Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[wrt350n-kernel.git] / drivers / net / e1000e / 82571.c
blobd576c508e89f7c822afeed3d9b5911b57220d112
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82571EB Gigabit Ethernet Controller
31 * 82571EB Gigabit Ethernet Controller (Fiber)
32 * 82572EI Gigabit Ethernet Controller (Copper)
33 * 82572EI Gigabit Ethernet Controller (Fiber)
34 * 82572EI Gigabit Ethernet Controller
35 * 82573V Gigabit Ethernet Controller (Copper)
36 * 82573E Gigabit Ethernet Controller (Copper)
37 * 82573L Gigabit Ethernet Controller
40 #include <linux/netdevice.h>
41 #include <linux/delay.h>
42 #include <linux/pci.h>
44 #include "e1000.h"
46 #define ID_LED_RESERVED_F746 0xF746
47 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
48 (ID_LED_OFF1_ON2 << 8) | \
49 (ID_LED_DEF1_DEF2 << 4) | \
50 (ID_LED_DEF1_DEF2))
52 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
54 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
55 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
56 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
57 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
58 u16 words, u16 *data);
59 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
60 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
61 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
62 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
64 /**
65 * e1000_init_phy_params_82571 - Init PHY func ptrs.
66 * @hw: pointer to the HW structure
68 * This is a function pointer entry point called by the api module.
69 **/
70 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
72 struct e1000_phy_info *phy = &hw->phy;
73 s32 ret_val;
75 if (hw->media_type != e1000_media_type_copper) {
76 phy->type = e1000_phy_none;
77 return 0;
80 phy->addr = 1;
81 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
82 phy->reset_delay_us = 100;
84 switch (hw->mac.type) {
85 case e1000_82571:
86 case e1000_82572:
87 phy->type = e1000_phy_igp_2;
88 break;
89 case e1000_82573:
90 phy->type = e1000_phy_m88;
91 break;
92 default:
93 return -E1000_ERR_PHY;
94 break;
97 /* This can only be done after all function pointers are setup. */
98 ret_val = e1000_get_phy_id_82571(hw);
100 /* Verify phy id */
101 switch (hw->mac.type) {
102 case e1000_82571:
103 case e1000_82572:
104 if (phy->id != IGP01E1000_I_PHY_ID)
105 return -E1000_ERR_PHY;
106 break;
107 case e1000_82573:
108 if (phy->id != M88E1111_I_PHY_ID)
109 return -E1000_ERR_PHY;
110 break;
111 default:
112 return -E1000_ERR_PHY;
113 break;
116 return 0;
120 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
121 * @hw: pointer to the HW structure
123 * This is a function pointer entry point called by the api module.
125 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
127 struct e1000_nvm_info *nvm = &hw->nvm;
128 u32 eecd = er32(EECD);
129 u16 size;
131 nvm->opcode_bits = 8;
132 nvm->delay_usec = 1;
133 switch (nvm->override) {
134 case e1000_nvm_override_spi_large:
135 nvm->page_size = 32;
136 nvm->address_bits = 16;
137 break;
138 case e1000_nvm_override_spi_small:
139 nvm->page_size = 8;
140 nvm->address_bits = 8;
141 break;
142 default:
143 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
144 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
145 break;
148 switch (hw->mac.type) {
149 case e1000_82573:
150 if (((eecd >> 15) & 0x3) == 0x3) {
151 nvm->type = e1000_nvm_flash_hw;
152 nvm->word_size = 2048;
153 /* Autonomous Flash update bit must be cleared due
154 * to Flash update issue.
156 eecd &= ~E1000_EECD_AUPDEN;
157 ew32(EECD, eecd);
158 break;
160 /* Fall Through */
161 default:
162 nvm->type = e1000_nvm_eeprom_spi;
163 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
164 E1000_EECD_SIZE_EX_SHIFT);
165 /* Added to a constant, "size" becomes the left-shift value
166 * for setting word_size.
168 size += NVM_WORD_SIZE_BASE_SHIFT;
169 nvm->word_size = 1 << size;
170 break;
173 return 0;
177 * e1000_init_mac_params_82571 - Init MAC func ptrs.
178 * @hw: pointer to the HW structure
180 * This is a function pointer entry point called by the api module.
