Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[wrt350n-kernel.git] / drivers / net / natsemi.c
blob385f69c1438712d60ddc57acc4a01356bed54b81
1 /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
2 /*
3 Written/copyright 1999-2001 by Donald Becker.
4 Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5 Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
6 Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
8 This software may be used and distributed according to the terms of
9 the GNU General Public License (GPL), incorporated herein by reference.
10 Drivers based on or derived from this code fall under the GPL and must
11 retain the authorship, copyright and license notice. This file is not
12 a complete program and may only be used when the entire operating
13 system is licensed under the GPL. License for under other terms may be
14 available. Contact the original author for details.
16 The original author may be reached as becker@scyld.com, or at
17 Scyld Computing Corporation
18 410 Severn Ave., Suite 210
19 Annapolis MD 21403
21 Support information and updates available at
22 http://www.scyld.com/network/netsemi.html
23 [link no longer provides useful info -jgarzik]
26 TODO:
27 * big endian support with CFG:BEM instead of cpu_to_le32
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/errno.h>
35 #include <linux/ioport.h>
36 #include <linux/slab.h>
37 #include <linux/interrupt.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/init.h>
43 #include <linux/spinlock.h>
44 #include <linux/ethtool.h>
45 #include <linux/delay.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/mii.h>
48 #include <linux/crc32.h>
49 #include <linux/bitops.h>
50 #include <linux/prefetch.h>
51 #include <asm/processor.h> /* Processor type for cache alignment. */
52 #include <asm/io.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
56 #define DRV_NAME "natsemi"
57 #define DRV_VERSION "2.1"
58 #define DRV_RELDATE "Sept 11, 2006"
60 #define RX_OFFSET 2
62 /* Updated to recommendations in pci-skeleton v2.03. */
64 /* The user-configurable values.
65 These may be modified when a driver module is loaded.*/
67 #define NATSEMI_DEF_MSG (NETIF_MSG_DRV | \
68 NETIF_MSG_LINK | \
69 NETIF_MSG_WOL | \
70 NETIF_MSG_RX_ERR | \
71 NETIF_MSG_TX_ERR)
72 static int debug = -1;
74 static int mtu;
76 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77 This chip uses a 512 element hash table based on the Ethernet CRC. */
78 static const int multicast_filter_limit = 100;
80 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81 Setting to > 1518 effectively disables this feature. */
82 static int rx_copybreak;
84 static int dspcfg_workaround = 1;
86 /* Used to pass the media type, etc.
87 Both 'options[]' and 'full_duplex[]' should exist for driver
88 interoperability.
89 The media type is usually passed in 'options[]'.
91 #define MAX_UNITS 8 /* More are supported, limit only on options */
92 static int options[MAX_UNITS];
93 static int full_duplex[MAX_UNITS];
95 /* Operational parameters that are set at compile time. */
97 /* Keep the ring sizes a power of two for compile efficiency.
98 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
99 Making the Tx ring too large decreases the effectiveness of channel
100 bonding and packet priority.
101 There are no ill effects from too-large receive rings. */
102 #define TX_RING_SIZE 16
103 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used, min 4. */
104 #define RX_RING_SIZE 32
106 /* Operational parameters that usually are not changed. */
107 /* Time in jiffies before concluding the transmitter is hung. */
108 #define TX_TIMEOUT (2*HZ)
110 #define NATSEMI_HW_TIMEOUT 400
111 #define NATSEMI_TIMER_FREQ 5*HZ
112 #define NATSEMI_PG0_NREGS 64
113 #define NATSEMI_RFDR_NREGS 8
114 #define NATSEMI_PG1_NREGS 4
115 #define NATSEMI_NREGS (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
116 NATSEMI_PG1_NREGS)
117 #define NATSEMI_REGS_VER 1 /* v1 added RFDR registers */
118 #define NATSEMI_REGS_SIZE (NATSEMI_NREGS * sizeof(u32))
120 /* Buffer sizes:
121 * The nic writes 32-bit values, even if the upper bytes of
122 * a 32-bit value are beyond the end of the buffer.
124 #define NATSEMI_HEADERS 22 /* 2*mac,type,vlan,crc */
125 #define NATSEMI_PADDING 16 /* 2 bytes should be sufficient */
126 #define NATSEMI_LONGPKT 1518 /* limit for normal packets */
127 #define NATSEMI_RX_LIMIT 2046 /* maximum supported by hardware */
129 /* These identify the driver base version and may not be removed. */
130 static char version[] __devinitdata =
131 KERN_INFO DRV_NAME " dp8381x driver, version "
132 DRV_VERSION ", " DRV_RELDATE "\n"
133 KERN_INFO " originally by Donald Becker <becker@scyld.com>\n"
134 KERN_INFO " 2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
136 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
137 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
138 MODULE_LICENSE("GPL");
140 module_param(mtu, int, 0);
141 module_param(debug, int, 0);
142 module_param(rx_copybreak, int, 0);
143 module_param(dspcfg_workaround, int, 1);
144 module_param_array(options, int, NULL, 0);
145 module_param_array(full_duplex, int, NULL, 0);
146 MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
147 MODULE_PARM_DESC(debug, "DP8381x default debug level");
148 MODULE_PARM_DESC(rx_copybreak,
149 "DP8381x copy breakpoint for copy-only-tiny-frames");
150 MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
151 MODULE_PARM_DESC(options,
152 "DP8381x: Bits 0-3: media type, bit 17: full duplex");
153 MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
156 Theory of Operation
158 I. Board Compatibility
160 This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
161 It also works with other chips in in the DP83810 series.
163 II. Board-specific settings
165 This driver requires the PCI interrupt line to be valid.
166 It honors the EEPROM-set values.
168 III. Driver operation
170 IIIa. Ring buffers
172 This driver uses two statically allocated fixed-size descriptor lists
173 formed into rings by a branch from the final descriptor to the beginning of
174 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
175 The NatSemi design uses a 'next descriptor' pointer that the driver forms
176 into a list.
178 IIIb/c. Transmit/Receive Structure
180 This driver uses a zero-copy receive and transmit scheme.
181 The driver allocates full frame size skbuffs for the Rx ring buffers at
182 open() time and passes the skb->data field to the chip as receive data
183 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
184 a fresh skbuff is allocated and the frame is copied to the new skbuff.
185 When the incoming frame is larger, the skbuff is passed directly up the
186 protocol stack. Buffers consumed this way are replaced by newly allocated
187 skbuffs in a later phase of receives.
189 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
190 using a full-sized skbuff for small frames vs. the copying costs of larger
191 frames. New boards are typically used in generously configured machines
192 and the underfilled buffers have negligible impact compared to the benefit of
193 a single allocation size, so the default value of zero results in never
194 copying packets. When copying is done, the cost is usually mitigated by using
195 a combined copy/checksum routine. Copying also preloads the cache, which is
196 most useful with small frames.
198 A subtle aspect of the operation is that unaligned buffers are not permitted
199 by the hardware. Thus the IP header at offset 14 in an ethernet frame isn't
200 longword aligned for further processing. On copies frames are put into the
201 skbuff at an offset of "+2", 16-byte aligning the IP header.
203 IIId. Synchronization
205 Most operations are synchronized on the np->lock irq spinlock, except the
206 recieve and transmit paths which are synchronised using a combination of
207 hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
209 IVb. References
211 http://www.scyld.com/expert/100mbps.html
212 http://www.scyld.com/expert/NWay.html
213 Datasheet is available from:
214 http://www.national.com/pf/DP/DP83815.html
216 IVc. Errata
218 None characterised.
224 * Support for fibre connections on Am79C874:
225 * This phy needs a special setup when connected to a fibre cable.
226 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
228 #define PHYID_AM79C874 0x0022561b
230 enum {
231 MII_MCTRL = 0x15, /* mode control register */
232 MII_FX_SEL = 0x0001, /* 100BASE-FX (fiber) */
233 MII_EN_SCRM = 0x0004, /* enable scrambler (tp) */
236 enum {
237 NATSEMI_FLAG_IGNORE_PHY = 0x1,
240 /* array of board data directly indexed by pci_tbl[x].driver_data */
241 static struct {
242 const char *name;
243 unsigned long flags;
244 unsigned int eeprom_size;
245 } natsemi_pci_info[] __devinitdata = {
246 { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
247 { "NatSemi DP8381[56]", 0, 24 },
250 static struct pci_device_id natsemi_pci_tbl[] __devinitdata = {
251 { PCI_VENDOR_ID_NS, 0x0020, 0x12d9, 0x000c, 0, 0, 0 },
252 { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
253 { } /* terminate list */
255 MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
257 /* Offsets to the device registers.
258 Unlike software-only systems, device drivers interact with complex hardware.
259 It's not useful to define symbolic names for every register bit in the
260 device.
262 enum register_offsets {
263 ChipCmd = 0x00,
264 ChipConfig = 0x04,
265 EECtrl = 0x08,
266 PCIBusCfg = 0x0C,
267 IntrStatus = 0x10,
268 IntrMask = 0x14,
269 IntrEnable = 0x18,
270 IntrHoldoff = 0x1C, /* DP83816 only */
271 TxRingPtr = 0x20,
272 TxConfig = 0x24,
273 RxRingPtr = 0x30,
274 RxConfig = 0x34,
275 ClkRun = 0x3C,
276 WOLCmd = 0x40,
277 PauseCmd = 0x44,
278 RxFilterAddr = 0x48,
279 RxFilterData = 0x4C,
280 BootRomAddr = 0x50,
281 BootRomData = 0x54,
282 SiliconRev = 0x58,
283 StatsCtrl = 0x5C,
284 StatsData = 0x60,
285 RxPktErrs = 0x60,
286 RxMissed = 0x68,
287 RxCRCErrs = 0x64,
288 BasicControl = 0x80,
289 BasicStatus = 0x84,
290 AnegAdv = 0x90,
291 AnegPeer = 0x94,
292 PhyStatus = 0xC0,
293 MIntrCtrl = 0xC4,
294 MIntrStatus = 0xC8,
295 PhyCtrl = 0xE4,
297 /* These are from the spec, around page 78... on a separate table.
298 * The meaning of these registers depend on the value of PGSEL. */
299 PGSEL = 0xCC,
300 PMDCSR = 0xE4,
301 TSTDAT = 0xFC,
302 DSPCFG = 0xF4,
303 SDCFG = 0xF8
305 /* the values for the 'magic' registers above (PGSEL=1) */
306 #define PMDCSR_VAL 0x189c /* enable preferred adaptation circuitry */
307 #define TSTDAT_VAL 0x0
308 #define DSPCFG_VAL 0x5040
309 #define SDCFG_VAL 0x008c /* set voltage thresholds for Signal Detect */
310 #define DSPCFG_LOCK 0x20 /* coefficient lock bit in DSPCFG */
311 #define DSPCFG_COEF 0x1000 /* see coefficient (in TSTDAT) bit in DSPCFG */
312 #define TSTDAT_FIXED 0xe8 /* magic number for bad coefficients */
314 /* misc PCI space registers */
315 enum pci_register_offsets {
316 PCIPM = 0x44,
319 enum ChipCmd_bits {
320 ChipReset = 0x100,
321 RxReset = 0x20,
322 TxReset = 0x10,
323 RxOff = 0x08,
324 RxOn = 0x04,
325 TxOff = 0x02,
326 TxOn = 0x01,
329 enum ChipConfig_bits {
330 CfgPhyDis = 0x200,
331 CfgPhyRst = 0x400,
332 CfgExtPhy = 0x1000,
333 CfgAnegEnable = 0x2000,
334 CfgAneg100 = 0x4000,
335 CfgAnegFull = 0x8000,
336 CfgAnegDone = 0x8000000,
337 CfgFullDuplex = 0x20000000,
338 CfgSpeed100 = 0x40000000,
339 CfgLink = 0x80000000,
342 enum EECtrl_bits {
343 EE_ShiftClk = 0x04,
344 EE_DataIn = 0x01,
345 EE_ChipSelect = 0x08,
346 EE_DataOut = 0x02,
347 MII_Data = 0x10,
348 MII_Write = 0x20,
349 MII_ShiftClk = 0x40,
352 enum PCIBusCfg_bits {
353 EepromReload = 0x4,
356 /* Bits in the interrupt status/mask registers. */
357 enum IntrStatus_bits {
358 IntrRxDone = 0x0001,
359 IntrRxIntr = 0x0002,
360 IntrRxErr = 0x0004,
361 IntrRxEarly = 0x0008,
362 IntrRxIdle = 0x0010,
363 IntrRxOverrun = 0x0020,
364 IntrTxDone = 0x0040,
365 IntrTxIntr = 0x0080,
366 IntrTxErr = 0x0100,
367 IntrTxIdle = 0x0200,
368 IntrTxUnderrun = 0x0400,
369 StatsMax = 0x0800,
370 SWInt = 0x1000,
371 WOLPkt = 0x2000,
372 LinkChange = 0x4000,
373 IntrHighBits = 0x8000,
374 RxStatusFIFOOver = 0x10000,
375 IntrPCIErr = 0xf00000,
376 RxResetDone = 0x1000000,
377 TxResetDone = 0x2000000,
378 IntrAbnormalSummary = 0xCD20,
382 * Default Interrupts:
383 * Rx OK, Rx Packet Error, Rx Overrun,
384 * Tx OK, Tx Packet Error, Tx Underrun,
385 * MIB Service, Phy Interrupt, High Bits,
386 * Rx Status FIFO overrun,
387 * Received Target Abort, Received Master Abort,
388 * Signalled System Error, Received Parity Error
390 #define DEFAULT_INTR 0x00f1cd65
392 enum TxConfig_bits {
393 TxDrthMask = 0x3f,
394 TxFlthMask = 0x3f00,
395 TxMxdmaMask = 0x700000,
396 TxMxdma_512 = 0x0,
397 TxMxdma_4 = 0x100000,
398 TxMxdma_8 = 0x200000,
399 TxMxdma_16 = 0x300000,
400 TxMxdma_32 = 0x400000,
401 TxMxdma_64 = 0x500000,
402 TxMxdma_128 = 0x600000,
403 TxMxdma_256 = 0x700000,
404 TxCollRetry = 0x800000,
405 TxAutoPad = 0x10000000,
406 TxMacLoop = 0x20000000,
407 TxHeartIgn = 0x40000000,
408 TxCarrierIgn = 0x80000000
412 * Tx Configuration:
413 * - 256 byte DMA burst length
414 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
415 * - 64 bytes initial drain threshold (i.e. begin actual transmission
416 * when 64 byte are in the fifo)
417 * - on tx underruns, increase drain threshold by 64.
