2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
49 #include <linux/highmem.h>
50 #include <linux/spinlock.h>
51 #include <linux/blkdev.h>
52 #include <linux/delay.h>
53 #include <linux/timer.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/jiffies.h>
59 #include <linux/scatterlist.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/semaphore.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
72 /* debounce timing parameters in msecs { interval, duration, timeout } */
73 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
74 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
75 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
77 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
78 u16 heads
, u16 sectors
);
79 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
80 static unsigned int ata_dev_set_feature(struct ata_device
*dev
,
81 u8 enable
, u8 feature
);
82 static void ata_dev_xfermask(struct ata_device
*dev
);
83 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
);
85 unsigned int ata_print_id
= 1;
86 static struct workqueue_struct
*ata_wq
;
88 struct workqueue_struct
*ata_aux_wq
;
90 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
92 struct ata_force_param
{
96 unsigned long xfer_mask
;
97 unsigned int horkage_on
;
98 unsigned int horkage_off
;
101 struct ata_force_ent
{
104 struct ata_force_param param
;
107 static struct ata_force_ent
*ata_force_tbl
;
108 static int ata_force_tbl_size
;
110 static char ata_force_param_buf
[PAGE_SIZE
] __initdata
;
111 /* param_buf is thrown away after initialization, disallow read */
112 module_param_string(force
, ata_force_param_buf
, sizeof(ata_force_param_buf
), 0);
113 MODULE_PARM_DESC(force
, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
115 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
116 int atapi_enabled
= 1;
117 module_param(atapi_enabled
, int, 0444);
118 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on)");
120 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
121 int atapi_dmadir
= 0;
123 static int atapi_dmadir
= 0;
124 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
125 module_param(atapi_dmadir
, int, 0444);
126 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
128 int atapi_passthru16
= 1;
129 module_param(atapi_passthru16
, int, 0444);
130 MODULE_PARM_DESC(atapi_passthru16
, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
133 module_param_named(fua
, libata_fua
, int, 0444);
134 MODULE_PARM_DESC(fua
, "FUA support (0=off, 1=on)");
136 static int ata_ignore_hpa
;
137 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
138 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
140 static int libata_dma_mask
= ATA_DMA_MASK_ATA
|ATA_DMA_MASK_ATAPI
|ATA_DMA_MASK_CFA
;
141 module_param_named(dma
, libata_dma_mask
, int, 0444);
142 MODULE_PARM_DESC(dma
, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
144 static int ata_probe_timeout
= ATA_TMOUT_INTERNAL
/ HZ
;
145 module_param(ata_probe_timeout
, int, 0444);
146 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
148 int libata_noacpi
= 0;
149 module_param_named(noacpi
, libata_noacpi
, int, 0444);
150 MODULE_PARM_DESC(noacpi
, "Disables the use of ACPI in probe/suspend/resume when set");
152 int libata_allow_tpm
= 0;
153 module_param_named(allow_tpm
, libata_allow_tpm
, int, 0444);
154 MODULE_PARM_DESC(allow_tpm
, "Permit the use of TPM commands");
156 MODULE_AUTHOR("Jeff Garzik");
157 MODULE_DESCRIPTION("Library module for ATA devices");
158 MODULE_LICENSE("GPL");
159 MODULE_VERSION(DRV_VERSION
);
163 <<<<<<< HEAD:drivers/ata/libata-core.c
165 * ata_force_cbl - force cable type according to libata.force
166 * @ap: ATA port of interest
168 * Force cable type according to libata.force and whine about it.
169 * The last entry which has matching port number is used, so it
170 * can be specified as part of device force parameters. For
171 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
177 void ata_force_cbl(struct ata_port
*ap
)
181 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
182 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
184 if (fe
->port
!= -1 && fe
->port
!= ap
->print_id
)
187 if (fe
->param
.cbl
== ATA_CBL_NONE
)
190 ap
->cbl
= fe
->param
.cbl
;
191 ata_port_printk(ap
, KERN_NOTICE
,
192 "FORCE: cable set to %s\n", fe
->param
.name
);
198 * ata_force_spd_limit - force SATA spd limit according to libata.force
199 * @link: ATA link of interest
201 * Force SATA spd limit according to libata.force and whine about
202 * it. When only the port part is specified (e.g. 1:), the limit
203 * applies to all links connected to both the host link and all
204 * fan-out ports connected via PMP. If the device part is
205 * specified as 0 (e.g. 1.00:), it specifies the first fan-out
206 * link not the host link. Device number 15 always points to the
207 * host link whether PMP is attached or not.
212 static void ata_force_spd_limit(struct ata_link
*link
)
216 if (ata_is_host_link(link
))
221 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
222 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
224 if (fe
->port
!= -1 && fe
->port
!= link
->ap
->print_id
)
227 if (fe
->device
!= -1 && fe
->device
!= linkno
)
230 if (!fe
->param
.spd_limit
)
233 link
->hw_sata_spd_limit
= (1 << fe
->param
.spd_limit
) - 1;
234 ata_link_printk(link
, KERN_NOTICE
,
235 "FORCE: PHY spd limit set to %s\n", fe
->param
.name
);
241 * ata_force_xfermask - force xfermask according to libata.force
242 * @dev: ATA device of interest
244 * Force xfer_mask according to libata.force and whine about it.
245 * For consistency with link selection, device number 15 selects
246 * the first device connected to the host link.
251 static void ata_force_xfermask(struct ata_device
*dev
)
253 int devno
= dev
->link
->pmp
+ dev
->devno
;
254 int alt_devno
= devno
;
257 /* allow n.15 for the first device attached to host port */
258 if (ata_is_host_link(dev
->link
) && devno
== 0)
261 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
262 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
263 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
265 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
268 if (fe
->device
!= -1 && fe
->device
!= devno
&&
269 fe
->device
!= alt_devno
)
272 if (!fe
->param
.xfer_mask
)
275 ata_unpack_xfermask(fe
->param
.xfer_mask
,
276 &pio_mask
, &mwdma_mask
, &udma_mask
);
278 dev
->udma_mask
= udma_mask
;
279 else if (mwdma_mask
) {
281 dev
->mwdma_mask
= mwdma_mask
;
285 dev
->pio_mask
= pio_mask
;
288 ata_dev_printk(dev
, KERN_NOTICE
,
289 "FORCE: xfer_mask set to %s\n", fe
->param
.name
);
295 * ata_force_horkage - force horkage according to libata.force
296 * @dev: ATA device of interest
298 * Force horkage according to libata.force and whine about it.
299 * For consistency with link selection, device number 15 selects
300 * the first device connected to the host link.
305 static void ata_force_horkage(struct ata_device
*dev
)
307 int devno
= dev
->link
->pmp
+ dev
->devno
;
308 int alt_devno
= devno
;
311 /* allow n.15 for the first device attached to host port */
312 if (ata_is_host_link(dev
->link
) && devno
== 0)
315 for (i
= 0; i
< ata_force_tbl_size
; i
++) {
316 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
318 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
321 if (fe
->device
!= -1 && fe
->device
!= devno
&&
322 fe
->device
!= alt_devno
)
325 if (!(~dev
->horkage
& fe
->param
.horkage_on
) &&
326 !(dev
->horkage
& fe
->param
.horkage_off
))
329 dev
->horkage
|= fe
->param
.horkage_on
;
330 dev
->horkage
&= ~fe
->param
.horkage_off
;
332 ata_dev_printk(dev
, KERN_NOTICE
,
333 "FORCE: horkage modified (%s)\n", fe
->param
.name
);
338 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/ata/libata-core.c
339 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
340 * @tf: Taskfile to convert
341 * @pmp: Port multiplier port
342 * @is_cmd: This FIS is for command
343 * @fis: Buffer into which data will output
345 * Converts a standard ATA taskfile to a Serial ATA
346 * FIS structure (Register - Host to Device).
349 * Inherited from caller.
351 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8 pmp
, int is_cmd
, u8
*fis
)
353 fis
[0] = 0x27; /* Register - Host to Device FIS */
354 fis
[1] = pmp
& 0xf; /* Port multiplier number*/
356 fis
[1] |= (1 << 7); /* bit 7 indicates Command FIS */
358 fis
[2] = tf
->command
;
359 fis
[3] = tf
->feature
;
366 fis
[8] = tf
->hob_lbal
;
367 fis
[9] = tf
->hob_lbam
;
368 fis
[10] = tf
->hob_lbah
;
369 fis
[11] = tf
->hob_feature
;
372 fis
[13] = tf
->hob_nsect
;
383 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
384 * @fis: Buffer from which data will be input
385 * @tf: Taskfile to output
387 * Converts a serial ATA FIS structure to a standard ATA taskfile.
390 * Inherited from caller.
393 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
395 tf
->command
= fis
[2]; /* status */
396 tf
->feature
= fis
[3]; /* error */
403 tf
->hob_lbal
= fis
[8];
404 tf
->hob_lbam
= fis
[9];
405 tf
->hob_lbah
= fis
[10];
408 tf
->hob_nsect
= fis
[13];
411 static const u8 ata_rw_cmds
[] = {
415 ATA_CMD_READ_MULTI_EXT
,
416 ATA_CMD_WRITE_MULTI_EXT
,
420 ATA_CMD_WRITE_MULTI_FUA_EXT
,
424 ATA_CMD_PIO_READ_EXT
,
425 ATA_CMD_PIO_WRITE_EXT
,
438 ATA_CMD_WRITE_FUA_EXT
442 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
443 * @tf: command to examine and configure
444 * @dev: device tf belongs to
446 * Examine the device configuration and tf->flags to calculate
447 * the proper read/write commands and protocol to use.
452 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
456 int index
, fua
, lba48
, write
;
458 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
459 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
460 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
462 if (dev
->flags
& ATA_DFLAG_PIO
) {
463 tf
->protocol
= ATA_PROT_PIO
;
464 index
= dev
->multi_count
? 0 : 8;
465 } else if (lba48
&& (dev
->link
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
466 /* Unable to use DMA due to host limitation */
467 tf
->protocol
= ATA_PROT_PIO
;
468 index
= dev
->multi_count
? 0 : 8;
470 tf
->protocol
= ATA_PROT_DMA
;
474 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
483 * ata_tf_read_block - Read block address from ATA taskfile
484 * @tf: ATA taskfile of interest
485 * @dev: ATA device @tf belongs to
490 * Read block address from @tf. This function can handle all
491 * three address formats - LBA, LBA48 and CHS. tf->protocol and
492 * flags select the address format to use.
495 * Block address read from @tf.
497 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
501 if (tf
->flags
& ATA_TFLAG_LBA
) {
502 if (tf
->flags
& ATA_TFLAG_LBA48
) {
503 block
|= (u64
)tf
->hob_lbah
<< 40;
504 block
|= (u64
)tf
->hob_lbam
<< 32;
505 block
|= tf
->hob_lbal
<< 24;
507 block
|= (tf
->device
& 0xf) << 24;
509 block
|= tf
->lbah
<< 16;
510 block
|= tf
->lbam
<< 8;
515 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
516 head
= tf
->device
& 0xf;
519 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
;
526 * ata_build_rw_tf - Build ATA taskfile for given read/write request
527 * @tf: Target ATA taskfile
528 * @dev: ATA device @tf belongs to
529 * @block: Block address
530 * @n_block: Number of blocks
531 * @tf_flags: RW/FUA etc...
537 * Build ATA taskfile @tf for read/write request described by
538 * @block, @n_block, @tf_flags and @tag on @dev.
542 * 0 on success, -ERANGE if the request is too large for @dev,
543 * -EINVAL if the request is invalid.
545 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
546 u64 block
, u32 n_block
, unsigned int tf_flags
,
549 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
550 tf
->flags
|= tf_flags
;
552 if (ata_ncq_enabled(dev
) && likely(tag
!= ATA_TAG_INTERNAL
)) {
554 if (!lba_48_ok(block
, n_block
))
557 tf
->protocol
= ATA_PROT_NCQ
;
558 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
560 if (tf
->flags
& ATA_TFLAG_WRITE
)
561 tf
->command
= ATA_CMD_FPDMA_WRITE
;
563 tf
->command
= ATA_CMD_FPDMA_READ
;
565 tf
->nsect
= tag
<< 3;
566 tf
->hob_feature
= (n_block
>> 8) & 0xff;
567 tf
->feature
= n_block
& 0xff;
569 tf
->hob_lbah
= (block
>> 40) & 0xff;
570 tf
->hob_lbam
= (block
>> 32) & 0xff;
571 tf
->hob_lbal
= (block
>> 24) & 0xff;
572 tf
->lbah
= (block
>> 16) & 0xff;
573 tf
->lbam
= (block
>> 8) & 0xff;
574 tf
->lbal
= block
& 0xff;
577 if (tf
->flags
& ATA_TFLAG_FUA
)
578 tf
->device
|= 1 << 7;
579 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
580 tf
->flags
|= ATA_TFLAG_LBA
;
582 if (lba_28_ok(block
, n_block
)) {
584 tf
->device
|= (block
>> 24) & 0xf;
585 } else if (lba_48_ok(block
, n_block
)) {
586 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
590 tf
->flags
|= ATA_TFLAG_LBA48
;
592 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
594 tf
->hob_lbah
= (block
>> 40) & 0xff;
595 tf
->hob_lbam
= (block
>> 32) & 0xff;
596 tf
->hob_lbal
= (block
>> 24) & 0xff;
598 /* request too large even for LBA48 */
601 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
604 tf
->nsect
= n_block
& 0xff;
606 tf
->lbah
= (block
>> 16) & 0xff;
607 tf
->lbam
= (block
>> 8) & 0xff;
608 tf
->lbal
= block
& 0xff;
610 tf
->device
|= ATA_LBA
;
613 u32 sect
, head
, cyl
, track
;
615 /* The request -may- be too large for CHS addressing. */
616 if (!lba_28_ok(block
, n_block
))
619 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
622 /* Convert LBA to CHS */
623 track
= (u32
)block
/ dev
->sectors
;
624 cyl
= track
/ dev
->heads
;
625 head
= track
% dev
->heads
;
626 sect
= (u32
)block
% dev
->sectors
+ 1;
628 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
629 (u32
)block
, track
, cyl
, head
, sect
);
631 /* Check whether the converted CHS can fit.
635 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
638 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
649 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
650 * @pio_mask: pio_mask
651 * @mwdma_mask: mwdma_mask
652 * @udma_mask: udma_mask
654 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
655 * unsigned int xfer_mask.
663 unsigned long ata_pack_xfermask(unsigned long pio_mask
,
664 unsigned long mwdma_mask
,
665 unsigned long udma_mask
)
667 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
668 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
669 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
673 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
674 * @xfer_mask: xfer_mask to unpack
675 * @pio_mask: resulting pio_mask
676 * @mwdma_mask: resulting mwdma_mask
677 * @udma_mask: resulting udma_mask
679 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
680 * Any NULL distination masks will be ignored.
682 void ata_unpack_xfermask(unsigned long xfer_mask
, unsigned long *pio_mask
,
683 unsigned long *mwdma_mask
, unsigned long *udma_mask
)
686 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
688 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
690 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
693 static const struct ata_xfer_ent
{
697 { ATA_SHIFT_PIO
, ATA_NR_PIO_MODES
, XFER_PIO_0
},
698 { ATA_SHIFT_MWDMA
, ATA_NR_MWDMA_MODES
, XFER_MW_DMA_0
},
699 { ATA_SHIFT_UDMA
, ATA_NR_UDMA_MODES
, XFER_UDMA_0
},
704 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
705 * @xfer_mask: xfer_mask of interest
707 * Return matching XFER_* value for @xfer_mask. Only the highest
708 * bit of @xfer_mask is considered.
714 * Matching XFER_* value, 0xff if no match found.
716 u8
ata_xfer_mask2mode(unsigned long xfer_mask
)
718 int highbit
= fls(xfer_mask
) - 1;
719 const struct ata_xfer_ent
*ent
;
721 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
722 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
723 return ent
->base
+ highbit
- ent
->shift
;
728 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
729 * @xfer_mode: XFER_* of interest
731 * Return matching xfer_mask for @xfer_mode.
737 * Matching xfer_mask, 0 if no match found.
739 unsigned long ata_xfer_mode2mask(u8 xfer_mode
)
741 const struct ata_xfer_ent
*ent
;
743 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
744 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
745 return ((2 << (ent
->shift
+ xfer_mode
- ent
->base
)) - 1)
746 & ~((1 << ent
->shift
) - 1);
751 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
752 * @xfer_mode: XFER_* of interest
754 * Return matching xfer_shift for @xfer_mode.
760 * Matching xfer_shift, -1 if no match found.
762 int ata_xfer_mode2shift(unsigned long xfer_mode
)
764 const struct ata_xfer_ent
*ent
;
766 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
767 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
773 * ata_mode_string - convert xfer_mask to string
774 * @xfer_mask: mask of bits supported; only highest bit counts.
776 * Determine string which represents the highest speed
777 * (highest bit in @modemask).
783 * Constant C string representing highest speed listed in
784 * @mode_mask, or the constant C string "<n/a>".
786 const char *ata_mode_string(unsigned long xfer_mask
)
788 static const char * const xfer_mode_str
[] = {
812 highbit
= fls(xfer_mask
) - 1;
813 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
814 return xfer_mode_str
[highbit
];
818 static const char *sata_spd_string(unsigned int spd
)
820 static const char * const spd_str
[] = {
825 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
827 return spd_str
[spd
- 1];
830 void ata_dev_disable(struct ata_device
*dev
)
832 if (ata_dev_enabled(dev
)) {
833 if (ata_msg_drv(dev
->link
->ap
))
834 ata_dev_printk(dev
, KERN_WARNING
, "disabled\n");
835 ata_acpi_on_disable(dev
);
836 ata_down_xfermask_limit(dev
, ATA_DNXFER_FORCE_PIO0
|
842 static int ata_dev_set_dipm(struct ata_device
*dev
, enum link_pm policy
)
844 struct ata_link
*link
= dev
->link
;
845 struct ata_port
*ap
= link
->ap
;
847 unsigned int err_mask
;
851 * disallow DIPM for drivers which haven't set
852 * ATA_FLAG_IPM. This is because when DIPM is enabled,
853 * phy ready will be set in the interrupt status on
854 * state changes, which will cause some drivers to
855 * think there are errors - additionally drivers will
856 * need to disable hot plug.
858 if (!(ap
->flags
& ATA_FLAG_IPM
) || !ata_dev_enabled(dev
)) {
859 ap
->pm_policy
= NOT_AVAILABLE
;
864 * For DIPM, we will only enable it for the
867 * Why? Because Disks are too stupid to know that
868 * If the host rejects a request to go to SLUMBER
869 * they should retry at PARTIAL, and instead it
870 * just would give up. So, for medium_power to
871 * work at all, we need to only allow HIPM.
873 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
879 /* no restrictions on IPM transitions */
880 scontrol
&= ~(0x3 << 8);
881 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
886 if (dev
->flags
& ATA_DFLAG_DIPM
)
887 err_mask
= ata_dev_set_feature(dev
,
888 SETFEATURES_SATA_ENABLE
, SATA_DIPM
);
891 /* allow IPM to PARTIAL */
892 scontrol
&= ~(0x1 << 8);
893 scontrol
|= (0x2 << 8);
894 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
899 * we don't have to disable DIPM since IPM flags
900 * disallow transitions to SLUMBER, which effectively
901 * disable DIPM if it does not support PARTIAL
905 case MAX_PERFORMANCE
:
906 /* disable all IPM transitions */
907 scontrol
|= (0x3 << 8);
908 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
913 * we don't have to disable DIPM since IPM flags
914 * disallow all transitions which effectively
915 * disable DIPM anyway.
920 /* FIXME: handle SET FEATURES failure */
927 * ata_dev_enable_pm - enable SATA interface power management
928 * @dev: device to enable power management
929 * @policy: the link power management policy
931 * Enable SATA Interface power management. This will enable
932 * Device Interface Power Management (DIPM) for min_power
933 * policy, and then call driver specific callbacks for
934 * enabling Host Initiated Power management.
937 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
939 void ata_dev_enable_pm(struct ata_device
*dev
, enum link_pm policy
)
942 struct ata_port
*ap
= dev
->link
->ap
;
944 /* set HIPM first, then DIPM */
945 if (ap
->ops
->enable_pm
)
946 rc
= ap
->ops
->enable_pm(ap
, policy
);
949 rc
= ata_dev_set_dipm(dev
, policy
);
953 ap
->pm_policy
= MAX_PERFORMANCE
;
955 ap
->pm_policy
= policy
;
956 return /* rc */; /* hopefully we can use 'rc' eventually */
961 * ata_dev_disable_pm - disable SATA interface power management
962 * @dev: device to disable power management
964 * Disable SATA Interface power management. This will disable
965 * Device Interface Power Management (DIPM) without changing
966 * policy, call driver specific callbacks for disabling Host
967 * Initiated Power management.
972 static void ata_dev_disable_pm(struct ata_device
*dev
)
974 struct ata_port
*ap
= dev
->link
->ap
;
976 ata_dev_set_dipm(dev
, MAX_PERFORMANCE
);
977 if (ap
->ops
->disable_pm
)
978 ap
->ops
->disable_pm(ap
);
980 #endif /* CONFIG_PM */
982 void ata_lpm_schedule(struct ata_port
*ap
, enum link_pm policy
)
984 ap
->pm_policy
= policy
;
985 ap
->link
.eh_info
.action
|= ATA_EHI_LPM
;
986 ap
->link
.eh_info
.flags
|= ATA_EHI_NO_AUTOPSY
;
987 ata_port_schedule_eh(ap
);
991 static void ata_lpm_enable(struct ata_host
*host
)
993 struct ata_link
*link
;
995 struct ata_device
*dev
;
998 for (i
= 0; i
< host
->n_ports
; i
++) {
1000 ata_port_for_each_link(link
, ap
) {
1001 ata_link_for_each_dev(dev
, link
)
1002 ata_dev_disable_pm(dev
);
1007 static void ata_lpm_disable(struct ata_host
*host
)
1011 for (i
= 0; i
< host
->n_ports
; i
++) {
1012 struct ata_port
*ap
= host
->ports
[i
];
1013 ata_lpm_schedule(ap
, ap
->pm_policy
);
1016 #endif /* CONFIG_PM */
1020 * ata_devchk - PATA device presence detection
1021 * @ap: ATA channel to examine
1022 * @device: Device to examine (starting at zero)
1024 * This technique was originally described in
1025 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1026 * later found its way into the ATA/ATAPI spec.
1028 * Write a pattern to the ATA shadow registers,
1029 * and if a device is present, it will respond by
1030 * correctly storing and echoing back the
1031 * ATA shadow register contents.
1037 static unsigned int ata_devchk(struct ata_port
*ap
, unsigned int device
)
1039 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1042 ap
->ops
->dev_select(ap
, device
);
1044 iowrite8(0x55, ioaddr
->nsect_addr
);
1045 iowrite8(0xaa, ioaddr
->lbal_addr
);
1047 iowrite8(0xaa, ioaddr
->nsect_addr
);
1048 iowrite8(0x55, ioaddr
->lbal_addr
);
1050 iowrite8(0x55, ioaddr
->nsect_addr
);
1051 iowrite8(0xaa, ioaddr
->lbal_addr
);
1053 nsect
= ioread8(ioaddr
->nsect_addr
);
1054 lbal
= ioread8(ioaddr
->lbal_addr
);
1056 if ((nsect
== 0x55) && (lbal
== 0xaa))
1057 return 1; /* we found a device */
1059 return 0; /* nothing found */
1063 * ata_dev_classify - determine device type based on ATA-spec signature
1064 * @tf: ATA taskfile register set for device to be identified
1066 * Determine from taskfile register contents whether a device is
1067 * ATA or ATAPI, as per "Signature and persistence" section
1068 * of ATA/PI spec (volume 1, sect 5.14).
1074 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1075 * %ATA_DEV_UNKNOWN the event of failure.
1077 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
1079 /* Apple's open source Darwin code hints that some devices only
1080 * put a proper signature into the LBA mid/high registers,
1081 * So, we only check those. It's sufficient for uniqueness.
1083 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1084 * signatures for ATA and ATAPI devices attached on SerialATA,
1085 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1086 * spec has never mentioned about using different signatures
1087 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1088 * Multiplier specification began to use 0x69/0x96 to identify
1089 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1090 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1091 * 0x69/0x96 shortly and described them as reserved for
1094 * We follow the current spec and consider that 0x69/0x96
1095 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1097 if ((tf
->lbam
== 0) && (tf
->lbah
== 0)) {
1098 DPRINTK("found ATA device by sig\n");
1102 if ((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) {
1103 DPRINTK("found ATAPI device by sig\n");
1104 return ATA_DEV_ATAPI
;
1107 if ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96)) {
1108 DPRINTK("found PMP device by sig\n");
1112 if ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3)) {
1113 printk(KERN_INFO
"ata: SEMB device ignored\n");
1114 return ATA_DEV_SEMB_UNSUP
; /* not yet */
1117 DPRINTK("unknown device\n");
1118 return ATA_DEV_UNKNOWN
;
1122 * ata_dev_try_classify - Parse returned ATA device signature
1123 * @dev: ATA device to classify (starting at zero)
1124 * @present: device seems present
1125 * @r_err: Value of error register on completion
1127 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1128 * an ATA/ATAPI-defined set of values is placed in the ATA
1129 * shadow registers, indicating the results of device detection
1132 * Select the ATA device, and read the values from the ATA shadow
1133 * registers. Then parse according to the Error register value,
1134 * and the spec-defined values examined by ata_dev_classify().
1140 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1142 unsigned int ata_dev_try_classify(struct ata_device
*dev
, int present
,
1145 struct ata_port
*ap
= dev
->link
->ap
;
1146 struct ata_taskfile tf
;
1150 ap
->ops
->dev_select(ap
, dev
->devno
);
1152 memset(&tf
, 0, sizeof(tf
));
1154 ap
->ops
->tf_read(ap
, &tf
);
1159 /* see if device passed diags: continue and warn later */
1161 /* diagnostic fail : do nothing _YET_ */
1162 dev
->horkage
|= ATA_HORKAGE_DIAGNOSTIC
;
1165 else if ((dev
->devno
== 0) && (err
== 0x81))
1168 return ATA_DEV_NONE
;
1170 /* determine if device is ATA or ATAPI */
1171 class = ata_dev_classify(&tf
);
1173 if (class == ATA_DEV_UNKNOWN
) {
1174 /* If the device failed diagnostic, it's likely to
1175 * have reported incorrect device signature too.