182 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
184 struct e1000_hw *hw = &adapter->hw;
185 struct e1000_mac_info *mac = &hw->mac;
186 struct e1000_mac_operations *func = &mac->ops;
188 /* Set media type */
189 switch (adapter->pdev->device) {
190 case E1000_DEV_ID_82571EB_FIBER:
191 case E1000_DEV_ID_82572EI_FIBER:
192 case E1000_DEV_ID_82571EB_QUAD_FIBER:
193 hw->media_type = e1000_media_type_fiber;
194 break;
195 case E1000_DEV_ID_82571EB_SERDES:
196 case E1000_DEV_ID_82572EI_SERDES:
197 case E1000_DEV_ID_82571EB_SERDES_DUAL:
198 case E1000_DEV_ID_82571EB_SERDES_QUAD:
199 hw->media_type = e1000_media_type_internal_serdes;
200 break;
201 default:
202 hw->media_type = e1000_media_type_copper;
203 break;
206 /* Set mta register count */
207 mac->mta_reg_count = 128;
208 /* Set rar entry count */
209 mac->rar_entry_count = E1000_RAR_ENTRIES;
210 /* Set if manageability features are enabled. */
211 mac->arc_subsystem_valid =
212 (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
214 /* check for link */
215 switch (hw->media_type) {
216 case e1000_media_type_copper:
217 func->setup_physical_interface = e1000_setup_copper_link_82571;
218 func->check_for_link = e1000e_check_for_copper_link;
219 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
220 break;
221 case e1000_media_type_fiber:
222 func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571;
223 func->check_for_link = e1000e_check_for_fiber_link;
224 func->get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes;
225 break;
226 case e1000_media_type_internal_serdes:
227 func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571;
228 func->check_for_link = e1000e_check_for_serdes_link;
229 func->get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes;
230 break;
231 default:
232 return -E1000_ERR_CONFIG;
233 break;
236 return 0;
239 static s32 e1000_get_invariants_82571(struct e1000_adapter *adapter)
241 struct e1000_hw *hw = &adapter->hw;
242 static int global_quad_port_a; /* global port a indication */
243 struct pci_dev *pdev = adapter->pdev;
244 u16 eeprom_data = 0;
245 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
246 s32 rc;
248 rc = e1000_init_mac_params_82571(adapter);
249 if (rc)
250 return rc;
252 rc = e1000_init_nvm_params_82571(hw);
253 if (rc)
254 return rc;
256 rc = e1000_init_phy_params_82571(hw);
257 if (rc)
258 return rc;
260 /* tag quad port adapters first, it's used below */
261 switch (pdev->device) {
262 case E1000_DEV_ID_82571EB_QUAD_COPPER:
263 case E1000_DEV_ID_82571EB_QUAD_FIBER:
264 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
265 case E1000_DEV_ID_82571PT_QUAD_COPPER:
266 adapter->flags |= FLAG_IS_QUAD_PORT;
267 /* mark the first port */
268 if (global_quad_port_a == 0)
269 adapter->flags |= FLAG_IS_QUAD_PORT_A;
270 /* Reset for multiple quad port adapters */
271 global_quad_port_a++;
272 if (global_quad_port_a == 4)
273 global_quad_port_a = 0;
274 break;
275 default:
276 break;
279 switch (adapter->hw.mac.type) {
280 case e1000_82571:
281 /* these dual ports don't have WoL on port B at all */
282 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
283 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
284 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
285 (is_port_b))
286 adapter->flags &= ~FLAG_HAS_WOL;
287 /* quad ports only support WoL on port A */
288 if (adapter->flags & FLAG_IS_QUAD_PORT &&
289 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
290 adapter->flags &= ~FLAG_HAS_WOL;
291 /* Does not support WoL on any port */
292 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
293 adapter->flags &= ~FLAG_HAS_WOL;
294 break;
296 case e1000_82573:
297 if (pdev->device == E1000_DEV_ID_82573L) {
298 e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
299 &eeprom_data);
300 if (eeprom_data & NVM_WORD1A_ASPM_MASK)
301 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
303 break;
304 default:
305 break;
308 return 0;
312 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
313 * @hw: pointer to the HW structure
315 * Reads the PHY registers and stores the PHY ID and possibly the PHY
316 * revision in the hardware structure.
318 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
320 struct e1000_phy_info *phy = &hw->phy;
322 switch (hw->mac.type) {
323 case e1000_82571:
324 case e1000_82572:
325 /* The 82571 firmware may still be configuring the PHY.
326 * In this case, we cannot access the PHY until the
327 * configuration is done. So we explicitly set the
328 * PHY ID. */
329 phy->id = IGP01E1000_I_PHY_ID;
330 break;
331 case e1000_82573:
332 return e1000e_get_phy_id(hw);
333 break;
334 default:
335 return -E1000_ERR_PHY;
336 break;
339 return 0;
343 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
344 * @hw: pointer to the HW structure
346 * Acquire the HW semaphore to access the PHY or NVM
348 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
350 u32 swsm;
351 s32 timeout = hw->nvm.word_size + 1;
352 s32 i = 0;
354 /* Get the FW semaphore. */
355 for (i = 0; i < timeout; i++) {
356 swsm = er32(SWSM);
357 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
359 /* Semaphore acquired if bit latched */
360 if (er32(SWSM) & E1000_SWSM_SWESMBI)
361 break;
363 udelay(50);
366 if (i == timeout) {
367 /* Release semaphores */
368 e1000e_put_hw_semaphore(hw);
369 hw_dbg(hw, "Driver can't access the NVM\n");
370 return -E1000_ERR_NVM;
373 return 0;
377 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
378 * @hw: pointer to the HW structure
380 * Release hardware semaphore used to access the PHY or NVM
382 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
384 u32 swsm;
386 swsm = er32(SWSM);
388 swsm &= ~E1000_SWSM_SWESMBI;
390 ew32(SWSM, swsm);
394 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
395 * @hw: pointer to the HW structure
397 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
398 * Then for non-82573 hardware, set the EEPROM access request bit and wait
399 * for EEPROM access grant bit. If the access grant bit is not set, release
400 * hardware semaphore.