418 * - at most use a drain threshold of 1472 bytes: The sum of the fill
419 * threshold and the drain threshold must be less than 2016 bytes.
422 #define TX_FLTH_VAL ((512/32) << 8)
423 #define TX_DRTH_VAL_START (64/32)
424 #define TX_DRTH_VAL_INC 2
425 #define TX_DRTH_VAL_LIMIT (1472/32)
427 enum RxConfig_bits {
428 RxDrthMask = 0x3e,
429 RxMxdmaMask = 0x700000,
430 RxMxdma_512 = 0x0,
431 RxMxdma_4 = 0x100000,
432 RxMxdma_8 = 0x200000,
433 RxMxdma_16 = 0x300000,
434 RxMxdma_32 = 0x400000,
435 RxMxdma_64 = 0x500000,
436 RxMxdma_128 = 0x600000,
437 RxMxdma_256 = 0x700000,
438 RxAcceptLong = 0x8000000,
439 RxAcceptTx = 0x10000000,
440 RxAcceptRunt = 0x40000000,
441 RxAcceptErr = 0x80000000
443 #define RX_DRTH_VAL (128/8)
445 enum ClkRun_bits {
446 PMEEnable = 0x100,
447 PMEStatus = 0x8000,
450 enum WolCmd_bits {
451 WakePhy = 0x1,
452 WakeUnicast = 0x2,
453 WakeMulticast = 0x4,
454 WakeBroadcast = 0x8,
455 WakeArp = 0x10,
456 WakePMatch0 = 0x20,
457 WakePMatch1 = 0x40,
458 WakePMatch2 = 0x80,
459 WakePMatch3 = 0x100,
460 WakeMagic = 0x200,
461 WakeMagicSecure = 0x400,
462 SecureHack = 0x100000,
463 WokePhy = 0x400000,
464 WokeUnicast = 0x800000,
465 WokeMulticast = 0x1000000,
466 WokeBroadcast = 0x2000000,
467 WokeArp = 0x4000000,
468 WokePMatch0 = 0x8000000,
469 WokePMatch1 = 0x10000000,
470 WokePMatch2 = 0x20000000,
471 WokePMatch3 = 0x40000000,
472 WokeMagic = 0x80000000,
473 WakeOptsSummary = 0x7ff
476 enum RxFilterAddr_bits {
477 RFCRAddressMask = 0x3ff,
478 AcceptMulticast = 0x00200000,
479 AcceptMyPhys = 0x08000000,
480 AcceptAllPhys = 0x10000000,
481 AcceptAllMulticast = 0x20000000,
482 AcceptBroadcast = 0x40000000,
483 RxFilterEnable = 0x80000000
486 enum StatsCtrl_bits {
487 StatsWarn = 0x1,
488 StatsFreeze = 0x2,
489 StatsClear = 0x4,
490 StatsStrobe = 0x8,
493 enum MIntrCtrl_bits {
494 MICRIntEn = 0x2,
497 enum PhyCtrl_bits {
498 PhyAddrMask = 0x1f,
501 #define PHY_ADDR_NONE 32
502 #define PHY_ADDR_INTERNAL 1
504 /* values we might find in the silicon revision register */
505 #define SRR_DP83815_C 0x0302
506 #define SRR_DP83815_D 0x0403
507 #define SRR_DP83816_A4 0x0504
508 #define SRR_DP83816_A5 0x0505
510 /* The Rx and Tx buffer descriptors. */
511 /* Note that using only 32 bit fields simplifies conversion to big-endian
512 architectures. */
513 struct netdev_desc {
514 u32 next_desc;
515 s32 cmd_status;
516 u32 addr;
517 u32 software_use;
520 /* Bits in network_desc.status */
521 enum desc_status_bits {
522 DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
523 DescNoCRC=0x10000000, DescPktOK=0x08000000,
524 DescSizeMask=0xfff,
526 DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
527 DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
528 DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
529 DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
531 DescRxAbort=0x04000000, DescRxOver=0x02000000,
532 DescRxDest=0x01800000, DescRxLong=0x00400000,
533 DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
534 DescRxCRC=0x00080000, DescRxAlign=0x00040000,
535 DescRxLoop=0x00020000, DesRxColl=0x00010000,
538 struct netdev_private {
539 /* Descriptor rings first for alignment */
540 dma_addr_t ring_dma;
541 struct netdev_desc *rx_ring;
542 struct netdev_desc *tx_ring;
543 /* The addresses of receive-in-place skbuffs */
544 struct sk_buff *rx_skbuff[RX_RING_SIZE];
545 dma_addr_t rx_dma[RX_RING_SIZE];
546 /* address of a sent-in-place packet/buffer, for later free() */
547 struct sk_buff *tx_skbuff[TX_RING_SIZE];
548 dma_addr_t tx_dma[TX_RING_SIZE];
549 struct net_device *dev;
550 struct napi_struct napi;
551 struct net_device_stats stats;
552 /* Media monitoring timer */
553 struct timer_list timer;
554 /* Frequently used values: keep some adjacent for cache effect */
555 struct pci_dev *pci_dev;
556 struct netdev_desc *rx_head_desc;
557 /* Producer/consumer ring indices */
558 unsigned int cur_rx, dirty_rx;
559 unsigned int cur_tx, dirty_tx;
560 /* Based on MTU+slack. */
561 unsigned int rx_buf_sz;
562 int oom;
563 /* Interrupt status */
564 u32 intr_status;
565 /* Do not touch the nic registers */
566 int hands_off;
567 /* Don't pay attention to the reported link state. */
568 int ignore_phy;
569 /* external phy that is used: only valid if dev->if_port != PORT_TP */
570 int mii;
571 int phy_addr_external;
572 unsigned int full_duplex;
573 /* Rx filter */
574 u32 cur_rx_mode;
575 u32 rx_filter[16];
576 /* FIFO and PCI burst thresholds */
577 u32 tx_config, rx_config;
578 /* original contents of ClkRun register */
579 u32 SavedClkRun;
580 /* silicon revision */
581 u32 srr;
582 /* expected DSPCFG value */
583 u16 dspcfg;
584 int dspcfg_workaround;
585 /* parms saved in ethtool format */
586 u16 speed; /* The forced speed, 10Mb, 100Mb, gigabit */
587 u8 duplex; /* Duplex, half or full */
588 u8 autoneg; /* Autonegotiation enabled */
589 /* MII transceiver section */
590 u16 advertising;
591 unsigned int iosize;
592 spinlock_t lock;
593 u32 msg_enable;
594 /* EEPROM data */
595 int eeprom_size;
598 static void move_int_phy(struct net_device *dev, int addr);
599 static int eeprom_read(void __iomem *ioaddr, int location);
600 static int mdio_read(struct net_device *dev, int reg);
601 static void mdio_write(struct net_device *dev, int reg, u16 data);
602 static void init_phy_fixup(struct net_device *dev);
603 static int miiport_read(struct net_device *dev, int phy_id, int reg);
604 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
605 static int find_mii(struct net_device *dev);
606 static void natsemi_reset(struct net_device *dev);
607 static void natsemi_reload_eeprom(struct net_device *dev);
608 static void natsemi_stop_rxtx(struct net_device *dev);
609 static int netdev_open(struct net_device *dev);
610 static void do_cable_magic(struct net_device *dev);
611 static void undo_cable_magic(struct net_device *dev);
612 static void check_link(struct net_device *dev);
613 static void netdev_timer(unsigned long data);
614 static void dump_ring(struct net_device *dev);
615 static void tx_timeout(struct net_device *dev);
616 static int alloc_ring(struct net_device *dev);
617 static void refill_rx(struct net_device *dev);
618 static void init_ring(struct net_device *dev);
619 static void drain_tx(struct net_device *dev);
620 static void drain_ring(struct net_device *dev);
621 static void free_ring(struct net_device *dev);
622 static void reinit_ring(struct net_device *dev);
623 static void init_registers(struct net_device *dev);
624 static int start_tx(struct sk_buff *skb, struct net_device *dev);
625 static irqreturn_t intr_handler(int irq, void *dev_instance);
626 static void netdev_error(struct net_device *dev, int intr_status);
627 static int natsemi_poll(struct napi_struct *napi, int budget);
628 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
629 static void netdev_tx_done(struct net_device *dev);
630 static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
631 #ifdef CONFIG_NET_POLL_CONTROLLER
632 static void natsemi_poll_controller(struct net_device *dev);
633 #endif
634 static void __set_rx_mode(struct net_device *dev);
635 static void set_rx_mode(struct net_device *dev);
636 static void __get_stats(struct net_device *dev);
637 static struct net_device_stats *get_stats(struct net_device *dev);
638 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
639 static int netdev_set_wol(struct net_device *dev, u32 newval);
640 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
641 static int netdev_set_sopass(struct net_device *dev, u8 *newval);
642 static int netdev_get_sopass(struct net_device *dev, u8 *data);
643 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
644 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
645 static void enable_wol_mode(struct net_device *dev, int enable_intr);
646 static int netdev_close(struct net_device *dev);
647 static int netdev_get_regs(struct net_device *dev, u8 *buf);
648 static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
649 static const struct ethtool_ops ethtool_ops;
651 #define NATSEMI_ATTR(_name) \
652 static ssize_t natsemi_show_##_name(struct device *dev, \
653 struct device_attribute *attr, char *buf); \
654 static ssize_t natsemi_set_##_name(struct device *dev, \
655 struct device_attribute *attr, \
656 const char *buf, size_t count); \
657 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
659 #define NATSEMI_CREATE_FILE(_dev, _name) \
660 device_create_file(&_dev->dev, &dev_attr_##_name)
661 #define NATSEMI_REMOVE_FILE(_dev, _name) \
662 device_remove_file(&_dev->dev, &dev_attr_##_name)
664 NATSEMI_ATTR(dspcfg_workaround);
666 static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
667 struct device_attribute *attr,
668 char *buf)
670 struct netdev_private *np = netdev_priv(to_net_dev(dev));
672 return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
675 static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
676 struct device_attribute *attr,
677 const char *buf, size_t count)
679 struct netdev_private *np = netdev_priv(to_net_dev(dev));
680 int new_setting;
681 unsigned long flags;
683 /* Find out the new setting */
684 if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
685 new_setting = 1;
686 else if (!strncmp("off", buf, count - 1)
687 || !strncmp("0", buf, count - 1))
688 new_setting = 0;
689 else
690 return count;
692 spin_lock_irqsave(&np->lock, flags);
694 np->dspcfg_workaround = new_setting;
696 spin_unlock_irqrestore(&np->lock, flags);
698 return count;
701 static inline void __iomem *ns_ioaddr(struct net_device *dev)
703 return (void __iomem *) dev->base_addr;
706 static inline void natsemi_irq_enable(struct net_device *dev)
708 writel(1, ns_ioaddr(dev) + IntrEnable);
709 readl(ns_ioaddr(dev) + IntrEnable);
712 static inline void natsemi_irq_disable(struct net_device *dev)
714 writel(0, ns_ioaddr(dev) + IntrEnable);
715 readl(ns_ioaddr(dev) + IntrEnable);
718 static void move_int_phy(struct net_device *dev, int addr)
720 struct netdev_private *np = netdev_priv(dev);
721 void __iomem *ioaddr = ns_ioaddr(dev);
722 int target = 31;
725 * The internal phy is visible on the external mii bus. Therefore we must
726 * move it away before we can send commands to an external phy.
727 * There are two addresses we must avoid:
728 * - the address on the external phy that is used for transmission.
729 * - the address that we want to access. User space can access phys
730 * on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independant from the
731 * phy that is used for transmission.
