */
224 * Allow 1 HPTE (1/8 HPTEG) for each page of memory.
225 * This is less than the recommended amount, but then
228 n_hpteg
= total_memory
/ (PAGE_SIZE
* 8);
229 if (n_hpteg
< MIN_N_HPTEG
)
230 n_hpteg
= MIN_N_HPTEG
;
231 lg_n_hpteg
= __ilog2(n_hpteg
);
232 if (n_hpteg
& (n_hpteg
- 1)) {
233 ++lg_n_hpteg
; /* round up if not power of 2 */
234 n_hpteg
= 1 << lg_n_hpteg
;
236 Hash_size
= n_hpteg
<< LG_HPTEG_SIZE
;
239 * Find some memory for the hash table.
241 if ( ppc_md
.progress
) ppc_md
.progress("hash:find piece", 0x322);
242 Hash
= __va(lmb_alloc_base(Hash_size
, Hash_size
,
243 __initial_memory_limit
));
244 cacheable_memzero(Hash
, Hash_size
);
245 _SDR1
= __pa(Hash
) | SDR1_LOW_BITS
;
247 Hash_end
= (struct hash_pte
*) ((unsigned long)Hash
+ Hash_size
);
249 printk("Total memory = %ldMB; using %ldkB for hash table (at %p)\n",
250 total_memory
>> 20, Hash_size
>> 10, Hash
);
254 * Patch up the instructions in hashtable.S:create_hpte
256 if ( ppc_md
.progress
) ppc_md
.progress("hash:patch", 0x345);
257 Hash_mask
= n_hpteg
- 1;
258 hmask
= Hash_mask
>> (16 - LG_HPTEG_SIZE
);
259 mb2
= mb
= 32 - LG_HPTEG_SIZE
- lg_n_hpteg
;
261 mb2
= 16 - LG_HPTEG_SIZE
;
263 hash_page_patch_A
[0] = (hash_page_patch_A
[0] & ~0xffff)
264 | ((unsigned int)(Hash
) >> 16);
265 hash_page_patch_A
[1] = (hash_page_patch_A
[1] & ~0x7c0) | (mb
<< 6);
266 hash_page_patch_A
[2] = (hash_page_patch_A
[2] & ~0x7c0) | (mb2
<< 6);
267 hash_page_patch_B
[0] = (hash_page_patch_B
[0] & ~0xffff) | hmask
;
268 hash_page_patch_C
[0] = (hash_page_patch_C
[0] & ~0xffff) | hmask
;
271 * Ensure that the locations we've patched have been written
272 * out from the data cache and invalidated in the instruction
273 * cache, on those machines with split caches.
275 flush_icache_range((unsigned long) &hash_page_patch_A
[0],
276 (unsigned long) &hash_page_patch_C
[1]);
279 * Patch up the instructions in hashtable.S:flush_hash_page
281 flush_hash_patch_A
[0] = (flush_hash_patch_A
[0] & ~0xffff)
282 | ((unsigned int)(Hash
) >> 16);
283 flush_hash_patch_A
[1] = (flush_hash_patch_A
[1] & ~0x7c0) | (mb
<< 6);
284 flush_hash_patch_A
[2] = (flush_hash_patch_A
[2] & ~0x7c0) | (mb2
<< 6);
285 flush_hash_patch_B
[0] = (flush_hash_patch_B
[0] & ~0xffff) | hmask
;
286 flush_icache_range((unsigned long) &flush_hash_patch_A
[0],
287 (unsigned long) &flush_hash_patch_B
[1]);
289 if ( ppc_md
.progress
) ppc_md
.progress("hash:done", 0x205);