402 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
404 s32 ret_val;
406 ret_val = e1000_get_hw_semaphore_82571(hw);
407 if (ret_val)
408 return ret_val;
410 if (hw->mac.type != e1000_82573)
411 ret_val = e1000e_acquire_nvm(hw);
413 if (ret_val)
414 e1000_put_hw_semaphore_82571(hw);
416 return ret_val;
420 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
421 * @hw: pointer to the HW structure
423 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
425 static void e1000_release_nvm_82571(struct e1000_hw *hw)
427 e1000e_release_nvm(hw);
428 e1000_put_hw_semaphore_82571(hw);
432 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
433 * @hw: pointer to the HW structure
434 * @offset: offset within the EEPROM to be written to
435 * @words: number of words to write
436 * @data: 16 bit word(s) to be written to the EEPROM
438 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
440 * If e1000e_update_nvm_checksum is not called after this function, the
441 <<<<<<< HEAD:drivers/net/e1000e/82571.c
442 * EEPROM will most likley contain an invalid checksum.
443 =======
444 * EEPROM will most likely contain an invalid checksum.
445 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/net/e1000e/82571.c
447 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
448 u16 *data)
450 s32 ret_val;
452 switch (hw->mac.type) {
453 case e1000_82573:
454 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
455 break;
456 case e1000_82571:
457 case e1000_82572:
458 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
459 break;
460 default:
461 ret_val = -E1000_ERR_NVM;
462 break;
465 return ret_val;
469 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
470 * @hw: pointer to the HW structure
472 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
473 * up to the checksum. Then calculates the EEPROM checksum and writes the
474 * value to the EEPROM.
476 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
478 u32 eecd;
479 s32 ret_val;
480 u16 i;
482 ret_val = e1000e_update_nvm_checksum_generic(hw);
483 if (ret_val)
484 return ret_val;
486 /* If our nvm is an EEPROM, then we're done
487 * otherwise, commit the checksum to the flash NVM. */
488 if (hw->nvm.type != e1000_nvm_flash_hw)
489 return ret_val;
491 /* Check for pending operations. */
492 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
493 msleep(1);
494 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
495 break;
498 if (i == E1000_FLASH_UPDATES)
499 return -E1000_ERR_NVM;
501 /* Reset the firmware if using STM opcode. */
502 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
503 /* The enabling of and the actual reset must be done
504 * in two write cycles.
506 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
507 e1e_flush();
508 ew32(HICR, E1000_HICR_FW_RESET);
511 /* Commit the write to flash */
512 eecd = er32(EECD) | E1000_EECD_FLUPD;
513 ew32(EECD, eecd);
515 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
516 msleep(1);
517 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
518 break;
521 if (i == E1000_FLASH_UPDATES)
522 return -E1000_ERR_NVM;
524 return 0;
528 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
529 * @hw: pointer to the HW structure
531 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
532 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
534 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
536 if (hw->nvm.type == e1000_nvm_flash_hw)
537 e1000_fix_nvm_checksum_82571(hw);
539 return e1000e_validate_nvm_checksum_generic(hw);
543 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
544 * @hw: pointer to the HW structure
545 * @offset: offset within the EEPROM to be written to
546 * @words: number of words to write
547 * @data: 16 bit word(s) to be written to the EEPROM
549 * After checking for invalid values, poll the EEPROM to ensure the previous
550 * command has completed before trying to write the next word. After write
551 * poll for completion.
553 * If e1000e_update_nvm_checksum is not called after this function, the
554 <<<<<<< HEAD:drivers/net/e1000e/82571.c
555 * EEPROM will most likley contain an invalid checksum.
556 =======
557 * EEPROM will most likely contain an invalid checksum.
558 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/net/e1000e/82571.c
560 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
561 u16 words, u16 *data)
563 struct e1000_nvm_info *nvm = &hw->nvm;
564 u32 i;
565 u32 eewr = 0;
566 s32 ret_val = 0;
568 /* A check for invalid values: offset too large, too many words,
569 * and not enough words. */
570 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
571 (words == 0)) {
572 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
573 return -E1000_ERR_NVM;
576 for (i = 0; i < words; i++) {
577 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
578 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
579 E1000_NVM_RW_REG_START;
581 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
582 if (ret_val)
583 break;
585 ew32(EEWR, eewr);
587 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
588 if (ret_val)
589 break;
592 return ret_val;
596 * e1000_get_cfg_done_82571 - Poll for configuration done
597 * @hw: pointer to the HW structure
599 * Reads the management control register for the config done bit to be set.