734 if (target == addr)
735 target--;
736 if (target == np->phy_addr_external)
737 target--;
738 writew(target, ioaddr + PhyCtrl);
739 readw(ioaddr + PhyCtrl);
740 udelay(1);
743 static void __devinit natsemi_init_media (struct net_device *dev)
745 struct netdev_private *np = netdev_priv(dev);
746 u32 tmp;
748 if (np->ignore_phy)
749 netif_carrier_on(dev);
750 else
751 netif_carrier_off(dev);
753 /* get the initial settings from hardware */
754 tmp = mdio_read(dev, MII_BMCR);
755 np->speed = (tmp & BMCR_SPEED100)? SPEED_100 : SPEED_10;
756 np->duplex = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL : DUPLEX_HALF;
757 np->autoneg = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
758 np->advertising= mdio_read(dev, MII_ADVERTISE);
760 if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL
761 && netif_msg_probe(np)) {
762 printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
763 "10%s %s duplex.\n",
764 pci_name(np->pci_dev),
765 (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
766 "enabled, advertise" : "disabled, force",
767 (np->advertising &
768 (ADVERTISE_100FULL|ADVERTISE_100HALF))?
769 "0" : "",
770 (np->advertising &
771 (ADVERTISE_100FULL|ADVERTISE_10FULL))?
772 "full" : "half");
774 if (netif_msg_probe(np))
775 printk(KERN_INFO
776 "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
777 pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
778 np->advertising);
782 static int __devinit natsemi_probe1 (struct pci_dev *pdev,
783 const struct pci_device_id *ent)
785 struct net_device *dev;
786 struct netdev_private *np;
787 int i, option, irq, chip_idx = ent->driver_data;
788 static int find_cnt = -1;
789 unsigned long iostart, iosize;
790 void __iomem *ioaddr;
791 const int pcibar = 1; /* PCI base address register */
792 int prev_eedata;
793 u32 tmp;
794 DECLARE_MAC_BUF(mac);
796 /* when built into the kernel, we only print version if device is found */
797 #ifndef MODULE
798 static int printed_version;
799 if (!printed_version++)
800 printk(version);
801 #endif
803 i = pci_enable_device(pdev);
804 if (i) return i;
806 /* natsemi has a non-standard PM control register
807 * in PCI config space. Some boards apparently need
808 * to be brought to D0 in this manner.
810 pci_read_config_dword(pdev, PCIPM, &tmp);
811 if (tmp & PCI_PM_CTRL_STATE_MASK) {
812 /* D0 state, disable PME assertion */
813 u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
814 pci_write_config_dword(pdev, PCIPM, newtmp);
817 find_cnt++;
818 iostart = pci_resource_start(pdev, pcibar);
819 iosize = pci_resource_len(pdev, pcibar);
820 irq = pdev->irq;
822 pci_set_master(pdev);
824 dev = alloc_etherdev(sizeof (struct netdev_private));
825 if (!dev)
826 return -ENOMEM;
827 SET_NETDEV_DEV(dev, &pdev->dev);
829 i = pci_request_regions(pdev, DRV_NAME);
830 if (i)
831 goto err_pci_request_regions;
833 ioaddr = ioremap(iostart, iosize);
834 if (!ioaddr) {
835 i = -ENOMEM;
836 goto err_ioremap;
839 /* Work around the dropped serial bit. */
840 prev_eedata = eeprom_read(ioaddr, 6);
841 for (i = 0; i < 3; i++) {
842 int eedata = eeprom_read(ioaddr, i + 7);
843 dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
844 dev->dev_addr[i*2+1] = eedata >> 7;
845 prev_eedata = eedata;
848 dev->base_addr = (unsigned long __force) ioaddr;
849 dev->irq = irq;
851 np = netdev_priv(dev);
852 netif_napi_add(dev, &np->napi, natsemi_poll, 64);
853 np->dev = dev;
855 np->pci_dev = pdev;
856 pci_set_drvdata(pdev, dev);
857 np->iosize = iosize;
858 spin_lock_init(&np->lock);
859 np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
860 np->hands_off = 0;
861 np->intr_status = 0;
862 np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
863 if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
864 np->ignore_phy = 1;
865 else
866 np->ignore_phy = 0;
867 np->dspcfg_workaround = dspcfg_workaround;
869 /* Initial port:
870 * - If configured to ignore the PHY set up for external.
871 * - If the nic was configured to use an external phy and if find_mii
872 * finds a phy: use external port, first phy that replies.
873 * - Otherwise: internal port.
874 * Note that the phy address for the internal phy doesn't matter:
875 * The address would be used to access a phy over the mii bus, but
876 * the internal phy is accessed through mapped registers.
878 if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
879 dev->if_port = PORT_MII;
880 else
881 dev->if_port = PORT_TP;
882 /* Reset the chip to erase previous misconfiguration. */
883 natsemi_reload_eeprom(dev);
884 natsemi_reset(dev);
886 if (dev->if_port != PORT_TP) {
887 np->phy_addr_external = find_mii(dev);
888 /* If we're ignoring the PHY it doesn't matter if we can't
889 * find one. */
890 if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
891 dev->if_port = PORT_TP;
892 np->phy_addr_external = PHY_ADDR_INTERNAL;
894 } else {
895 np->phy_addr_external = PHY_ADDR_INTERNAL;
898 option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
899 if (dev->mem_start)
900 option = dev->mem_start;
902 /* The lower four bits are the media type. */
903 if (option) {
904 if (option & 0x200)
905 np->full_duplex = 1;
906 if (option & 15)
907 printk(KERN_INFO
908 "natsemi %s: ignoring user supplied media type %d",
909 pci_name(np->pci_dev), option & 15);
911 if (find_cnt < MAX_UNITS && full_duplex[find_cnt])
912 np->full_duplex = 1;
914 /* The chip-specific entries in the device structure. */
915 dev->open = &netdev_open;
916 dev->hard_start_xmit = &start_tx;
917 dev->stop = &netdev_close;
918 dev->get_stats = &get_stats;
919 dev->set_multicast_list = &set_rx_mode;
920 dev->change_mtu = &natsemi_change_mtu;
921 dev->do_ioctl = &netdev_ioctl;
922 dev->tx_timeout = &tx_timeout;
923 dev->watchdog_timeo = TX_TIMEOUT;
925 #ifdef CONFIG_NET_POLL_CONTROLLER
926 dev->poll_controller = &natsemi_poll_controller;
927 #endif
928 SET_ETHTOOL_OPS(dev, &ethtool_ops);
930 if (mtu)
931 dev->mtu = mtu;
933 natsemi_init_media(dev);
935 /* save the silicon revision for later querying */
936 np->srr = readl(ioaddr + SiliconRev);
937 if (netif_msg_hw(np))
938 printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
939 pci_name(np->pci_dev), np->srr);
941 i = register_netdev(dev);
942 if (i)
943 goto err_register_netdev;
945 if (NATSEMI_CREATE_FILE(pdev, dspcfg_workaround))
946 goto err_create_file;
948 if (netif_msg_drv(np)) {
949 printk(KERN_INFO "natsemi %s: %s at %#08lx "
950 "(%s), %s, IRQ %d",
951 dev->name, natsemi_pci_info[chip_idx].name, iostart,
952 pci_name(np->pci_dev), print_mac(mac, dev->dev_addr), irq);
953 if (dev->if_port == PORT_TP)
954 printk(", port TP.\n");
955 else if (np->ignore_phy)
956 printk(", port MII, ignoring PHY\n");
957 else
958 printk(", port MII, phy ad %d.\n", np->phy_addr_external);
960 return 0;
962 err_create_file:
963 unregister_netdev(dev);
965 err_register_netdev:
966 iounmap(ioaddr);
968 err_ioremap:
969 pci_release_regions(pdev);
970 pci_set_drvdata(pdev, NULL);
972 err_pci_request_regions:
973 free_netdev(dev);
974 return i;
978 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
979 The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
981 /* Delay between EEPROM clock transitions.
982 No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
983 a delay. Note that pre-2.0.34 kernels had a cache-alignment bug that
984 made udelay() unreliable.
985 The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
986 deprecated.
988 #define eeprom_delay(ee_addr) readl(ee_addr)
990 #define EE_Write0 (EE_ChipSelect)
991 #define EE_Write1 (EE_ChipSelect | EE_DataIn)
993 /* The EEPROM commands include the alway-set leading bit. */
994 enum EEPROM_Cmds {
995 EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
998 static int eeprom_read(void __iomem *addr, int location)
1000 int i;
1001 int retval = 0;
1002 void __iomem *ee_addr = addr + EECtrl;
1003 int read_cmd = location | EE_ReadCmd;
1005 writel(EE_Write0, ee_addr);
1007 /* Shift the read command bits out. */
1008 for (i = 10; i >= 0; i--) {
1009 short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1010 writel(dataval, ee_addr);
1011 eeprom_delay(ee_addr);
1012 writel(dataval | EE_ShiftClk, ee_addr);
1013 eeprom_delay(ee_addr);
1015 writel(EE_ChipSelect, ee_addr);
1016 eeprom_delay(ee_addr);
1018 for (i = 0; i < 16; i++) {
1019 writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1020 eeprom_delay(ee_addr);
1021 retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1022 writel(EE_ChipSelect, ee_addr);
1023 eeprom_delay(ee_addr);
1026 /* Terminate the EEPROM access. */
1027 writel(EE_Write0, ee_addr);
1028 writel(0, ee_addr);
1029 return retval;
1032 /* MII transceiver control section.
1033 * The 83815 series has an internal transceiver, and we present the
1034 * internal management registers as if they were MII connected.
1035 * External Phy registers are referenced through the MII interface.
1038 /* clock transitions >= 20ns (25MHz)
1039 * One readl should be good to PCI @ 100MHz
1041 #define mii_delay(ioaddr) readl(ioaddr + EECtrl)
1043 static int mii_getbit (struct net_device *dev)
1045 int data;
1046 void __iomem *ioaddr = ns_ioaddr(dev);
1048 writel(MII_ShiftClk, ioaddr + EECtrl);
1049 data = readl(ioaddr + EECtrl);
1050 writel(0, ioaddr + EECtrl);
1051 mii_delay(ioaddr);
1052 return (data & MII_Data)? 1 : 0;
1055 static void mii_send_bits (struct net_device *dev, u32 data, int len)
1057 u32 i;
1058 void __iomem *ioaddr = ns_ioaddr(dev);
1060 for (i = (1 << (len-1)); i; i >>= 1)
1062 u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1063 writel(mdio_val, ioaddr + EECtrl);
1064 mii_delay(ioaddr);
1065 writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1066 mii_delay(ioaddr);
1068 writel(0, ioaddr + EECtrl);
1069 mii_delay(ioaddr);
1072 static int miiport_read(struct net_device *dev, int phy_id, int reg)
1074 u32 cmd;
1075 int i;
1076 u32 retval = 0;
1078 /* Ensure sync */
1079 mii_send_bits (dev, 0xffffffff, 32);
1080 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1081 /* ST,OP = 0110'b for read operation */
1082 cmd = (0x06 << 10) | (phy_id << 5) | reg;
1083 mii_send_bits (dev, cmd, 14);
1084 /* Turnaround */
1085 if (mii_getbit (dev))
1086 return 0;
1087 /* Read data */
1088 for (i = 0; i < 16; i++) {
1089 retval <<= 1;
1090 retval |= mii_getbit (dev);
1092 /* End cycle */
1093 mii_getbit (dev);
1094 return retval;
1097 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1099 u32 cmd;
1101 /* Ensure sync */
1102 mii_send_bits (dev, 0xffffffff, 32);
1103 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1104 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1105 cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1106 mii_send_bits (dev, cmd, 32);
1107 /* End cycle */
1108 mii_getbit (dev);
1111 static int mdio_read(struct net_device *dev, int reg)
1113 struct netdev_private *np = netdev_priv(dev);
1114 void __iomem *ioaddr = ns_ioaddr(dev);
1116 /* The 83815 series has two ports:
1117 * - an internal transceiver
1118 * - an external mii bus
1120 if (dev->if_port == PORT_TP)
1121 return readw(ioaddr+BasicControl+(reg<<2));
1122 else
1123 return miiport_read(dev, np->phy_addr_external, reg);
1126 static void mdio_write(struct net_device *dev, int reg, u16 data)
1128 struct netdev_private *np = netdev_priv(dev);
1129 void __iomem *ioaddr = ns_ioaddr(dev);
1131 /* The 83815 series has an internal transceiver; handle separately */
1132 if (dev->if_port == PORT_TP)
1133 writew(data, ioaddr+BasicControl+(reg<<2));
1134 else
1135 miiport_write(dev, np->phy_addr_external, reg, data);
1138 static void init_phy_fixup(struct net_device *dev)
1140 struct netdev_private *np = netdev_priv(dev);
1141 void __iomem *ioaddr = ns_ioaddr(dev);
1142 int i;
1143 u32 cfg;
1144 u16 tmp;
1146 /* restore stuff lost when power was out */
1147 tmp = mdio_read(dev, MII_BMCR);
1148 if (np->autoneg == AUTONEG_ENABLE) {
1149 /* renegotiate if something changed */
1150 if ((tmp & BMCR_ANENABLE) == 0
1151 || np->advertising != mdio_read(dev, MII_ADVERTISE))
1153 /* turn on autonegotiation and force negotiation */
1154 tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1155 mdio_write(dev, MII_ADVERTISE, np->advertising);
1157 } else {
1158 /* turn off auto negotiation, set speed and duplexity */
1159 tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1160 if (np->speed == SPEED_100)
1161 tmp |= BMCR_SPEED100;
1162 if (np->duplex == DUPLEX_FULL)
1163 tmp |= BMCR_FULLDPLX;
1165 * Note: there is no good way to inform the link partner
1166 * that our capabilities changed. The user has to unplug
1167 * and replug the network cable after some changes, e.g.