1176 * Assume ATA device if the device seems present but
1177 * device signature is invalid with diagnostic
1180 if (present
&& (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
))
1181 class = ATA_DEV_ATA
;
1183 class = ATA_DEV_NONE
;
1184 } else if ((class == ATA_DEV_ATA
) && (ata_chk_status(ap
) == 0))
1185 class = ATA_DEV_NONE
;
1191 * ata_id_string - Convert IDENTIFY DEVICE page into string
1192 * @id: IDENTIFY DEVICE results we will examine
1193 * @s: string into which data is output
1194 * @ofs: offset into identify device page
1195 * @len: length of string to return. must be an even number.
1197 * The strings in the IDENTIFY DEVICE page are broken up into
1198 * 16-bit chunks. Run through the string, and output each
1199 * 8-bit chunk linearly, regardless of platform.
1205 void ata_id_string(const u16
*id
, unsigned char *s
,
1206 unsigned int ofs
, unsigned int len
)
1225 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1226 * @id: IDENTIFY DEVICE results we will examine
1227 * @s: string into which data is output
1228 * @ofs: offset into identify device page
1229 * @len: length of string to return. must be an odd number.
1231 * This function is identical to ata_id_string except that it
1232 * trims trailing spaces and terminates the resulting string with
1233 * null. @len must be actual maximum length (even number) + 1.
1238 void ata_id_c_string(const u16
*id
, unsigned char *s
,
1239 unsigned int ofs
, unsigned int len
)
1243 WARN_ON(!(len
& 1));
1245 ata_id_string(id
, s
, ofs
, len
- 1);
1247 p
= s
+ strnlen(s
, len
- 1);
1248 while (p
> s
&& p
[-1] == ' ')
1253 static u64
ata_id_n_sectors(const u16
*id
)
1255 if (ata_id_has_lba(id
)) {
1256 if (ata_id_has_lba48(id
))
1257 return ata_id_u64(id
, 100);
1259 return ata_id_u32(id
, 60);
1261 if (ata_id_current_chs_valid(id
))
1262 return ata_id_u32(id
, 57);
1264 return id
[1] * id
[3] * id
[6];
1268 static u64
ata_tf_to_lba48(struct ata_taskfile
*tf
)
1272 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
1273 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
1274 sectors
|= (tf
->hob_lbal
& 0xff) << 24;
1275 sectors
|= (tf
->lbah
& 0xff) << 16;
1276 sectors
|= (tf
->lbam
& 0xff) << 8;
1277 sectors
|= (tf
->lbal
& 0xff);
1282 static u64
ata_tf_to_lba(struct ata_taskfile
*tf
)
1286 sectors
|= (tf
->device
& 0x0f) << 24;
1287 sectors
|= (tf
->lbah
& 0xff) << 16;
1288 sectors
|= (tf
->lbam
& 0xff) << 8;
1289 sectors
|= (tf
->lbal
& 0xff);
1295 * ata_read_native_max_address - Read native max address
1296 * @dev: target device
1297 * @max_sectors: out parameter for the result native max address
1299 * Perform an LBA48 or LBA28 native size query upon the device in
1303 * 0 on success, -EACCES if command is aborted by the drive.
1304 * -EIO on other errors.
1306 static int ata_read_native_max_address(struct ata_device
*dev
, u64
*max_sectors
)
1308 unsigned int err_mask
;
1309 struct ata_taskfile tf
;
1310 int lba48
= ata_id_has_lba48(dev
->id
);
1312 ata_tf_init(dev
, &tf
);
1314 /* always clear all address registers */
1315 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1318 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
1319 tf
.flags
|= ATA_TFLAG_LBA48
;
1321 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
1323 tf
.protocol
|= ATA_PROT_NODATA
;
1324 tf
.device
|= ATA_LBA
;
1326 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1328 ata_dev_printk(dev
, KERN_WARNING
, "failed to read native "
1329 "max address (err_mask=0x%x)\n", err_mask
);
1330 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
1336 *max_sectors
= ata_tf_to_lba48(&tf
);
1338 *max_sectors
= ata_tf_to_lba(&tf
);
1339 if (dev
->horkage
& ATA_HORKAGE_HPA_SIZE
)
1345 * ata_set_max_sectors - Set max sectors
1346 * @dev: target device
1347 * @new_sectors: new max sectors value to set for the device
1349 * Set max sectors of @dev to @new_sectors.
1352 * 0 on success, -EACCES if command is aborted or denied (due to
1353 * previous non-volatile SET_MAX) by the drive. -EIO on other
1356 static int ata_set_max_sectors(struct ata_device
*dev
, u64 new_sectors
)
1358 unsigned int err_mask
;
1359 struct ata_taskfile tf
;
1360 int lba48
= ata_id_has_lba48(dev
->id
);
1364 ata_tf_init(dev
, &tf
);
1366 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1369 tf
.command
= ATA_CMD_SET_MAX_EXT
;
1370 tf
.flags
|= ATA_TFLAG_LBA48
;
1372 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
1373 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
1374 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
1376 tf
.command
= ATA_CMD_SET_MAX
;
1378 tf
.device
|= (new_sectors
>> 24) & 0xf;
1381 tf
.protocol
|= ATA_PROT_NODATA
;
1382 tf
.device
|= ATA_LBA
;
1384 tf
.lbal
= (new_sectors
>> 0) & 0xff;
1385 tf
.lbam
= (new_sectors
>> 8) & 0xff;
1386 tf
.lbah
= (new_sectors
>> 16) & 0xff;
1388 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1390 ata_dev_printk(dev
, KERN_WARNING
, "failed to set "
1391 "max address (err_mask=0x%x)\n", err_mask
);
1392 if (err_mask
== AC_ERR_DEV
&&
1393 (tf
.feature
& (ATA_ABORTED
| ATA_IDNF
)))
1402 * ata_hpa_resize - Resize a device with an HPA set
1403 * @dev: Device to resize
1405 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1406 * it if required to the full size of the media. The caller must check
1407 * the drive has the HPA feature set enabled.
1410 * 0 on success, -errno on failure.
1412 static int ata_hpa_resize(struct ata_device
*dev
)
1414 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
1415 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
1416 u64 sectors
= ata_id_n_sectors(dev
->id
);
1420 /* do we need to do it? */
1421 if (dev
->class != ATA_DEV_ATA
||
1422 !ata_id_has_lba(dev
->id
) || !ata_id_hpa_enabled(dev
->id
) ||
1423 (dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
))
1426 /* read native max address */
1427 rc
= ata_read_native_max_address(dev
, &native_sectors
);
1429 /* If HPA isn't going to be unlocked, skip HPA
1430 * resizing from the next try.
1432 if (!ata_ignore_hpa
) {
1433 ata_dev_printk(dev
, KERN_WARNING
, "HPA support seems "
1434 "broken, will skip HPA handling\n");
1435 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1437 /* we can continue if device aborted the command */
1445 /* nothing to do? */
1446 if (native_sectors
<= sectors
|| !ata_ignore_hpa
) {
1447 if (!print_info
|| native_sectors
== sectors
)
1450 if (native_sectors
> sectors
)
1451 ata_dev_printk(dev
, KERN_INFO
,
1452 "HPA detected: current %llu, native %llu\n",
1453 (unsigned long long)sectors
,
1454 (unsigned long long)native_sectors
);
1455 else if (native_sectors
< sectors
)
1456 ata_dev_printk(dev
, KERN_WARNING
,
1457 "native sectors (%llu) is smaller than "
1459 (unsigned long long)native_sectors
,
1460 (unsigned long long)sectors
);
1464 /* let's unlock HPA */
1465 rc
= ata_set_max_sectors(dev
, native_sectors
);
1466 if (rc
== -EACCES
) {
1467 /* if device aborted the command, skip HPA resizing */
1468 ata_dev_printk(dev
, KERN_WARNING
, "device aborted resize "
1469 "(%llu -> %llu), skipping HPA handling\n",
1470 (unsigned long long)sectors
,
1471 (unsigned long long)native_sectors
);
1472 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1477 /* re-read IDENTIFY data */
1478 rc
= ata_dev_reread_id(dev
, 0);
1480 ata_dev_printk(dev
, KERN_ERR
, "failed to re-read IDENTIFY "
1481 "data after HPA resizing\n");
1486 u64 new_sectors
= ata_id_n_sectors(dev
->id
);
1487 ata_dev_printk(dev
, KERN_INFO
,
1488 "HPA unlocked: %llu -> %llu, native %llu\n",
1489 (unsigned long long)sectors
,
1490 (unsigned long long)new_sectors
,
1491 (unsigned long long)native_sectors
);
1498 * ata_noop_dev_select - Select device 0/1 on ATA bus
1499 * @ap: ATA channel to manipulate
1500 * @device: ATA device (numbered from zero) to select
1502 * This function performs no actual function.
1504 * May be used as the dev_select() entry in ata_port_operations.
1509 void ata_noop_dev_select(struct ata_port
*ap
, unsigned int device
)
1515 * ata_std_dev_select - Select device 0/1 on ATA bus
1516 * @ap: ATA channel to manipulate
1517 * @device: ATA device (numbered from zero) to select
1519 * Use the method defined in the ATA specification to
1520 * make either device 0, or device 1, active on the
1521 * ATA channel. Works with both PIO and MMIO.
1523 * May be used as the dev_select() entry in ata_port_operations.
1529 void ata_std_dev_select(struct ata_port
*ap
, unsigned int device
)
1534 tmp
= ATA_DEVICE_OBS
;
1536 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
1538 iowrite8(tmp
, ap
->ioaddr
.device_addr
);
1539 ata_pause(ap
); /* needed; also flushes, for mmio */
1543 * ata_dev_select - Select device 0/1 on ATA bus
1544 * @ap: ATA channel to manipulate
1545 * @device: ATA device (numbered from zero) to select
1546 * @wait: non-zero to wait for Status register BSY bit to clear
1547 * @can_sleep: non-zero if context allows sleeping
1549 * Use the method defined in the ATA specification to
1550 * make either device 0, or device 1, active on the
1553 * This is a high-level version of ata_std_dev_select(),
1554 * which additionally provides the services of inserting
1555 * the proper pauses and status polling, where needed.
1561 void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
1562 unsigned int wait
, unsigned int can_sleep
)
1564 if (ata_msg_probe(ap
))
1565 ata_port_printk(ap
, KERN_INFO
, "ata_dev_select: ENTER, "
1566 "device %u, wait %u\n", device
, wait
);
1571 ap
->ops
->dev_select(ap
, device
);
1574 if (can_sleep
&& ap
->link
.device
[device
].class == ATA_DEV_ATAPI
)
1581 * ata_dump_id - IDENTIFY DEVICE info debugging output
1582 * @id: IDENTIFY DEVICE page to dump
1584 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1591 static inline void ata_dump_id(const u16
*id
)
1593 DPRINTK("49==0x%04x "
1603 DPRINTK("80==0x%04x "
1613 DPRINTK("88==0x%04x "
1620 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1621 * @id: IDENTIFY data to compute xfer mask from
1623 * Compute the xfermask for this device. This is not as trivial
1624 * as it seems if we must consider early devices correctly.
1626 * FIXME: pre IDE drive timing (do we care ?).
1634 unsigned long ata_id_xfermask(const u16
*id
)
1636 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
1638 /* Usual case. Word 53 indicates word 64 is valid */
1639 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1640 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1644 /* If word 64 isn't valid then Word 51 high byte holds
1645 * the PIO timing number for the maximum. Turn it into
1648 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1649 if (mode
< 5) /* Valid PIO range */
1650 pio_mask
= (2 << mode
) - 1;
1654 /* But wait.. there's more. Design your standards by
1655 * committee and you too can get a free iordy field to
1656 * process. However its the speeds not the modes that
1657 * are supported... Note drivers using the timing API
1658 * will get this right anyway
1662 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1664 if (ata_id_is_cfa(id
)) {
1666 * Process compact flash extended modes
1668 int pio
= id
[163] & 0x7;
1669 int dma
= (id
[163] >> 3) & 7;
1672 pio_mask
|= (1 << 5);
1674 pio_mask
|= (1 << 6);
1676 mwdma_mask
|= (1 << 3);
1678 mwdma_mask
|= (1 << 4);
1682 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1683 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1685 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1689 * ata_pio_queue_task - Queue port_task
1690 * @ap: The ata_port to queue port_task for
1691 * @fn: workqueue function to be scheduled
1692 * @data: data for @fn to use
1693 * @delay: delay time for workqueue function
1695 * Schedule @fn(@data) for execution after @delay jiffies using
1696 * port_task. There is one port_task per port and it's the
1697 * user(low level driver)'s responsibility to make sure that only
1698 * one task is active at any given time.
1700 * libata core layer takes care of synchronization between
1701 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1705 * Inherited from caller.
1707 static void ata_pio_queue_task(struct ata_port
*ap
, void *data
,
1708 unsigned long delay
)
1710 ap
->port_task_data
= data
;
1712 /* may fail if ata_port_flush_task() in progress */
1713 queue_delayed_work(ata_wq
, &ap
->port_task
, delay
);
1717 * ata_port_flush_task - Flush port_task
1718 * @ap: The ata_port to flush port_task for
1720 * After this function completes, port_task is guranteed not to
1721 * be running or scheduled.
1724 * Kernel thread context (may sleep)
1726 void ata_port_flush_task(struct ata_port
*ap
)
1730 cancel_rearming_delayed_work(&ap
->port_task
);
1732 if (ata_msg_ctl(ap
))
1733 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
1734 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __FUNCTION__
);
1736 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __func__
);
1737 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
1740 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1742 struct completion
*waiting
= qc
->private_data
;
1748 * ata_exec_internal_sg - execute libata internal command
1749 * @dev: Device to which the command is sent
1750 * @tf: Taskfile registers for the command and the result
1751 * @cdb: CDB for packet command
1752 * @dma_dir: Data tranfer direction of the command
1753 * @sgl: sg list for the data buffer of the command
1754 * @n_elem: Number of sg entries
1755 * @timeout: Timeout in msecs (0 for default)
1757 * Executes libata internal command with timeout. @tf contains
1758 * command on entry and result on return. Timeout and error
1759 * conditions are reported via return value. No recovery action
1760 * is taken after a command times out. It's caller's duty to
1761 * clean up after timeout.
1764 * None. Should be called with kernel context, might sleep.
1767 * Zero on success, AC_ERR_* mask on failure
1769 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1770 struct ata_taskfile
*tf
, const u8
*cdb
,
1771 int dma_dir
, struct scatterlist
*sgl
,
1772 unsigned int n_elem
, unsigned long timeout
)
1774 struct ata_link
*link
= dev
->link
;
1775 struct ata_port
*ap
= link
->ap
;
1776 u8 command
= tf
->command
;
1777 struct ata_queued_cmd
*qc
;
1778 unsigned int tag
, preempted_tag
;
1779 u32 preempted_sactive
, preempted_qc_active
;
1780 int preempted_nr_active_links
;
1781 DECLARE_COMPLETION_ONSTACK(wait
);
1782 unsigned long flags
;
1783 unsigned int err_mask
;
1786 spin_lock_irqsave(ap
->lock
, flags
);
1788 /* no internal command while frozen */
1789 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1790 spin_unlock_irqrestore(ap
->lock
, flags
);
1791 return AC_ERR_SYSTEM
;
1794 /* initialize internal qc */
1796 /* XXX: Tag 0 is used for drivers with legacy EH as some
1797 * drivers choke if any other tag is given. This breaks
1798 * ata_tag_internal() test for those drivers. Don't use new
1799 * EH stuff without converting to it.
1801 if (ap
->ops
->error_handler
)
1802 tag
= ATA_TAG_INTERNAL
;
1806 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1808 qc
= __ata_qc_from_tag(ap
, tag
);
1816 preempted_tag
= link
->active_tag
;
1817 preempted_sactive
= link
->sactive
;
1818 preempted_qc_active
= ap
->qc_active
;
1819 preempted_nr_active_links
= ap
->nr_active_links
;
1820 link
->active_tag
= ATA_TAG_POISON
;
1823 ap
->nr_active_links
= 0;
1825 /* prepare & issue qc */
1828 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1829 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1830 qc
->dma_dir
= dma_dir
;
1831 if (dma_dir
!= DMA_NONE
) {
1832 unsigned int i
, buflen
= 0;
1833 struct scatterlist
*sg
;
1835 for_each_sg(sgl
, sg
, n_elem
, i
)
1836 buflen
+= sg
->length
;
1838 ata_sg_init(qc
, sgl
, n_elem
);
1839 qc
->nbytes
= buflen
;
1842 qc
->private_data
= &wait
;
1843 qc
->complete_fn
= ata_qc_complete_internal
;
1847 spin_unlock_irqrestore(ap
->lock
, flags
);
1850 timeout
= ata_probe_timeout
* 1000 / HZ
;
1852 rc
= wait_for_completion_timeout(&wait
, msecs_to_jiffies(timeout
));
1854 ata_port_flush_task(ap
);
1857 spin_lock_irqsave(ap
->lock
, flags
);
1859 /* We're racing with irq here. If we lose, the
1860 * following test prevents us from completing the qc
1861 * twice. If we win, the port is frozen and will be
1862 * cleaned up by ->post_internal_cmd().
1864 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1865 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1867 if (ap
->ops
->error_handler
)
1868 ata_port_freeze(ap
);
1870 ata_qc_complete(qc
);
1872 if (ata_msg_warn(ap
))
1873 ata_dev_printk(dev
, KERN_WARNING
,
1874 "qc timeout (cmd 0x%x)\n", command
);
1877 spin_unlock_irqrestore(ap
->lock
, flags
);
1880 /* do post_internal_cmd */
1881 if (ap
->ops
->post_internal_cmd
)
1882 ap
->ops
->post_internal_cmd(qc
);
1884 /* perform minimal error analysis */
1885 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1886 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1887 qc
->err_mask
|= AC_ERR_DEV
;
1890 qc
->err_mask
|= AC_ERR_OTHER
;
1892 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1893 qc
->err_mask
&= ~AC_ERR_OTHER
;
1897 spin_lock_irqsave(ap
->lock
, flags
);
1899 *tf
= qc
->result_tf
;
1900 err_mask
= qc
->err_mask
;
1903 link
->active_tag
= preempted_tag
;
1904 link
->sactive
= preempted_sactive
;
1905 ap
->qc_active
= preempted_qc_active
;
1906 ap
->nr_active_links
= preempted_nr_active_links
;
1908 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1909 * Until those drivers are fixed, we detect the condition
1910 * here, fail the command with AC_ERR_SYSTEM and reenable the
1913 * Note that this doesn't change any behavior as internal
1914 * command failure results in disabling the device in the
1915 * higher layer for LLDDs without new reset/EH callbacks.
1917 * Kill the following code as soon as those drivers are fixed.
1919 if (ap
->flags
& ATA_FLAG_DISABLED
) {
1920 err_mask
|= AC_ERR_SYSTEM
;
1924 spin_unlock_irqrestore(ap
->lock
, flags
);
1930 * ata_exec_internal - execute libata internal command
1931 * @dev: Device to which the command is sent
1932 * @tf: Taskfile registers for the command and the result
1933 * @cdb: CDB for packet command
1934 * @dma_dir: Data tranfer direction of the command
1935 * @buf: Data buffer of the command
1936 * @buflen: Length of data buffer
1937 * @timeout: Timeout in msecs (0 for default)
1939 * Wrapper around ata_exec_internal_sg() which takes simple
1940 * buffer instead of sg list.
1943 * None. Should be called with kernel context, might sleep.
1946 * Zero on success, AC_ERR_* mask on failure
1948 unsigned ata_exec_internal(struct ata_device
*dev
,
1949 struct ata_taskfile
*tf
, const u8
*cdb
,
1950 int dma_dir
, void *buf
, unsigned int buflen
,
1951 unsigned long timeout
)
1953 struct scatterlist
*psg
= NULL
, sg
;
1954 unsigned int n_elem
= 0;
1956 if (dma_dir
!= DMA_NONE
) {
1958 sg_init_one(&sg
, buf
, buflen
);
1963 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
,
1968 * ata_do_simple_cmd - execute simple internal command
1969 * @dev: Device to which the command is sent
1970 * @cmd: Opcode to execute
1972 * Execute a 'simple' command, that only consists of the opcode
1973 * 'cmd' itself, without filling any other registers
1976 * Kernel thread context (may sleep).
1979 * Zero on success, AC_ERR_* mask on failure
1981 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1983 struct ata_taskfile tf
;
1985 ata_tf_init(dev
, &tf
);
1988 tf
.flags
|= ATA_TFLAG_DEVICE
;
1989 tf
.protocol
= ATA_PROT_NODATA
;
1991 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1995 * ata_pio_need_iordy - check if iordy needed
1998 * Check if the current speed of the device requires IORDY. Used
1999 * by various controllers for chip configuration.
2002 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
2004 /* Controller doesn't support IORDY. Probably a pointless check
2005 as the caller should know this */
2006 if (adev
->link
->ap
->flags
& ATA_FLAG_NO_IORDY
)
2008 /* PIO3 and higher it is mandatory */
2009 if (adev
->pio_mode
> XFER_PIO_2
)
2011 /* We turn it on when possible */
2012 if (ata_id_has_iordy(adev
->id
))
2018 * ata_pio_mask_no_iordy - Return the non IORDY mask
2021 * Compute the highest mode possible if we are not using iordy. Return
2022 * -1 if no iordy mode is available.
2025 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
2027 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2028 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
2029 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
2030 /* Is the speed faster than the drive allows non IORDY ? */
2032 /* This is cycle times not frequency - watch the logic! */
2033 if (pio
> 240) /* PIO2 is 240nS per cycle */
2034 return 3 << ATA_SHIFT_PIO
;
2035 return 7 << ATA_SHIFT_PIO
;
2038 return 3 << ATA_SHIFT_PIO
;
2042 * ata_dev_read_id - Read ID data from the specified device
2043 * @dev: target device
2044 * @p_class: pointer to class of the target device (may be changed)
2045 * @flags: ATA_READID_* flags
2046 * @id: buffer to read IDENTIFY data into
2048 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2049 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2050 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2051 * for pre-ATA4 drives.
2053 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2054 * now we abort if we hit that case.
2057 * Kernel thread context (may sleep)
2060 * 0 on success, -errno otherwise.
2062 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
2063 unsigned int flags
, u16
*id
)
2065 struct ata_port
*ap
= dev
->link
->ap
;
2066 unsigned int class = *p_class
;
2067 struct ata_taskfile tf
;
2068 unsigned int err_mask
= 0;
2070 int may_fallback
= 1, tried_spinup
= 0;
2073 if (ata_msg_ctl(ap
))
2074 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
2075 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __FUNCTION__
);
2077 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
2078 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
2080 ata_dev_select(ap
, dev
->devno
, 1, 1); /* select device 0/1 */
2082 ata_tf_init(dev
, &tf
);
2086 tf
.command
= ATA_CMD_ID_ATA
;
2089 tf
.command
= ATA_CMD_ID_ATAPI
;
2093 reason
= "unsupported class";
2097 tf
.protocol
= ATA_PROT_PIO
;
2099 /* Some devices choke if TF registers contain garbage. Make
2100 * sure those are properly initialized.
2102 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
2104 /* Device presence detection is unreliable on some
2105 * controllers. Always poll IDENTIFY if available.
2107 tf
.flags
|= ATA_TFLAG_POLLING
;
2109 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_FROM_DEVICE
,
2110 id
, sizeof(id
[0]) * ATA_ID_WORDS
, 0);
2112 if (err_mask
& AC_ERR_NODEV_HINT
) {
2113 DPRINTK("ata%u.%d: NODEV after polling detection\n",
2114 ap
->print_id
, dev
->devno
);
2118 /* Device or controller might have reported the wrong
2119 * device class. Give a shot at the other IDENTIFY if
2120 * the current one is aborted by the device.
2123 (err_mask
== AC_ERR_DEV
) && (tf
.feature
& ATA_ABORTED
)) {
2126 if (class == ATA_DEV_ATA
)
2127 class = ATA_DEV_ATAPI
;
2129 class = ATA_DEV_ATA
;
2134 reason
= "I/O error";
2138 /* Falling back doesn't make sense if ID data was read
2139 * successfully at least once.
2143 swap_buf_le16(id
, ATA_ID_WORDS
);
2147 reason
= "device reports invalid type";
2149 if (class == ATA_DEV_ATA
) {
2150 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
2153 if (ata_id_is_ata(id
))
2157 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
2160 * Drive powered-up in standby mode, and requires a specific
2161 * SET_FEATURES spin-up subcommand before it will accept
2162 * anything other than the original IDENTIFY command.
2164 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SPINUP
, 0);
2165 if (err_mask
&& id
[2] != 0x738c) {
2167 reason
= "SPINUP failed";
2171 * If the drive initially returned incomplete IDENTIFY info,
2172 * we now must reissue the IDENTIFY command.
2174 if (id
[2] == 0x37c8)
2178 if ((flags
& ATA_READID_POSTRESET
) && class == ATA_DEV_ATA
) {
2180 * The exact sequence expected by certain pre-ATA4 drives is:
2182 * IDENTIFY (optional in early ATA)
2183 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2185 * Some drives were very specific about that exact sequence.
2187 * Note that ATA4 says lba is mandatory so the second check
2188 * shoud never trigger.
2190 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
2191 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
2194 reason
= "INIT_DEV_PARAMS failed";
2198 /* current CHS translation info (id[53-58]) might be
2199 * changed. reread the identify device info.