601 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
603 s32 timeout = PHY_CFG_TIMEOUT;
605 while (timeout) {
606 if (er32(EEMNGCTL) &
607 E1000_NVM_CFG_DONE_PORT_0)
608 break;
609 msleep(1);
610 timeout--;
612 if (!timeout) {
613 hw_dbg(hw, "MNG configuration cycle has not completed.\n");
614 return -E1000_ERR_RESET;
617 return 0;
621 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
622 * @hw: pointer to the HW structure
623 * @active: TRUE to enable LPLU, FALSE to disable
625 * Sets the LPLU D0 state according to the active flag. When activating LPLU
626 * this function also disables smart speed and vice versa. LPLU will not be
627 * activated unless the device autonegotiation advertisement meets standards
628 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
629 * pointer entry point only called by PHY setup routines.
631 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
633 struct e1000_phy_info *phy = &hw->phy;
634 s32 ret_val;
635 u16 data;
637 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
638 if (ret_val)
639 return ret_val;
641 if (active) {
642 data |= IGP02E1000_PM_D0_LPLU;
643 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
644 if (ret_val)
645 return ret_val;
647 /* When LPLU is enabled, we should disable SmartSpeed */
648 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
649 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
650 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
651 if (ret_val)
652 return ret_val;
653 } else {
654 data &= ~IGP02E1000_PM_D0_LPLU;
655 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
656 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
657 * during Dx states where the power conservation is most
658 * important. During driver activity we should enable
659 * SmartSpeed, so performance is maintained. */
660 if (phy->smart_speed == e1000_smart_speed_on) {
661 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
662 &data);
663 if (ret_val)
664 return ret_val;
666 data |= IGP01E1000_PSCFR_SMART_SPEED;
667 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
668 data);
669 if (ret_val)
670 return ret_val;
671 } else if (phy->smart_speed == e1000_smart_speed_off) {
672 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
673 &data);
674 if (ret_val)
675 return ret_val;
677 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
678 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
679 data);
680 if (ret_val)
681 return ret_val;
685 return 0;
689 * e1000_reset_hw_82571 - Reset hardware
690 * @hw: pointer to the HW structure
692 * This resets the hardware into a known state. This is a
693 * function pointer entry point called by the api module.
695 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
697 u32 ctrl;
698 u32 extcnf_ctrl;
699 u32 ctrl_ext;
700 u32 icr;
701 s32 ret_val;
702 u16 i = 0;
704 /* Prevent the PCI-E bus from sticking if there is no TLP connection
705 * on the last TLP read/write transaction when MAC is reset.
707 ret_val = e1000e_disable_pcie_master(hw);
708 if (ret_val)
709 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
711 hw_dbg(hw, "Masking off all interrupts\n");
712 ew32(IMC, 0xffffffff);
714 ew32(RCTL, 0);
715 ew32(TCTL, E1000_TCTL_PSP);
716 e1e_flush();
718 msleep(10);
720 /* Must acquire the MDIO ownership before MAC reset.
721 * Ownership defaults to firmware after a reset. */
722 if (hw->mac.type == e1000_82573) {
723 extcnf_ctrl = er32(EXTCNF_CTRL);
724 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
726 do {
727 ew32(EXTCNF_CTRL, extcnf_ctrl);
728 extcnf_ctrl = er32(EXTCNF_CTRL);
730 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
731 break;
733 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
735 msleep(2);
736 i++;
737 } while (i < MDIO_OWNERSHIP_TIMEOUT);
740 ctrl = er32(CTRL);
742 hw_dbg(hw, "Issuing a global reset to MAC\n");
743 ew32(CTRL, ctrl | E1000_CTRL_RST);
745 if (hw->nvm.type == e1000_nvm_flash_hw) {
746 udelay(10);
747 ctrl_ext = er32(CTRL_EXT);
748 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
749 ew32(CTRL_EXT, ctrl_ext);
750 e1e_flush();
753 ret_val = e1000e_get_auto_rd_done(hw);
754 if (ret_val)
755 /* We don't want to continue accessing MAC registers. */
756 return ret_val;
758 /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
759 * Need to wait for Phy configuration completion before accessing
760 * NVM and Phy.
762 if (hw->mac.type == e1000_82573)
763 msleep(25);
765 /* Clear any pending interrupt events. */
766 ew32(IMC, 0xffffffff);
767 icr = er32(ICR);
769 if (hw->mac.type == e1000_82571 &&
770 hw->dev_spec.e82571.alt_mac_addr_is_present)
771 e1000e_set_laa_state_82571(hw, true);
773 return 0;
777 * e1000_init_hw_82571 - Initialize hardware
778 * @hw: pointer to the HW structure
780 * This inits the hardware readying it for operation.
782 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
784 struct e1000_mac_info *mac = &hw->mac;
785 u32 reg_data;
786 s32 ret_val;
787 u16 i;
788 u16 rar_count = mac->rar_entry_count;
790 e1000_initialize_hw_bits_82571(hw);
792 /* Initialize identification LED */
793 ret_val = e1000e_id_led_init(hw);
794 if (ret_val) {
795 hw_dbg(hw, "Error initializing identification LED\n");
796 return ret_val;
799 /* Disabling VLAN filtering */
800 hw_dbg(hw, "Initializing the IEEE VLAN\n");
801 e1000e_clear_vfta(hw);
803 /* Setup the receive address. */
804 /* If, however, a locally administered address was assigned to the
805 * 82571, we must reserve a RAR for it to work around an issue where
806 * resetting one port will reload the MAC on the other port.