1168 * after switching from 10HD, autoneg off to 100 HD,
1169 * autoneg off.
1172 mdio_write(dev, MII_BMCR, tmp);
1173 readl(ioaddr + ChipConfig);
1174 udelay(1);
1176 /* find out what phy this is */
1177 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1178 + mdio_read(dev, MII_PHYSID2);
1180 /* handle external phys here */
1181 switch (np->mii) {
1182 case PHYID_AM79C874:
1183 /* phy specific configuration for fibre/tp operation */
1184 tmp = mdio_read(dev, MII_MCTRL);
1185 tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1186 if (dev->if_port == PORT_FIBRE)
1187 tmp |= MII_FX_SEL;
1188 else
1189 tmp |= MII_EN_SCRM;
1190 mdio_write(dev, MII_MCTRL, tmp);
1191 break;
1192 default:
1193 break;
1195 cfg = readl(ioaddr + ChipConfig);
1196 if (cfg & CfgExtPhy)
1197 return;
1199 /* On page 78 of the spec, they recommend some settings for "optimum
1200 performance" to be done in sequence. These settings optimize some
1201 of the 100Mbit autodetection circuitry. They say we only want to
1202 do this for rev C of the chip, but engineers at NSC (Bradley
1203 Kennedy) recommends always setting them. If you don't, you get
1204 errors on some autonegotiations that make the device unusable.
1206 It seems that the DSP needs a few usec to reinitialize after
1207 the start of the phy. Just retry writing these values until they
1208 stick.
1210 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1212 int dspcfg;
1213 writew(1, ioaddr + PGSEL);
1214 writew(PMDCSR_VAL, ioaddr + PMDCSR);
1215 writew(TSTDAT_VAL, ioaddr + TSTDAT);
1216 np->dspcfg = (np->srr <= SRR_DP83815_C)?
1217 DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1218 writew(np->dspcfg, ioaddr + DSPCFG);
1219 writew(SDCFG_VAL, ioaddr + SDCFG);
1220 writew(0, ioaddr + PGSEL);
1221 readl(ioaddr + ChipConfig);
1222 udelay(10);
1224 writew(1, ioaddr + PGSEL);
1225 dspcfg = readw(ioaddr + DSPCFG);
1226 writew(0, ioaddr + PGSEL);
1227 if (np->dspcfg == dspcfg)
1228 break;
1231 if (netif_msg_link(np)) {
1232 if (i==NATSEMI_HW_TIMEOUT) {
1233 printk(KERN_INFO
1234 "%s: DSPCFG mismatch after retrying for %d usec.\n",
1235 dev->name, i*10);
1236 } else {
1237 printk(KERN_INFO
1238 "%s: DSPCFG accepted after %d usec.\n",
1239 dev->name, i*10);
1243 * Enable PHY Specific event based interrupts. Link state change
1244 * and Auto-Negotiation Completion are among the affected.
1245 * Read the intr status to clear it (needed for wake events).
1247 readw(ioaddr + MIntrStatus);
1248 writew(MICRIntEn, ioaddr + MIntrCtrl);
1251 static int switch_port_external(struct net_device *dev)
1253 struct netdev_private *np = netdev_priv(dev);
1254 void __iomem *ioaddr = ns_ioaddr(dev);
1255 u32 cfg;
1257 cfg = readl(ioaddr + ChipConfig);
1258 if (cfg & CfgExtPhy)
1259 return 0;
1261 if (netif_msg_link(np)) {
1262 printk(KERN_INFO "%s: switching to external transceiver.\n",
1263 dev->name);
1266 /* 1) switch back to external phy */
1267 writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1268 readl(ioaddr + ChipConfig);
1269 udelay(1);
1271 /* 2) reset the external phy: */
1272 /* resetting the external PHY has been known to cause a hub supplying
1273 * power over Ethernet to kill the power. We don't want to kill
1274 * power to this computer, so we avoid resetting the phy.
1277 /* 3) reinit the phy fixup, it got lost during power down. */
1278 move_int_phy(dev, np->phy_addr_external);
1279 init_phy_fixup(dev);
1281 return 1;
1284 static int switch_port_internal(struct net_device *dev)
1286 struct netdev_private *np = netdev_priv(dev);
1287 void __iomem *ioaddr = ns_ioaddr(dev);
1288 int i;
1289 u32 cfg;
1290 u16 bmcr;
1292 cfg = readl(ioaddr + ChipConfig);
1293 if (!(cfg &CfgExtPhy))
1294 return 0;
1296 if (netif_msg_link(np)) {
1297 printk(KERN_INFO "%s: switching to internal transceiver.\n",
1298 dev->name);
1300 /* 1) switch back to internal phy: */
1301 cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1302 writel(cfg, ioaddr + ChipConfig);
1303 readl(ioaddr + ChipConfig);
1304 udelay(1);
1306 /* 2) reset the internal phy: */
1307 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1308 writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1309 readl(ioaddr + ChipConfig);
1310 udelay(10);
1311 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1312 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1313 if (!(bmcr & BMCR_RESET))
1314 break;
1315 udelay(10);
1317 if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1318 printk(KERN_INFO
1319 "%s: phy reset did not complete in %d usec.\n",
1320 dev->name, i*10);
1322 /* 3) reinit the phy fixup, it got lost during power down. */
1323 init_phy_fixup(dev);
1325 return 1;
1328 /* Scan for a PHY on the external mii bus.
1329 * There are two tricky points:
1330 * - Do not scan while the internal phy is enabled. The internal phy will
1331 * crash: e.g. reads from the DSPCFG register will return odd values and
1332 * the nasty random phy reset code will reset the nic every few seconds.
1333 * - The internal phy must be moved around, an external phy could
1334 * have the same address as the internal phy.
1336 static int find_mii(struct net_device *dev)
1338 struct netdev_private *np = netdev_priv(dev);
1339 int tmp;
1340 int i;
1341 int did_switch;
1343 /* Switch to external phy */
1344 did_switch = switch_port_external(dev);
1346 /* Scan the possible phy addresses:
1348 * PHY address 0 means that the phy is in isolate mode. Not yet
1349 * supported due to lack of test hardware. User space should
1350 * handle it through ethtool.
1352 for (i = 1; i <= 31; i++) {
1353 move_int_phy(dev, i);
1354 tmp = miiport_read(dev, i, MII_BMSR);
1355 if (tmp != 0xffff && tmp != 0x0000) {
1356 /* found something! */
1357 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1358 + mdio_read(dev, MII_PHYSID2);
1359 if (netif_msg_probe(np)) {
1360 printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1361 pci_name(np->pci_dev), np->mii, i);
1363 break;
1366 /* And switch back to internal phy: */
1367 if (did_switch)
1368 switch_port_internal(dev);
1369 return i;
1372 /* CFG bits [13:16] [18:23] */
1373 #define CFG_RESET_SAVE 0xfde000
1374 /* WCSR bits [0:4] [9:10] */
1375 #define WCSR_RESET_SAVE 0x61f
1376 /* RFCR bits [20] [22] [27:31] */
1377 #define RFCR_RESET_SAVE 0xf8500000;
1379 static void natsemi_reset(struct net_device *dev)
1381 int i;
1382 u32 cfg;
1383 u32 wcsr;
1384 u32 rfcr;
1385 u16 pmatch[3];
1386 u16 sopass[3];
1387 struct netdev_private *np = netdev_priv(dev);
1388 void __iomem *ioaddr = ns_ioaddr(dev);
1391 * Resetting the chip causes some registers to be lost.
1392 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1393 * we save the state that would have been loaded from EEPROM
1394 * on a normal power-up (see the spec EEPROM map). This assumes
1395 * whoever calls this will follow up with init_registers() eventually.
1398 /* CFG */
1399 cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1400 /* WCSR */
1401 wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1402 /* RFCR */
1403 rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1404 /* PMATCH */
1405 for (i = 0; i < 3; i++) {
1406 writel(i*2, ioaddr + RxFilterAddr);
1407 pmatch[i] = readw(ioaddr + RxFilterData);
1409 /* SOPAS */
1410 for (i = 0; i < 3; i++) {
1411 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1412 sopass[i] = readw(ioaddr + RxFilterData);
1415 /* now whack the chip */
1416 writel(ChipReset, ioaddr + ChipCmd);
1417 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1418 if (!(readl(ioaddr + ChipCmd) & ChipReset))
1419 break;
1420 udelay(5);
1422 if (i==NATSEMI_HW_TIMEOUT) {
1423 printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1424 dev->name, i*5);
1425 } else if (netif_msg_hw(np)) {
1426 printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1427 dev->name, i*5);
1430 /* restore CFG */
1431 cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1432 /* turn on external phy if it was selected */
1433 if (dev->if_port == PORT_TP)
1434 cfg &= ~(CfgExtPhy | CfgPhyDis);
1435 else
1436 cfg |= (CfgExtPhy | CfgPhyDis);
1437 writel(cfg, ioaddr + ChipConfig);
1438 /* restore WCSR */
1439 wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1440 writel(wcsr, ioaddr + WOLCmd);
1441 /* read RFCR */
1442 rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1443 /* restore PMATCH */
1444 for (i = 0; i < 3; i++) {
1445 writel(i*2, ioaddr + RxFilterAddr);
1446 writew(pmatch[i], ioaddr + RxFilterData);
1448 for (i = 0; i < 3; i++) {
1449 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1450 writew(sopass[i], ioaddr + RxFilterData);
1452 /* restore RFCR */
1453 writel(rfcr, ioaddr + RxFilterAddr);
1456 static void reset_rx(struct net_device *dev)
1458 int i;
1459 struct netdev_private *np = netdev_priv(dev);
1460 void __iomem *ioaddr = ns_ioaddr(dev);
1462 np->intr_status &= ~RxResetDone;
1464 writel(RxReset, ioaddr + ChipCmd);
1466 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1467 np->intr_status |= readl(ioaddr + IntrStatus);
1468 if (np->intr_status & RxResetDone)
1469 break;
1470 udelay(15);
1472 if (i==NATSEMI_HW_TIMEOUT) {
1473 printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1474 dev->name, i*15);
1475 } else if (netif_msg_hw(np)) {
1476 printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1477 dev->name, i*15);
1481 static void natsemi_reload_eeprom(struct net_device *dev)
1483 struct netdev_private *np = netdev_priv(dev);
1484 void __iomem *ioaddr = ns_ioaddr(dev);
1485 int i;
1487 writel(EepromReload, ioaddr + PCIBusCfg);
1488 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1489 udelay(50);
1490 if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1491 break;
1493 if (i==NATSEMI_HW_TIMEOUT) {
1494 printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1495 pci_name(np->pci_dev), i*50);
1496 } else if (netif_msg_hw(np)) {
1497 printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1498 pci_name(np->pci_dev), i*50);
1502 static void natsemi_stop_rxtx(struct net_device *dev)
1504 void __iomem * ioaddr = ns_ioaddr(dev);
1505 struct netdev_private *np = netdev_priv(dev);
1506 int i;
1508 writel(RxOff | TxOff, ioaddr + ChipCmd);
1509 for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1510 if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1511 break;
1512 udelay(5);
1514 if (i==NATSEMI_HW_TIMEOUT) {
1515 printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1516 dev->name, i*5);
1517 } else if (netif_msg_hw(np)) {
1518 printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1519 dev->name, i*5);
1523 static int netdev_open(struct net_device *dev)
1525 struct netdev_private *np = netdev_priv(dev);
1526 void __iomem * ioaddr = ns_ioaddr(dev);
1527 int i;
1529 /* Reset the chip, just in case. */
1530 natsemi_reset(dev);
1532 i = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev);
1533 if (i) return i;
1535 if (netif_msg_ifup(np))
1536 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1537 dev->name, dev->irq);
1538 i = alloc_ring(dev);
1539 if (i < 0) {
1540 free_irq(dev->irq, dev);
1541 return i;
1543 napi_enable(&np->napi);
1545 init_ring(dev);
1546 spin_lock_irq(&np->lock);
1547 init_registers(dev);
1548 /* now set the MAC address according to dev->dev_addr */
1549 for (i = 0; i < 3; i++) {
1550 u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1552 writel(i*2, ioaddr + RxFilterAddr);
1553 writew(mac, ioaddr + RxFilterData);
1555 writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1556 spin_unlock_irq(&np->lock);
1558 netif_start_queue(dev);
1560 if (netif_msg_ifup(np))
1561 printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1562 dev->name, (int)readl(ioaddr + ChipCmd));
1564 /* Set the timer to check for link beat. */
1565 init_timer(&np->timer);
1566 np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1567 np->timer.data = (unsigned long)dev;
1568 np->timer.function = &netdev_timer; /* timer handler */
1569 add_timer(&np->timer);
1571 return 0;
1574 static void do_cable_magic(struct net_device *dev)
1576 struct netdev_private *np = netdev_priv(dev);
1577 void __iomem *ioaddr = ns_ioaddr(dev);
1579 if (dev->if_port != PORT_TP)
1580 return;
1582 if (np->srr >= SRR_DP83816_A5)
1583 return;
1586 * 100 MBit links with short cables can trip an issue with the chip.