2201 flags
&= ~ATA_READID_POSTRESET
;
2211 if (ata_msg_warn(ap
))
2212 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
2213 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
2217 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
2219 struct ata_port
*ap
= dev
->link
->ap
;
2220 return ((ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
2223 static void ata_dev_config_ncq(struct ata_device
*dev
,
2224 char *desc
, size_t desc_sz
)
2226 struct ata_port
*ap
= dev
->link
->ap
;
2227 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
2229 if (!ata_id_has_ncq(dev
->id
)) {
2233 if (dev
->horkage
& ATA_HORKAGE_NONCQ
) {
2234 snprintf(desc
, desc_sz
, "NCQ (not used)");
2237 if (ap
->flags
& ATA_FLAG_NCQ
) {
2238 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
2239 dev
->flags
|= ATA_DFLAG_NCQ
;
2242 if (hdepth
>= ddepth
)
2243 snprintf(desc
, desc_sz
, "NCQ (depth %d)", ddepth
);
2245 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)", hdepth
, ddepth
);
2249 * ata_dev_configure - Configure the specified ATA/ATAPI device
2250 * @dev: Target device to configure
2252 * Configure @dev according to @dev->id. Generic and low-level
2253 * driver specific fixups are also applied.
2256 * Kernel thread context (may sleep)
2259 * 0 on success, -errno otherwise
2261 int ata_dev_configure(struct ata_device
*dev
)
2263 struct ata_port
*ap
= dev
->link
->ap
;
2264 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
2265 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
2266 const u16
*id
= dev
->id
;
2267 unsigned long xfer_mask
;
2268 char revbuf
[7]; /* XYZ-99\0 */
2269 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
2270 char modelbuf
[ATA_ID_PROD_LEN
+1];
2273 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
2274 ata_dev_printk(dev
, KERN_INFO
, "%s: ENTER/EXIT -- nodev\n",
2275 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
2279 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
2283 if (ata_msg_probe(ap
))
2284 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
2285 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __FUNCTION__
);
2287 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
2288 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
2291 dev
->horkage
|= ata_dev_blacklisted(dev
);
2292 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
2294 ata_force_horkage(dev
);
2295 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
2297 /* let ACPI work its magic */
2298 rc
= ata_acpi_on_devcfg(dev
);
2302 /* massage HPA, do it early as it might change IDENTIFY data */
2303 rc
= ata_hpa_resize(dev
);
2307 /* print device capabilities */
2308 if (ata_msg_probe(ap
))
2309 ata_dev_printk(dev
, KERN_DEBUG
,
2310 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2311 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2312 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
2316 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
2317 id
[49], id
[82], id
[83], id
[84],
2318 id
[85], id
[86], id
[87], id
[88]);
2320 /* initialize to-be-configured parameters */
2321 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
2322 dev
->max_sectors
= 0;
2330 * common ATA, ATAPI feature tests
2333 /* find max transfer mode; for printk only */
2334 xfer_mask
= ata_id_xfermask(id
);
2336 if (ata_msg_probe(ap
))
2339 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2340 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
2343 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
2346 /* ATA-specific feature tests */
2347 if (dev
->class == ATA_DEV_ATA
) {
2348 if (ata_id_is_cfa(id
)) {
2349 if (id
[162] & 1) /* CPRM may make this media unusable */
2350 ata_dev_printk(dev
, KERN_WARNING
,
2351 "supports DRM functions and may "
2352 "not be fully accessable.\n");
2353 snprintf(revbuf
, 7, "CFA");
2355 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
2356 /* Warn the user if the device has TPM extensions */
2357 if (ata_id_has_tpm(id
))
2358 ata_dev_printk(dev
, KERN_WARNING
,
2359 "supports DRM functions and may "
2360 "not be fully accessable.\n");
2363 dev
->n_sectors
= ata_id_n_sectors(id
);
2365 if (dev
->id
[59] & 0x100)
2366 dev
->multi_count
= dev
->id
[59] & 0xff;
2368 if (ata_id_has_lba(id
)) {
2369 const char *lba_desc
;
2373 dev
->flags
|= ATA_DFLAG_LBA
;
2374 if (ata_id_has_lba48(id
)) {
2375 dev
->flags
|= ATA_DFLAG_LBA48
;
2378 if (dev
->n_sectors
>= (1UL << 28) &&
2379 ata_id_has_flush_ext(id
))
2380 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
2384 ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
2386 /* print device info to dmesg */
2387 if (ata_msg_drv(ap
) && print_info
) {
2388 ata_dev_printk(dev
, KERN_INFO
,
2389 "%s: %s, %s, max %s\n",
2390 revbuf
, modelbuf
, fwrevbuf
,
2391 ata_mode_string(xfer_mask
));
2392 ata_dev_printk(dev
, KERN_INFO
,
2393 "%Lu sectors, multi %u: %s %s\n",
2394 (unsigned long long)dev
->n_sectors
,
2395 dev
->multi_count
, lba_desc
, ncq_desc
);
2400 /* Default translation */
2401 dev
->cylinders
= id
[1];
2403 dev
->sectors
= id
[6];
2405 if (ata_id_current_chs_valid(id
)) {
2406 /* Current CHS translation is valid. */
2407 dev
->cylinders
= id
[54];
2408 dev
->heads
= id
[55];
2409 dev
->sectors
= id
[56];
2412 /* print device info to dmesg */
2413 if (ata_msg_drv(ap
) && print_info
) {
2414 ata_dev_printk(dev
, KERN_INFO
,
2415 "%s: %s, %s, max %s\n",
2416 revbuf
, modelbuf
, fwrevbuf
,
2417 ata_mode_string(xfer_mask
));
2418 ata_dev_printk(dev
, KERN_INFO
,
2419 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2420 (unsigned long long)dev
->n_sectors
,
2421 dev
->multi_count
, dev
->cylinders
,
2422 dev
->heads
, dev
->sectors
);
2429 /* ATAPI-specific feature tests */
2430 else if (dev
->class == ATA_DEV_ATAPI
) {
2431 const char *cdb_intr_string
= "";
2432 const char *atapi_an_string
= "";
2433 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
2435 const char *dma_dir_string
= "";
2436 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
2439 rc
= atapi_cdb_len(id
);
2440 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
2441 if (ata_msg_warn(ap
))
2442 ata_dev_printk(dev
, KERN_WARNING
,
2443 "unsupported CDB len\n");
2447 dev
->cdb_len
= (unsigned int) rc
;
2449 /* Enable ATAPI AN if both the host and device have
2450 * the support. If PMP is attached, SNTF is required
2451 * to enable ATAPI AN to discern between PHY status
2452 * changed notifications and ATAPI ANs.
2454 if ((ap
->flags
& ATA_FLAG_AN
) && ata_id_has_atapi_AN(id
) &&
2455 (!ap
->nr_pmp_links
||
2456 sata_scr_read(&ap
->link
, SCR_NOTIFICATION
, &sntf
) == 0)) {
2457 unsigned int err_mask
;
2459 /* issue SET feature command to turn this on */
2460 err_mask
= ata_dev_set_feature(dev
,
2461 SETFEATURES_SATA_ENABLE
, SATA_AN
);
2463 ata_dev_printk(dev
, KERN_ERR
,
2464 "failed to enable ATAPI AN "
2465 "(err_mask=0x%x)\n", err_mask
);
2467 dev
->flags
|= ATA_DFLAG_AN
;
2468 atapi_an_string
= ", ATAPI AN";
2472 if (ata_id_cdb_intr(dev
->id
)) {
2473 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
2474 cdb_intr_string
= ", CDB intr";
2477 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
2479 if (atapi_dmadir
|| atapi_id_dmadir(dev
->id
)) {
2480 dev
->flags
|= ATA_DFLAG_DMADIR
;
2481 dma_dir_string
= ", DMADIR";
2484 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
2485 /* print device info to dmesg */
2486 if (ata_msg_drv(ap
) && print_info
)
2487 ata_dev_printk(dev
, KERN_INFO
,
2488 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
2489 "ATAPI: %s, %s, max %s%s%s\n",
2491 "ATAPI: %s, %s, max %s%s%s%s\n",
2492 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
2494 ata_mode_string(xfer_mask
),
2495 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
2496 cdb_intr_string
, atapi_an_string
);
2498 cdb_intr_string
, atapi_an_string
,
2500 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
2503 /* determine max_sectors */
2504 dev
->max_sectors
= ATA_MAX_SECTORS
;
2505 if (dev
->flags
& ATA_DFLAG_LBA48
)
2506 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2508 if (!(dev
->horkage
& ATA_HORKAGE_IPM
)) {
2509 if (ata_id_has_hipm(dev
->id
))
2510 dev
->flags
|= ATA_DFLAG_HIPM
;
2511 if (ata_id_has_dipm(dev
->id
))
2512 dev
->flags
|= ATA_DFLAG_DIPM
;
2515 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2517 if (ata_dev_knobble(dev
)) {
2518 if (ata_msg_drv(ap
) && print_info
)
2519 ata_dev_printk(dev
, KERN_INFO
,
2520 "applying bridge limits\n");
2521 dev
->udma_mask
&= ATA_UDMA5
;
2522 dev
->max_sectors
= ATA_MAX_SECTORS
;
2525 if ((dev
->class == ATA_DEV_ATAPI
) &&
2526 (atapi_command_packet_set(id
) == TYPE_TAPE
)) {
2527 dev
->max_sectors
= ATA_MAX_SECTORS_TAPE
;
2528 dev
->horkage
|= ATA_HORKAGE_STUCK_ERR
;
2531 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_128
)
2532 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2535 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_IPM
) {
2536 dev
->horkage
|= ATA_HORKAGE_IPM
;
2538 /* reset link pm_policy for this port to no pm */
2539 ap
->pm_policy
= MAX_PERFORMANCE
;
2542 if (ap
->ops
->dev_config
)
2543 ap
->ops
->dev_config(dev
);
2545 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2546 /* Let the user know. We don't want to disallow opens for
2547 rescue purposes, or in case the vendor is just a blithering
2548 idiot. Do this after the dev_config call as some controllers
2549 with buggy firmware may want to avoid reporting false device
2553 ata_dev_printk(dev
, KERN_WARNING
,
2554 "Drive reports diagnostics failure. This may indicate a drive\n");
2555 ata_dev_printk(dev
, KERN_WARNING
,
2556 "fault or invalid emulation. Contact drive vendor for information.\n");
2560 if (ata_msg_probe(ap
))
2561 ata_dev_printk(dev
, KERN_DEBUG
, "%s: EXIT, drv_stat = 0x%x\n",
2562 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
2563 __FUNCTION__
, ata_chk_status(ap
));
2565 __func__
, ata_chk_status(ap
));
2566 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
2570 if (ata_msg_probe(ap
))
2571 ata_dev_printk(dev
, KERN_DEBUG
,
2572 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
2573 "%s: EXIT, err\n", __FUNCTION__
);
2575 "%s: EXIT, err\n", __func__
);
2576 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
2581 * ata_cable_40wire - return 40 wire cable type
2584 * Helper method for drivers which want to hardwire 40 wire cable
2588 int ata_cable_40wire(struct ata_port
*ap
)
2590 return ATA_CBL_PATA40
;
2594 * ata_cable_80wire - return 80 wire cable type
2597 * Helper method for drivers which want to hardwire 80 wire cable
2601 int ata_cable_80wire(struct ata_port
*ap
)
2603 return ATA_CBL_PATA80
;
2607 * ata_cable_unknown - return unknown PATA cable.
2610 * Helper method for drivers which have no PATA cable detection.
2613 int ata_cable_unknown(struct ata_port
*ap
)
2615 return ATA_CBL_PATA_UNK
;
2619 * ata_cable_ignore - return ignored PATA cable.
2622 * Helper method for drivers which don't use cable type to limit
2625 int ata_cable_ignore(struct ata_port
*ap
)
2627 return ATA_CBL_PATA_IGN
;
2631 * ata_cable_sata - return SATA cable type
2634 * Helper method for drivers which have SATA cables
2637 int ata_cable_sata(struct ata_port
*ap
)
2639 return ATA_CBL_SATA
;
2643 * ata_bus_probe - Reset and probe ATA bus
2646 * Master ATA bus probing function. Initiates a hardware-dependent
2647 * bus reset, then attempts to identify any devices found on
2651 * PCI/etc. bus probe sem.
2654 * Zero on success, negative errno otherwise.
2657 int ata_bus_probe(struct ata_port
*ap
)
2659 unsigned int classes
[ATA_MAX_DEVICES
];
2660 int tries
[ATA_MAX_DEVICES
];
2662 struct ata_device
*dev
;
2666 ata_link_for_each_dev(dev
, &ap
->link
)
2667 tries
[dev
->devno
] = ATA_PROBE_MAX_TRIES
;
2670 ata_link_for_each_dev(dev
, &ap
->link
) {
2671 /* If we issue an SRST then an ATA drive (not ATAPI)
2672 * may change configuration and be in PIO0 timing. If
2673 * we do a hard reset (or are coming from power on)
2674 * this is true for ATA or ATAPI. Until we've set a
2675 * suitable controller mode we should not touch the
2676 * bus as we may be talking too fast.
2678 dev
->pio_mode
= XFER_PIO_0
;
2680 /* If the controller has a pio mode setup function
2681 * then use it to set the chipset to rights. Don't
2682 * touch the DMA setup as that will be dealt with when
2683 * configuring devices.
2685 if (ap
->ops
->set_piomode
)
2686 ap
->ops
->set_piomode(ap
, dev
);
2689 /* reset and determine device classes */
2690 ap
->ops
->phy_reset(ap
);
2692 ata_link_for_each_dev(dev
, &ap
->link
) {
2693 if (!(ap
->flags
& ATA_FLAG_DISABLED
) &&
2694 dev
->class != ATA_DEV_UNKNOWN
)
2695 classes
[dev
->devno
] = dev
->class;
2697 classes
[dev
->devno
] = ATA_DEV_NONE
;
2699 dev
->class = ATA_DEV_UNKNOWN
;
2704 /* read IDENTIFY page and configure devices. We have to do the identify
2705 specific sequence bass-ackwards so that PDIAG- is released by
2708 ata_link_for_each_dev(dev
, &ap
->link
) {
2709 if (tries
[dev
->devno
])
2710 dev
->class = classes
[dev
->devno
];
2712 if (!ata_dev_enabled(dev
))
2715 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2721 /* Now ask for the cable type as PDIAG- should have been released */
2722 if (ap
->ops
->cable_detect
)
2723 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2725 /* We may have SATA bridge glue hiding here irrespective of the
2726 reported cable types and sensed types */
2727 ata_link_for_each_dev(dev
, &ap
->link
) {
2728 if (!ata_dev_enabled(dev
))
2730 /* SATA drives indicate we have a bridge. We don't know which
2731 end of the link the bridge is which is a problem */
2732 if (ata_id_is_sata(dev
->id
))
2733 ap
->cbl
= ATA_CBL_SATA
;
2736 /* After the identify sequence we can now set up the devices. We do
2737 this in the normal order so that the user doesn't get confused */
2739 ata_link_for_each_dev(dev
, &ap
->link
) {
2740 if (!ata_dev_enabled(dev
))
2743 ap
->link
.eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2744 rc
= ata_dev_configure(dev
);
2745 ap
->link
.eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2750 /* configure transfer mode */
2751 rc
= ata_set_mode(&ap
->link
, &dev
);
2755 ata_link_for_each_dev(dev
, &ap
->link
)
2756 if (ata_dev_enabled(dev
))
2759 /* no device present, disable port */
2760 ata_port_disable(ap
);
2764 tries
[dev
->devno
]--;
2768 /* eeek, something went very wrong, give up */
2769 tries
[dev
->devno
] = 0;
2773 /* give it just one more chance */
2774 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2776 if (tries
[dev
->devno
] == 1) {
2777 /* This is the last chance, better to slow
2778 * down than lose it.
2780 sata_down_spd_limit(&ap
->link
);
2781 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2785 if (!tries
[dev
->devno
])
2786 ata_dev_disable(dev
);
2792 * ata_port_probe - Mark port as enabled
2793 * @ap: Port for which we indicate enablement
2795 * Modify @ap data structure such that the system
2796 * thinks that the entire port is enabled.
2798 * LOCKING: host lock, or some other form of
2802 void ata_port_probe(struct ata_port
*ap
)
2804 ap
->flags
&= ~ATA_FLAG_DISABLED
;
2808 * sata_print_link_status - Print SATA link status
2809 * @link: SATA link to printk link status about
2811 * This function prints link speed and status of a SATA link.
2816 void sata_print_link_status(struct ata_link
*link
)
2818 u32 sstatus
, scontrol
, tmp
;
2820 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
))
2822 sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
2824 if (ata_link_online(link
)) {
2825 tmp
= (sstatus
>> 4) & 0xf;
2826 ata_link_printk(link
, KERN_INFO
,
2827 "SATA link up %s (SStatus %X SControl %X)\n",
2828 sata_spd_string(tmp
), sstatus
, scontrol
);
2830 ata_link_printk(link
, KERN_INFO
,
2831 "SATA link down (SStatus %X SControl %X)\n",
2837 * ata_dev_pair - return other device on cable
2840 * Obtain the other device on the same cable, or if none is
2841 * present NULL is returned
2844 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2846 struct ata_link
*link
= adev
->link
;
2847 struct ata_device
*pair
= &link
->device
[1 - adev
->devno
];
2848 if (!ata_dev_enabled(pair
))
2854 * ata_port_disable - Disable port.
2855 * @ap: Port to be disabled.
2857 * Modify @ap data structure such that the system
2858 * thinks that the entire port is disabled, and should
2859 * never attempt to probe or communicate with devices
2862 * LOCKING: host lock, or some other form of
2866 void ata_port_disable(struct ata_port
*ap
)
2868 ap
->link
.device
[0].class = ATA_DEV_NONE
;
2869 ap
->link
.device
[1].class = ATA_DEV_NONE
;
2870 ap
->flags
|= ATA_FLAG_DISABLED
;
2874 * sata_down_spd_limit - adjust SATA spd limit downward
2875 * @link: Link to adjust SATA spd limit for
2877 * Adjust SATA spd limit of @link downward. Note that this
2878 * function only adjusts the limit. The change must be applied
2879 * using sata_set_spd().
2882 * Inherited from caller.
2885 * 0 on success, negative errno on failure
2887 int sata_down_spd_limit(struct ata_link
*link
)
2889 u32 sstatus
, spd
, mask
;
2892 if (!sata_scr_valid(link
))
2895 /* If SCR can be read, use it to determine the current SPD.
2896 * If not, use cached value in link->sata_spd.
2898 rc
= sata_scr_read(link
, SCR_STATUS
, &sstatus
);
2900 spd
= (sstatus
>> 4) & 0xf;
2902 spd
= link
->sata_spd
;
2904 mask
= link
->sata_spd_limit
;
2908 /* unconditionally mask off the highest bit */
2909 highbit
= fls(mask
) - 1;
2910 mask
&= ~(1 << highbit
);
2912 /* Mask off all speeds higher than or equal to the current
2913 * one. Force 1.5Gbps if current SPD is not available.
2916 mask
&= (1 << (spd
- 1)) - 1;
2920 /* were we already at the bottom? */
2924 link
->sata_spd_limit
= mask
;
2926 ata_link_printk(link
, KERN_WARNING
, "limiting SATA link speed to %s\n",
2927 sata_spd_string(fls(mask
)));
2932 static int __sata_set_spd_needed(struct ata_link
*link
, u32
*scontrol
)
2934 struct ata_link
*host_link
= &link
->ap
->link
;
2935 u32 limit
, target
, spd
;
2937 limit
= link
->sata_spd_limit
;
2939 /* Don't configure downstream link faster than upstream link.
2940 * It doesn't speed up anything and some PMPs choke on such
2943 if (!ata_is_host_link(link
) && host_link
->sata_spd
)
2944 limit
&= (1 << host_link
->sata_spd
) - 1;
2946 if (limit
== UINT_MAX
)
2949 target
= fls(limit
);
2951 spd
= (*scontrol
>> 4) & 0xf;
2952 *scontrol
= (*scontrol
& ~0xf0) | ((target
& 0xf) << 4);
2954 return spd
!= target
;
2958 * sata_set_spd_needed - is SATA spd configuration needed
2959 * @link: Link in question
2961 * Test whether the spd limit in SControl matches
2962 * @link->sata_spd_limit. This function is used to determine
2963 * whether hardreset is necessary to apply SATA spd
2967 * Inherited from caller.
2970 * 1 if SATA spd configuration is needed, 0 otherwise.
2972 int sata_set_spd_needed(struct ata_link
*link
)
2976 if (sata_scr_read(link
, SCR_CONTROL
, &scontrol
))
2979 return __sata_set_spd_needed(link
, &scontrol
);
2983 * sata_set_spd - set SATA spd according to spd limit
2984 * @link: Link to set SATA spd for
2986 * Set SATA spd of @link according to sata_spd_limit.
2989 * Inherited from caller.
2992 * 0 if spd doesn't need to be changed, 1 if spd has been
2993 * changed. Negative errno if SCR registers are inaccessible.
2995 int sata_set_spd(struct ata_link
*link
)
3000 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3003 if (!__sata_set_spd_needed(link
, &scontrol
))
3006 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3013 * This mode timing computation functionality is ported over from
3014 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3017 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3018 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3019 * for UDMA6, which is currently supported only by Maxtor drives.
3021 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3024 static const struct ata_timing ata_timing
[] = {
3025 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
3026 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
3027 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
3028 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
3029 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
3030 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
3031 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 100, 0 },
3032 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 80, 0 },
3034 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
3035 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
3036 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
3038 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
3039 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
3040 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
3041 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 100, 0 },
3042 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 80, 0 },
3044 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3045 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
3046 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
3047 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
3048 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
3049 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
3050 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
3051 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
3056 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3057 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3059 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
3061 q
->setup
= EZ(t
->setup
* 1000, T
);
3062 q
->act8b
= EZ(t
->act8b
* 1000, T
);
3063 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
3064 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
3065 q
->active
= EZ(t
->active
* 1000, T
);
3066 q
->recover
= EZ(t
->recover
* 1000, T
);
3067 q
->cycle
= EZ(t
->cycle
* 1000, T
);
3068 q
->udma
= EZ(t
->udma
* 1000, UT
);
3071 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
3072 struct ata_timing
*m
, unsigned int what
)
3074 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
3075 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
3076 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
3077 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
3078 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
3079 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
3080 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
3081 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
3084 const struct ata_timing
*ata_timing_find_mode(u8 xfer_mode
)
3086 const struct ata_timing
*t
= ata_timing
;
3088 while (xfer_mode
> t
->mode
)
3091 if (xfer_mode
== t
->mode
)
3096 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
3097 struct ata_timing
*t
, int T
, int UT
)
3099 const struct ata_timing
*s
;
3100 struct ata_timing p
;
3106 if (!(s
= ata_timing_find_mode(speed
)))
3109 memcpy(t
, s
, sizeof(*s
));
3112 * If the drive is an EIDE drive, it can tell us it needs extended
3113 * PIO/MW_DMA cycle timing.
3116 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
3117 memset(&p
, 0, sizeof(p
));
3118 if (speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
3119 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
3120 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
3121 } else if (speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
3122 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
3124 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
3128 * Convert the timing to bus clock counts.
3131 ata_timing_quantize(t
, t
, T
, UT
);
3134 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3135 * S.M.A.R.T * and some other commands. We have to ensure that the
3136 * DMA cycle timing is slower/equal than the fastest PIO timing.
3139 if (speed
> XFER_PIO_6
) {
3140 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
3141 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
3145 * Lengthen active & recovery time so that cycle time is correct.
3148 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
3149 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
3150 t
->rec8b
= t
->cyc8b
- t
->act8b
;
3153 if (t
->active
+ t
->recover
< t
->cycle
) {
3154 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
3155 t
->recover
= t
->cycle
- t
->active
;
3158 /* In a few cases quantisation may produce enough errors to
3159 leave t->cycle too low for the sum of active and recovery
3160 if so we must correct this */
3161 if (t
->active
+ t
->recover
> t
->cycle
)
3162 t
->cycle
= t
->active
+ t
->recover
;
3168 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3169 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3170 * @cycle: cycle duration in ns
3172 * Return matching xfer mode for @cycle. The returned mode is of
3173 * the transfer type specified by @xfer_shift. If @cycle is too
3174 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3175 * than the fastest known mode, the fasted mode is returned.
3181 * Matching xfer_mode, 0xff if no match found.
3183 u8
ata_timing_cycle2mode(unsigned int xfer_shift
, int cycle
)
3185 u8 base_mode
= 0xff, last_mode
= 0xff;
3186 const struct ata_xfer_ent
*ent
;
3187 const struct ata_timing
*t
;
3189 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
3190 if (ent
->shift
== xfer_shift
)
3191 base_mode
= ent
->base
;
3193 for (t
= ata_timing_find_mode(base_mode
);
3194 t
&& ata_xfer_mode2shift(t
->mode
) == xfer_shift
; t
++) {
3195 unsigned short this_cycle
;
3197 switch (xfer_shift
) {
3199 case ATA_SHIFT_MWDMA
:
3200 this_cycle
= t
->cycle
;
3202 case ATA_SHIFT_UDMA
:
3203 this_cycle
= t
->udma
;
3209 if (cycle
> this_cycle
)
3212 last_mode
= t
->mode
;
3219 * ata_down_xfermask_limit - adjust dev xfer masks downward
3220 * @dev: Device to adjust xfer masks
3221 * @sel: ATA_DNXFER_* selector
3223 * Adjust xfer masks of @dev downward. Note that this function
3224 * does not apply the change. Invoking ata_set_mode() afterwards
3225 * will apply the limit.
3228 * Inherited from caller.