808 if (e1000e_get_laa_state_82571(hw))
809 rar_count--;
810 e1000e_init_rx_addrs(hw, rar_count);
812 /* Zero out the Multicast HASH table */
813 hw_dbg(hw, "Zeroing the MTA\n");
814 for (i = 0; i < mac->mta_reg_count; i++)
815 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
817 /* Setup link and flow control */
818 ret_val = e1000_setup_link_82571(hw);
820 /* Set the transmit descriptor write-back policy */
821 reg_data = er32(TXDCTL);
822 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
823 E1000_TXDCTL_FULL_TX_DESC_WB |
824 E1000_TXDCTL_COUNT_DESC;
825 ew32(TXDCTL, reg_data);
827 /* ...for both queues. */
828 if (mac->type != e1000_82573) {
829 reg_data = er32(TXDCTL1);
830 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
831 E1000_TXDCTL_FULL_TX_DESC_WB |
832 E1000_TXDCTL_COUNT_DESC;
833 ew32(TXDCTL1, reg_data);
834 } else {
835 e1000e_enable_tx_pkt_filtering(hw);
836 reg_data = er32(GCR);
837 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
838 ew32(GCR, reg_data);
841 /* Clear all of the statistics registers (clear on read). It is
842 * important that we do this after we have tried to establish link
843 * because the symbol error count will increment wildly if there
844 * is no link.
846 e1000_clear_hw_cntrs_82571(hw);
848 return ret_val;
852 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
853 * @hw: pointer to the HW structure
855 * Initializes required hardware-dependent bits needed for normal operation.
857 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
859 u32 reg;
861 /* Transmit Descriptor Control 0 */
862 reg = er32(TXDCTL);
863 reg |= (1 << 22);
864 ew32(TXDCTL, reg);
866 /* Transmit Descriptor Control 1 */
867 reg = er32(TXDCTL1);
868 reg |= (1 << 22);
869 ew32(TXDCTL1, reg);
871 /* Transmit Arbitration Control 0 */
872 reg = er32(TARC0);
873 reg &= ~(0xF << 27); /* 30:27 */
874 switch (hw->mac.type) {
875 case e1000_82571:
876 case e1000_82572:
877 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
878 break;
879 default:
880 break;
882 ew32(TARC0, reg);
884 /* Transmit Arbitration Control 1 */
885 reg = er32(TARC1);
886 switch (hw->mac.type) {
887 case e1000_82571:
888 case e1000_82572:
889 reg &= ~((1 << 29) | (1 << 30));
890 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
891 if (er32(TCTL) & E1000_TCTL_MULR)
892 reg &= ~(1 << 28);
893 else
894 reg |= (1 << 28);
895 ew32(TARC1, reg);
896 break;
897 default:
898 break;
901 /* Device Control */
902 if (hw->mac.type == e1000_82573) {
903 reg = er32(CTRL);
904 reg &= ~(1 << 29);
905 ew32(CTRL, reg);
908 /* Extended Device Control */
909 if (hw->mac.type == e1000_82573) {
910 reg = er32(CTRL_EXT);
911 reg &= ~(1 << 23);
912 reg |= (1 << 22);
913 ew32(CTRL_EXT, reg);
918 * e1000e_clear_vfta - Clear VLAN filter table
919 * @hw: pointer to the HW structure
921 * Clears the register array which contains the VLAN filter table by
922 * setting all the values to 0.
924 void e1000e_clear_vfta(struct e1000_hw *hw)
926 u32 offset;
927 u32 vfta_value = 0;
928 u32 vfta_offset = 0;
929 u32 vfta_bit_in_reg = 0;
931 if (hw->mac.type == e1000_82573) {
932 if (hw->mng_cookie.vlan_id != 0) {
933 /* The VFTA is a 4096b bit-field, each identifying
934 * a single VLAN ID. The following operations
935 * determine which 32b entry (i.e. offset) into the
936 * array we want to set the VLAN ID (i.e. bit) of
937 * the manageability unit.
939 vfta_offset = (hw->mng_cookie.vlan_id >>
940 E1000_VFTA_ENTRY_SHIFT) &
941 E1000_VFTA_ENTRY_MASK;
942 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
943 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
946 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
947 /* If the offset we want to clear is the same offset of the
948 * manageability VLAN ID, then clear all bits except that of
949 * the manageability unit.
951 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
952 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
953 e1e_flush();
958 * e1000_mc_addr_list_update_82571 - Update Multicast addresses
959 * @hw: pointer to the HW structure
960 * @mc_addr_list: array of multicast addresses to program
961 * @mc_addr_count: number of multicast addresses to program
962 * @rar_used_count: the first RAR register free to program
963 * @rar_count: total number of supported Receive Address Registers
965 * Updates the Receive Address Registers and Multicast Table Array.