1587 * The problem manifests as lots of CRC errors and/or flickering
1588 * activity LED while idle. This process is based on instructions
1589 * from engineers at National.
1591 if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1592 u16 data;
1594 writew(1, ioaddr + PGSEL);
1596 * coefficient visibility should already be enabled via
1597 * DSPCFG | 0x1000
1599 data = readw(ioaddr + TSTDAT) & 0xff;
1601 * the value must be negative, and within certain values
1602 * (these values all come from National)
1604 if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1605 np = netdev_priv(dev);
1607 /* the bug has been triggered - fix the coefficient */
1608 writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1609 /* lock the value */
1610 data = readw(ioaddr + DSPCFG);
1611 np->dspcfg = data | DSPCFG_LOCK;
1612 writew(np->dspcfg, ioaddr + DSPCFG);
1614 writew(0, ioaddr + PGSEL);
1618 static void undo_cable_magic(struct net_device *dev)
1620 u16 data;
1621 struct netdev_private *np = netdev_priv(dev);
1622 void __iomem * ioaddr = ns_ioaddr(dev);
1624 if (dev->if_port != PORT_TP)
1625 return;
1627 if (np->srr >= SRR_DP83816_A5)
1628 return;
1630 writew(1, ioaddr + PGSEL);
1631 /* make sure the lock bit is clear */
1632 data = readw(ioaddr + DSPCFG);
1633 np->dspcfg = data & ~DSPCFG_LOCK;
1634 writew(np->dspcfg, ioaddr + DSPCFG);
1635 writew(0, ioaddr + PGSEL);
1638 static void check_link(struct net_device *dev)
1640 struct netdev_private *np = netdev_priv(dev);
1641 void __iomem * ioaddr = ns_ioaddr(dev);
1642 int duplex = np->duplex;
1643 u16 bmsr;
1645 /* If we are ignoring the PHY then don't try reading it. */
1646 if (np->ignore_phy)
1647 goto propagate_state;
1649 /* The link status field is latched: it remains low after a temporary
1650 * link failure until it's read. We need the current link status,
1651 * thus read twice.
1653 mdio_read(dev, MII_BMSR);
1654 bmsr = mdio_read(dev, MII_BMSR);
1656 if (!(bmsr & BMSR_LSTATUS)) {
1657 if (netif_carrier_ok(dev)) {
1658 if (netif_msg_link(np))
1659 printk(KERN_NOTICE "%s: link down.\n",
1660 dev->name);
1661 netif_carrier_off(dev);
1662 undo_cable_magic(dev);
1664 return;
1666 if (!netif_carrier_ok(dev)) {
1667 if (netif_msg_link(np))
1668 printk(KERN_NOTICE "%s: link up.\n", dev->name);
1669 netif_carrier_on(dev);
1670 do_cable_magic(dev);
1673 duplex = np->full_duplex;
1674 if (!duplex) {
1675 if (bmsr & BMSR_ANEGCOMPLETE) {
1676 int tmp = mii_nway_result(
1677 np->advertising & mdio_read(dev, MII_LPA));
1678 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1679 duplex = 1;
1680 } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1681 duplex = 1;
1684 propagate_state:
1685 /* if duplex is set then bit 28 must be set, too */
1686 if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1687 if (netif_msg_link(np))
1688 printk(KERN_INFO
1689 "%s: Setting %s-duplex based on negotiated "
1690 "link capability.\n", dev->name,
1691 duplex ? "full" : "half");
1692 if (duplex) {
1693 np->rx_config |= RxAcceptTx;
1694 np->tx_config |= TxCarrierIgn | TxHeartIgn;
1695 } else {
1696 np->rx_config &= ~RxAcceptTx;
1697 np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1699 writel(np->tx_config, ioaddr + TxConfig);
1700 writel(np->rx_config, ioaddr + RxConfig);
1704 static void init_registers(struct net_device *dev)
1706 struct netdev_private *np = netdev_priv(dev);
1707 void __iomem * ioaddr = ns_ioaddr(dev);
1709 init_phy_fixup(dev);
1711 /* clear any interrupts that are pending, such as wake events */
1712 readl(ioaddr + IntrStatus);
1714 writel(np->ring_dma, ioaddr + RxRingPtr);
1715 writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1716 ioaddr + TxRingPtr);
1718 /* Initialize other registers.
1719 * Configure the PCI bus bursts and FIFO thresholds.
1720 * Configure for standard, in-spec Ethernet.
1721 * Start with half-duplex. check_link will update
1722 * to the correct settings.
1725 /* DRTH: 2: start tx if 64 bytes are in the fifo
1726 * FLTH: 0x10: refill with next packet if 512 bytes are free
1727 * MXDMA: 0: up to 256 byte bursts.
1728 * MXDMA must be <= FLTH
1729 * ECRETRY=1
1730 * ATP=1
1732 np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1733 TX_FLTH_VAL | TX_DRTH_VAL_START;
1734 writel(np->tx_config, ioaddr + TxConfig);
1736 /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1737 * MXDMA 0: up to 256 byte bursts
1739 np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1740 /* if receive ring now has bigger buffers than normal, enable jumbo */
1741 if (np->rx_buf_sz > NATSEMI_LONGPKT)
1742 np->rx_config |= RxAcceptLong;
1744 writel(np->rx_config, ioaddr + RxConfig);
1746 /* Disable PME:
1747 * The PME bit is initialized from the EEPROM contents.
1748 * PCI cards probably have PME disabled, but motherboard
1749 * implementations may have PME set to enable WakeOnLan.
1750 * With PME set the chip will scan incoming packets but
1751 * nothing will be written to memory. */
1752 np->SavedClkRun = readl(ioaddr + ClkRun);
1753 writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1754 if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1755 printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1756 dev->name, readl(ioaddr + WOLCmd));
1759 check_link(dev);
1760 __set_rx_mode(dev);
1762 /* Enable interrupts by setting the interrupt mask. */
1763 writel(DEFAULT_INTR, ioaddr + IntrMask);
1764 natsemi_irq_enable(dev);
1766 writel(RxOn | TxOn, ioaddr + ChipCmd);
1767 writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1771 * netdev_timer:
1772 * Purpose:
1773 * 1) check for link changes. Usually they are handled by the MII interrupt
1774 * but it doesn't hurt to check twice.
1775 * 2) check for sudden death of the NIC:
1776 * It seems that a reference set for this chip went out with incorrect info,
1777 * and there exist boards that aren't quite right. An unexpected voltage
1778 * drop can cause the PHY to get itself in a weird state (basically reset).
1779 * NOTE: this only seems to affect revC chips. The user can disable
1780 * this check via dspcfg_workaround sysfs option.
1781 * 3) check of death of the RX path due to OOM
1783 static void netdev_timer(unsigned long data)
1785 struct net_device *dev = (struct net_device *)data;
1786 struct netdev_private *np = netdev_priv(dev);
1787 void __iomem * ioaddr = ns_ioaddr(dev);
1788 int next_tick = NATSEMI_TIMER_FREQ;
1790 if (netif_msg_timer(np)) {
1791 /* DO NOT read the IntrStatus register,
1792 * a read clears any pending interrupts.
1794 printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1795 dev->name);
1798 if (dev->if_port == PORT_TP) {
1799 u16 dspcfg;
1801 spin_lock_irq(&np->lock);
1802 /* check for a nasty random phy-reset - use dspcfg as a flag */
1803 writew(1, ioaddr+PGSEL);
1804 dspcfg = readw(ioaddr+DSPCFG);
1805 writew(0, ioaddr+PGSEL);
1806 if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1807 if (!netif_queue_stopped(dev)) {
1808 spin_unlock_irq(&np->lock);
1809 if (netif_msg_drv(np))
1810 printk(KERN_NOTICE "%s: possible phy reset: "
1811 "re-initializing\n", dev->name);
1812 disable_irq(dev->irq);
1813 spin_lock_irq(&np->lock);
1814 natsemi_stop_rxtx(dev);
1815 dump_ring(dev);
1816 reinit_ring(dev);
1817 init_registers(dev);
1818 spin_unlock_irq(&np->lock);
1819 enable_irq(dev->irq);
1820 } else {
1821 /* hurry back */
1822 next_tick = HZ;
1823 spin_unlock_irq(&np->lock);
1825 } else {
1826 /* init_registers() calls check_link() for the above case */
1827 check_link(dev);
1828 spin_unlock_irq(&np->lock);
1830 } else {
1831 spin_lock_irq(&np->lock);
1832 check_link(dev);
1833 spin_unlock_irq(&np->lock);
1835 if (np->oom) {
1836 disable_irq(dev->irq);
1837 np->oom = 0;
1838 refill_rx(dev);
1839 enable_irq(dev->irq);
1840 if (!np->oom) {
1841 writel(RxOn, ioaddr + ChipCmd);
1842 } else {
1843 next_tick = 1;
1847 if (next_tick > 1)
1848 mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1849 else
1850 mod_timer(&np->timer, jiffies + next_tick);
1853 static void dump_ring(struct net_device *dev)
1855 struct netdev_private *np = netdev_priv(dev);
1857 if (netif_msg_pktdata(np)) {
1858 int i;
1859 printk(KERN_DEBUG " Tx ring at %p:\n", np->tx_ring);
1860 for (i = 0; i < TX_RING_SIZE; i++) {
1861 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1862 i, np->tx_ring[i].next_desc,
1863 np->tx_ring[i].cmd_status,
1864 np->tx_ring[i].addr);
1866 printk(KERN_DEBUG " Rx ring %p:\n", np->rx_ring);
1867 for (i = 0; i < RX_RING_SIZE; i++) {
1868 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1869 i, np->rx_ring[i].next_desc,
1870 np->rx_ring[i].cmd_status,
1871 np->rx_ring[i].addr);
1876 static void tx_timeout(struct net_device *dev)
1878 struct netdev_private *np = netdev_priv(dev);
1879 void __iomem * ioaddr = ns_ioaddr(dev);
1881 disable_irq(dev->irq);
1882 spin_lock_irq(&np->lock);
1883 if (!np->hands_off) {
1884 if (netif_msg_tx_err(np))
1885 printk(KERN_WARNING
1886 "%s: Transmit timed out, status %#08x,"
1887 " resetting...\n",
1888 dev->name, readl(ioaddr + IntrStatus));
1889 dump_ring(dev);
1891 natsemi_reset(dev);
1892 reinit_ring(dev);
1893 init_registers(dev);
1894 } else {
1895 printk(KERN_WARNING
1896 "%s: tx_timeout while in hands_off state?\n",
1897 dev->name);
1899 spin_unlock_irq(&np->lock);
1900 enable_irq(dev->irq);
1902 dev->trans_start = jiffies;
1903 np->stats.tx_errors++;
1904 netif_wake_queue(dev);
1907 static int alloc_ring(struct net_device *dev)
1909 struct netdev_private *np = netdev_priv(dev);
1910 np->rx_ring = pci_alloc_consistent(np->pci_dev,
1911 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1912 &np->ring_dma);
1913 if (!np->rx_ring)
1914 return -ENOMEM;
1915 np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1916 return 0;
1919 static void refill_rx(struct net_device *dev)
1921 struct netdev_private *np = netdev_priv(dev);
1923 /* Refill the Rx ring buffers. */
1924 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1925 struct sk_buff *skb;
1926 int entry = np->dirty_rx % RX_RING_SIZE;
1927 if (np->rx_skbuff[entry] == NULL) {
1928 unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1929 skb = dev_alloc_skb(buflen);
1930 np->rx_skbuff[entry] = skb;
1931 if (skb == NULL)
1932 break; /* Better luck next round. */
1933 skb->dev = dev; /* Mark as being used by this device. */
1934 np->rx_dma[entry] = pci_map_single(np->pci_dev,
1935 skb->data, buflen, PCI_DMA_FROMDEVICE);
1936 np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1938 np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1940 if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1941 if (netif_msg_rx_err(np))
1942 printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1943 np->oom = 1;
1947 static void set_bufsize(struct net_device *dev)
1949 struct netdev_private *np = netdev_priv(dev);
1950 if (dev->mtu <= ETH_DATA_LEN)
1951 np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1952 else
1953 np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1956 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1957 static void init_ring(struct net_device *dev)
1959 struct netdev_private *np = netdev_priv(dev);
1960 int i;
1962 /* 1) TX ring */
1963 np->dirty_tx = np->cur_tx = 0;
1964 for (i = 0; i < TX_RING_SIZE; i++) {
1965 np->tx_skbuff[i] = NULL;
1966 np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1967 +sizeof(struct netdev_desc)
1968 *((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1969 np->tx_ring[i].cmd_status = 0;
1972 /* 2) RX ring */
1973 np->dirty_rx = 0;
1974 np->cur_rx = RX_RING_SIZE;
1975 np->oom = 0;
1976 set_bufsize(dev);
1978 np->rx_head_desc = &np->rx_ring[0];
1980 /* Please be carefull before changing this loop - at least gcc-2.95.1
1981 * miscompiles it otherwise.