3231 * 0 on success, negative errno on failure
3233 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
3236 unsigned long orig_mask
, xfer_mask
;
3237 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
3240 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
3241 sel
&= ~ATA_DNXFER_QUIET
;
3243 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
3246 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
3249 case ATA_DNXFER_PIO
:
3250 highbit
= fls(pio_mask
) - 1;
3251 pio_mask
&= ~(1 << highbit
);
3254 case ATA_DNXFER_DMA
:
3256 highbit
= fls(udma_mask
) - 1;
3257 udma_mask
&= ~(1 << highbit
);
3260 } else if (mwdma_mask
) {
3261 highbit
= fls(mwdma_mask
) - 1;
3262 mwdma_mask
&= ~(1 << highbit
);
3268 case ATA_DNXFER_40C
:
3269 udma_mask
&= ATA_UDMA_MASK_40C
;
3272 case ATA_DNXFER_FORCE_PIO0
:
3274 case ATA_DNXFER_FORCE_PIO
:
3283 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
3285 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
3289 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
3290 snprintf(buf
, sizeof(buf
), "%s:%s",
3291 ata_mode_string(xfer_mask
),
3292 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
3294 snprintf(buf
, sizeof(buf
), "%s",
3295 ata_mode_string(xfer_mask
));
3297 ata_dev_printk(dev
, KERN_WARNING
,
3298 "limiting speed to %s\n", buf
);
3301 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
3307 static int ata_dev_set_mode(struct ata_device
*dev
)
3309 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
3310 const char *dev_err_whine
= "";
3311 int ign_dev_err
= 0;
3312 unsigned int err_mask
;
3315 dev
->flags
&= ~ATA_DFLAG_PIO
;
3316 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
3317 dev
->flags
|= ATA_DFLAG_PIO
;
3319 err_mask
= ata_dev_set_xfermode(dev
);
3321 if (err_mask
& ~AC_ERR_DEV
)
3325 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
3326 rc
= ata_dev_revalidate(dev
, ATA_DEV_UNKNOWN
, 0);
3327 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
3331 /* Old CFA may refuse this command, which is just fine */
3332 if (dev
->xfer_shift
== ATA_SHIFT_PIO
&& ata_id_is_cfa(dev
->id
))
3335 /* Some very old devices and some bad newer ones fail any kind of
3336 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3337 if (dev
->xfer_shift
== ATA_SHIFT_PIO
&& !ata_id_has_iordy(dev
->id
) &&
3338 dev
->pio_mode
<= XFER_PIO_2
)
3341 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3342 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3343 if (dev
->xfer_shift
== ATA_SHIFT_MWDMA
&&
3344 dev
->dma_mode
== XFER_MW_DMA_0
&&
3345 (dev
->id
[63] >> 8) & 1)
3348 /* if the device is actually configured correctly, ignore dev err */
3349 if (dev
->xfer_mode
== ata_xfer_mask2mode(ata_id_xfermask(dev
->id
)))
3352 if (err_mask
& AC_ERR_DEV
) {
3356 dev_err_whine
= " (device error ignored)";
3359 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3360 dev
->xfer_shift
, (int)dev
->xfer_mode
);
3362 ata_dev_printk(dev
, KERN_INFO
, "configured for %s%s\n",
3363 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)),
3369 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
3370 "(err_mask=0x%x)\n", err_mask
);
3375 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3376 * @link: link on which timings will be programmed
3377 * @r_failed_dev: out parameter for failed device
3379 * Standard implementation of the function used to tune and set
3380 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3381 * ata_dev_set_mode() fails, pointer to the failing device is
3382 * returned in @r_failed_dev.
3385 * PCI/etc. bus probe sem.
3388 * 0 on success, negative errno otherwise
3391 int ata_do_set_mode(struct ata_link
*link
, struct ata_device
**r_failed_dev
)
3393 struct ata_port
*ap
= link
->ap
;
3394 struct ata_device
*dev
;
3395 int rc
= 0, used_dma
= 0, found
= 0;
3397 /* step 1: calculate xfer_mask */
3398 ata_link_for_each_dev(dev
, link
) {
3399 unsigned long pio_mask
, dma_mask
;
3400 unsigned int mode_mask
;
3402 if (!ata_dev_enabled(dev
))
3405 mode_mask
= ATA_DMA_MASK_ATA
;
3406 if (dev
->class == ATA_DEV_ATAPI
)
3407 mode_mask
= ATA_DMA_MASK_ATAPI
;
3408 else if (ata_id_is_cfa(dev
->id
))
3409 mode_mask
= ATA_DMA_MASK_CFA
;
3411 ata_dev_xfermask(dev
);
3412 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
3414 ata_force_xfermask(dev
);
3415 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
3417 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
3418 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3420 if (libata_dma_mask
& mode_mask
)
3421 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3425 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
3426 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
3429 if (dev
->dma_mode
!= 0xff)
3435 /* step 2: always set host PIO timings */
3436 ata_link_for_each_dev(dev
, link
) {
3437 if (!ata_dev_enabled(dev
))
3440 if (dev
->pio_mode
== 0xff) {
3441 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
3446 dev
->xfer_mode
= dev
->pio_mode
;
3447 dev
->xfer_shift
= ATA_SHIFT_PIO
;
3448 if (ap
->ops
->set_piomode
)
3449 ap
->ops
->set_piomode(ap
, dev
);
3452 /* step 3: set host DMA timings */
3453 ata_link_for_each_dev(dev
, link
) {
3454 if (!ata_dev_enabled(dev
) || dev
->dma_mode
== 0xff)
3457 dev
->xfer_mode
= dev
->dma_mode
;
3458 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
3459 if (ap
->ops
->set_dmamode
)
3460 ap
->ops
->set_dmamode(ap
, dev
);
3463 /* step 4: update devices' xfer mode */
3464 ata_link_for_each_dev(dev
, link
) {
3465 /* don't update suspended devices' xfer mode */
3466 if (!ata_dev_enabled(dev
))
3469 rc
= ata_dev_set_mode(dev
);
3474 /* Record simplex status. If we selected DMA then the other
3475 * host channels are not permitted to do so.
3477 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
3478 ap
->host
->simplex_claimed
= ap
;
3482 *r_failed_dev
= dev
;
3487 * ata_tf_to_host - issue ATA taskfile to host controller
3488 * @ap: port to which command is being issued
3489 * @tf: ATA taskfile register set
3491 * Issues ATA taskfile register set to ATA host controller,
3492 * with proper synchronization with interrupt handler and
3496 * spin_lock_irqsave(host lock)
3499 static inline void ata_tf_to_host(struct ata_port
*ap
,
3500 const struct ata_taskfile
*tf
)
3502 ap
->ops
->tf_load(ap
, tf
);
3503 ap
->ops
->exec_command(ap
, tf
);
3507 * ata_busy_sleep - sleep until BSY clears, or timeout
3508 * @ap: port containing status register to be polled
3509 * @tmout_pat: impatience timeout
3510 * @tmout: overall timeout
3512 * Sleep until ATA Status register bit BSY clears,
3513 * or a timeout occurs.
3516 * Kernel thread context (may sleep).
3519 * 0 on success, -errno otherwise.
3521 int ata_busy_sleep(struct ata_port
*ap
,
3522 unsigned long tmout_pat
, unsigned long tmout
)
3524 unsigned long timer_start
, timeout
;
3527 status
= ata_busy_wait(ap
, ATA_BUSY
, 300);
3528 timer_start
= jiffies
;
3529 timeout
= timer_start
+ tmout_pat
;
3530 while (status
!= 0xff && (status
& ATA_BUSY
) &&
3531 time_before(jiffies
, timeout
)) {
3533 status
= ata_busy_wait(ap
, ATA_BUSY
, 3);
3536 if (status
!= 0xff && (status
& ATA_BUSY
))
3537 ata_port_printk(ap
, KERN_WARNING
,
3538 "port is slow to respond, please be patient "
3539 "(Status 0x%x)\n", status
);
3541 timeout
= timer_start
+ tmout
;
3542 while (status
!= 0xff && (status
& ATA_BUSY
) &&
3543 time_before(jiffies
, timeout
)) {
3545 status
= ata_chk_status(ap
);
3551 if (status
& ATA_BUSY
) {
3552 ata_port_printk(ap
, KERN_ERR
, "port failed to respond "
3553 "(%lu secs, Status 0x%x)\n",
3554 tmout
/ HZ
, status
);
3562 * ata_wait_after_reset - wait before checking status after reset
3563 * @ap: port containing status register to be polled
3564 * @deadline: deadline jiffies for the operation
3566 * After reset, we need to pause a while before reading status.
3567 * Also, certain combination of controller and device report 0xff
3568 * for some duration (e.g. until SATA PHY is up and running)
3569 * which is interpreted as empty port in ATA world. This
3570 * function also waits for such devices to get out of 0xff
3574 * Kernel thread context (may sleep).
3576 void ata_wait_after_reset(struct ata_port
*ap
, unsigned long deadline
)
3578 unsigned long until
= jiffies
+ ATA_TMOUT_FF_WAIT
;
3580 if (time_before(until
, deadline
))
3583 /* Spec mandates ">= 2ms" before checking status. We wait
3584 * 150ms, because that was the magic delay used for ATAPI
3585 * devices in Hale Landis's ATADRVR, for the period of time
3586 * between when the ATA command register is written, and then
3587 * status is checked. Because waiting for "a while" before
3588 * checking status is fine, post SRST, we perform this magic
3589 * delay here as well.
3591 * Old drivers/ide uses the 2mS rule and then waits for ready.
3595 /* Wait for 0xff to clear. Some SATA devices take a long time
3596 * to clear 0xff after reset. For example, HHD424020F7SV00
3597 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3600 * Note that some PATA controllers (pata_ali) explode if
3601 * status register is read more than once when there's no
3604 if (ap
->flags
& ATA_FLAG_SATA
) {
3606 u8 status
= ata_chk_status(ap
);
3608 if (status
!= 0xff || time_after(jiffies
, deadline
))
3617 * ata_wait_ready - sleep until BSY clears, or timeout
3618 * @ap: port containing status register to be polled
3619 * @deadline: deadline jiffies for the operation
3621 * Sleep until ATA Status register bit BSY clears, or timeout
3625 * Kernel thread context (may sleep).
3628 * 0 on success, -errno otherwise.
3630 int ata_wait_ready(struct ata_port
*ap
, unsigned long deadline
)
3632 unsigned long start
= jiffies
;
3636 u8 status
= ata_chk_status(ap
);
3637 unsigned long now
= jiffies
;
3639 if (!(status
& ATA_BUSY
))
3641 if (!ata_link_online(&ap
->link
) && status
== 0xff)
3643 if (time_after(now
, deadline
))
3646 if (!warned
&& time_after(now
, start
+ 5 * HZ
) &&
3647 (deadline
- now
> 3 * HZ
)) {
3648 ata_port_printk(ap
, KERN_WARNING
,
3649 "port is slow to respond, please be patient "
3650 "(Status 0x%x)\n", status
);
3658 static int ata_bus_post_reset(struct ata_port
*ap
, unsigned int devmask
,
3659 unsigned long deadline
)
3661 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3662 unsigned int dev0
= devmask
& (1 << 0);
3663 unsigned int dev1
= devmask
& (1 << 1);
3666 /* if device 0 was found in ata_devchk, wait for its
3670 rc
= ata_wait_ready(ap
, deadline
);
3678 /* if device 1 was found in ata_devchk, wait for register
3679 * access briefly, then wait for BSY to clear.
3684 ap
->ops
->dev_select(ap
, 1);
3686 /* Wait for register access. Some ATAPI devices fail
3687 * to set nsect/lbal after reset, so don't waste too
3688 * much time on it. We're gonna wait for !BSY anyway.
3690 for (i
= 0; i
< 2; i
++) {
3693 nsect
= ioread8(ioaddr
->nsect_addr
);
3694 lbal
= ioread8(ioaddr
->lbal_addr
);
3695 if ((nsect
== 1) && (lbal
== 1))
3697 msleep(50); /* give drive a breather */
3700 rc
= ata_wait_ready(ap
, deadline
);
3708 /* is all this really necessary? */
3709 ap
->ops
->dev_select(ap
, 0);
3711 ap
->ops
->dev_select(ap
, 1);
3713 ap
->ops
->dev_select(ap
, 0);
3718 static int ata_bus_softreset(struct ata_port
*ap
, unsigned int devmask
,
3719 unsigned long deadline
)
3721 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3723 DPRINTK("ata%u: bus reset via SRST\n", ap
->print_id
);
3725 /* software reset. causes dev0 to be selected */
3726 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3727 udelay(20); /* FIXME: flush */
3728 iowrite8(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
3729 udelay(20); /* FIXME: flush */
3730 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3732 /* wait a while before checking status */
3733 ata_wait_after_reset(ap
, deadline
);
3735 /* Before we perform post reset processing we want to see if
3736 * the bus shows 0xFF because the odd clown forgets the D7
3737 * pulldown resistor.
3739 if (ata_chk_status(ap
) == 0xFF)
3742 return ata_bus_post_reset(ap
, devmask
, deadline
);
3746 * ata_bus_reset - reset host port and associated ATA channel
3747 * @ap: port to reset
3749 * This is typically the first time we actually start issuing
3750 * commands to the ATA channel. We wait for BSY to clear, then
3751 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3752 * result. Determine what devices, if any, are on the channel
3753 * by looking at the device 0/1 error register. Look at the signature
3754 * stored in each device's taskfile registers, to determine if
3755 * the device is ATA or ATAPI.
3758 * PCI/etc. bus probe sem.
3759 * Obtains host lock.
3762 * Sets ATA_FLAG_DISABLED if bus reset fails.
3765 void ata_bus_reset(struct ata_port
*ap
)
3767 struct ata_device
*device
= ap
->link
.device
;
3768 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
3769 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
3771 unsigned int dev0
, dev1
= 0, devmask
= 0;
3774 DPRINTK("ENTER, host %u, port %u\n", ap
->print_id
, ap
->port_no
);
3776 /* determine if device 0/1 are present */
3777 if (ap
->flags
& ATA_FLAG_SATA_RESET
)
3780 dev0
= ata_devchk(ap
, 0);
3782 dev1
= ata_devchk(ap
, 1);
3786 devmask
|= (1 << 0);
3788 devmask
|= (1 << 1);
3790 /* select device 0 again */
3791 ap
->ops
->dev_select(ap
, 0);
3793 /* issue bus reset */
3794 if (ap
->flags
& ATA_FLAG_SRST
) {
3795 rc
= ata_bus_softreset(ap
, devmask
, jiffies
+ 40 * HZ
);
3796 if (rc
&& rc
!= -ENODEV
)
3801 * determine by signature whether we have ATA or ATAPI devices
3803 device
[0].class = ata_dev_try_classify(&device
[0], dev0
, &err
);
3804 if ((slave_possible
) && (err
!= 0x81))
3805 device
[1].class = ata_dev_try_classify(&device
[1], dev1
, &err
);
3807 /* is double-select really necessary? */
3808 if (device
[1].class != ATA_DEV_NONE
)
3809 ap
->ops
->dev_select(ap
, 1);
3810 if (device
[0].class != ATA_DEV_NONE
)
3811 ap
->ops
->dev_select(ap
, 0);
3813 /* if no devices were detected, disable this port */
3814 if ((device
[0].class == ATA_DEV_NONE
) &&
3815 (device
[1].class == ATA_DEV_NONE
))
3818 if (ap
->flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
)) {
3819 /* set up device control for ATA_FLAG_SATA_RESET */
3820 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
3827 ata_port_printk(ap
, KERN_ERR
, "disabling port\n");
3828 ata_port_disable(ap
);
3834 * sata_link_debounce - debounce SATA phy status
3835 * @link: ATA link to debounce SATA phy status for
3836 * @params: timing parameters { interval, duratinon, timeout } in msec
3837 * @deadline: deadline jiffies for the operation
3839 * Make sure SStatus of @link reaches stable state, determined by
3840 * holding the same value where DET is not 1 for @duration polled
3841 * every @interval, before @timeout. Timeout constraints the
3842 * beginning of the stable state. Because DET gets stuck at 1 on
3843 * some controllers after hot unplugging, this functions waits
3844 * until timeout then returns 0 if DET is stable at 1.
3846 * @timeout is further limited by @deadline. The sooner of the
3850 * Kernel thread context (may sleep)
3853 * 0 on success, -errno on failure.
3855 int sata_link_debounce(struct ata_link
*link
, const unsigned long *params
,
3856 unsigned long deadline
)
3858 unsigned long interval_msec
= params
[0];
3859 unsigned long duration
= msecs_to_jiffies(params
[1]);
3860 unsigned long last_jiffies
, t
;
3864 t
= jiffies
+ msecs_to_jiffies(params
[2]);
3865 if (time_before(t
, deadline
))
3868 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3873 last_jiffies
= jiffies
;
3876 msleep(interval_msec
);
3877 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3883 if (cur
== 1 && time_before(jiffies
, deadline
))
3885 if (time_after(jiffies
, last_jiffies
+ duration
))
3890 /* unstable, start over */
3892 last_jiffies
= jiffies
;
3894 /* Check deadline. If debouncing failed, return
3895 * -EPIPE to tell upper layer to lower link speed.
3897 if (time_after(jiffies
, deadline
))
3903 * sata_link_resume - resume SATA link
3904 * @link: ATA link to resume SATA
3905 * @params: timing parameters { interval, duratinon, timeout } in msec
3906 * @deadline: deadline jiffies for the operation
3908 * Resume SATA phy @link and debounce it.
3911 * Kernel thread context (may sleep)
3914 * 0 on success, -errno on failure.
3916 int sata_link_resume(struct ata_link
*link
, const unsigned long *params
,
3917 unsigned long deadline
)
3922 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3925 scontrol
= (scontrol
& 0x0f0) | 0x300;
3927 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3930 /* Some PHYs react badly if SStatus is pounded immediately
3931 * after resuming. Delay 200ms before debouncing.
3935 return sata_link_debounce(link
, params
, deadline
);
3939 * ata_std_prereset - prepare for reset
3940 * @link: ATA link to be reset
3941 * @deadline: deadline jiffies for the operation
3943 * @link is about to be reset. Initialize it. Failure from
3944 * prereset makes libata abort whole reset sequence and give up
3945 * that port, so prereset should be best-effort. It does its
3946 * best to prepare for reset sequence but if things go wrong, it
3947 * should just whine, not fail.
3950 * Kernel thread context (may sleep)
3953 * 0 on success, -errno otherwise.
3955 int ata_std_prereset(struct ata_link
*link
, unsigned long deadline
)
3957 struct ata_port
*ap
= link
->ap
;
3958 struct ata_eh_context
*ehc
= &link
->eh_context
;
3959 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
3962 /* handle link resume */
3963 if ((ehc
->i
.flags
& ATA_EHI_RESUME_LINK
) &&
3964 (link
->flags
& ATA_LFLAG_HRST_TO_RESUME
))
3965 ehc
->i
.action
|= ATA_EH_HARDRESET
;
3967 /* Some PMPs don't work with only SRST, force hardreset if PMP
3970 if (ap
->flags
& ATA_FLAG_PMP
)
3971 ehc
->i
.action
|= ATA_EH_HARDRESET
;
3973 /* if we're about to do hardreset, nothing more to do */
3974 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
3977 /* if SATA, resume link */
3978 if (ap
->flags
& ATA_FLAG_SATA
) {
3979 rc
= sata_link_resume(link
, timing
, deadline
);
3980 /* whine about phy resume failure but proceed */
3981 if (rc
&& rc
!= -EOPNOTSUPP
)
3982 ata_link_printk(link
, KERN_WARNING
, "failed to resume "
3983 "link for reset (errno=%d)\n", rc
);
3986 /* Wait for !BSY if the controller can wait for the first D2H
3987 * Reg FIS and we don't know that no device is attached.
3989 if (!(link
->flags
& ATA_LFLAG_SKIP_D2H_BSY
) && !ata_link_offline(link
)) {
3990 rc
= ata_wait_ready(ap
, deadline
);
3991 if (rc
&& rc
!= -ENODEV
) {
3992 ata_link_printk(link
, KERN_WARNING
, "device not ready "
3993 "(errno=%d), forcing hardreset\n", rc
);
3994 ehc
->i
.action
|= ATA_EH_HARDRESET
;
4002 * ata_std_softreset - reset host port via ATA SRST
4003 * @link: ATA link to reset
4004 * @classes: resulting classes of attached devices
4005 * @deadline: deadline jiffies for the operation
4007 * Reset host port using ATA SRST.
4010 * Kernel thread context (may sleep)
4013 * 0 on success, -errno otherwise.
4015 int ata_std_softreset(struct ata_link
*link
, unsigned int *classes
,
4016 unsigned long deadline
)
4018 struct ata_port
*ap
= link
->ap
;
4019 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
4020 unsigned int devmask
= 0;
4026 if (ata_link_offline(link
)) {
4027 classes
[0] = ATA_DEV_NONE
;
4031 /* determine if device 0/1 are present */
4032 if (ata_devchk(ap
, 0))
4033 devmask
|= (1 << 0);
4034 if (slave_possible
&& ata_devchk(ap
, 1))
4035 devmask
|= (1 << 1);
4037 /* select device 0 again */
4038 ap
->ops
->dev_select(ap
, 0);
4040 /* issue bus reset */
4041 DPRINTK("about to softreset, devmask=%x\n", devmask
);
4042 rc
= ata_bus_softreset(ap
, devmask
, deadline
);
4043 /* if link is occupied, -ENODEV too is an error */
4044 if (rc
&& (rc
!= -ENODEV
|| sata_scr_valid(link
))) {
4045 ata_link_printk(link
, KERN_ERR
, "SRST failed (errno=%d)\n", rc
);
4049 /* determine by signature whether we have ATA or ATAPI devices */
4050 classes
[0] = ata_dev_try_classify(&link
->device
[0],
4051 devmask
& (1 << 0), &err
);
4052 if (slave_possible
&& err
!= 0x81)
4053 classes
[1] = ata_dev_try_classify(&link
->device
[1],
4054 devmask
& (1 << 1), &err
);
4057 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
4062 * sata_link_hardreset - reset link via SATA phy reset
4063 * @link: link to reset
4064 * @timing: timing parameters { interval, duratinon, timeout } in msec
4065 * @deadline: deadline jiffies for the operation
4067 * SATA phy-reset @link using DET bits of SControl register.
4070 * Kernel thread context (may sleep)
4073 * 0 on success, -errno otherwise.
4075 int sata_link_hardreset(struct ata_link
*link
, const unsigned long *timing
,
4076 unsigned long deadline
)
4083 if (sata_set_spd_needed(link
)) {
4084 /* SATA spec says nothing about how to reconfigure
4085 * spd. To be on the safe side, turn off phy during
4086 * reconfiguration. This works for at least ICH7 AHCI
4089 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
4092 scontrol
= (scontrol
& 0x0f0) | 0x304;
4094 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
4100 /* issue phy wake/reset */
4101 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
4104 scontrol
= (scontrol
& 0x0f0) | 0x301;
4106 if ((rc
= sata_scr_write_flush(link
, SCR_CONTROL
, scontrol
)))
4109 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4110 * 10.4.2 says at least 1 ms.
4114 /* bring link back */
4115 rc
= sata_link_resume(link
, timing
, deadline
);
4117 DPRINTK("EXIT, rc=%d\n", rc
);
4122 * sata_std_hardreset - reset host port via SATA phy reset
4123 * @link: link to reset
4124 * @class: resulting class of attached device
4125 * @deadline: deadline jiffies for the operation
4127 * SATA phy-reset host port using DET bits of SControl register,
4128 * wait for !BSY and classify the attached device.
4131 * Kernel thread context (may sleep)
4134 * 0 on success, -errno otherwise.
4136 int sata_std_hardreset(struct ata_link
*link
, unsigned int *class,
4137 unsigned long deadline
)
4139 struct ata_port
*ap
= link
->ap
;
4140 const unsigned long *timing
= sata_ehc_deb_timing(&link
->eh_context
);
4146 rc
= sata_link_hardreset(link
, timing
, deadline
);
4148 ata_link_printk(link
, KERN_ERR
,
4149 "COMRESET failed (errno=%d)\n", rc
);
4153 /* TODO: phy layer with polling, timeouts, etc. */
4154 if (ata_link_offline(link
)) {
4155 *class = ATA_DEV_NONE
;
4156 DPRINTK("EXIT, link offline\n");
4160 /* wait a while before checking status */
4161 ata_wait_after_reset(ap
, deadline
);
4163 /* If PMP is supported, we have to do follow-up SRST. Note
4164 * that some PMPs don't send D2H Reg FIS after hardreset at
4165 * all if the first port is empty. Wait for it just for a
4166 * second and request follow-up SRST.
4168 if (ap
->flags
& ATA_FLAG_PMP
) {
4169 ata_wait_ready(ap
, jiffies
+ HZ
);
4173 rc
= ata_wait_ready(ap
, deadline
);
4174 /* link occupied, -ENODEV too is an error */
4176 ata_link_printk(link
, KERN_ERR
,
4177 "COMRESET failed (errno=%d)\n", rc
);
4181 ap
->ops
->dev_select(ap
, 0); /* probably unnecessary */
4183 *class = ata_dev_try_classify(link
->device
, 1, NULL
);
4185 DPRINTK("EXIT, class=%u\n", *class);
4190 * ata_std_postreset - standard postreset callback
4191 * @link: the target ata_link
4192 * @classes: classes of attached devices
4194 * This function is invoked after a successful reset. Note that
4195 * the device might have been reset more than once using
4196 * different reset methods before postreset is invoked.