966 * The caller must have a packed mc_addr_list of multicast addresses.
967 * The parameter rar_count will usually be hw->mac.rar_entry_count
968 * unless there are workarounds that change this.
970 static void e1000_mc_addr_list_update_82571(struct e1000_hw *hw,
971 u8 *mc_addr_list,
972 u32 mc_addr_count,
973 u32 rar_used_count,
974 u32 rar_count)
976 if (e1000e_get_laa_state_82571(hw))
977 rar_count--;
979 e1000e_mc_addr_list_update_generic(hw, mc_addr_list, mc_addr_count,
980 rar_used_count, rar_count);
984 * e1000_setup_link_82571 - Setup flow control and link settings
985 * @hw: pointer to the HW structure
987 * Determines which flow control settings to use, then configures flow
988 * control. Calls the appropriate media-specific link configuration
989 * function. Assuming the adapter has a valid link partner, a valid link
990 * should be established. Assumes the hardware has previously been reset
991 * and the transmitter and receiver are not enabled.
993 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
995 /* 82573 does not have a word in the NVM to determine
996 * the default flow control setting, so we explicitly
997 * set it to full.
999 if (hw->mac.type == e1000_82573)
1000 hw->mac.fc = e1000_fc_full;
1002 return e1000e_setup_link(hw);
1006 * e1000_setup_copper_link_82571 - Configure copper link settings
1007 * @hw: pointer to the HW structure
1009 * Configures the link for auto-neg or forced speed and duplex. Then we check
1010 * for link, once link is established calls to configure collision distance
1011 * and flow control are called.
1013 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1015 u32 ctrl;
1016 u32 led_ctrl;
1017 s32 ret_val;
1019 ctrl = er32(CTRL);
1020 ctrl |= E1000_CTRL_SLU;
1021 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1022 ew32(CTRL, ctrl);
1024 switch (hw->phy.type) {
1025 case e1000_phy_m88:
1026 ret_val = e1000e_copper_link_setup_m88(hw);
1027 break;
1028 case e1000_phy_igp_2:
1029 ret_val = e1000e_copper_link_setup_igp(hw);
1030 /* Setup activity LED */
1031 led_ctrl = er32(LEDCTL);
1032 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1033 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1034 ew32(LEDCTL, led_ctrl);
1035 break;
1036 default:
1037 return -E1000_ERR_PHY;
1038 break;
1041 if (ret_val)
1042 return ret_val;
1044 ret_val = e1000e_setup_copper_link(hw);
1046 return ret_val;
1050 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1051 * @hw: pointer to the HW structure
1053 * Configures collision distance and flow control for fiber and serdes links.
1054 * Upon successful setup, poll for link.
1056 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1058 switch (hw->mac.type) {
1059 case e1000_82571:
1060 case e1000_82572:
1061 /* If SerDes loopback mode is entered, there is no form
1062 * of reset to take the adapter out of that mode. So we
1063 * have to explicitly take the adapter out of loopback
1064 <<<<<<< HEAD:drivers/net/e1000e/82571.c
1065 * mode. This prevents drivers from twidling their thumbs
1066 =======
1067 * mode. This prevents drivers from twiddling their thumbs
1068 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/net/e1000e/82571.c
1069 * if another tool failed to take it out of loopback mode.
1071 ew32(SCTL,
1072 E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1073 break;
1074 default:
1075 break;
1078 return e1000e_setup_fiber_serdes_link(hw);
1082 * e1000_valid_led_default_82571 - Verify a valid default LED config
1083 * @hw: pointer to the HW structure
1084 * @data: pointer to the NVM (EEPROM)
1086 * Read the EEPROM for the current default LED configuration. If the
1087 * LED configuration is not valid, set to a valid LED configuration.
1089 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1091 s32 ret_val;
1093 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1094 if (ret_val) {
1095 hw_dbg(hw, "NVM Read Error\n");
1096 return ret_val;
1099 if (hw->mac.type == e1000_82573 &&
1100 *data == ID_LED_RESERVED_F746)
1101 *data = ID_LED_DEFAULT_82573;
1102 else if (*data == ID_LED_RESERVED_0000 ||
1103 *data == ID_LED_RESERVED_FFFF)
1104 *data = ID_LED_DEFAULT;
1106 return 0;
1110 * e1000e_get_laa_state_82571 - Get locally administered address state
1111 * @hw: pointer to the HW structure
1113 <<<<<<< HEAD:drivers/net/e1000e/82571.c
1114 * Retrieve and return the current locally administed address state.
1115 =======
1116 * Retrieve and return the current locally administered address state.
1117 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/net/e1000e/82571.c
1119 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1121 if (hw->mac.type != e1000_82571)
1122 return 0;
1124 return hw->dev_spec.e82571.laa_is_present;
1128 * e1000e_set_laa_state_82571 - Set locally administered address state
1129 * @hw: pointer to the HW structure
1130 * @state: enable/disable locally administered address
1132 <<<<<<< HEAD:drivers/net/e1000e/82571.c
1133 * Enable/Disable the current locally administed address state.