1983 /* Initialize all Rx descriptors. */
1984 for (i = 0; i < RX_RING_SIZE; i++) {
1985 np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1986 +sizeof(struct netdev_desc)
1987 *((i+1)%RX_RING_SIZE));
1988 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1989 np->rx_skbuff[i] = NULL;
1991 refill_rx(dev);
1992 dump_ring(dev);
1995 static void drain_tx(struct net_device *dev)
1997 struct netdev_private *np = netdev_priv(dev);
1998 int i;
2000 for (i = 0; i < TX_RING_SIZE; i++) {
2001 if (np->tx_skbuff[i]) {
2002 pci_unmap_single(np->pci_dev,
2003 np->tx_dma[i], np->tx_skbuff[i]->len,
2004 PCI_DMA_TODEVICE);
2005 dev_kfree_skb(np->tx_skbuff[i]);
2006 np->stats.tx_dropped++;
2008 np->tx_skbuff[i] = NULL;
2012 static void drain_rx(struct net_device *dev)
2014 struct netdev_private *np = netdev_priv(dev);
2015 unsigned int buflen = np->rx_buf_sz;
2016 int i;
2018 /* Free all the skbuffs in the Rx queue. */
2019 for (i = 0; i < RX_RING_SIZE; i++) {
2020 np->rx_ring[i].cmd_status = 0;
2021 np->rx_ring[i].addr = 0xBADF00D0; /* An invalid address. */
2022 if (np->rx_skbuff[i]) {
2023 pci_unmap_single(np->pci_dev,
2024 np->rx_dma[i], buflen,
2025 PCI_DMA_FROMDEVICE);
2026 dev_kfree_skb(np->rx_skbuff[i]);
2028 np->rx_skbuff[i] = NULL;
2032 static void drain_ring(struct net_device *dev)
2034 drain_rx(dev);
2035 drain_tx(dev);
2038 static void free_ring(struct net_device *dev)
2040 struct netdev_private *np = netdev_priv(dev);
2041 pci_free_consistent(np->pci_dev,
2042 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2043 np->rx_ring, np->ring_dma);
2046 static void reinit_rx(struct net_device *dev)
2048 struct netdev_private *np = netdev_priv(dev);
2049 int i;
2051 /* RX Ring */
2052 np->dirty_rx = 0;
2053 np->cur_rx = RX_RING_SIZE;
2054 np->rx_head_desc = &np->rx_ring[0];
2055 /* Initialize all Rx descriptors. */
2056 for (i = 0; i < RX_RING_SIZE; i++)
2057 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2059 refill_rx(dev);
2062 static void reinit_ring(struct net_device *dev)
2064 struct netdev_private *np = netdev_priv(dev);
2065 int i;
2067 /* drain TX ring */
2068 drain_tx(dev);
2069 np->dirty_tx = np->cur_tx = 0;
2070 for (i=0;i<TX_RING_SIZE;i++)
2071 np->tx_ring[i].cmd_status = 0;
2073 reinit_rx(dev);
2076 static int start_tx(struct sk_buff *skb, struct net_device *dev)
2078 struct netdev_private *np = netdev_priv(dev);
2079 void __iomem * ioaddr = ns_ioaddr(dev);
2080 unsigned entry;
2081 unsigned long flags;
2083 /* Note: Ordering is important here, set the field with the
2084 "ownership" bit last, and only then increment cur_tx. */
2086 /* Calculate the next Tx descriptor entry. */
2087 entry = np->cur_tx % TX_RING_SIZE;
2089 np->tx_skbuff[entry] = skb;
2090 np->tx_dma[entry] = pci_map_single(np->pci_dev,
2091 skb->data,skb->len, PCI_DMA_TODEVICE);
2093 np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2095 spin_lock_irqsave(&np->lock, flags);
2097 if (!np->hands_off) {
2098 np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2099 /* StrongARM: Explicitly cache flush np->tx_ring and
2100 * skb->data,skb->len. */
2101 wmb();
2102 np->cur_tx++;
2103 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2104 netdev_tx_done(dev);
2105 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2106 netif_stop_queue(dev);
2108 /* Wake the potentially-idle transmit channel. */
2109 writel(TxOn, ioaddr + ChipCmd);
2110 } else {
2111 dev_kfree_skb_irq(skb);
2112 np->stats.tx_dropped++;
2114 spin_unlock_irqrestore(&np->lock, flags);
2116 dev->trans_start = jiffies;
2118 if (netif_msg_tx_queued(np)) {
2119 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2120 dev->name, np->cur_tx, entry);
2122 return 0;
2125 static void netdev_tx_done(struct net_device *dev)
2127 struct netdev_private *np = netdev_priv(dev);
2129 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2130 int entry = np->dirty_tx % TX_RING_SIZE;
2131 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2132 break;
2133 if (netif_msg_tx_done(np))
2134 printk(KERN_DEBUG
2135 "%s: tx frame #%d finished, status %#08x.\n",
2136 dev->name, np->dirty_tx,
2137 le32_to_cpu(np->tx_ring[entry].cmd_status));
2138 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2139 np->stats.tx_packets++;
2140 np->stats.tx_bytes += np->tx_skbuff[entry]->len;
2141 } else { /* Various Tx errors */
2142 int tx_status =
2143 le32_to_cpu(np->tx_ring[entry].cmd_status);
2144 if (tx_status & (DescTxAbort|DescTxExcColl))
2145 np->stats.tx_aborted_errors++;
2146 if (tx_status & DescTxFIFO)
2147 np->stats.tx_fifo_errors++;
2148 if (tx_status & DescTxCarrier)
2149 np->stats.tx_carrier_errors++;
2150 if (tx_status & DescTxOOWCol)
2151 np->stats.tx_window_errors++;
2152 np->stats.tx_errors++;
2154 pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2155 np->tx_skbuff[entry]->len,
2156 PCI_DMA_TODEVICE);
2157 /* Free the original skb. */
2158 dev_kfree_skb_irq(np->tx_skbuff[entry]);
2159 np->tx_skbuff[entry] = NULL;
2161 if (netif_queue_stopped(dev)
2162 && np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2163 /* The ring is no longer full, wake queue. */
2164 netif_wake_queue(dev);
2168 /* The interrupt handler doesn't actually handle interrupts itself, it
2169 * schedules a NAPI poll if there is anything to do. */
2170 static irqreturn_t intr_handler(int irq, void *dev_instance)
2172 struct net_device *dev = dev_instance;
2173 struct netdev_private *np = netdev_priv(dev);
2174 void __iomem * ioaddr = ns_ioaddr(dev);
2176 /* Reading IntrStatus automatically acknowledges so don't do
2177 * that while interrupts are disabled, (for example, while a
2178 * poll is scheduled). */
2179 if (np->hands_off || !readl(ioaddr + IntrEnable))
2180 return IRQ_NONE;
2182 np->intr_status = readl(ioaddr + IntrStatus);
2184 if (!np->intr_status)
2185 return IRQ_NONE;
2187 if (netif_msg_intr(np))
2188 printk(KERN_DEBUG
2189 "%s: Interrupt, status %#08x, mask %#08x.\n",
2190 dev->name, np->intr_status,
2191 readl(ioaddr + IntrMask));
2193 prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2195 if (netif_rx_schedule_prep(dev, &np->napi)) {
2196 /* Disable interrupts and register for poll */
2197 natsemi_irq_disable(dev);
2198 __netif_rx_schedule(dev, &np->napi);
2199 } else
2200 printk(KERN_WARNING
2201 "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2202 dev->name, np->intr_status,
2203 readl(ioaddr + IntrMask));
2205 return IRQ_HANDLED;
2208 /* This is the NAPI poll routine. As well as the standard RX handling
2209 * it also handles all other interrupts that the chip might raise.
2211 static int natsemi_poll(struct napi_struct *napi, int budget)
2213 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2214 struct net_device *dev = np->dev;
2215 void __iomem * ioaddr = ns_ioaddr(dev);
2216 int work_done = 0;
2218 do {
2219 if (netif_msg_intr(np))
2220 printk(KERN_DEBUG
2221 "%s: Poll, status %#08x, mask %#08x.\n",
2222 dev->name, np->intr_status,
2223 readl(ioaddr + IntrMask));
2225 /* netdev_rx() may read IntrStatus again if the RX state
2226 * machine falls over so do it first. */
2227 if (np->intr_status &
2228 (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2229 IntrRxErr | IntrRxOverrun)) {
2230 netdev_rx(dev, &work_done, budget);
2233 if (np->intr_status &
2234 (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2235 spin_lock(&np->lock);
2236 netdev_tx_done(dev);
2237 spin_unlock(&np->lock);
2240 /* Abnormal error summary/uncommon events handlers. */
2241 if (np->intr_status & IntrAbnormalSummary)
2242 netdev_error(dev, np->intr_status);
2244 if (work_done >= budget)
2245 return work_done;
2247 np->intr_status = readl(ioaddr + IntrStatus);
2248 } while (np->intr_status);
2250 netif_rx_complete(dev, napi);
2252 /* Reenable interrupts providing nothing is trying to shut
2253 * the chip down. */
2254 spin_lock(&np->lock);
2255 if (!np->hands_off)
2256 natsemi_irq_enable(dev);
2257 spin_unlock(&np->lock);
2259 return work_done;
2262 /* This routine is logically part of the interrupt handler, but separated
2263 for clarity and better register allocation. */
2264 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2266 struct netdev_private *np = netdev_priv(dev);
2267 int entry = np->cur_rx % RX_RING_SIZE;
2268 int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2269 s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2270 unsigned int buflen = np->rx_buf_sz;
2271 void __iomem * ioaddr = ns_ioaddr(dev);
2273 /* If the driver owns the next entry it's a new packet. Send it up. */
2274 while (desc_status < 0) { /* e.g. & DescOwn */
2275 int pkt_len;
2276 if (netif_msg_rx_status(np))
2277 printk(KERN_DEBUG
2278 " netdev_rx() entry %d status was %#08x.\n",
2279 entry, desc_status);
2280 if (--boguscnt < 0)
2281 break;
2283 if (*work_done >= work_to_do)
2284 break;
2286 (*work_done)++;
2288 pkt_len = (desc_status & DescSizeMask) - 4;
2289 if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2290 if (desc_status & DescMore) {
2291 unsigned long flags;
2293 if (netif_msg_rx_err(np))
2294 printk(KERN_WARNING
2295 "%s: Oversized(?) Ethernet "
2296 "frame spanned multiple "
2297 "buffers, entry %#08x "
2298 "status %#08x.\n", dev->name,
2299 np->cur_rx, desc_status);
2300 np->stats.rx_length_errors++;
2302 /* The RX state machine has probably
2303 * locked up beneath us. Follow the
2304 * reset procedure documented in
2305 * AN-1287. */
2307 spin_lock_irqsave(&np->lock, flags);
2308 reset_rx(dev);
2309 reinit_rx(dev);
2310 writel(np->ring_dma, ioaddr + RxRingPtr);
2311 check_link(dev);
2312 spin_unlock_irqrestore(&np->lock, flags);
2314 /* We'll enable RX on exit from this
2315 * function. */
2316 break;
2318 } else {
2319 /* There was an error. */
2320 np->stats.rx_errors++;
2321 if (desc_status & (DescRxAbort|DescRxOver))
2322 np->stats.rx_over_errors++;
2323 if (desc_status & (DescRxLong|DescRxRunt))
2324 np->stats.rx_length_errors++;
2325 if (desc_status & (DescRxInvalid|DescRxAlign))
2326 np->stats.rx_frame_errors++;
2327 if (desc_status & DescRxCRC)
2328 np->stats.rx_crc_errors++;
2330 } else if (pkt_len > np->rx_buf_sz) {
2331 /* if this is the tail of a double buffer
2332 * packet, we've already counted the error
2333 * on the first part. Ignore the second half.