4199 * Kernel thread context (may sleep)
4201 void ata_std_postreset(struct ata_link
*link
, unsigned int *classes
)
4203 struct ata_port
*ap
= link
->ap
;
4208 /* print link status */
4209 sata_print_link_status(link
);
4212 if (sata_scr_read(link
, SCR_ERROR
, &serror
) == 0)
4213 sata_scr_write(link
, SCR_ERROR
, serror
);
4214 link
->eh_info
.serror
= 0;
4216 /* is double-select really necessary? */
4217 if (classes
[0] != ATA_DEV_NONE
)
4218 ap
->ops
->dev_select(ap
, 1);
4219 if (classes
[1] != ATA_DEV_NONE
)
4220 ap
->ops
->dev_select(ap
, 0);
4222 /* bail out if no device is present */
4223 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
4224 DPRINTK("EXIT, no device\n");
4228 /* set up device control */
4229 if (ap
->ioaddr
.ctl_addr
)
4230 iowrite8(ap
->ctl
, ap
->ioaddr
.ctl_addr
);
4236 * ata_dev_same_device - Determine whether new ID matches configured device
4237 * @dev: device to compare against
4238 * @new_class: class of the new device
4239 * @new_id: IDENTIFY page of the new device
4241 * Compare @new_class and @new_id against @dev and determine
4242 * whether @dev is the device indicated by @new_class and
4249 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4251 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
4254 const u16
*old_id
= dev
->id
;
4255 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
4256 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
4258 if (dev
->class != new_class
) {
4259 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
4260 dev
->class, new_class
);
4264 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
4265 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
4266 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
4267 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
4269 if (strcmp(model
[0], model
[1])) {
4270 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
4271 "'%s' != '%s'\n", model
[0], model
[1]);
4275 if (strcmp(serial
[0], serial
[1])) {
4276 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
4277 "'%s' != '%s'\n", serial
[0], serial
[1]);
4285 * ata_dev_reread_id - Re-read IDENTIFY data
4286 * @dev: target ATA device
4287 * @readid_flags: read ID flags
4289 * Re-read IDENTIFY page and make sure @dev is still attached to
4293 * Kernel thread context (may sleep)
4296 * 0 on success, negative errno otherwise
4298 int ata_dev_reread_id(struct ata_device
*dev
, unsigned int readid_flags
)
4300 unsigned int class = dev
->class;
4301 u16
*id
= (void *)dev
->link
->ap
->sector_buf
;
4305 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
4309 /* is the device still there? */
4310 if (!ata_dev_same_device(dev
, class, id
))
4313 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
4318 * ata_dev_revalidate - Revalidate ATA device
4319 * @dev: device to revalidate
4320 * @new_class: new class code
4321 * @readid_flags: read ID flags
4323 * Re-read IDENTIFY page, make sure @dev is still attached to the
4324 * port and reconfigure it according to the new IDENTIFY page.
4327 * Kernel thread context (may sleep)
4330 * 0 on success, negative errno otherwise
4332 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int new_class
,
4333 unsigned int readid_flags
)
4335 u64 n_sectors
= dev
->n_sectors
;
4338 if (!ata_dev_enabled(dev
))
4341 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4342 if (ata_class_enabled(new_class
) &&
4343 new_class
!= ATA_DEV_ATA
&& new_class
!= ATA_DEV_ATAPI
) {
4344 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %u != %u\n",
4345 dev
->class, new_class
);
4351 rc
= ata_dev_reread_id(dev
, readid_flags
);
4355 /* configure device according to the new ID */
4356 rc
= ata_dev_configure(dev
);
4360 /* verify n_sectors hasn't changed */
4361 if (dev
->class == ATA_DEV_ATA
&& n_sectors
&&
4362 dev
->n_sectors
!= n_sectors
) {
4363 ata_dev_printk(dev
, KERN_INFO
, "n_sectors mismatch "
4365 (unsigned long long)n_sectors
,
4366 (unsigned long long)dev
->n_sectors
);
4368 /* restore original n_sectors */
4369 dev
->n_sectors
= n_sectors
;
4378 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
4382 struct ata_blacklist_entry
{
4383 const char *model_num
;
4384 const char *model_rev
;
4385 unsigned long horkage
;
4388 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
4389 /* Devices with DMA related problems under Linux */
4390 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
4391 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
4392 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
4393 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
4394 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
4395 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
4396 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
4397 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
4398 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
4399 { "CRD-8480B", NULL
, ATA_HORKAGE_NODMA
},
4400 { "CRD-8482B", NULL
, ATA_HORKAGE_NODMA
},
4401 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
4402 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
4403 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
4404 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
4405 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
4406 { "HITACHI CDR-8335", NULL
, ATA_HORKAGE_NODMA
},
4407 { "HITACHI CDR-8435", NULL
, ATA_HORKAGE_NODMA
},
4408 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
4409 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
4410 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
4411 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
4412 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
4413 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
4414 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
4415 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
4416 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
4417 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
4418 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA
},
4419 { "Seagate STT20000A", NULL
, ATA_HORKAGE_NODMA
},
4420 /* Odd clown on sil3726/4726 PMPs */
4421 { "Config Disk", NULL
, ATA_HORKAGE_NODMA
|
4422 ATA_HORKAGE_SKIP_PM
},
4424 /* Weird ATAPI devices */
4425 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
},
4427 /* Devices we expect to fail diagnostics */
4429 /* Devices where NCQ should be avoided */
4431 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
4432 { "WDC WD740ADFD-00NLR1", NULL
, ATA_HORKAGE_NONCQ
, },
4433 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4434 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
4436 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ
},
4437 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ
},
4438 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ
},
4439 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ
},
4441 /* Blacklist entries taken from Silicon Image 3124/3132
4442 Windows driver .inf file - also several Linux problem reports */
4443 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
4444 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
4445 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
4447 /* devices which puke on READ_NATIVE_MAX */
4448 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA
, },
4449 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA
},
4450 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA
},
4451 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA
},
4453 /* Devices which report 1 sector over size HPA */
4454 { "ST340823A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4455 { "ST320413A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4456 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
4458 { "ST310211A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4459 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
4461 /* Devices which get the IVB wrong */
4462 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB
, },
4463 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB
, },
4464 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB
, },
4465 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB
, },
4466 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB
, },
4472 static int strn_pattern_cmp(const char *patt
, const char *name
, int wildchar
)
4478 * check for trailing wildcard: *\0
4480 p
= strchr(patt
, wildchar
);
4481 if (p
&& ((*(p
+ 1)) == 0))
4492 return strncmp(patt
, name
, len
);
4495 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
)
4497 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
4498 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
4499 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
4501 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
4502 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
4504 while (ad
->model_num
) {
4505 if (!strn_pattern_cmp(ad
->model_num
, model_num
, '*')) {
4506 if (ad
->model_rev
== NULL
)
4508 if (!strn_pattern_cmp(ad
->model_rev
, model_rev
, '*'))
4516 static int ata_dma_blacklisted(const struct ata_device
*dev
)
4518 /* We don't support polling DMA.
4519 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4520 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4522 if ((dev
->link
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
4523 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
4525 return (dev
->horkage
& ATA_HORKAGE_NODMA
) ? 1 : 0;
4529 * ata_is_40wire - check drive side detection
4532 * Perform drive side detection decoding, allowing for device vendors
4533 * who can't follow the documentation.
4536 static int ata_is_40wire(struct ata_device
*dev
)
4538 if (dev
->horkage
& ATA_HORKAGE_IVB
)
4539 return ata_drive_40wire_relaxed(dev
->id
);
4540 return ata_drive_40wire(dev
->id
);
4544 * ata_dev_xfermask - Compute supported xfermask of the given device
4545 * @dev: Device to compute xfermask for
4547 * Compute supported xfermask of @dev and store it in
4548 * dev->*_mask. This function is responsible for applying all
4549 * known limits including host controller limits, device
4555 static void ata_dev_xfermask(struct ata_device
*dev
)
4557 struct ata_link
*link
= dev
->link
;
4558 struct ata_port
*ap
= link
->ap
;
4559 struct ata_host
*host
= ap
->host
;
4560 unsigned long xfer_mask
;
4562 /* controller modes available */
4563 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
4564 ap
->mwdma_mask
, ap
->udma_mask
);
4566 /* drive modes available */
4567 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
4568 dev
->mwdma_mask
, dev
->udma_mask
);
4569 xfer_mask
&= ata_id_xfermask(dev
->id
);
4572 * CFA Advanced TrueIDE timings are not allowed on a shared
4575 if (ata_dev_pair(dev
)) {
4576 /* No PIO5 or PIO6 */
4577 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
4578 /* No MWDMA3 or MWDMA 4 */
4579 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
4582 if (ata_dma_blacklisted(dev
)) {
4583 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4584 ata_dev_printk(dev
, KERN_WARNING
,
4585 "device is on DMA blacklist, disabling DMA\n");
4588 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
4589 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
4590 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4591 ata_dev_printk(dev
, KERN_WARNING
, "simplex DMA is claimed by "
4592 "other device, disabling DMA\n");
4595 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
4596 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
4598 if (ap
->ops
->mode_filter
)
4599 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
4601 /* Apply cable rule here. Don't apply it early because when
4602 * we handle hot plug the cable type can itself change.
4603 * Check this last so that we know if the transfer rate was
4604 * solely limited by the cable.
4605 * Unknown or 80 wire cables reported host side are checked
4606 * drive side as well. Cases where we know a 40wire cable
4607 * is used safely for 80 are not checked here.
4609 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
4610 /* UDMA/44 or higher would be available */
4611 if ((ap
->cbl
== ATA_CBL_PATA40
) ||
4612 (ata_is_40wire(dev
) &&
4613 (ap
->cbl
== ATA_CBL_PATA_UNK
||
4614 ap
->cbl
== ATA_CBL_PATA80
))) {
4615 ata_dev_printk(dev
, KERN_WARNING
,
4616 "limited to UDMA/33 due to 40-wire cable\n");
4617 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
4620 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
4621 &dev
->mwdma_mask
, &dev
->udma_mask
);
4625 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4626 * @dev: Device to which command will be sent
4628 * Issue SET FEATURES - XFER MODE command to device @dev
4632 * PCI/etc. bus probe sem.
4635 * 0 on success, AC_ERR_* mask otherwise.
4638 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
4640 struct ata_taskfile tf
;
4641 unsigned int err_mask
;
4643 /* set up set-features taskfile */
4644 DPRINTK("set features - xfer mode\n");
4646 /* Some controllers and ATAPI devices show flaky interrupt
4647 * behavior after setting xfer mode. Use polling instead.
4649 ata_tf_init(dev
, &tf
);
4650 tf
.command
= ATA_CMD_SET_FEATURES
;
4651 tf
.feature
= SETFEATURES_XFER
;
4652 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
| ATA_TFLAG_POLLING
;
4653 tf
.protocol
= ATA_PROT_NODATA
;
4654 /* If we are using IORDY we must send the mode setting command */
4655 if (ata_pio_need_iordy(dev
))
4656 tf
.nsect
= dev
->xfer_mode
;
4657 /* If the device has IORDY and the controller does not - turn it off */
4658 else if (ata_id_has_iordy(dev
->id
))
4660 else /* In the ancient relic department - skip all of this */
4663 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4665 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4669 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4670 * @dev: Device to which command will be sent
4671 * @enable: Whether to enable or disable the feature
4672 * @feature: The sector count represents the feature to set
4674 * Issue SET FEATURES - SATA FEATURES command to device @dev
4675 * on port @ap with sector count
4678 * PCI/etc. bus probe sem.
4681 * 0 on success, AC_ERR_* mask otherwise.
4683 static unsigned int ata_dev_set_feature(struct ata_device
*dev
, u8 enable
,
4686 struct ata_taskfile tf
;
4687 unsigned int err_mask
;
4689 /* set up set-features taskfile */
4690 DPRINTK("set features - SATA features\n");
4692 ata_tf_init(dev
, &tf
);
4693 tf
.command
= ATA_CMD_SET_FEATURES
;
4694 tf
.feature
= enable
;
4695 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4696 tf
.protocol
= ATA_PROT_NODATA
;
4699 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4701 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4706 * ata_dev_init_params - Issue INIT DEV PARAMS command
4707 * @dev: Device to which command will be sent
4708 * @heads: Number of heads (taskfile parameter)
4709 * @sectors: Number of sectors (taskfile parameter)
4712 * Kernel thread context (may sleep)
4715 * 0 on success, AC_ERR_* mask otherwise.
4717 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
4718 u16 heads
, u16 sectors
)
4720 struct ata_taskfile tf
;
4721 unsigned int err_mask
;
4723 /* Number of sectors per track 1-255. Number of heads 1-16 */
4724 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
4725 return AC_ERR_INVALID
;
4727 /* set up init dev params taskfile */
4728 DPRINTK("init dev params \n");
4730 ata_tf_init(dev
, &tf
);
4731 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
4732 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4733 tf
.protocol
= ATA_PROT_NODATA
;
4735 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
4737 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4738 /* A clean abort indicates an original or just out of spec drive
4739 and we should continue as we issue the setup based on the
4740 drive reported working geometry */
4741 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
4744 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4749 * ata_sg_clean - Unmap DMA memory associated with command
4750 * @qc: Command containing DMA memory to be released
4752 * Unmap all mapped DMA memory associated with this command.
4755 * spin_lock_irqsave(host lock)
4757 void ata_sg_clean(struct ata_queued_cmd
*qc
)
4759 struct ata_port
*ap
= qc
->ap
;
4760 struct scatterlist
*sg
= qc
->sg
;
4761 int dir
= qc
->dma_dir
;
4762 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
4763 void *pad_buf
= NULL
;
4765 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
4767 WARN_ON(sg
== NULL
);
4769 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
4770 VPRINTK("unmapping %u sg elements\n", qc
->mapped_n_elem
);
4772 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
4773 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
4775 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
4776 /* if we padded the buffer out to 32-bit bound, and data
4777 * xfer direction is from-device, we must copy from the
4778 * pad buffer back into the supplied buffer
4780 if (qc
->pad_len
&& !(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
4781 pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
4783 if (qc
->mapped_n_elem
)
4784 dma_unmap_sg(ap
->dev
, sg
, qc
->mapped_n_elem
, dir
);
4785 /* restore last sg */
4787 *qc
->last_sg
= qc
->saved_last_sg
;
4789 struct scatterlist
*psg
= &qc
->extra_sg
[1];
4790 void *addr
= kmap_atomic(sg_page(psg
), KM_IRQ0
);
4791 memcpy(addr
+ psg
->offset
, pad_buf
, qc
->pad_len
);
4792 kunmap_atomic(addr
, KM_IRQ0
);
4796 dma_unmap_sg(ap
->dev
, sg
, qc
->n_elem
, dir
);
4797 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
4799 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4804 * ata_fill_sg - Fill PCI IDE PRD table
4805 * @qc: Metadata associated with taskfile to be transferred
4807 * Fill PCI IDE PRD (scatter-gather) table with segments
4808 * associated with the current disk command.
4811 * spin_lock_irqsave(host lock)
4814 static void ata_fill_sg(struct ata_queued_cmd
*qc
)
4816 struct ata_port
*ap
= qc
->ap
;
4817 struct scatterlist
*sg
;
4818 unsigned int si
, pi
;
4821 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
4825 /* determine if physical DMA addr spans 64K boundary.
4826 * Note h/w doesn't support 64-bit, so we unconditionally
4827 * truncate dma_addr_t to u32.
4829 addr
= (u32
) sg_dma_address(sg
);
4830 sg_len
= sg_dma_len(sg
);
4833 offset
= addr
& 0xffff;
4835 if ((offset
+ sg_len
) > 0x10000)
4836 len
= 0x10000 - offset
;
4838 ap
->prd
[pi
].addr
= cpu_to_le32(addr
);
4839 ap
->prd
[pi
].flags_len
= cpu_to_le32(len
& 0xffff);
4840 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
4848 ap
->prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
4852 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4853 * @qc: Metadata associated with taskfile to be transferred
4855 * Fill PCI IDE PRD (scatter-gather) table with segments
4856 * associated with the current disk command. Perform the fill
4857 * so that we avoid writing any length 64K records for
4858 * controllers that don't follow the spec.
4861 * spin_lock_irqsave(host lock)
4864 static void ata_fill_sg_dumb(struct ata_queued_cmd
*qc
)
4866 struct ata_port
*ap
= qc
->ap
;
4867 struct scatterlist
*sg
;
4868 unsigned int si
, pi
;
4871 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
4873 u32 sg_len
, len
, blen
;
4875 /* determine if physical DMA addr spans 64K boundary.
4876 * Note h/w doesn't support 64-bit, so we unconditionally
4877 * truncate dma_addr_t to u32.
4879 addr
= (u32
) sg_dma_address(sg
);
4880 sg_len
= sg_dma_len(sg
);
4883 offset
= addr
& 0xffff;
4885 if ((offset
+ sg_len
) > 0x10000)
4886 len
= 0x10000 - offset
;
4888 blen
= len
& 0xffff;
4889 ap
->prd
[pi
].addr
= cpu_to_le32(addr
);
4891 /* Some PATA chipsets like the CS5530 can't
4892 cope with 0x0000 meaning 64K as the spec says */
4893 ap
->prd
[pi
].flags_len
= cpu_to_le32(0x8000);
4895 ap
->prd
[++pi
].addr
= cpu_to_le32(addr
+ 0x8000);
4897 ap
->prd
[pi
].flags_len
= cpu_to_le32(blen
);
4898 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
4906 ap
->prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
4910 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4911 * @qc: Metadata associated with taskfile to check
4913 * Allow low-level driver to filter ATA PACKET commands, returning
4914 * a status indicating whether or not it is OK to use DMA for the
4915 * supplied PACKET command.
4918 * spin_lock_irqsave(host lock)
4920 * RETURNS: 0 when ATAPI DMA can be used
4923 int ata_check_atapi_dma(struct ata_queued_cmd
*qc
)
4925 struct ata_port
*ap
= qc
->ap
;
4927 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4928 * few ATAPI devices choke on such DMA requests.
4930 if (unlikely(qc
->nbytes
& 15))
4933 if (ap
->ops
->check_atapi_dma
)
4934 return ap
->ops
->check_atapi_dma(qc
);
4940 <<<<<<< HEAD:drivers/ata/libata-core.c
4941 * atapi_qc_may_overflow - Check whether data transfer may overflow
4942 * @qc: ATA command in question
4944 * ATAPI commands which transfer variable length data to host
4945 * might overflow due to application error or hardare bug. This
4946 * function checks whether overflow should be drained and ignored
4953 * 1 if @qc may overflow; otherwise, 0.
4955 static int atapi_qc_may_overflow(struct ata_queued_cmd
*qc
)
4957 if (qc
->tf
.protocol
!= ATAPI_PROT_PIO
&&
4958 qc
->tf
.protocol
!= ATAPI_PROT_DMA
)
4961 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
)
4964 switch (qc
->cdb
[0]) {
4970 case GPCMD_READ_CD_MSF
:
4979 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/ata/libata-core.c
4980 * ata_std_qc_defer - Check whether a qc needs to be deferred
4981 * @qc: ATA command in question
4983 * Non-NCQ commands cannot run with any other command, NCQ or
4984 * not. As upper layer only knows the queue depth, we are
4985 * responsible for maintaining exclusion. This function checks
4986 * whether a new command @qc can be issued.
4989 * spin_lock_irqsave(host lock)
4992 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4994 int ata_std_qc_defer(struct ata_queued_cmd
*qc
)
4996 struct ata_link
*link
= qc
->dev
->link
;
4998 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4999 if (!ata_tag_valid(link
->active_tag
))
5002 if (!ata_tag_valid(link
->active_tag
) && !link
->sactive
)
5006 return ATA_DEFER_LINK
;
5010 * ata_qc_prep - Prepare taskfile for submission
5011 * @qc: Metadata associated with taskfile to be prepared
5013 * Prepare ATA taskfile for submission.
5016 * spin_lock_irqsave(host lock)
5018 void ata_qc_prep(struct ata_queued_cmd
*qc
)
5020 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
5027 * ata_dumb_qc_prep - Prepare taskfile for submission
5028 * @qc: Metadata associated with taskfile to be prepared
5030 * Prepare ATA taskfile for submission.
5033 * spin_lock_irqsave(host lock)
5035 void ata_dumb_qc_prep(struct ata_queued_cmd
*qc
)
5037 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
5040 ata_fill_sg_dumb(qc
);
5043 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
5046 * ata_sg_init - Associate command with scatter-gather table.
5047 * @qc: Command to be associated
5048 * @sg: Scatter-gather table.
5049 * @n_elem: Number of elements in s/g table.
5051 * Initialize the data-related elements of queued_cmd @qc
5052 * to point to a scatter-gather table @sg, containing @n_elem
5056 * spin_lock_irqsave(host lock)
5058 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
5059 unsigned int n_elem
)
5062 qc
->n_elem
= n_elem
;
5066 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
5067 static unsigned int ata_sg_setup_extra(struct ata_queued_cmd
*qc
,
5068 unsigned int *n_elem_extra
,
5069 unsigned int *nbytes_extra
)
5071 struct ata_port
*ap
= qc
->ap
;
5072 unsigned int n_elem
= qc
->n_elem
;
5073 struct scatterlist
*lsg
, *copy_lsg
= NULL
, *tsg
= NULL
, *esg
= NULL
;
5078 /* needs padding? */
5079 qc
->pad_len
= qc
->nbytes
& 3;
5081 if (likely(!qc
->pad_len
))
5084 /* locate last sg and save it */
5085 lsg
= sg_last(qc
->sg
, n_elem
);
5087 qc
->saved_last_sg
= *lsg
;
5089 sg_init_table(qc
->extra_sg
, ARRAY_SIZE(qc
->extra_sg
));
5092 struct scatterlist
*psg
= &qc
->extra_sg
[1];
5093 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
5094 unsigned int offset
;
5096 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
5098 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
5100 /* psg->page/offset are used to copy to-be-written
5101 * data in this function or read data in ata_sg_clean.
5103 offset
= lsg
->offset
+ lsg
->length
- qc
->pad_len
;
5104 sg_set_page(psg
, nth_page(sg_page(lsg
), offset
>> PAGE_SHIFT
),
5105 qc
->pad_len
, offset_in_page(offset
));
5107 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
5108 void *addr
= kmap_atomic(sg_page(psg
), KM_IRQ0
);
5109 memcpy(pad_buf
, addr
+ psg
->offset
, qc
->pad_len
);
5110 kunmap_atomic(addr
, KM_IRQ0
);
5113 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
5114 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
5116 /* Trim the last sg entry and chain the original and
5119 * Because chaining consumes one sg entry, one extra
5120 * sg entry is allocated and the last sg entry is
5121 * copied to it if the length isn't zero after padded
5122 * amount is removed.
5124 * If the last sg entry is completely replaced by
5125 * padding sg entry, the first sg entry is skipped
5128 lsg
->length
-= qc
->pad_len
;
5130 copy_lsg
= &qc
->extra_sg
[0];
5131 tsg
= &qc
->extra_sg
[0];
5134 tsg
= &qc
->extra_sg
[1];
5137 esg
= &qc
->extra_sg
[1];
5140 (*nbytes_extra
) += 4 - qc
->pad_len
;
5144 sg_set_page(copy_lsg
, sg_page(lsg
), lsg
->length
, lsg
->offset
);
5146 sg_chain(lsg
, 1, tsg
);
5149 /* sglist can't start with chaining sg entry, fast forward */
5150 if (qc
->sg
== lsg
) {
5159 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
5161 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5162 * @qc: Command with scatter-gather table to be mapped.
5164 * DMA-map the scatter-gather table associated with queued_cmd @qc.
5167 * spin_lock_irqsave(host lock)
5170 * Zero on success, negative on error.
5173 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
5175 struct ata_port
*ap
= qc
->ap
;
5176 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
5177 unsigned int n_elem
, n_elem_extra
, nbytes_extra
;
5179 unsigned int n_elem
;
5180 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
5182 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
5184 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
5185 n_elem
= ata_sg_setup_extra(qc
, &n_elem_extra
, &nbytes_extra
);
5187 n_elem
= dma_map_sg(ap
->dev
, qc
->sg
, qc
->n_elem
, qc
->dma_dir
);
5190 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
5192 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
5194 n_elem
= dma_map_sg(ap
->dev
, qc
->sg
, n_elem
, qc
->dma_dir
);
5196 /* restore last sg */
5198 *qc
->last_sg
= qc
->saved_last_sg
;
5201 DPRINTK("%d sg elements mapped\n", n_elem
);
5204 DPRINTK("%d sg elements mapped\n", n_elem
);
5205 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
5207 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
5208 qc
->n_elem
= qc
->mapped_n_elem
= n_elem
;
5209 qc
->n_elem
+= n_elem_extra
;
5210 qc
->nbytes
+= nbytes_extra
;
5212 qc
->n_elem
= n_elem
;
5213 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
5214 qc
->flags
|= ATA_QCFLAG_DMAMAP
;
5220 * swap_buf_le16 - swap halves of 16-bit words in place
5221 * @buf: Buffer to swap
5222 * @buf_words: Number of 16-bit words in buffer.
5224 * Swap halves of 16-bit words if needed to convert from
5225 * little-endian byte order to native cpu byte order, or
5229 * Inherited from caller.
5231 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
5236 for (i
= 0; i
< buf_words
; i
++)
5237 buf
[i
] = le16_to_cpu(buf
[i
]);
5238 #endif /* __BIG_ENDIAN */
5242 * ata_data_xfer - Transfer data by PIO
5243 * @dev: device to target
5245 * @buflen: buffer length
5248 * Transfer data from/to the device data register by PIO.
5251 * Inherited from caller.
5256 unsigned int ata_data_xfer(struct ata_device
*dev
, unsigned char *buf
,
5257 unsigned int buflen
, int rw
)
5259 struct ata_port
*ap
= dev
->link
->ap
;
5260 void __iomem
*data_addr
= ap
->ioaddr
.data_addr
;
5261 unsigned int words
= buflen
>> 1;
5263 /* Transfer multiple of 2 bytes */
5265 ioread16_rep(data_addr
, buf
, words
);
5267 iowrite16_rep(data_addr
, buf
, words
);
5269 /* Transfer trailing 1 byte, if any. */
5270 if (unlikely(buflen
& 0x01)) {
5271 __le16 align_buf
[1] = { 0 };
5272 unsigned char *trailing_buf
= buf
+ buflen
- 1;
5275 align_buf
[0] = cpu_to_le16(ioread16(data_addr
));
5276 memcpy(trailing_buf
, align_buf
, 1);
5278 memcpy(align_buf
, trailing_buf
, 1);
5279 iowrite16(le16_to_cpu(align_buf
[0]), data_addr
);
5288 * ata_data_xfer_noirq - Transfer data by PIO
5289 * @dev: device to target
5291 * @buflen: buffer length
5294 * Transfer data from/to the device data register by PIO. Do the
5295 * transfer with interrupts disabled.
5298 * Inherited from caller.
5303 unsigned int ata_data_xfer_noirq(struct ata_device
*dev
, unsigned char *buf
,
5304 unsigned int buflen
, int rw
)
5306 unsigned long flags
;
5307 unsigned int consumed
;
5309 local_irq_save(flags
);
5310 consumed
= ata_data_xfer(dev
, buf
, buflen
, rw
);
5311 local_irq_restore(flags
);
5318 * ata_pio_sector - Transfer a sector of data.