1134 =======
1135 * Enable/Disable the current locally administers address state.
1136 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/net/e1000e/82571.c
1138 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1140 if (hw->mac.type != e1000_82571)
1141 return;
1143 hw->dev_spec.e82571.laa_is_present = state;
1145 /* If workaround is activated... */
1146 if (state)
1147 /* Hold a copy of the LAA in RAR[14] This is done so that
1148 * between the time RAR[0] gets clobbered and the time it
1149 * gets fixed, the actual LAA is in one of the RARs and no
1150 * incoming packets directed to this port are dropped.
1151 * Eventually the LAA will be in RAR[0] and RAR[14].
1153 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1157 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1158 * @hw: pointer to the HW structure
1160 * Verifies that the EEPROM has completed the update. After updating the
1161 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1162 * the checksum fix is not implemented, we need to set the bit and update
1163 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1164 * we need to return bad checksum.
1166 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1168 struct e1000_nvm_info *nvm = &hw->nvm;
1169 s32 ret_val;
1170 u16 data;
1172 if (nvm->type != e1000_nvm_flash_hw)
1173 return 0;
1175 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
1176 * 10h-12h. Checksum may need to be fixed.
1178 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1179 if (ret_val)
1180 return ret_val;
1182 if (!(data & 0x10)) {
1183 /* Read 0x23 and check bit 15. This bit is a 1
1184 * when the checksum has already been fixed. If
1185 * the checksum is still wrong and this bit is a
1186 * 1, we need to return bad checksum. Otherwise,
1187 * we need to set this bit to a 1 and update the
1188 * checksum.
1190 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1191 if (ret_val)
1192 return ret_val;
1194 if (!(data & 0x8000)) {
1195 data |= 0x8000;
1196 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1197 if (ret_val)
1198 return ret_val;
1199 ret_val = e1000e_update_nvm_checksum(hw);
1203 return 0;
1207 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1208 * @hw: pointer to the HW structure
1210 * Clears the hardware counters by reading the counter registers.
1212 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1214 u32 temp;
1216 e1000e_clear_hw_cntrs_base(hw);
1218 temp = er32(PRC64);
1219 temp = er32(PRC127);
1220 temp = er32(PRC255);
1221 temp = er32(PRC511);
1222 temp = er32(PRC1023);
1223 temp = er32(PRC1522);
1224 temp = er32(PTC64);
1225 temp = er32(PTC127);
1226 temp = er32(PTC255);
1227 temp = er32(PTC511);
1228 temp = er32(PTC1023);
1229 temp = er32(PTC1522);
1231 temp = er32(ALGNERRC);
1232 temp = er32(RXERRC);
1233 temp = er32(TNCRS);
1234 temp = er32(CEXTERR);
1235 temp = er32(TSCTC);
1236 temp = er32(TSCTFC);
1238 temp = er32(MGTPRC);
1239 temp = er32(MGTPDC);
1240 temp = er32(MGTPTC);
1242 temp = er32(IAC);
1243 temp = er32(ICRXOC);
1245 temp = er32(ICRXPTC);
1246 temp = er32(ICRXATC);
1247 temp = er32(ICTXPTC);
1248 temp = er32(ICTXATC);
1249 temp = er32(ICTXQEC);
1250 temp = er32(ICTXQMTC);
1251 temp = er32(ICRXDMTC);
1254 static struct e1000_mac_operations e82571_mac_ops = {
1255 .mng_mode_enab = E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
1256 /* .check_for_link: media type dependent */
1257 .cleanup_led = e1000e_cleanup_led_generic,
1258 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1259 .get_bus_info = e1000e_get_bus_info_pcie,
1260 /* .get_link_up_info: media type dependent */
1261 .led_on = e1000e_led_on_generic,
1262 .led_off = e1000e_led_off_generic,
1263 .mc_addr_list_update = e1000_mc_addr_list_update_82571,
1264 .reset_hw = e1000_reset_hw_82571,
1265 .init_hw = e1000_init_hw_82571,
1266 .setup_link = e1000_setup_link_82571,
1267 /* .setup_physical_interface: media type dependent */
1270 static struct e1000_phy_operations e82_phy_ops_igp = {
1271 .acquire_phy = e1000_get_hw_semaphore_82571,
1272 .check_reset_block = e1000e_check_reset_block_generic,