2335 } else {
2336 struct sk_buff *skb;
2337 /* Omit CRC size. */
2338 /* Check if the packet is long enough to accept
2339 * without copying to a minimally-sized skbuff. */
2340 if (pkt_len < rx_copybreak
2341 && (skb = dev_alloc_skb(pkt_len + RX_OFFSET)) != NULL) {
2342 /* 16 byte align the IP header */
2343 skb_reserve(skb, RX_OFFSET);
2344 pci_dma_sync_single_for_cpu(np->pci_dev,
2345 np->rx_dma[entry],
2346 buflen,
2347 PCI_DMA_FROMDEVICE);
2348 skb_copy_to_linear_data(skb,
2349 np->rx_skbuff[entry]->data, pkt_len);
2350 skb_put(skb, pkt_len);
2351 pci_dma_sync_single_for_device(np->pci_dev,
2352 np->rx_dma[entry],
2353 buflen,
2354 PCI_DMA_FROMDEVICE);
2355 } else {
2356 pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2357 buflen, PCI_DMA_FROMDEVICE);
2358 skb_put(skb = np->rx_skbuff[entry], pkt_len);
2359 np->rx_skbuff[entry] = NULL;
2361 skb->protocol = eth_type_trans(skb, dev);
2362 netif_receive_skb(skb);
2363 dev->last_rx = jiffies;
2364 np->stats.rx_packets++;
2365 np->stats.rx_bytes += pkt_len;
2367 entry = (++np->cur_rx) % RX_RING_SIZE;
2368 np->rx_head_desc = &np->rx_ring[entry];
2369 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2371 refill_rx(dev);
2373 /* Restart Rx engine if stopped. */
2374 if (np->oom)
2375 mod_timer(&np->timer, jiffies + 1);
2376 else
2377 writel(RxOn, ioaddr + ChipCmd);
2380 static void netdev_error(struct net_device *dev, int intr_status)
2382 struct netdev_private *np = netdev_priv(dev);
2383 void __iomem * ioaddr = ns_ioaddr(dev);
2385 spin_lock(&np->lock);
2386 if (intr_status & LinkChange) {
2387 u16 lpa = mdio_read(dev, MII_LPA);
2388 if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE
2389 && netif_msg_link(np)) {
2390 printk(KERN_INFO
2391 "%s: Autonegotiation advertising"
2392 " %#04x partner %#04x.\n", dev->name,
2393 np->advertising, lpa);
2396 /* read MII int status to clear the flag */
2397 readw(ioaddr + MIntrStatus);
2398 check_link(dev);
2400 if (intr_status & StatsMax) {
2401 __get_stats(dev);
2403 if (intr_status & IntrTxUnderrun) {
2404 if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2405 np->tx_config += TX_DRTH_VAL_INC;
2406 if (netif_msg_tx_err(np))
2407 printk(KERN_NOTICE
2408 "%s: increased tx threshold, txcfg %#08x.\n",
2409 dev->name, np->tx_config);
2410 } else {
2411 if (netif_msg_tx_err(np))
2412 printk(KERN_NOTICE
2413 "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2414 dev->name, np->tx_config);
2416 writel(np->tx_config, ioaddr + TxConfig);
2418 if (intr_status & WOLPkt && netif_msg_wol(np)) {
2419 int wol_status = readl(ioaddr + WOLCmd);
2420 printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2421 dev->name, wol_status);
2423 if (intr_status & RxStatusFIFOOver) {
2424 if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2425 printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2426 dev->name);
2428 np->stats.rx_fifo_errors++;
2429 np->stats.rx_errors++;
2431 /* Hmmmmm, it's not clear how to recover from PCI faults. */
2432 if (intr_status & IntrPCIErr) {
2433 printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2434 intr_status & IntrPCIErr);
2435 np->stats.tx_fifo_errors++;
2436 np->stats.tx_errors++;
2437 np->stats.rx_fifo_errors++;
2438 np->stats.rx_errors++;
2440 spin_unlock(&np->lock);
2443 static void __get_stats(struct net_device *dev)
2445 void __iomem * ioaddr = ns_ioaddr(dev);
2446 struct netdev_private *np = netdev_priv(dev);
2448 /* The chip only need report frame silently dropped. */
2449 np->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2450 np->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2453 static struct net_device_stats *get_stats(struct net_device *dev)
2455 struct netdev_private *np = netdev_priv(dev);
2457 /* The chip only need report frame silently dropped. */
2458 spin_lock_irq(&np->lock);
2459 if (netif_running(dev) && !np->hands_off)
2460 __get_stats(dev);
2461 spin_unlock_irq(&np->lock);
2463 return &np->stats;
2466 #ifdef CONFIG_NET_POLL_CONTROLLER
2467 static void natsemi_poll_controller(struct net_device *dev)
2469 disable_irq(dev->irq);
2470 intr_handler(dev->irq, dev);
2471 enable_irq(dev->irq);
2473 #endif
2475 #define HASH_TABLE 0x200
2476 static void __set_rx_mode(struct net_device *dev)
2478 void __iomem * ioaddr = ns_ioaddr(dev);
2479 struct netdev_private *np = netdev_priv(dev);
2480 u8 mc_filter[64]; /* Multicast hash filter */
2481 u32 rx_mode;
2483 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2484 rx_mode = RxFilterEnable | AcceptBroadcast
2485 | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2486 } else if ((dev->mc_count > multicast_filter_limit)
2487 || (dev->flags & IFF_ALLMULTI)) {
2488 rx_mode = RxFilterEnable | AcceptBroadcast
2489 | AcceptAllMulticast | AcceptMyPhys;
2490 } else {
2491 struct dev_mc_list *mclist;
2492 int i;
2493 memset(mc_filter, 0, sizeof(mc_filter));
2494 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
2495 i++, mclist = mclist->next) {
2496 int b = (ether_crc(ETH_ALEN, mclist->dmi_addr) >> 23) & 0x1ff;
2497 mc_filter[b/8] |= (1 << (b & 0x07));
2499 rx_mode = RxFilterEnable | AcceptBroadcast
2500 | AcceptMulticast | AcceptMyPhys;
2501 for (i = 0; i < 64; i += 2) {
2502 writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2503 writel((mc_filter[i + 1] << 8) + mc_filter[i],
2504 ioaddr + RxFilterData);
2507 writel(rx_mode, ioaddr + RxFilterAddr);
2508 np->cur_rx_mode = rx_mode;
2511 static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2513 if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2514 return -EINVAL;
2516 dev->mtu = new_mtu;
2518 /* synchronized against open : rtnl_lock() held by caller */
2519 if (netif_running(dev)) {
2520 struct netdev_private *np = netdev_priv(dev);
2521 void __iomem * ioaddr = ns_ioaddr(dev);
2523 disable_irq(dev->irq);
2524 spin_lock(&np->lock);
2525 /* stop engines */
2526 natsemi_stop_rxtx(dev);
2527 /* drain rx queue */
2528 drain_rx(dev);
2529 /* change buffers */
2530 set_bufsize(dev);
2531 reinit_rx(dev);
2532 writel(np->ring_dma, ioaddr + RxRingPtr);
2533 /* restart engines */
2534 writel(RxOn | TxOn, ioaddr + ChipCmd);
2535 spin_unlock(&np->lock);
2536 enable_irq(dev->irq);
2538 return 0;
2541 static void set_rx_mode(struct net_device *dev)
2543 struct netdev_private *np = netdev_priv(dev);
2544 spin_lock_irq(&np->lock);
2545 if (!np->hands_off)
2546 __set_rx_mode(dev);
2547 spin_unlock_irq(&np->lock);
2550 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2552 struct netdev_private *np = netdev_priv(dev);
2553 strncpy(info->driver, DRV_NAME, ETHTOOL_BUSINFO_LEN);
2554 strncpy(info->version, DRV_VERSION, ETHTOOL_BUSINFO_LEN);
2555 strncpy(info->bus_info, pci_name(np->pci_dev), ETHTOOL_BUSINFO_LEN);
2558 static int get_regs_len(struct net_device *dev)
2560 return NATSEMI_REGS_SIZE;
2563 static int get_eeprom_len(struct net_device *dev)
2565 struct netdev_private *np = netdev_priv(dev);
2566 return np->eeprom_size;
2569 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2571 struct netdev_private *np = netdev_priv(dev);
2572 spin_lock_irq(&np->lock);
2573 netdev_get_ecmd(dev, ecmd);
2574 spin_unlock_irq(&np->lock);
2575 return 0;
2578 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2580 struct netdev_private *np = netdev_priv(dev);
2581 int res;
2582 spin_lock_irq(&np->lock);
2583 res = netdev_set_ecmd(dev, ecmd);
2584 spin_unlock_irq(&np->lock);
2585 return res;
2588 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2590 struct netdev_private *np = netdev_priv(dev);
2591 spin_lock_irq(&np->lock);
2592 netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2593 netdev_get_sopass(dev, wol->sopass);
2594 spin_unlock_irq(&np->lock);
2597 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2599 struct netdev_private *np = netdev_priv(dev);
2600 int res;
2601 spin_lock_irq(&np->lock);
2602 netdev_set_wol(dev, wol->wolopts);
2603 res = netdev_set_sopass(dev, wol->sopass);
2604 spin_unlock_irq(&np->lock);
2605 return res;
2608 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2610 struct netdev_private *np = netdev_priv(dev);
2611 regs->version = NATSEMI_REGS_VER;
2612 spin_lock_irq(&np->lock);
2613 netdev_get_regs(dev, buf);
2614 spin_unlock_irq(&np->lock);
2617 static u32 get_msglevel(struct net_device *dev)
2619 struct netdev_private *np = netdev_priv(dev);
2620 return np->msg_enable;
2623 static void set_msglevel(struct net_device *dev, u32 val)
2625 struct netdev_private *np = netdev_priv(dev);
2626 np->msg_enable = val;
2629 static int nway_reset(struct net_device *dev)
2631 int tmp;
2632 int r = -EINVAL;
2633 /* if autoneg is off, it's an error */
2634 tmp = mdio_read(dev, MII_BMCR);
2635 if (tmp & BMCR_ANENABLE) {
2636 tmp |= (BMCR_ANRESTART);
2637 mdio_write(dev, MII_BMCR, tmp);
2638 r = 0;
2640 return r;
2643 static u32 get_link(struct net_device *dev)
2645 /* LSTATUS is latched low until a read - so read twice */
2646 mdio_read(dev, MII_BMSR);
2647 return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2650 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2652 struct netdev_private *np = netdev_priv(dev);
2653 u8 *eebuf;
2654 int res;
2656 eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2657 if (!eebuf)
2658 return -ENOMEM;
2660 eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2661 spin_lock_irq(&np->lock);
2662 res = netdev_get_eeprom(dev, eebuf);
2663 spin_unlock_irq(&np->lock);
2664 if (!res)
2665 memcpy(data, eebuf+eeprom->offset, eeprom->len);
2666 kfree(eebuf);
2667 return res;
2670 static const struct ethtool_ops ethtool_ops = {
2671 .get_drvinfo = get_drvinfo,
2672 .get_regs_len = get_regs_len,
2673 .get_eeprom_len = get_eeprom_len,
2674 .get_settings = get_settings,
2675 .set_settings = set_settings,
2676 .get_wol = get_wol,
2677 .set_wol = set_wol,
2678 .get_regs = get_regs,
2679 .get_msglevel = get_msglevel,
2680 .set_msglevel = set_msglevel,
2681 .nway_reset = nway_reset,
2682 .get_link = get_link,
2683 .get_eeprom = get_eeprom,
2686 static int netdev_set_wol(struct net_device *dev, u32 newval)
2688 struct netdev_private *np = netdev_priv(dev);
2689 void __iomem * ioaddr = ns_ioaddr(dev);
2690 u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2692 /* translate to bitmasks this chip understands */
2693 if (newval & WAKE_PHY)
2694 data |= WakePhy;
2695 if (newval & WAKE_UCAST)
2696 data |= WakeUnicast;
2697 if (newval & WAKE_MCAST)
2698 data |= WakeMulticast;
2699 if (newval & WAKE_BCAST)
2700 data |= WakeBroadcast;
2701 if (newval & WAKE_ARP)
2702 data |= WakeArp;
2703 if (newval & WAKE_MAGIC)
2704 data |= WakeMagic;
2705 if (np->srr >= SRR_DP83815_D) {
2706 if (newval & WAKE_MAGICSECURE) {
2707 data |= WakeMagicSecure;
2711 writel(data, ioaddr + WOLCmd);
2713 return 0;
2716 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2718 struct netdev_private *np = netdev_priv(dev);
2719 void __iomem * ioaddr = ns_ioaddr(dev);
2720 u32 regval = readl(ioaddr + WOLCmd);
2722 *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2723 | WAKE_ARP | WAKE_MAGIC);
2725 if (np->srr >= SRR_DP83815_D) {
2726 /* SOPASS works on revD and higher */
2727 *supported |= WAKE_MAGICSECURE;
2729 *cur = 0;
2731 /* translate from chip bitmasks */
2732 if (regval & WakePhy)
2733 *cur |= WAKE_PHY;
2734 if (regval & WakeUnicast)
2735 *cur |= WAKE_UCAST;
2736 if (regval & WakeMulticast)
2737 *cur |= WAKE_MCAST;
2738 if (regval & WakeBroadcast)
2739 *cur |= WAKE_BCAST;
2740 if (regval & WakeArp)
2741 *cur |= WAKE_ARP;
2742 if (regval & WakeMagic)
2743 *cur |= WAKE_MAGIC;
2744 if (regval & WakeMagicSecure) {
2745 /* this can be on in revC, but it's broken */
2746 *cur |= WAKE_MAGICSECURE;
2749 return 0;
2752 static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2754 struct netdev_private *np = netdev_priv(dev);
2755 void __iomem * ioaddr = ns_ioaddr(dev);
2756 u16 *sval = (u16 *)newval;
2757 u32 addr;
2759 if (np->srr < SRR_DP83815_D) {
2760 return 0;
2763 /* enable writing to these registers by disabling the RX filter */
2764 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2765 addr &= ~RxFilterEnable;
2766 writel(addr, ioaddr + RxFilterAddr);
2768 /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2769 writel(addr | 0xa, ioaddr + RxFilterAddr);
2770 writew(sval[0], ioaddr + RxFilterData);
2772 writel(addr | 0xc, ioaddr + RxFilterAddr);
2773 writew(sval[1], ioaddr + RxFilterData);
2775 writel(addr | 0xe, ioaddr + RxFilterAddr);
2776 writew(sval[2], ioaddr + RxFilterData);
2778 /* re-enable the RX filter */
2779 writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2781 return 0;
2784 static int netdev_get_sopass(struct net_device *dev, u8 *data)
2786 struct netdev_private *np = netdev_priv(dev);
2787 void __iomem * ioaddr = ns_ioaddr(dev);
2788 u16 *sval = (u16 *)data;
2789 u32 addr;
2791 if (np->srr < SRR_DP83815_D) {
2792 sval[0] = sval[1] = sval[2] = 0;
2793 return 0;
2796 /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2797 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2799 writel(addr | 0xa, ioaddr + RxFilterAddr);
2800 sval[0] = readw(ioaddr + RxFilterData);
2802 writel(addr | 0xc, ioaddr + RxFilterAddr);
2803 sval[1] = readw(ioaddr + RxFilterData);
2805 writel(addr | 0xe, ioaddr + RxFilterAddr);
2806 sval[2] = readw(ioaddr + RxFilterData);
2808 writel(addr, ioaddr + RxFilterAddr);
2810 return 0;
2813 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2815 struct netdev_private *np = netdev_priv(dev);
2816 u32 tmp;
2818 ecmd->port = dev->if_port;
2819 ecmd->speed = np->speed;
2820 ecmd->duplex = np->duplex;
2821 ecmd->autoneg = np->autoneg;
2822 ecmd->advertising = 0;
2823 if (np->advertising & ADVERTISE_10HALF)
2824 ecmd->advertising |= ADVERTISED_10baseT_Half;
2825 if (np->advertising & ADVERTISE_10FULL)
2826 ecmd->advertising |= ADVERTISED_10baseT_Full;
2827 if (np->advertising & ADVERTISE_100HALF)
2828 ecmd->advertising |= ADVERTISED_100baseT_Half;
2829 if (np->advertising & ADVERTISE_100FULL)
2830 ecmd->advertising |= ADVERTISED_100baseT_Full;
2831 ecmd->supported = (SUPPORTED_Autoneg |
2832 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2833 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2834 SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2835 ecmd->phy_address = np->phy_addr_external;
2837 * We intentionally report the phy address of the external
2838 * phy, even if the internal phy is used. This is necessary
2839 * to work around a deficiency of the ethtool interface:
2840 * It's only possible to query the settings of the active
2841 * port. Therefore
2842 * # ethtool -s ethX port mii
2843 * actually sends an ioctl to switch to port mii with the
2844 * settings that are used for the current active port.