5319 * @qc: Command on going
5321 * Transfer qc->sect_size bytes of data from/to the ATA device.
5324 * Inherited from caller.
5327 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
5329 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
5330 struct ata_port
*ap
= qc
->ap
;
5332 unsigned int offset
;
5335 if (qc
->curbytes
== qc
->nbytes
- qc
->sect_size
)
5336 ap
->hsm_task_state
= HSM_ST_LAST
;
5338 page
= sg_page(qc
->cursg
);
5339 offset
= qc
->cursg
->offset
+ qc
->cursg_ofs
;
5341 /* get the current page and offset */
5342 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
5343 offset
%= PAGE_SIZE
;
5345 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
5347 if (PageHighMem(page
)) {
5348 unsigned long flags
;
5350 /* FIXME: use a bounce buffer */
5351 local_irq_save(flags
);
5352 buf
= kmap_atomic(page
, KM_IRQ0
);
5354 /* do the actual data transfer */
5355 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
, do_write
);
5357 kunmap_atomic(buf
, KM_IRQ0
);
5358 local_irq_restore(flags
);
5360 buf
= page_address(page
);
5361 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
, do_write
);
5364 qc
->curbytes
+= qc
->sect_size
;
5365 qc
->cursg_ofs
+= qc
->sect_size
;
5367 if (qc
->cursg_ofs
== qc
->cursg
->length
) {
5368 qc
->cursg
= sg_next(qc
->cursg
);
5374 * ata_pio_sectors - Transfer one or many sectors.
5375 * @qc: Command on going
5377 * Transfer one or many sectors of data from/to the
5378 * ATA device for the DRQ request.
5381 * Inherited from caller.
5384 static void ata_pio_sectors(struct ata_queued_cmd
*qc
)
5386 if (is_multi_taskfile(&qc
->tf
)) {
5387 /* READ/WRITE MULTIPLE */
5390 WARN_ON(qc
->dev
->multi_count
== 0);
5392 nsect
= min((qc
->nbytes
- qc
->curbytes
) / qc
->sect_size
,
5393 qc
->dev
->multi_count
);
5399 ata_altstatus(qc
->ap
); /* flush */
5403 * atapi_send_cdb - Write CDB bytes to hardware
5404 * @ap: Port to which ATAPI device is attached.
5405 * @qc: Taskfile currently active
5407 * When device has indicated its readiness to accept
5408 * a CDB, this function is called. Send the CDB.
5414 static void atapi_send_cdb(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
5417 DPRINTK("send cdb\n");
5418 WARN_ON(qc
->dev
->cdb_len
< 12);
5420 ap
->ops
->data_xfer(qc
->dev
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
5421 ata_altstatus(ap
); /* flush */
5423 switch (qc
->tf
.protocol
) {
5424 case ATAPI_PROT_PIO
:
5425 ap
->hsm_task_state
= HSM_ST
;
5427 case ATAPI_PROT_NODATA
:
5428 ap
->hsm_task_state
= HSM_ST_LAST
;
5430 case ATAPI_PROT_DMA
:
5431 ap
->hsm_task_state
= HSM_ST_LAST
;
5432 /* initiate bmdma */
5433 ap
->ops
->bmdma_start(qc
);
5439 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5440 * @qc: Command on going
5441 * @bytes: number of bytes
5443 * Transfer Transfer data from/to the ATAPI device.
5446 * Inherited from caller.
5449 static int __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
5451 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
5452 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
5454 int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? WRITE
: READ
;
5455 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
5456 struct ata_port
*ap
= qc
->ap
;
5457 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
5458 struct ata_eh_info
*ehi
= &qc
->dev
->link
->eh_info
;
5460 struct ata_device
*dev
= qc
->dev
;
5461 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
5462 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
5463 struct scatterlist
*sg
;
5466 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
5467 unsigned int offset
, count
;
5469 unsigned int offset
, count
, consumed
;
5470 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
5474 if (unlikely(!sg
)) {
5475 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
5477 * The end of qc->sg is reached and the device expects
5478 * more data to transfer. In order not to overrun qc->sg
5479 * and fulfill length specified in the byte count register,
5480 * - for read case, discard trailing data from the device
5481 * - for write case, padding zero data to the device
5483 u16 pad_buf
[1] = { 0 };
5486 if (bytes
> qc
->curbytes
- qc
->nbytes
+ ATAPI_MAX_DRAIN
) {
5487 ata_ehi_push_desc(ehi
, "too much trailing data "
5488 "buf=%u cur=%u bytes=%u",
5489 qc
->nbytes
, qc
->curbytes
, bytes
);
5493 /* overflow is exptected for misc ATAPI commands */
5494 if (bytes
&& !atapi_qc_may_overflow(qc
))
5495 ata_dev_printk(qc
->dev
, KERN_WARNING
, "ATAPI %u bytes "
5496 "trailing data (cdb=%02x nbytes=%u)\n",
5497 bytes
, qc
->cdb
[0], qc
->nbytes
);
5499 for (i
= 0; i
< (bytes
+ 1) / 2; i
++)
5500 ap
->ops
->data_xfer(qc
->dev
, (unsigned char *)pad_buf
, 2, do_write
);
5502 qc
->curbytes
+= bytes
;
5506 ata_ehi_push_desc(ehi
, "unexpected or too much trailing data "
5507 "buf=%u cur=%u bytes=%u",
5508 qc
->nbytes
, qc
->curbytes
, bytes
);
5510 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
5514 offset
= sg
->offset
+ qc
->cursg_ofs
;
5516 /* get the current page and offset */
5517 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
5518 offset
%= PAGE_SIZE
;
5520 /* don't overrun current sg */
5521 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
5523 /* don't cross page boundaries */
5524 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
5526 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
5528 if (PageHighMem(page
)) {
5529 unsigned long flags
;
5531 /* FIXME: use bounce buffer */
5532 local_irq_save(flags
);
5533 buf
= kmap_atomic(page
, KM_IRQ0
);
5535 /* do the actual data transfer */
5536 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
5537 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, count
, do_write
);
5539 consumed
= ap
->ops
->data_xfer(dev
, buf
+ offset
, count
, rw
);
5540 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
5542 kunmap_atomic(buf
, KM_IRQ0
);
5543 local_irq_restore(flags
);
5545 buf
= page_address(page
);
5546 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
5547 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, count
, do_write
);
5549 consumed
= ap
->ops
->data_xfer(dev
, buf
+ offset
, count
, rw
);
5550 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
5553 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
5555 if ((count
& 1) && bytes
)
5558 bytes
-= min(bytes
, consumed
);
5559 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
5560 qc
->curbytes
+= count
;
5561 qc
->cursg_ofs
+= count
;
5563 if (qc
->cursg_ofs
== sg
->length
) {
5564 qc
->cursg
= sg_next(qc
->cursg
);
5568 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
5570 /* consumed can be larger than count only for the last transfer */
5571 WARN_ON(qc
->cursg
&& count
!= consumed
);
5573 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
5576 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
5579 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
5584 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5585 * @qc: Command on going
5587 * Transfer Transfer data from/to the ATAPI device.
5590 * Inherited from caller.
5593 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
5595 struct ata_port
*ap
= qc
->ap
;
5596 struct ata_device
*dev
= qc
->dev
;
5597 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
5599 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
5600 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
5601 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
5602 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
5604 /* Abuse qc->result_tf for temp storage of intermediate TF
5605 * here to save some kernel stack usage.
5606 * For normal completion, qc->result_tf is not relevant. For
5607 * error, qc->result_tf is later overwritten by ata_qc_complete().
5608 * So, the correctness of qc->result_tf is not affected.
5610 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
5611 ireason
= qc
->result_tf
.nsect
;
5612 bc_lo
= qc
->result_tf
.lbam
;
5613 bc_hi
= qc
->result_tf
.lbah
;
5614 bytes
= (bc_hi
<< 8) | bc_lo
;
5616 /* shall be cleared to zero, indicating xfer of data */
5617 if (unlikely(ireason
& (1 << 0)))
5618 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
5622 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
5624 /* make sure transfer direction matches expected */
5625 i_write
= ((ireason
& (1 << 1)) == 0) ? 1 : 0;
5626 if (unlikely(do_write
!= i_write
))
5627 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
5631 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
5633 if (unlikely(!bytes
))
5634 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
5638 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
5640 VPRINTK("ata%u: xfering %d bytes\n", ap
->print_id
, bytes
);
5642 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
5643 if (__atapi_pio_bytes(qc
, bytes
))
5645 if (unlikely(__atapi_pio_bytes(qc
, bytes
)))
5646 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
5648 ata_altstatus(ap
); /* flush */
5652 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
5654 ata_dev_printk(dev
, KERN_INFO
, "ATAPI check failed\n");
5657 ata_ehi_push_desc(ehi
, "ATAPI check failed (ireason=0x%x bytes=%u)",
5660 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
5661 qc
->err_mask
|= AC_ERR_HSM
;
5662 ap
->hsm_task_state
= HSM_ST_ERR
;
5666 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5667 * @ap: the target ata_port
5671 * 1 if ok in workqueue, 0 otherwise.
5674 static inline int ata_hsm_ok_in_wq(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
5676 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5679 if (ap
->hsm_task_state
== HSM_ST_FIRST
) {
5680 if (qc
->tf
.protocol
== ATA_PROT_PIO
&&
5681 (qc
->tf
.flags
& ATA_TFLAG_WRITE
))
5684 if (ata_is_atapi(qc
->tf
.protocol
) &&
5685 !(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
5693 * ata_hsm_qc_complete - finish a qc running on standard HSM
5694 * @qc: Command to complete
5695 * @in_wq: 1 if called from workqueue, 0 otherwise
5697 * Finish @qc which is running on standard HSM.
5700 * If @in_wq is zero, spin_lock_irqsave(host lock).
5701 * Otherwise, none on entry and grabs host lock.
5703 static void ata_hsm_qc_complete(struct ata_queued_cmd
*qc
, int in_wq
)
5705 struct ata_port
*ap
= qc
->ap
;
5706 unsigned long flags
;
5708 if (ap
->ops
->error_handler
) {
5710 spin_lock_irqsave(ap
->lock
, flags
);
5712 /* EH might have kicked in while host lock is
5715 qc
= ata_qc_from_tag(ap
, qc
->tag
);
5717 if (likely(!(qc
->err_mask
& AC_ERR_HSM
))) {
5718 ap
->ops
->irq_on(ap
);
5719 ata_qc_complete(qc
);
5721 ata_port_freeze(ap
);
5724 spin_unlock_irqrestore(ap
->lock
, flags
);
5726 if (likely(!(qc
->err_mask
& AC_ERR_HSM
)))
5727 ata_qc_complete(qc
);
5729 ata_port_freeze(ap
);
5733 spin_lock_irqsave(ap
->lock
, flags
);
5734 ap
->ops
->irq_on(ap
);
5735 ata_qc_complete(qc
);
5736 spin_unlock_irqrestore(ap
->lock
, flags
);
5738 ata_qc_complete(qc
);
5743 * ata_hsm_move - move the HSM to the next state.
5744 * @ap: the target ata_port
5746 * @status: current device status
5747 * @in_wq: 1 if called from workqueue, 0 otherwise
5750 * 1 when poll next status needed, 0 otherwise.
5752 int ata_hsm_move(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
5753 u8 status
, int in_wq
)
5755 unsigned long flags
= 0;
5758 WARN_ON((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
5760 /* Make sure ata_qc_issue_prot() does not throw things
5761 * like DMA polling into the workqueue. Notice that
5762 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5764 WARN_ON(in_wq
!= ata_hsm_ok_in_wq(ap
, qc
));
5767 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5768 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
, status
);
5770 switch (ap
->hsm_task_state
) {
5772 /* Send first data block or PACKET CDB */
5774 /* If polling, we will stay in the work queue after
5775 * sending the data. Otherwise, interrupt handler
5776 * takes over after sending the data.
5778 poll_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
5780 /* check device status */
5781 if (unlikely((status
& ATA_DRQ
) == 0)) {
5782 /* handle BSY=0, DRQ=0 as error */
5783 if (likely(status
& (ATA_ERR
| ATA_DF
)))
5784 /* device stops HSM for abort/error */
5785 qc
->err_mask
|= AC_ERR_DEV
;
5787 /* HSM violation. Let EH handle this */
5788 qc
->err_mask
|= AC_ERR_HSM
;
5790 ap
->hsm_task_state
= HSM_ST_ERR
;
5794 /* Device should not ask for data transfer (DRQ=1)
5795 * when it finds something wrong.
5796 * We ignore DRQ here and stop the HSM by
5797 * changing hsm_task_state to HSM_ST_ERR and
5798 * let the EH abort the command or reset the device.
5800 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
5801 /* Some ATAPI tape drives forget to clear the ERR bit
5802 * when doing the next command (mostly request sense).
5803 * We ignore ERR here to workaround and proceed sending
5806 if (!(qc
->dev
->horkage
& ATA_HORKAGE_STUCK_ERR
)) {
5807 ata_port_printk(ap
, KERN_WARNING
,
5808 "DRQ=1 with device error, "
5809 "dev_stat 0x%X\n", status
);
5810 qc
->err_mask
|= AC_ERR_HSM
;
5811 ap
->hsm_task_state
= HSM_ST_ERR
;
5816 /* Send the CDB (atapi) or the first data block (ata pio out).
5817 * During the state transition, interrupt handler shouldn't
5818 * be invoked before the data transfer is complete and
5819 * hsm_task_state is changed. Hence, the following locking.
5822 spin_lock_irqsave(ap
->lock
, flags
);
5824 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
5825 /* PIO data out protocol.
5826 * send first data block.
5829 /* ata_pio_sectors() might change the state
5830 * to HSM_ST_LAST. so, the state is changed here
5831 * before ata_pio_sectors().
5833 ap
->hsm_task_state
= HSM_ST
;
5834 ata_pio_sectors(qc
);
5837 atapi_send_cdb(ap
, qc
);
5840 spin_unlock_irqrestore(ap
->lock
, flags
);
5842 /* if polling, ata_pio_task() handles the rest.
5843 * otherwise, interrupt handler takes over from here.
5848 /* complete command or read/write the data register */
5849 if (qc
->tf
.protocol
== ATAPI_PROT_PIO
) {
5850 /* ATAPI PIO protocol */
5851 if ((status
& ATA_DRQ
) == 0) {
5852 /* No more data to transfer or device error.
5853 * Device error will be tagged in HSM_ST_LAST.
5855 ap
->hsm_task_state
= HSM_ST_LAST
;
5859 /* Device should not ask for data transfer (DRQ=1)
5860 * when it finds something wrong.
5861 * We ignore DRQ here and stop the HSM by
5862 * changing hsm_task_state to HSM_ST_ERR and
5863 * let the EH abort the command or reset the device.
5865 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
5866 ata_port_printk(ap
, KERN_WARNING
, "DRQ=1 with "
5867 "device error, dev_stat 0x%X\n",
5869 qc
->err_mask
|= AC_ERR_HSM
;
5870 ap
->hsm_task_state
= HSM_ST_ERR
;
5874 atapi_pio_bytes(qc
);
5876 if (unlikely(ap
->hsm_task_state
== HSM_ST_ERR
))
5877 /* bad ireason reported by device */
5881 /* ATA PIO protocol */
5882 if (unlikely((status
& ATA_DRQ
) == 0)) {
5883 /* handle BSY=0, DRQ=0 as error */
5884 if (likely(status
& (ATA_ERR
| ATA_DF
)))
5885 /* device stops HSM for abort/error */
5886 qc
->err_mask
|= AC_ERR_DEV
;
5888 /* HSM violation. Let EH handle this.
5889 * Phantom devices also trigger this
5890 * condition. Mark hint.
5892 qc
->err_mask
|= AC_ERR_HSM
|
5895 ap
->hsm_task_state
= HSM_ST_ERR
;
5899 /* For PIO reads, some devices may ask for
5900 * data transfer (DRQ=1) alone with ERR=1.
5901 * We respect DRQ here and transfer one
5902 * block of junk data before changing the
5903 * hsm_task_state to HSM_ST_ERR.
5905 * For PIO writes, ERR=1 DRQ=1 doesn't make
5906 * sense since the data block has been
5907 * transferred to the device.
5909 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
5910 /* data might be corrputed */
5911 qc
->err_mask
|= AC_ERR_DEV
;
5913 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
)) {
5914 ata_pio_sectors(qc
);
5915 status
= ata_wait_idle(ap
);
5918 if (status
& (ATA_BUSY
| ATA_DRQ
))
5919 qc
->err_mask
|= AC_ERR_HSM
;
5921 /* ata_pio_sectors() might change the
5922 * state to HSM_ST_LAST. so, the state
5923 * is changed after ata_pio_sectors().
5925 ap
->hsm_task_state
= HSM_ST_ERR
;
5929 ata_pio_sectors(qc
);
5931 if (ap
->hsm_task_state
== HSM_ST_LAST
&&
5932 (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))) {
5934 status
= ata_wait_idle(ap
);
5943 if (unlikely(!ata_ok(status
))) {
5944 qc
->err_mask
|= __ac_err_mask(status
);
5945 ap
->hsm_task_state
= HSM_ST_ERR
;
5949 /* no more data to transfer */
5950 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5951 ap
->print_id
, qc
->dev
->devno
, status
);
5953 WARN_ON(qc
->err_mask
);
5955 ap
->hsm_task_state
= HSM_ST_IDLE
;
5957 /* complete taskfile transaction */
5958 ata_hsm_qc_complete(qc
, in_wq
);
5964 /* make sure qc->err_mask is available to
5965 * know what's wrong and recover
5967 WARN_ON(qc
->err_mask
== 0);
5969 ap
->hsm_task_state
= HSM_ST_IDLE
;
5971 /* complete taskfile transaction */
5972 ata_hsm_qc_complete(qc
, in_wq
);
5984 static void ata_pio_task(struct work_struct
*work
)
5986 struct ata_port
*ap
=
5987 container_of(work
, struct ata_port
, port_task
.work
);
5988 struct ata_queued_cmd
*qc
= ap
->port_task_data
;
5993 WARN_ON(ap
->hsm_task_state
== HSM_ST_IDLE
);
5996 * This is purely heuristic. This is a fast path.
5997 * Sometimes when we enter, BSY will be cleared in
5998 * a chk-status or two. If not, the drive is probably seeking
5999 * or something. Snooze for a couple msecs, then
6000 * chk-status again. If still busy, queue delayed work.
6002 status
= ata_busy_wait(ap
, ATA_BUSY
, 5);
6003 if (status
& ATA_BUSY
) {
6005 status
= ata_busy_wait(ap
, ATA_BUSY
, 10);
6006 if (status
& ATA_BUSY
) {
6007 ata_pio_queue_task(ap
, qc
, ATA_SHORT_PAUSE
);
6013 poll_next
= ata_hsm_move(ap
, qc
, status
, 1);
6015 /* another command or interrupt handler
6016 * may be running at this point.
6023 * ata_qc_new - Request an available ATA command, for queueing
6024 * @ap: Port associated with device @dev
6025 * @dev: Device from whom we request an available command structure
6031 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
6033 struct ata_queued_cmd
*qc
= NULL
;
6036 /* no command while frozen */
6037 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
6040 /* the last tag is reserved for internal command. */
6041 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
6042 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
6043 qc
= __ata_qc_from_tag(ap
, i
);
6054 * ata_qc_new_init - Request an available ATA command, and initialize it
6055 * @dev: Device from whom we request an available command structure
6061 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
6063 struct ata_port
*ap
= dev
->link
->ap
;
6064 struct ata_queued_cmd
*qc
;
6066 qc
= ata_qc_new(ap
);
6079 * ata_qc_free - free unused ata_queued_cmd
6080 * @qc: Command to complete
6082 * Designed to free unused ata_queued_cmd object
6083 * in case something prevents using it.
6086 * spin_lock_irqsave(host lock)
6088 void ata_qc_free(struct ata_queued_cmd
*qc
)
6090 struct ata_port
*ap
= qc
->ap
;
6093 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
6097 if (likely(ata_tag_valid(tag
))) {
6098 qc
->tag
= ATA_TAG_POISON
;
6099 clear_bit(tag
, &ap
->qc_allocated
);
6103 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
6105 struct ata_port
*ap
= qc
->ap
;
6106 struct ata_link
*link
= qc
->dev
->link
;
6108 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
6109 WARN_ON(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
6111 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
6114 /* command should be marked inactive atomically with qc completion */
6115 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
6116 link
->sactive
&= ~(1 << qc
->tag
);
6118 ap
->nr_active_links
--;
6120 link
->active_tag
= ATA_TAG_POISON
;
6121 ap
->nr_active_links
--;
6124 /* clear exclusive status */
6125 if (unlikely(qc
->flags
& ATA_QCFLAG_CLEAR_EXCL
&&
6126 ap
->excl_link
== link
))
6127 ap
->excl_link
= NULL
;
6129 /* atapi: mark qc as inactive to prevent the interrupt handler
6130 * from completing the command twice later, before the error handler
6131 * is called. (when rc != 0 and atapi request sense is needed)
6133 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
6134 ap
->qc_active
&= ~(1 << qc
->tag
);
6136 /* call completion callback */
6137 qc
->complete_fn(qc
);
6140 static void fill_result_tf(struct ata_queued_cmd
*qc
)
6142 struct ata_port
*ap
= qc
->ap
;
6144 qc
->result_tf
.flags
= qc
->tf
.flags
;
6145 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
6148 static void ata_verify_xfer(struct ata_queued_cmd
*qc
)
6150 struct ata_device
*dev
= qc
->dev
;
6152 if (ata_tag_internal(qc
->tag
))
6155 if (ata_is_nodata(qc
->tf
.protocol
))
6158 if ((dev
->mwdma_mask
|| dev
->udma_mask
) && ata_is_pio(qc
->tf
.protocol
))
6161 dev
->flags
&= ~ATA_DFLAG_DUBIOUS_XFER
;
6165 * ata_qc_complete - Complete an active ATA command
6166 * @qc: Command to complete
6167 * @err_mask: ATA Status register contents
6169 * Indicate to the mid and upper layers that an ATA
6170 * command has completed, with either an ok or not-ok status.
6173 * spin_lock_irqsave(host lock)
6175 void ata_qc_complete(struct ata_queued_cmd
*qc
)
6177 struct ata_port
*ap
= qc
->ap
;
6179 /* XXX: New EH and old EH use different mechanisms to
6180 * synchronize EH with regular execution path.
6182 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
6183 * Normal execution path is responsible for not accessing a
6184 * failed qc. libata core enforces the rule by returning NULL
6185 * from ata_qc_from_tag() for failed qcs.
6187 * Old EH depends on ata_qc_complete() nullifying completion
6188 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
6189 * not synchronize with interrupt handler. Only PIO task is
6192 if (ap
->ops
->error_handler
) {
6193 struct ata_device
*dev
= qc
->dev
;
6194 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
6196 WARN_ON(ap
->pflags
& ATA_PFLAG_FROZEN
);
6198 if (unlikely(qc
->err_mask
))
6199 qc
->flags
|= ATA_QCFLAG_FAILED
;
6201 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
6202 if (!ata_tag_internal(qc
->tag
)) {
6203 /* always fill result TF for failed qc */
6205 ata_qc_schedule_eh(qc
);
6210 /* read result TF if requested */
6211 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
6214 /* Some commands need post-processing after successful
6217 switch (qc
->tf
.command
) {
6218 case ATA_CMD_SET_FEATURES
:
6219 if (qc
->tf
.feature
!= SETFEATURES_WC_ON
&&
6220 qc
->tf
.feature
!= SETFEATURES_WC_OFF
)
6223 case ATA_CMD_INIT_DEV_PARAMS
: /* CHS translation changed */
6224 case ATA_CMD_SET_MULTI
: /* multi_count changed */
6225 /* revalidate device */
6226 ehi
->dev_action
[dev
->devno
] |= ATA_EH_REVALIDATE
;
6227 ata_port_schedule_eh(ap
);
6231 dev
->flags
|= ATA_DFLAG_SLEEPING
;
6235 if (unlikely(dev
->flags
& ATA_DFLAG_DUBIOUS_XFER
))
6236 ata_verify_xfer(qc
);
6238 __ata_qc_complete(qc
);
6240 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
6243 /* read result TF if failed or requested */
6244 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
6247 __ata_qc_complete(qc
);
6252 * ata_qc_complete_multiple - Complete multiple qcs successfully
6253 * @ap: port in question
6254 * @qc_active: new qc_active mask
6255 * @finish_qc: LLDD callback invoked before completing a qc
6257 * Complete in-flight commands. This functions is meant to be
6258 * called from low-level driver's interrupt routine to complete
6259 * requests normally. ap->qc_active and @qc_active is compared
6260 * and commands are completed accordingly.
6263 * spin_lock_irqsave(host lock)
6266 * Number of completed commands on success, -errno otherwise.
6268 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
,
6269 void (*finish_qc
)(struct ata_queued_cmd
*))
6275 done_mask
= ap
->qc_active
^ qc_active
;
6277 if (unlikely(done_mask
& qc_active
)) {
6278 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
6279 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
6283 for (i
= 0; i
< ATA_MAX_QUEUE
; i
++) {
6284 struct ata_queued_cmd
*qc
;
6286 if (!(done_mask
& (1 << i
)))
6289 if ((qc
= ata_qc_from_tag(ap
, i
))) {
6292 ata_qc_complete(qc
);
6301 * ata_qc_issue - issue taskfile to device
6302 * @qc: command to issue to device
6304 * Prepare an ATA command to submission to device.
6305 * This includes mapping the data into a DMA-able
6306 * area, filling in the S/G table, and finally
6307 * writing the taskfile to hardware, starting the command.
6310 * spin_lock_irqsave(host lock)
6312 void ata_qc_issue(struct ata_queued_cmd
*qc
)
6314 struct ata_port
*ap
= qc
->ap
;
6315 struct ata_link
*link
= qc
->dev
->link
;
6316 u8 prot
= qc
->tf
.protocol
;
6318 /* Make sure only one non-NCQ command is outstanding. The
6319 * check is skipped for old EH because it reuses active qc to
6320 * request ATAPI sense.