1273 .commit_phy = NULL,
1274 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1275 .get_cfg_done = e1000_get_cfg_done_82571,
1276 .get_cable_length = e1000e_get_cable_length_igp_2,
1277 .get_phy_info = e1000e_get_phy_info_igp,
1278 .read_phy_reg = e1000e_read_phy_reg_igp,
1279 .release_phy = e1000_put_hw_semaphore_82571,
1280 .reset_phy = e1000e_phy_hw_reset_generic,
1281 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1282 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1283 .write_phy_reg = e1000e_write_phy_reg_igp,
1286 static struct e1000_phy_operations e82_phy_ops_m88 = {
1287 .acquire_phy = e1000_get_hw_semaphore_82571,
1288 .check_reset_block = e1000e_check_reset_block_generic,
1289 .commit_phy = e1000e_phy_sw_reset,
1290 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1291 .get_cfg_done = e1000e_get_cfg_done,
1292 .get_cable_length = e1000e_get_cable_length_m88,
1293 .get_phy_info = e1000e_get_phy_info_m88,
1294 .read_phy_reg = e1000e_read_phy_reg_m88,
1295 .release_phy = e1000_put_hw_semaphore_82571,
1296 .reset_phy = e1000e_phy_hw_reset_generic,
1297 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1298 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1299 .write_phy_reg = e1000e_write_phy_reg_m88,
1302 static struct e1000_nvm_operations e82571_nvm_ops = {
1303 .acquire_nvm = e1000_acquire_nvm_82571,
1304 <<<<<<< HEAD:drivers/net/e1000e/82571.c
1305 .read_nvm = e1000e_read_nvm_spi,
1306 .release_nvm = e1000_release_nvm_82571,
1307 .update_nvm = e1000_update_nvm_checksum_82571,
1308 .valid_led_default = e1000_valid_led_default_82571,
1309 .validate_nvm = e1000_validate_nvm_checksum_82571,
1310 .write_nvm = e1000_write_nvm_82571,
1313 static struct e1000_nvm_operations e82573_nvm_ops = {
1314 .acquire_nvm = e1000_acquire_nvm_82571,
1315 =======
1316 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/net/e1000e/82571.c
1317 .read_nvm = e1000e_read_nvm_eerd,
1318 .release_nvm = e1000_release_nvm_82571,
1319 .update_nvm = e1000_update_nvm_checksum_82571,
1320 .valid_led_default = e1000_valid_led_default_82571,
1321 .validate_nvm = e1000_validate_nvm_checksum_82571,
1322 .write_nvm = e1000_write_nvm_82571,
1325 struct e1000_info e1000_82571_info = {
1326 .mac = e1000_82571,
1327 .flags = FLAG_HAS_HW_VLAN_FILTER
1328 | FLAG_HAS_JUMBO_FRAMES
1329 | FLAG_HAS_STATS_PTC_PRC
1330 | FLAG_HAS_WOL
1331 | FLAG_APME_IN_CTRL3
1332 | FLAG_RX_CSUM_ENABLED
1333 | FLAG_HAS_CTRLEXT_ON_LOAD
1334 | FLAG_HAS_STATS_ICR_ICT
1335 | FLAG_HAS_SMART_POWER_DOWN
1336 | FLAG_RESET_OVERWRITES_LAA /* errata */
1337 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1338 | FLAG_APME_CHECK_PORT_B,
1339 .pba = 38,
1340 .get_invariants = e1000_get_invariants_82571,
1341 .mac_ops = &e82571_mac_ops,
1342 .phy_ops = &e82_phy_ops_igp,
1343 .nvm_ops = &e82571_nvm_ops,
1346 struct e1000_info e1000_82572_info = {
1347 .mac = e1000_82572,
1348 .flags = FLAG_HAS_HW_VLAN_FILTER
1349 | FLAG_HAS_JUMBO_FRAMES
1350 | FLAG_HAS_STATS_PTC_PRC
1351 | FLAG_HAS_WOL
1352 | FLAG_APME_IN_CTRL3
1353 | FLAG_RX_CSUM_ENABLED
1354 | FLAG_HAS_CTRLEXT_ON_LOAD
1355 | FLAG_HAS_STATS_ICR_ICT
1356 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1357 .pba = 38,
1358 .get_invariants = e1000_get_invariants_82571,
1359 .mac_ops = &e82571_mac_ops,
1360 .phy_ops = &e82_phy_ops_igp,
1361 .nvm_ops = &e82571_nvm_ops,
1364 struct e1000_info e1000_82573_info = {
1365 .mac = e1000_82573,
1366 .flags = FLAG_HAS_HW_VLAN_FILTER
1367 | FLAG_HAS_JUMBO_FRAMES
1368 | FLAG_HAS_STATS_PTC_PRC
1369 | FLAG_HAS_WOL
1370 | FLAG_APME_IN_CTRL3
1371 | FLAG_RX_CSUM_ENABLED
1372 | FLAG_HAS_STATS_ICR_ICT
1373 | FLAG_HAS_SMART_POWER_DOWN
1374 | FLAG_HAS_AMT
1375 | FLAG_HAS_ERT
1376 | FLAG_HAS_SWSM_ON_LOAD,
1377 .pba = 20,
1378 .get_invariants = e1000_get_invariants_82571,
1379 .mac_ops = &e82571_mac_ops,
1380 .phy_ops = &e82_phy_ops_m88,
1381 <<<<<<< HEAD:drivers/net/e1000e/82571.c
1382 .nvm_ops = &e82573_nvm_ops,
1383 =======
1384 .nvm_ops = &e82571_nvm_ops,
1385 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:drivers/net/e1000e/82571.c