6322 WARN_ON(ap
->ops
->error_handler
&& ata_tag_valid(link
->active_tag
));
6324 if (ata_is_ncq(prot
)) {
6325 WARN_ON(link
->sactive
& (1 << qc
->tag
));
6328 ap
->nr_active_links
++;
6329 link
->sactive
|= 1 << qc
->tag
;
6331 WARN_ON(link
->sactive
);
6333 ap
->nr_active_links
++;
6334 link
->active_tag
= qc
->tag
;
6337 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
6338 ap
->qc_active
|= 1 << qc
->tag
;
6340 /* We guarantee to LLDs that they will have at least one
6341 * non-zero sg if the command is a data command.
6343 BUG_ON(ata_is_data(prot
) && (!qc
->sg
|| !qc
->n_elem
|| !qc
->nbytes
));
6345 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
6346 /* ata_sg_setup() may update nbytes */
6347 qc
->raw_nbytes
= qc
->nbytes
;
6350 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
6351 if (ata_is_dma(prot
) || (ata_is_pio(prot
) &&
6352 (ap
->flags
& ATA_FLAG_PIO_DMA
)))
6353 if (ata_sg_setup(qc
))
6356 /* if device is sleeping, schedule softreset and abort the link */
6357 if (unlikely(qc
->dev
->flags
& ATA_DFLAG_SLEEPING
)) {
6358 link
->eh_info
.action
|= ATA_EH_SOFTRESET
;
6359 ata_ehi_push_desc(&link
->eh_info
, "waking up from sleep");
6360 ata_link_abort(link
);
6364 ap
->ops
->qc_prep(qc
);
6366 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
6367 if (unlikely(qc
->err_mask
))
6372 qc
->err_mask
|= AC_ERR_SYSTEM
;
6374 ata_qc_complete(qc
);
6378 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6379 * @qc: command to issue to device
6381 * Using various libata functions and hooks, this function
6382 * starts an ATA command. ATA commands are grouped into
6383 * classes called "protocols", and issuing each type of protocol
6384 * is slightly different.
6386 * May be used as the qc_issue() entry in ata_port_operations.
6389 * spin_lock_irqsave(host lock)
6392 * Zero on success, AC_ERR_* mask on failure
6395 unsigned int ata_qc_issue_prot(struct ata_queued_cmd
*qc
)
6397 struct ata_port
*ap
= qc
->ap
;
6399 /* Use polling pio if the LLD doesn't handle
6400 * interrupt driven pio and atapi CDB interrupt.
6402 if (ap
->flags
& ATA_FLAG_PIO_POLLING
) {
6403 switch (qc
->tf
.protocol
) {
6405 case ATA_PROT_NODATA
:
6406 case ATAPI_PROT_PIO
:
6407 case ATAPI_PROT_NODATA
:
6408 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
6410 case ATAPI_PROT_DMA
:
6411 if (qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)
6412 /* see ata_dma_blacklisted() */
6420 /* select the device */
6421 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
6423 /* start the command */
6424 switch (qc
->tf
.protocol
) {
6425 case ATA_PROT_NODATA
:
6426 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
6427 ata_qc_set_polling(qc
);
6429 ata_tf_to_host(ap
, &qc
->tf
);
6430 ap
->hsm_task_state
= HSM_ST_LAST
;
6432 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
6433 ata_pio_queue_task(ap
, qc
, 0);
6438 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
6440 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
6441 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
6442 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
6443 ap
->hsm_task_state
= HSM_ST_LAST
;
6447 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
6448 ata_qc_set_polling(qc
);
6450 ata_tf_to_host(ap
, &qc
->tf
);
6452 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
6453 /* PIO data out protocol */
6454 ap
->hsm_task_state
= HSM_ST_FIRST
;
6455 ata_pio_queue_task(ap
, qc
, 0);
6457 /* always send first data block using
6458 * the ata_pio_task() codepath.
6461 /* PIO data in protocol */
6462 ap
->hsm_task_state
= HSM_ST
;
6464 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
6465 ata_pio_queue_task(ap
, qc
, 0);
6467 /* if polling, ata_pio_task() handles the rest.
6468 * otherwise, interrupt handler takes over from here.
6474 case ATAPI_PROT_PIO
:
6475 case ATAPI_PROT_NODATA
:
6476 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
6477 ata_qc_set_polling(qc
);
6479 ata_tf_to_host(ap
, &qc
->tf
);
6481 ap
->hsm_task_state
= HSM_ST_FIRST
;
6483 /* send cdb by polling if no cdb interrupt */
6484 if ((!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)) ||
6485 (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
6486 ata_pio_queue_task(ap
, qc
, 0);
6489 case ATAPI_PROT_DMA
:
6490 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
6492 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
6493 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
6494 ap
->hsm_task_state
= HSM_ST_FIRST
;
6496 /* send cdb by polling if no cdb interrupt */
6497 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
6498 ata_pio_queue_task(ap
, qc
, 0);
6503 return AC_ERR_SYSTEM
;
6510 * ata_host_intr - Handle host interrupt for given (port, task)
6511 * @ap: Port on which interrupt arrived (possibly...)
6512 * @qc: Taskfile currently active in engine
6514 * Handle host interrupt for given queued command. Currently,
6515 * only DMA interrupts are handled. All other commands are
6516 * handled via polling with interrupts disabled (nIEN bit).
6519 * spin_lock_irqsave(host lock)
6522 * One if interrupt was handled, zero if not (shared irq).
6525 inline unsigned int ata_host_intr(struct ata_port
*ap
,
6526 struct ata_queued_cmd
*qc
)
6528 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
6529 u8 status
, host_stat
= 0;
6531 VPRINTK("ata%u: protocol %d task_state %d\n",
6532 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
);
6534 /* Check whether we are expecting interrupt in this state */
6535 switch (ap
->hsm_task_state
) {
6537 /* Some pre-ATAPI-4 devices assert INTRQ
6538 * at this state when ready to receive CDB.
6541 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6542 * The flag was turned on only for atapi devices. No
6543 * need to check ata_is_atapi(qc->tf.protocol) again.
6545 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
6549 if (qc
->tf
.protocol
== ATA_PROT_DMA
||
6550 qc
->tf
.protocol
== ATAPI_PROT_DMA
) {
6551 /* check status of DMA engine */
6552 host_stat
= ap
->ops
->bmdma_status(ap
);
6553 VPRINTK("ata%u: host_stat 0x%X\n",
6554 ap
->print_id
, host_stat
);
6556 /* if it's not our irq... */
6557 if (!(host_stat
& ATA_DMA_INTR
))
6560 /* before we do anything else, clear DMA-Start bit */
6561 ap
->ops
->bmdma_stop(qc
);
6563 if (unlikely(host_stat
& ATA_DMA_ERR
)) {
6564 /* error when transfering data to/from memory */
6565 qc
->err_mask
|= AC_ERR_HOST_BUS
;
6566 ap
->hsm_task_state
= HSM_ST_ERR
;
6576 /* check altstatus */
6577 status
= ata_altstatus(ap
);
6578 if (status
& ATA_BUSY
)
6581 /* check main status, clearing INTRQ */
6582 status
= ata_chk_status(ap
);
6583 if (unlikely(status
& ATA_BUSY
))
6586 /* ack bmdma irq events */
6587 ap
->ops
->irq_clear(ap
);
6589 ata_hsm_move(ap
, qc
, status
, 0);
6591 if (unlikely(qc
->err_mask
) && (qc
->tf
.protocol
== ATA_PROT_DMA
||
6592 qc
->tf
.protocol
== ATAPI_PROT_DMA
))
6593 ata_ehi_push_desc(ehi
, "BMDMA stat 0x%x", host_stat
);
6595 return 1; /* irq handled */
6598 ap
->stats
.idle_irq
++;
6601 if ((ap
->stats
.idle_irq
% 1000) == 0) {
6603 ap
->ops
->irq_clear(ap
);
6604 ata_port_printk(ap
, KERN_WARNING
, "irq trap\n");
6608 return 0; /* irq not handled */
6612 * ata_interrupt - Default ATA host interrupt handler
6613 * @irq: irq line (unused)
6614 * @dev_instance: pointer to our ata_host information structure
6616 * Default interrupt handler for PCI IDE devices. Calls
6617 * ata_host_intr() for each port that is not disabled.
6620 * Obtains host lock during operation.
6623 * IRQ_NONE or IRQ_HANDLED.
6626 irqreturn_t
ata_interrupt(int irq
, void *dev_instance
)
6628 struct ata_host
*host
= dev_instance
;
6630 unsigned int handled
= 0;
6631 unsigned long flags
;
6633 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
6634 spin_lock_irqsave(&host
->lock
, flags
);
6636 for (i
= 0; i
< host
->n_ports
; i
++) {
6637 struct ata_port
*ap
;
6639 ap
= host
->ports
[i
];
6641 !(ap
->flags
& ATA_FLAG_DISABLED
)) {
6642 struct ata_queued_cmd
*qc
;
6644 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
6645 if (qc
&& (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
)) &&
6646 (qc
->flags
& ATA_QCFLAG_ACTIVE
))
6647 handled
|= ata_host_intr(ap
, qc
);
6651 spin_unlock_irqrestore(&host
->lock
, flags
);
6653 return IRQ_RETVAL(handled
);
6657 * sata_scr_valid - test whether SCRs are accessible
6658 * @link: ATA link to test SCR accessibility for
6660 * Test whether SCRs are accessible for @link.
6666 * 1 if SCRs are accessible, 0 otherwise.
6668 int sata_scr_valid(struct ata_link
*link
)
6670 struct ata_port
*ap
= link
->ap
;
6672 return (ap
->flags
& ATA_FLAG_SATA
) && ap
->ops
->scr_read
;
6676 * sata_scr_read - read SCR register of the specified port
6677 * @link: ATA link to read SCR for
6679 * @val: Place to store read value
6681 * Read SCR register @reg of @link into *@val. This function is
6682 * guaranteed to succeed if @link is ap->link, the cable type of
6683 * the port is SATA and the port implements ->scr_read.
6686 * None if @link is ap->link. Kernel thread context otherwise.
6689 * 0 on success, negative errno on failure.
6691 int sata_scr_read(struct ata_link
*link
, int reg
, u32
*val
)
6693 if (ata_is_host_link(link
)) {
6694 struct ata_port
*ap
= link
->ap
;
6696 if (sata_scr_valid(link
))
6697 return ap
->ops
->scr_read(ap
, reg
, val
);
6701 return sata_pmp_scr_read(link
, reg
, val
);
6705 * sata_scr_write - write SCR register of the specified port
6706 * @link: ATA link to write SCR for
6707 * @reg: SCR to write
6708 * @val: value to write
6710 * Write @val to SCR register @reg of @link. This function is
6711 * guaranteed to succeed if @link is ap->link, the cable type of
6712 * the port is SATA and the port implements ->scr_read.
6715 * None if @link is ap->link. Kernel thread context otherwise.
6718 * 0 on success, negative errno on failure.
6720 int sata_scr_write(struct ata_link
*link
, int reg
, u32 val
)
6722 if (ata_is_host_link(link
)) {
6723 struct ata_port
*ap
= link
->ap
;
6725 if (sata_scr_valid(link
))
6726 return ap
->ops
->scr_write(ap
, reg
, val
);
6730 return sata_pmp_scr_write(link
, reg
, val
);
6734 * sata_scr_write_flush - write SCR register of the specified port and flush
6735 * @link: ATA link to write SCR for
6736 * @reg: SCR to write
6737 * @val: value to write
6739 * This function is identical to sata_scr_write() except that this
6740 * function performs flush after writing to the register.
6743 * None if @link is ap->link. Kernel thread context otherwise.
6746 * 0 on success, negative errno on failure.
6748 int sata_scr_write_flush(struct ata_link
*link
, int reg
, u32 val
)
6750 if (ata_is_host_link(link
)) {
6751 struct ata_port
*ap
= link
->ap
;
6754 if (sata_scr_valid(link
)) {
6755 rc
= ap
->ops
->scr_write(ap
, reg
, val
);
6757 rc
= ap
->ops
->scr_read(ap
, reg
, &val
);
6763 return sata_pmp_scr_write(link
, reg
, val
);
6767 * ata_link_online - test whether the given link is online
6768 * @link: ATA link to test
6770 * Test whether @link is online. Note that this function returns
6771 * 0 if online status of @link cannot be obtained, so
6772 * ata_link_online(link) != !ata_link_offline(link).
6778 * 1 if the port online status is available and online.
6780 int ata_link_online(struct ata_link
*link
)
6784 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
6785 (sstatus
& 0xf) == 0x3)
6791 * ata_link_offline - test whether the given link is offline
6792 * @link: ATA link to test
6794 * Test whether @link is offline. Note that this function
6795 * returns 0 if offline status of @link cannot be obtained, so
6796 * ata_link_online(link) != !ata_link_offline(link).
6802 * 1 if the port offline status is available and offline.
6804 int ata_link_offline(struct ata_link
*link
)
6808 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
6809 (sstatus
& 0xf) != 0x3)
6814 int ata_flush_cache(struct ata_device
*dev
)
6816 unsigned int err_mask
;
6819 if (!ata_try_flush_cache(dev
))
6822 if (dev
->flags
& ATA_DFLAG_FLUSH_EXT
)
6823 cmd
= ATA_CMD_FLUSH_EXT
;
6825 cmd
= ATA_CMD_FLUSH
;
6827 /* This is wrong. On a failed flush we get back the LBA of the lost
6828 sector and we should (assuming it wasn't aborted as unknown) issue
6829 a further flush command to continue the writeback until it
6831 err_mask
= ata_do_simple_cmd(dev
, cmd
);
6833 ata_dev_printk(dev
, KERN_ERR
, "failed to flush cache\n");
6841 static int ata_host_request_pm(struct ata_host
*host
, pm_message_t mesg
,
6842 unsigned int action
, unsigned int ehi_flags
,
6845 unsigned long flags
;
6848 for (i
= 0; i
< host
->n_ports
; i
++) {
6849 struct ata_port
*ap
= host
->ports
[i
];
6850 struct ata_link
*link
;
6852 /* Previous resume operation might still be in
6853 * progress. Wait for PM_PENDING to clear.
6855 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
6856 ata_port_wait_eh(ap
);
6857 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
6860 /* request PM ops to EH */
6861 spin_lock_irqsave(ap
->lock
, flags
);
6866 ap
->pm_result
= &rc
;
6869 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
6870 __ata_port_for_each_link(link
, ap
) {
6871 link
->eh_info
.action
|= action
;
6872 link
->eh_info
.flags
|= ehi_flags
;
6875 ata_port_schedule_eh(ap
);
6877 spin_unlock_irqrestore(ap
->lock
, flags
);
6879 /* wait and check result */
6881 ata_port_wait_eh(ap
);
6882 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
6892 * ata_host_suspend - suspend host
6893 * @host: host to suspend
6896 * Suspend @host. Actual operation is performed by EH. This
6897 * function requests EH to perform PM operations and waits for EH
6901 * Kernel thread context (may sleep).
6904 * 0 on success, -errno on failure.
6906 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
6911 * disable link pm on all ports before requesting
6914 ata_lpm_enable(host
);
6916 rc
= ata_host_request_pm(host
, mesg
, 0, ATA_EHI_QUIET
, 1);
6918 host
->dev
->power
.power_state
= mesg
;
6923 * ata_host_resume - resume host
6924 * @host: host to resume
6926 * Resume @host. Actual operation is performed by EH. This
6927 * function requests EH to perform PM operations and returns.
6928 * Note that all resume operations are performed parallely.
6931 * Kernel thread context (may sleep).
6933 void ata_host_resume(struct ata_host
*host
)
6935 ata_host_request_pm(host
, PMSG_ON
, ATA_EH_SOFTRESET
,
6936 ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
, 0);
6937 host
->dev
->power
.power_state
= PMSG_ON
;
6939 /* reenable link pm */
6940 ata_lpm_disable(host
);
6945 * ata_port_start - Set port up for dma.
6946 * @ap: Port to initialize
6948 * Called just after data structures for each port are
6949 * initialized. Allocates space for PRD table.
6951 * May be used as the port_start() entry in ata_port_operations.
6954 * Inherited from caller.
6956 int ata_port_start(struct ata_port
*ap
)
6958 struct device
*dev
= ap
->dev
;
6959 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
6962 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
6964 ap
->prd
= dmam_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
,
6969 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
6970 rc
= ata_pad_alloc(ap
, dev
);
6974 DPRINTK("prd alloc, virt %p, dma %llx\n", ap
->prd
,
6975 (unsigned long long)ap
->prd_dma
);
6977 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
6982 * ata_dev_init - Initialize an ata_device structure
6983 * @dev: Device structure to initialize
6985 * Initialize @dev in preparation for probing.
6988 * Inherited from caller.
6990 void ata_dev_init(struct ata_device
*dev
)
6992 struct ata_link
*link
= dev
->link
;
6993 struct ata_port
*ap
= link
->ap
;
6994 unsigned long flags
;
6996 /* SATA spd limit is bound to the first device */
6997 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
7000 /* High bits of dev->flags are used to record warm plug
7001 * requests which occur asynchronously. Synchronize using
7004 spin_lock_irqsave(ap
->lock
, flags
);
7005 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
7007 spin_unlock_irqrestore(ap
->lock
, flags
);
7009 memset((void *)dev
+ ATA_DEVICE_CLEAR_OFFSET
, 0,
7010 sizeof(*dev
) - ATA_DEVICE_CLEAR_OFFSET
);
7011 dev
->pio_mask
= UINT_MAX
;
7012 dev
->mwdma_mask
= UINT_MAX
;
7013 dev
->udma_mask
= UINT_MAX
;
7017 * ata_link_init - Initialize an ata_link structure
7018 * @ap: ATA port link is attached to
7019 * @link: Link structure to initialize
7020 * @pmp: Port multiplier port number
7025 * Kernel thread context (may sleep)
7027 void ata_link_init(struct ata_port
*ap
, struct ata_link
*link
, int pmp
)
7031 /* clear everything except for devices */
7032 memset(link
, 0, offsetof(struct ata_link
, device
[0]));
7036 link
->active_tag
= ATA_TAG_POISON
;
7037 link
->hw_sata_spd_limit
= UINT_MAX
;
7039 /* can't use iterator, ap isn't initialized yet */
7040 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
7041 struct ata_device
*dev
= &link
->device
[i
];
7044 dev
->devno
= dev
- link
->device
;
7050 * sata_link_init_spd - Initialize link->sata_spd_limit
7051 * @link: Link to configure sata_spd_limit for
7053 * Initialize @link->[hw_]sata_spd_limit to the currently
7057 * Kernel thread context (may sleep).
7060 * 0 on success, -errno on failure.
7062 int sata_link_init_spd(struct ata_link
*link
)
7064 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
7069 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
7072 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
7076 spd
= (scontrol
>> 4) & 0xf;
7078 link
->hw_sata_spd_limit
&= (1 << spd
) - 1;
7080 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
7082 ata_force_spd_limit(link
);
7084 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
7085 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
7091 * ata_port_alloc - allocate and initialize basic ATA port resources
7092 * @host: ATA host this allocated port belongs to
7094 * Allocate and initialize basic ATA port resources.
7097 * Allocate ATA port on success, NULL on failure.
7100 * Inherited from calling layer (may sleep).
7102 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
7104 struct ata_port
*ap
;
7108 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
7112 ap
->pflags
|= ATA_PFLAG_INITIALIZING
;
7113 ap
->lock
= &host
->lock
;
7114 ap
->flags
= ATA_FLAG_DISABLED
;
7116 ap
->ctl
= ATA_DEVCTL_OBS
;
7118 ap
->dev
= host
->dev
;
7119 ap
->last_ctl
= 0xFF;
7121 #if defined(ATA_VERBOSE_DEBUG)
7122 /* turn on all debugging levels */
7123 ap
->msg_enable
= 0x00FF;
7124 #elif defined(ATA_DEBUG)
7125 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
7127 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
7130 INIT_DELAYED_WORK(&ap
->port_task
, ata_pio_task
);
7131 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
7132 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
7133 INIT_LIST_HEAD(&ap
->eh_done_q
);
7134 init_waitqueue_head(&ap
->eh_wait_q
);
7135 init_timer_deferrable(&ap
->fastdrain_timer
);
7136 ap
->fastdrain_timer
.function
= ata_eh_fastdrain_timerfn
;
7137 ap
->fastdrain_timer
.data
= (unsigned long)ap
;
7139 ap
->cbl
= ATA_CBL_NONE
;
7141 ata_link_init(ap
, &ap
->link
, 0);
7144 ap
->stats
.unhandled_irq
= 1;
7145 ap
->stats
.idle_irq
= 1;
7150 static void ata_host_release(struct device
*gendev
, void *res
)
7152 struct ata_host
*host
= dev_get_drvdata(gendev
);
7155 for (i
= 0; i
< host
->n_ports
; i
++) {
7156 struct ata_port
*ap
= host
->ports
[i
];
7162 scsi_host_put(ap
->scsi_host
);
7164 kfree(ap
->pmp_link
);
7166 host
->ports
[i
] = NULL
;
7169 dev_set_drvdata(gendev
, NULL
);
7173 * ata_host_alloc - allocate and init basic ATA host resources
7174 * @dev: generic device this host is associated with
7175 * @max_ports: maximum number of ATA ports associated with this host
7177 * Allocate and initialize basic ATA host resources. LLD calls
7178 * this function to allocate a host, initializes it fully and
7179 * attaches it using ata_host_register().
7181 * @max_ports ports are allocated and host->n_ports is
7182 * initialized to @max_ports. The caller is allowed to decrease
7183 * host->n_ports before calling ata_host_register(). The unused
7184 * ports will be automatically freed on registration.
7187 * Allocate ATA host on success, NULL on failure.
7190 * Inherited from calling layer (may sleep).
7192 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
7194 struct ata_host
*host
;
7200 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
7203 /* alloc a container for our list of ATA ports (buses) */
7204 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
7205 /* alloc a container for our list of ATA ports (buses) */
7206 host
= devres_alloc(ata_host_release
, sz
, GFP_KERNEL
);
7210 devres_add(dev
, host
);
7211 dev_set_drvdata(dev
, host
);
7213 spin_lock_init(&host
->lock
);
7215 host
->n_ports
= max_ports
;
7217 /* allocate ports bound to this host */
7218 for (i
= 0; i
< max_ports
; i
++) {
7219 struct ata_port
*ap
;
7221 ap
= ata_port_alloc(host
);
7226 host
->ports
[i
] = ap
;
7229 devres_remove_group(dev
, NULL
);
7233 devres_release_group(dev
, NULL
);
7238 * ata_host_alloc_pinfo - alloc host and init with port_info array
7239 * @dev: generic device this host is associated with
7240 * @ppi: array of ATA port_info to initialize host with
7241 * @n_ports: number of ATA ports attached to this host
7243 * Allocate ATA host and initialize with info from @ppi. If NULL
7244 * terminated, @ppi may contain fewer entries than @n_ports. The
7245 * last entry will be used for the remaining ports.
7248 * Allocate ATA host on success, NULL on failure.
7251 * Inherited from calling layer (may sleep).
7253 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
7254 const struct ata_port_info
* const * ppi
,
7257 const struct ata_port_info
*pi
;
7258 struct ata_host
*host
;
7261 host
= ata_host_alloc(dev
, n_ports
);
7265 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
7266 struct ata_port
*ap
= host
->ports
[i
];
7271 ap
->pio_mask
= pi
->pio_mask
;
7272 ap
->mwdma_mask
= pi
->mwdma_mask
;
7273 ap
->udma_mask
= pi
->udma_mask
;
7274 ap
->flags
|= pi
->flags
;
7275 ap
->link
.flags
|= pi
->link_flags
;
7276 ap
->ops
= pi
->port_ops
;
7278 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
7279 host
->ops
= pi
->port_ops
;
7280 if (!host
->private_data
&& pi
->private_data
)
7281 host
->private_data
= pi
->private_data
;
7287 static void ata_host_stop(struct device
*gendev
, void *res
)
7289 struct ata_host
*host
= dev_get_drvdata(gendev
);
7292 WARN_ON(!(host
->flags
& ATA_HOST_STARTED
));
7294 for (i
= 0; i
< host
->n_ports
; i
++) {
7295 struct ata_port
*ap
= host
->ports
[i
];
7297 if (ap
->ops
->port_stop
)
7298 ap
->ops
->port_stop(ap
);
7301 if (host
->ops
->host_stop
)
7302 host
->ops
->host_stop(host
);
7306 * ata_host_start - start and freeze ports of an ATA host
7307 * @host: ATA host to start ports for
7309 * Start and then freeze ports of @host. Started status is
7310 * recorded in host->flags, so this function can be called
7311 * multiple times. Ports are guaranteed to get started only
7312 * once. If host->ops isn't initialized yet, its set to the
7313 * first non-dummy port ops.
7316 * Inherited from calling layer (may sleep).
7319 * 0 if all ports are started successfully, -errno otherwise.
7321 int ata_host_start(struct ata_host
*host
)
7324 void *start_dr
= NULL
;
7327 if (host
->flags
& ATA_HOST_STARTED
)
7330 for (i
= 0; i
< host
->n_ports
; i
++) {
7331 struct ata_port
*ap
= host
->ports
[i
];
7333 if (!host
->ops
&& !ata_port_is_dummy(ap
))
7334 host
->ops
= ap
->ops
;
7336 if (ap
->ops
->port_stop
)
7340 if (host
->ops
->host_stop
)
7344 start_dr
= devres_alloc(ata_host_stop
, 0, GFP_KERNEL
);
7349 for (i
= 0; i
< host
->n_ports
; i
++) {
7350 struct ata_port
*ap
= host
->ports
[i
];
7352 if (ap
->ops
->port_start
) {
7353 rc
= ap
->ops
->port_start(ap
);
7356 dev_printk(KERN_ERR
, host
->dev
,
7357 "failed to start port %d "
7358 "(errno=%d)\n", i
, rc
);
7362 ata_eh_freeze_port(ap
);
7366 devres_add(host
->dev
, start_dr
);
7367 host
->flags
|= ATA_HOST_STARTED
;
7372 struct ata_port
*ap
= host
->ports
[i
];
7374 if (ap
->ops
->port_stop
)
7375 ap
->ops
->port_stop(ap
);
7377 devres_free(start_dr
);
7382 * ata_sas_host_init - Initialize a host struct
7383 * @host: host to initialize
7384 * @dev: device host is attached to
7385 * @flags: host flags
7389 * PCI/etc. bus probe sem.
7392 /* KILLME - the only user left is ipr */
7393 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
7394 unsigned long flags
, const struct ata_port_operations
*ops
)
7396 spin_lock_init(&host
->lock
);
7398 host
->flags
= flags
;
7403 * ata_host_register - register initialized ATA host
7404 * @host: ATA host to register
7405 * @sht: template for SCSI host
7407 * Register initialized ATA host. @host is allocated using
7408 * ata_host_alloc() and fully initialized by LLD. This function
7409 * starts ports, registers @host with ATA and SCSI layers and
7410 * probe registered devices.
7413 * Inherited from calling layer (may sleep).
7416 * 0 on success, -errno otherwise.
7418 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
7422 /* host must have been started */
7423 if (!(host
->flags
& ATA_HOST_STARTED
)) {
7424 dev_printk(KERN_ERR
, host
->dev
,
7425 "BUG: trying to register unstarted host\n");
7430 /* Blow away unused ports. This happens when LLD can't
7431 * determine the exact number of ports to allocate at
7434 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
7435 kfree(host
->ports
[i
]);
7437 /* give ports names and add SCSI hosts */
7438 for (i
= 0; i
< host
->n_ports
; i
++)
7439 host
->ports
[i
]->print_id
= ata_print_id
++;
7441 rc
= ata_scsi_add_hosts(host
, sht
);
7445 /* associate with ACPI nodes */
7446 ata_acpi_associate(host
);
7448 /* set cable, sata_spd_limit and report */
7449 for (i
= 0; i
< host
->n_ports
; i
++) {
7450 struct ata_port
*ap
= host
->ports
[i
];
7451 unsigned long xfer_mask
;
7453 /* set SATA cable type if still unset */
7454 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
7455 ap
->cbl
= ATA_CBL_SATA
;
7457 /* init sata_spd_limit to the current value */
7458 sata_link_init_spd(&ap
->link
);
7460 /* print per-port info to dmesg */
7461 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
7464 if (!ata_port_is_dummy(ap
)) {
7465 ata_port_printk(ap
, KERN_INFO
,
7466 "%cATA max %s %s\n",
7467 (ap
->flags
& ATA_FLAG_SATA
) ? 'S' : 'P',
7468 ata_mode_string(xfer_mask
),
7469 ap
->link
.eh_info
.desc
);
7470 ata_ehi_clear_desc(&ap
->link
.eh_info
);
7472 ata_port_printk(ap
, KERN_INFO
, "DUMMY\n");
7475 /* perform each probe synchronously */
7476 DPRINTK("probe begin\n");
7477 for (i
= 0; i
< host
->n_ports
; i
++) {
7478 struct ata_port
*ap
= host
->ports
[i
];
7481 if (ap
->ops
->error_handler
) {
7482 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
7483 unsigned long flags
;
7487 /* kick EH for boot probing */
7488 spin_lock_irqsave(ap
->lock
, flags
);
7491 (1 << ata_link_max_devices(&ap
->link
)) - 1;
7492 ehi
->action
|= ATA_EH_SOFTRESET
;
7493 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
7495 ap
->pflags
&= ~ATA_PFLAG_INITIALIZING
;
7496 ap
->pflags
|= ATA_PFLAG_LOADING
;
7497 ata_port_schedule_eh(ap
);
7499 spin_unlock_irqrestore(ap
->lock
, flags
);
7501 /* wait for EH to finish */
7502 ata_port_wait_eh(ap
);
7504 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
7505 rc
= ata_bus_probe(ap
);
7506 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
7509 /* FIXME: do something useful here?
7510 * Current libata behavior will
7511 * tear down everything when
7512 * the module is removed
7513 * or the h/w is unplugged.
7519 /* probes are done, now scan each port's disk(s) */
7520 DPRINTK("host probe begin\n");
7521 for (i
= 0; i
< host
->n_ports
; i
++) {
7522 struct ata_port
*ap
= host
->ports
[i
];
7524 ata_scsi_scan_host(ap
, 1);
7525 ata_lpm_schedule(ap
, ap
->pm_policy
);
7532 * ata_host_activate - start host, request IRQ and register it
7533 * @host: target ATA host
7534 * @irq: IRQ to request
7535 * @irq_handler: irq_handler used when requesting IRQ
7536 * @irq_flags: irq_flags used when requesting IRQ
7537 * @sht: scsi_host_template to use when registering the host
7539 * After allocating an ATA host and initializing it, most libata
7540 * LLDs perform three steps to activate the host - start host,
7541 * request IRQ and register it. This helper takes necessasry
7542 * arguments and performs the three steps in one go.
7544 * An invalid IRQ skips the IRQ registration and expects the host to
7545 * have set polling mode on the port. In this case, @irq_handler
7549 * Inherited from calling layer (may sleep).
7552 * 0 on success, -errno otherwise.
7554 int ata_host_activate(struct ata_host
*host
, int irq
,
7555 irq_handler_t irq_handler
, unsigned long irq_flags
,
7556 struct scsi_host_template
*sht
)
7560 rc
= ata_host_start(host
);
7564 /* Special case for polling mode */
7566 WARN_ON(irq_handler
);
7567 return ata_host_register(host
, sht
);
7570 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
7571 dev_driver_string(host
->dev
), host
);
7575 for (i
= 0; i
< host
->n_ports
; i
++)
7576 ata_port_desc(host
->ports
[i
], "irq %d", irq
);
7578 rc
= ata_host_register(host
, sht
);
7579 /* if failed, just free the IRQ and leave ports alone */
7581 devm_free_irq(host
->dev
, irq
, host
);
7587 * ata_port_detach - Detach ATA port in prepration of device removal
7588 * @ap: ATA port to be detached
7590 * Detach all ATA devices and the associated SCSI devices of @ap;
7591 * then, remove the associated SCSI host. @ap is guaranteed to
7592 * be quiescent on return from this function.
7595 * Kernel thread context (may sleep).
7597 static void ata_port_detach(struct ata_port
*ap
)
7599 unsigned long flags
;
7600 struct ata_link
*link
;
7601 struct ata_device
*dev
;
7603 if (!ap
->ops
->error_handler
)
7606 /* tell EH we're leaving & flush EH */
7607 spin_lock_irqsave(ap
->lock
, flags
);
7608 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
7609 spin_unlock_irqrestore(ap
->lock
, flags
);
7611 ata_port_wait_eh(ap
);
7613 /* EH is now guaranteed to see UNLOADING - EH context belongs
7614 * to us. Disable all existing devices.
7616 ata_port_for_each_link(link
, ap
) {
7617 ata_link_for_each_dev(dev
, link
)
7618 ata_dev_disable(dev
);
7621 /* Final freeze & EH. All in-flight commands are aborted. EH
7622 * will be skipped and retrials will be terminated with bad
7625 spin_lock_irqsave(ap
->lock
, flags
);
7626 ata_port_freeze(ap
); /* won't be thawed */
7627 spin_unlock_irqrestore(ap
->lock
, flags
);
7629 ata_port_wait_eh(ap
);
7630 cancel_rearming_delayed_work(&ap
->hotplug_task
);
7633 /* remove the associated SCSI host */
7634 scsi_remove_host(ap
->scsi_host
);
7638 * ata_host_detach - Detach all ports of an ATA host
7639 * @host: Host to detach
7641 * Detach all ports of @host.
7644 * Kernel thread context (may sleep).
7646 void ata_host_detach(struct ata_host
*host
)
7650 for (i
= 0; i
< host
->n_ports
; i
++)
7651 ata_port_detach(host
->ports
[i
]);
7653 /* the host is dead now, dissociate ACPI */
7654 ata_acpi_dissociate(host
);
7658 * ata_std_ports - initialize ioaddr with standard port offsets.
7659 * @ioaddr: IO address structure to be initialized
7661 * Utility function which initializes data_addr, error_addr,
7662 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7663 * device_addr, status_addr, and command_addr to standard offsets
7664 * relative to cmd_addr.
7666 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
7669 void ata_std_ports(struct ata_ioports
*ioaddr
)
7671 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
7672 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
7673 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
7674 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
7675 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
7676 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
7677 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
7678 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
7679 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
7680 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
7687 * ata_pci_remove_one - PCI layer callback for device removal
7688 * @pdev: PCI device that was removed
7690 * PCI layer indicates to libata via this hook that hot-unplug or
7691 * module unload event has occurred. Detach all ports. Resource
7692 * release is handled via devres.
7695 * Inherited from PCI layer (may sleep).
7697 void ata_pci_remove_one(struct pci_dev
*pdev
)
7699 struct device
*dev
= &pdev
->dev
;
7700 struct ata_host
*host
= dev_get_drvdata(dev
);
7702 ata_host_detach(host
);
7705 /* move to PCI subsystem */
7706 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
7708 unsigned long tmp
= 0;
7710 switch (bits
->width
) {
7713 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
7719 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
7725 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
7736 return (tmp
== bits
->val
) ? 1 : 0;
7740 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
7742 pci_save_state(pdev
);
7743 pci_disable_device(pdev
);
7745 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
7746 if (mesg
.event
== PM_EVENT_SUSPEND
)
7748 if (mesg
.event
& PM_EVENT_SLEEP
)
7749 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
7750 pci_set_power_state(pdev
, PCI_D3hot
);
7753 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
7757 pci_set_power_state(pdev
, PCI_D0
);
7758 pci_restore_state(pdev
);
7760 rc
= pcim_enable_device(pdev
);
7762 dev_printk(KERN_ERR
, &pdev
->dev
,
7763 "failed to enable device after resume (%d)\n", rc
);
7767 pci_set_master(pdev
);
7771 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
7773 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
7776 rc
= ata_host_suspend(host
, mesg
);
7780 ata_pci_device_do_suspend(pdev
, mesg
);
7785 int ata_pci_device_resume(struct pci_dev
*pdev
)
7787 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
7790 rc
= ata_pci_device_do_resume(pdev
);
7792 ata_host_resume(host
);
7795 #endif /* CONFIG_PM */
7797 #endif /* CONFIG_PCI */
7799 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
7801 static int __init
ata_parse_force_one(char **cur
,
7802 struct ata_force_ent
*force_ent
,
7803 const char **reason
)
7805 /* FIXME: Currently, there's no way to tag init const data and
7806 * using __initdata causes build failure on some versions of
7807 * gcc. Once __initdataconst is implemented, add const to the
7808 * following structure.
7810 static struct ata_force_param force_tbl
[] __initdata
= {
7811 { "40c", .cbl
= ATA_CBL_PATA40
},
7812 { "80c", .cbl
= ATA_CBL_PATA80
},
7813 { "short40c", .cbl
= ATA_CBL_PATA40_SHORT
},
7814 { "unk", .cbl
= ATA_CBL_PATA_UNK
},
7815 { "ign", .cbl
= ATA_CBL_PATA_IGN
},
7816 { "sata", .cbl
= ATA_CBL_SATA
},
7817 { "1.5Gbps", .spd_limit
= 1 },
7818 { "3.0Gbps", .spd_limit
= 2 },
7819 { "noncq", .horkage_on
= ATA_HORKAGE_NONCQ
},
7820 { "ncq", .horkage_off
= ATA_HORKAGE_NONCQ
},
7821 { "pio0", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 0) },
7822 { "pio1", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 1) },
7823 { "pio2", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 2) },
7824 { "pio3", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 3) },
7825 { "pio4", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 4) },
7826 { "pio5", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 5) },
7827 { "pio6", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 6) },
7828 { "mwdma0", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 0) },
7829 { "mwdma1", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 1) },
7830 { "mwdma2", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 2) },
7831 { "mwdma3", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 3) },
7832 { "mwdma4", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 4) },
7833 { "udma0", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
7834 { "udma16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
7835 { "udma/16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
7836 { "udma1", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
7837 { "udma25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
7838 { "udma/25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
7839 { "udma2", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
7840 { "udma33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
7841 { "udma/33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
7842 { "udma3", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
7843 { "udma44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
7844 { "udma/44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
7845 { "udma4", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
7846 { "udma66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
7847 { "udma/66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
7848 { "udma5", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
7849 { "udma100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
7850 { "udma/100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
7851 { "udma6", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
7852 { "udma133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
7853 { "udma/133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
7854 { "udma7", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 7) },
7856 char *start
= *cur
, *p
= *cur
;
7857 char *id
, *val
, *endp
;
7858 const struct ata_force_param
*match_fp
= NULL
;
7859 int nr_matches
= 0, i
;
7861 /* find where this param ends and update *cur */
7862 while (*p
!= '\0' && *p
!= ',')
7873 p
= strchr(start
, ':');
7875 val
= strstrip(start
);
7880 id
= strstrip(start
);
7881 val
= strstrip(p
+ 1);
7884 p
= strchr(id
, '.');
7887 force_ent
->device
= simple_strtoul(p
, &endp
, 10);
7888 if (p
== endp
|| *endp
!= '\0') {
7889 *reason
= "invalid device";
7894 force_ent
->port
= simple_strtoul(id
, &endp
, 10);
7895 if (p
== endp
|| *endp
!= '\0') {
7896 *reason
= "invalid port/link";
7901 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
7902 for (i
= 0; i
< ARRAY_SIZE(force_tbl
); i
++) {
7903 const struct ata_force_param
*fp
= &force_tbl
[i
];
7905 if (strncasecmp(val
, fp
->name
, strlen(val
)))
7911 if (strcasecmp(val
, fp
->name
) == 0) {
7918 *reason
= "unknown value";
7921 if (nr_matches
> 1) {
7922 *reason
= "ambigious value";
7926 force_ent
->param
= *match_fp
;
7931 static void __init
ata_parse_force_param(void)
7933 int idx
= 0, size
= 1;
7934 int last_port
= -1, last_device
= -1;
7935 char *p
, *cur
, *next
;
7937 /* calculate maximum number of params and allocate force_tbl */
7938 for (p
= ata_force_param_buf
; *p
; p
++)
7942 ata_force_tbl
= kzalloc(sizeof(ata_force_tbl
[0]) * size
, GFP_KERNEL
);
7943 if (!ata_force_tbl
) {
7944 printk(KERN_WARNING
"ata: failed to extend force table, "
7945 "libata.force ignored\n");
7949 /* parse and populate the table */
7950 for (cur
= ata_force_param_buf
; *cur
!= '\0'; cur
= next
) {
7951 const char *reason
= "";
7952 struct ata_force_ent te
= { .port
= -1, .device
= -1 };
7955 if (ata_parse_force_one(&next
, &te
, &reason
)) {
7956 printk(KERN_WARNING
"ata: failed to parse force "
7957 "parameter \"%s\" (%s)\n",
7962 if (te
.port
== -1) {
7963 te
.port
= last_port
;
7964 te
.device
= last_device
;
7967 ata_force_tbl
[idx
++] = te
;
7969 last_port
= te
.port
;
7970 last_device
= te
.device
;
7973 ata_force_tbl_size
= idx
;
7975 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
7977 static int __init
ata_init(void)
7979 ata_probe_timeout
*= HZ
;
7980 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
7983 ata_parse_force_param();
7985 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
7986 ata_wq
= create_workqueue("ata");
7990 ata_aux_wq
= create_singlethread_workqueue("ata_aux");
7992 destroy_workqueue(ata_wq
);
7996 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
8000 static void __exit
ata_exit(void)
8002 <<<<<<< HEAD
:drivers
/ata
/libata
-core
.c
8004 kfree(ata_force_tbl
);
8005 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/ata
/libata
-core
.c
8006 destroy_workqueue(ata_wq
);
8007 destroy_workqueue(ata_aux_wq
);
8010 subsys_initcall(ata_init
);
8011 module_exit(ata_exit
);
8013 static unsigned long ratelimit_time
;
8014 static DEFINE_SPINLOCK(ata_ratelimit_lock
);
8016 int ata_ratelimit(void)
8019 unsigned long flags
;
8021 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
8023 if (time_after(jiffies
, ratelimit_time
)) {
8025 ratelimit_time
= jiffies
+ (HZ
/5);
8029 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
8035 * ata_wait_register - wait until register value changes
8036 * @reg: IO-mapped register
8037 * @mask: Mask to apply to read register value
8038 * @val: Wait condition
8039 * @interval_msec: polling interval in milliseconds
8040 * @timeout_msec: timeout in milliseconds
8042 * Waiting for some bits of register to change is a common
8043 * operation for ATA controllers. This function reads 32bit LE
8044 * IO-mapped register @reg and tests for the following condition.
8046 * (*@reg & mask) != val
8048 * If the condition is met, it returns; otherwise, the process is
8049 * repeated after @interval_msec until timeout.
8052 * Kernel thread context (may sleep)
8055 * The final register value.
8057 u32
ata_wait_register(void __iomem
*reg
, u32 mask
, u32 val
,
8058 unsigned long interval_msec
,
8059 unsigned long timeout_msec
)
8061 unsigned long timeout
;
8064 tmp
= ioread32(reg
);
8066 /* Calculate timeout _after_ the first read to make sure
8067 * preceding writes reach the controller before starting to
8068 * eat away the timeout.
8070 timeout
= jiffies
+ (timeout_msec
* HZ
) / 1000;
8072 while ((tmp
& mask
) == val
&& time_before(jiffies
, timeout
)) {
8073 msleep(interval_msec
);
8074 tmp
= ioread32(reg
);
8083 static void ata_dummy_noret(struct ata_port
*ap
) { }
8084 static int ata_dummy_ret0(struct ata_port
*ap
) { return 0; }
8085 static void ata_dummy_qc_noret(struct ata_queued_cmd
*qc
) { }
8087 static u8
ata_dummy_check_status(struct ata_port
*ap
)
8092 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
8094 return AC_ERR_SYSTEM
;
8097 const struct ata_port_operations ata_dummy_port_ops
= {
8098 .check_status
= ata_dummy_check_status
,
8099 .check_altstatus
= ata_dummy_check_status
,
8100 .dev_select
= ata_noop_dev_select
,
8101 .qc_prep
= ata_noop_qc_prep
,
8102 .qc_issue
= ata_dummy_qc_issue
,
8103 .freeze
= ata_dummy_noret
,
8104 .thaw
= ata_dummy_noret
,
8105 .error_handler
= ata_dummy_noret
,
8106 .post_internal_cmd
= ata_dummy_qc_noret
,
8107 .irq_clear
= ata_dummy_noret
,
8108 .port_start
= ata_dummy_ret0
,
8109 .port_stop
= ata_dummy_noret
,
8112 const struct ata_port_info ata_dummy_port_info
= {
8113 .port_ops
= &ata_dummy_port_ops
,
8117 * libata is essentially a library of internal helper functions for
8118 * low-level ATA host controller drivers. As such, the API/ABI is
8119 * likely to change as new drivers are added and updated.
8120 * Do not depend on ABI/API stability.
8122 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
8123 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
8124 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
8125 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
8126 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
8127 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
8128 EXPORT_SYMBOL_GPL(ata_std_ports
);
8129 EXPORT_SYMBOL_GPL(ata_host_init
);
8130 EXPORT_SYMBOL_GPL(ata_host_alloc
);
8131 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
8132 EXPORT_SYMBOL_GPL(ata_host_start
);
8133 EXPORT_SYMBOL_GPL(ata_host_register
);
8134 EXPORT_SYMBOL_GPL(ata_host_activate
);
8135 EXPORT_SYMBOL_GPL(ata_host_detach
);
8136 EXPORT_SYMBOL_GPL(ata_sg_init
);
8137 EXPORT_SYMBOL_GPL(ata_hsm_move
);
8138 EXPORT_SYMBOL_GPL(ata_qc_complete
);
8139 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
8140 EXPORT_SYMBOL_GPL(ata_qc_issue_prot
);
8141 EXPORT_SYMBOL_GPL(ata_tf_load
);
8142 EXPORT_SYMBOL_GPL(ata_tf_read
);
8143 EXPORT_SYMBOL_GPL(ata_noop_dev_select
);
8144 EXPORT_SYMBOL_GPL(ata_std_dev_select
);
8145 EXPORT_SYMBOL_GPL(sata_print_link_status
);
8146 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
8147 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
8148 EXPORT_SYMBOL_GPL(ata_pack_xfermask
);
8149 EXPORT_SYMBOL_GPL(ata_unpack_xfermask
);
8150 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode
);
8151 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask
);
8152 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift
);
8153 EXPORT_SYMBOL_GPL(ata_mode_string
);
8154 EXPORT_SYMBOL_GPL(ata_id_xfermask
);
8155 EXPORT_SYMBOL_GPL(ata_check_status
);
8156 EXPORT_SYMBOL_GPL(ata_altstatus
);
8157 EXPORT_SYMBOL_GPL(ata_exec_command
);
8158 EXPORT_SYMBOL_GPL(ata_port_start
);
8159 EXPORT_SYMBOL_GPL(ata_sff_port_start
);
8160 EXPORT_SYMBOL_GPL(ata_interrupt
);
8161 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
8162 EXPORT_SYMBOL_GPL(ata_data_xfer
);
8163 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq
);
8164 EXPORT_SYMBOL_GPL(ata_std_qc_defer
);
8165 EXPORT_SYMBOL_GPL(ata_qc_prep
);
8166 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep
);
8167 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
8168 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
8169 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
8170 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
8171 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
8172 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
8173 EXPORT_SYMBOL_GPL(ata_bmdma_freeze
);
8174 EXPORT_SYMBOL_GPL(ata_bmdma_thaw
);
8175 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh
);
8176 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler
);
8177 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd
);
8178 EXPORT_SYMBOL_GPL(ata_port_probe
);
8179 EXPORT_SYMBOL_GPL(ata_dev_disable
);
8180 EXPORT_SYMBOL_GPL(sata_set_spd
);
8181 EXPORT_SYMBOL_GPL(sata_link_debounce
);
8182 EXPORT_SYMBOL_GPL(sata_link_resume
);
8183 EXPORT_SYMBOL_GPL(ata_bus_reset
);
8184 EXPORT_SYMBOL_GPL(ata_std_prereset
);
8185 EXPORT_SYMBOL_GPL(ata_std_softreset
);
8186 EXPORT_SYMBOL_GPL(sata_link_hardreset
);
8187 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
8188 EXPORT_SYMBOL_GPL(ata_std_postreset
);
8189 EXPORT_SYMBOL_GPL(ata_dev_classify
);
8190 EXPORT_SYMBOL_GPL(ata_dev_pair
);
8191 EXPORT_SYMBOL_GPL(ata_port_disable
);
8192 EXPORT_SYMBOL_GPL(ata_ratelimit
);
8193 EXPORT_SYMBOL_GPL(ata_wait_register
);
8194 EXPORT_SYMBOL_GPL(ata_busy_sleep
);
8195 EXPORT_SYMBOL_GPL(ata_wait_after_reset
);
8196 EXPORT_SYMBOL_GPL(ata_wait_ready
);
8197 EXPORT_SYMBOL_GPL(ata_scsi_ioctl
);
8198 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
8199 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
8200 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
8201 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
8202 EXPORT_SYMBOL_GPL(ata_host_intr
);
8203 EXPORT_SYMBOL_GPL(sata_scr_valid
);
8204 EXPORT_SYMBOL_GPL(sata_scr_read
);
8205 EXPORT_SYMBOL_GPL(sata_scr_write
);
8206 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
8207 EXPORT_SYMBOL_GPL(ata_link_online
);
8208 EXPORT_SYMBOL_GPL(ata_link_offline
);
8210 EXPORT_SYMBOL_GPL(ata_host_suspend
);
8211 EXPORT_SYMBOL_GPL(ata_host_resume
);
8212 #endif /* CONFIG_PM */
8213 EXPORT_SYMBOL_GPL(ata_id_string
);
8214 EXPORT_SYMBOL_GPL(ata_id_c_string
);
8215 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
8217 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
8218 EXPORT_SYMBOL_GPL(ata_timing_find_mode
);
8219 EXPORT_SYMBOL_GPL(ata_timing_compute
);
8220 EXPORT_SYMBOL_GPL(ata_timing_merge
);
8221 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode
);
8224 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
8225 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host
);
8226 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma
);
8227 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host
);
8228 EXPORT_SYMBOL_GPL(ata_pci_activate_sff_host
);
8229 EXPORT_SYMBOL_GPL(ata_pci_init_one
);
8230 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
8232 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
8233 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
8234 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
8235 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
8236 #endif /* CONFIG_PM */
8237 EXPORT_SYMBOL_GPL(ata_pci_default_filter
);
8238 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex
);
8239 #endif /* CONFIG_PCI */
8241 EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch
);
8242 EXPORT_SYMBOL_GPL(sata_pmp_std_prereset
);
8243 EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset
);
8244 EXPORT_SYMBOL_GPL(sata_pmp_std_postreset
);
8245 EXPORT_SYMBOL_GPL(sata_pmp_do_eh
);
8247 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc
);
8248 EXPORT_SYMBOL_GPL(ata_ehi_push_desc
);
8249 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc
);
8250 EXPORT_SYMBOL_GPL(ata_port_desc
);
8252 EXPORT_SYMBOL_GPL(ata_port_pbar_desc
);
8253 #endif /* CONFIG_PCI */
8254 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
8255 EXPORT_SYMBOL_GPL(ata_link_abort
);
8256 EXPORT_SYMBOL_GPL(ata_port_abort
);
8257 EXPORT_SYMBOL_GPL(ata_port_freeze
);
8258 EXPORT_SYMBOL_GPL(sata_async_notification
);
8259 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
8260 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
8261 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
8262 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
8263 EXPORT_SYMBOL_GPL(ata_do_eh
);
8264 EXPORT_SYMBOL_GPL(ata_irq_on
);
8265 EXPORT_SYMBOL_GPL(ata_dev_try_classify
);
8267 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
8268 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
8269 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
8270 EXPORT_SYMBOL_GPL(ata_cable_ignore
);
8271 EXPORT_SYMBOL_GPL(ata_cable_sata
);