2845 * If we would report a different phy address in this
2846 * command, then
2847 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2848 * would unintentionally change the phy address.
2850 * Fortunately the phy address doesn't matter with the
2851 * internal phy...
2854 /* set information based on active port type */
2855 switch (ecmd->port) {
2856 default:
2857 case PORT_TP:
2858 ecmd->advertising |= ADVERTISED_TP;
2859 ecmd->transceiver = XCVR_INTERNAL;
2860 break;
2861 case PORT_MII:
2862 ecmd->advertising |= ADVERTISED_MII;
2863 ecmd->transceiver = XCVR_EXTERNAL;
2864 break;
2865 case PORT_FIBRE:
2866 ecmd->advertising |= ADVERTISED_FIBRE;
2867 ecmd->transceiver = XCVR_EXTERNAL;
2868 break;
2871 /* if autonegotiation is on, try to return the active speed/duplex */
2872 if (ecmd->autoneg == AUTONEG_ENABLE) {
2873 ecmd->advertising |= ADVERTISED_Autoneg;
2874 tmp = mii_nway_result(
2875 np->advertising & mdio_read(dev, MII_LPA));
2876 if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2877 ecmd->speed = SPEED_100;
2878 else
2879 ecmd->speed = SPEED_10;
2880 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2881 ecmd->duplex = DUPLEX_FULL;
2882 else
2883 ecmd->duplex = DUPLEX_HALF;
2886 /* ignore maxtxpkt, maxrxpkt for now */
2888 return 0;
2891 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2893 struct netdev_private *np = netdev_priv(dev);
2895 if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2896 return -EINVAL;
2897 if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2898 return -EINVAL;
2899 if (ecmd->autoneg == AUTONEG_ENABLE) {
2900 if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2901 ADVERTISED_10baseT_Full |
2902 ADVERTISED_100baseT_Half |
2903 ADVERTISED_100baseT_Full)) == 0) {
2904 return -EINVAL;
2906 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2907 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2908 return -EINVAL;
2909 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2910 return -EINVAL;
2911 } else {
2912 return -EINVAL;
2916 * If we're ignoring the PHY then autoneg and the internal
2917 * transciever are really not going to work so don't let the
2918 * user select them.
2920 if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE ||
2921 ecmd->port == PORT_TP))
2922 return -EINVAL;
2925 * maxtxpkt, maxrxpkt: ignored for now.
2927 * transceiver:
2928 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2929 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2930 * selects based on ecmd->port.
2932 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2933 * phys that are connected to the mii bus. It's used to apply fibre
2934 * specific updates.
2937 /* WHEW! now lets bang some bits */
2939 /* save the parms */
2940 dev->if_port = ecmd->port;
2941 np->autoneg = ecmd->autoneg;
2942 np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2943 if (np->autoneg == AUTONEG_ENABLE) {
2944 /* advertise only what has been requested */
2945 np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2946 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2947 np->advertising |= ADVERTISE_10HALF;
2948 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2949 np->advertising |= ADVERTISE_10FULL;
2950 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2951 np->advertising |= ADVERTISE_100HALF;
2952 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2953 np->advertising |= ADVERTISE_100FULL;
2954 } else {
2955 np->speed = ecmd->speed;
2956 np->duplex = ecmd->duplex;
2957 /* user overriding the initial full duplex parm? */
2958 if (np->duplex == DUPLEX_HALF)
2959 np->full_duplex = 0;
2962 /* get the right phy enabled */
2963 if (ecmd->port == PORT_TP)
2964 switch_port_internal(dev);
2965 else
2966 switch_port_external(dev);
2968 /* set parms and see how this affected our link status */
2969 init_phy_fixup(dev);
2970 check_link(dev);
2971 return 0;
2974 static int netdev_get_regs(struct net_device *dev, u8 *buf)
2976 int i;
2977 int j;
2978 u32 rfcr;
2979 u32 *rbuf = (u32 *)buf;
2980 void __iomem * ioaddr = ns_ioaddr(dev);
2982 /* read non-mii page 0 of registers */
2983 for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
2984 rbuf[i] = readl(ioaddr + i*4);
2987 /* read current mii registers */
2988 for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
2989 rbuf[i] = mdio_read(dev, i & 0x1f);
2991 /* read only the 'magic' registers from page 1 */
2992 writew(1, ioaddr + PGSEL);
2993 rbuf[i++] = readw(ioaddr + PMDCSR);
2994 rbuf[i++] = readw(ioaddr + TSTDAT);
2995 rbuf[i++] = readw(ioaddr + DSPCFG);
2996 rbuf[i++] = readw(ioaddr + SDCFG);
2997 writew(0, ioaddr + PGSEL);
2999 /* read RFCR indexed registers */
3000 rfcr = readl(ioaddr + RxFilterAddr);
3001 for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3002 writel(j*2, ioaddr + RxFilterAddr);
3003 rbuf[i++] = readw(ioaddr + RxFilterData);
3005 writel(rfcr, ioaddr + RxFilterAddr);
3007 /* the interrupt status is clear-on-read - see if we missed any */
3008 if (rbuf[4] & rbuf[5]) {
3009 printk(KERN_WARNING
3010 "%s: shoot, we dropped an interrupt (%#08x)\n",
3011 dev->name, rbuf[4] & rbuf[5]);
3014 return 0;
3017 #define SWAP_BITS(x) ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3018 | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9) \
3019 | (((x) & 0x0010) << 7) | (((x) & 0x0020) << 5) \
3020 | (((x) & 0x0040) << 3) | (((x) & 0x0080) << 1) \
3021 | (((x) & 0x0100) >> 1) | (((x) & 0x0200) >> 3) \
3022 | (((x) & 0x0400) >> 5) | (((x) & 0x0800) >> 7) \
3023 | (((x) & 0x1000) >> 9) | (((x) & 0x2000) >> 11) \
3024 | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3026 static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3028 int i;
3029 u16 *ebuf = (u16 *)buf;
3030 void __iomem * ioaddr = ns_ioaddr(dev);
3031 struct netdev_private *np = netdev_priv(dev);
3033 /* eeprom_read reads 16 bits, and indexes by 16 bits */
3034 for (i = 0; i < np->eeprom_size/2; i++) {
3035 ebuf[i] = eeprom_read(ioaddr, i);
3036 /* The EEPROM itself stores data bit-swapped, but eeprom_read
3037 * reads it back "sanely". So we swap it back here in order to
3038 * present it to userland as it is stored. */
3039 ebuf[i] = SWAP_BITS(ebuf[i]);
3041 return 0;
3044 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3046 struct mii_ioctl_data *data = if_mii(rq);
3047 struct netdev_private *np = netdev_priv(dev);
3049 switch(cmd) {
3050 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
3051 case SIOCDEVPRIVATE: /* for binary compat, remove in 2.5 */
3052 data->phy_id = np->phy_addr_external;
3053 /* Fall Through */
3055 case SIOCGMIIREG: /* Read MII PHY register. */
3056 case SIOCDEVPRIVATE+1: /* for binary compat, remove in 2.5 */
3057 /* The phy_id is not enough to uniquely identify
3058 * the intended target. Therefore the command is sent to
3059 * the given mii on the current port.
3061 if (dev->if_port == PORT_TP) {
3062 if ((data->phy_id & 0x1f) == np->phy_addr_external)
3063 data->val_out = mdio_read(dev,
3064 data->reg_num & 0x1f);
3065 else
3066 data->val_out = 0;
3067 } else {
3068 move_int_phy(dev, data->phy_id & 0x1f);
3069 data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3070 data->reg_num & 0x1f);
3072 return 0;
3074 case SIOCSMIIREG: /* Write MII PHY register. */
3075 case SIOCDEVPRIVATE+2: /* for binary compat, remove in 2.5 */
3076 if (!capable(CAP_NET_ADMIN))
3077 return -EPERM;
3078 if (dev->if_port == PORT_TP) {
3079 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3080 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3081 np->advertising = data->val_in;
3082 mdio_write(dev, data->reg_num & 0x1f,
3083 data->val_in);
3085 } else {
3086 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3087 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3088 np->advertising = data->val_in;
3090 move_int_phy(dev, data->phy_id & 0x1f);
3091 miiport_write(dev, data->phy_id & 0x1f,
3092 data->reg_num & 0x1f,
3093 data->val_in);
3095 return 0;
3096 default:
3097 return -EOPNOTSUPP;
3101 static void enable_wol_mode(struct net_device *dev, int enable_intr)
3103 void __iomem * ioaddr = ns_ioaddr(dev);
3104 struct netdev_private *np = netdev_priv(dev);
3106 if (netif_msg_wol(np))
3107 printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3108 dev->name);
3110 /* For WOL we must restart the rx process in silent mode.
3111 * Write NULL to the RxRingPtr. Only possible if
3112 * rx process is stopped
3114 writel(0, ioaddr + RxRingPtr);
3116 /* read WoL status to clear */
3117 readl(ioaddr + WOLCmd);
3119 /* PME on, clear status */
3120 writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3122 /* and restart the rx process */
3123 writel(RxOn, ioaddr + ChipCmd);
3125 if (enable_intr) {
3126 /* enable the WOL interrupt.
3127 * Could be used to send a netlink message.
3129 writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3130 natsemi_irq_enable(dev);
3134 static int netdev_close(struct net_device *dev)
3136 void __iomem * ioaddr = ns_ioaddr(dev);
3137 struct netdev_private *np = netdev_priv(dev);
3139 if (netif_msg_ifdown(np))
3140 printk(KERN_DEBUG
3141 "%s: Shutting down ethercard, status was %#04x.\n",
3142 dev->name, (int)readl(ioaddr + ChipCmd));
3143 if (netif_msg_pktdata(np))
3144 printk(KERN_DEBUG
3145 "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
3146 dev->name, np->cur_tx, np->dirty_tx,
3147 np->cur_rx, np->dirty_rx);
3149 napi_disable(&np->napi);
3152 * FIXME: what if someone tries to close a device
3153 * that is suspended?
3154 * Should we reenable the nic to switch to
3155 * the final WOL settings?
3158 del_timer_sync(&np->timer);
3159 disable_irq(dev->irq);
3160 spin_lock_irq(&np->lock);
3161 natsemi_irq_disable(dev);
3162 np->hands_off = 1;
3163 spin_unlock_irq(&np->lock);
3164 enable_irq(dev->irq);
3166 free_irq(dev->irq, dev);
3168 /* Interrupt disabled, interrupt handler released,
3169 * queue stopped, timer deleted, rtnl_lock held
3170 * All async codepaths that access the driver are disabled.
3172 spin_lock_irq(&np->lock);
3173 np->hands_off = 0;
3174 readl(ioaddr + IntrMask);
3175 readw(ioaddr + MIntrStatus);
3177 /* Freeze Stats */
3178 writel(StatsFreeze, ioaddr + StatsCtrl);
3180 /* Stop the chip's Tx and Rx processes. */
3181 natsemi_stop_rxtx(dev);
3183 __get_stats(dev);
3184 spin_unlock_irq(&np->lock);
3186 /* clear the carrier last - an interrupt could reenable it otherwise */
3187 netif_carrier_off(dev);
3188 netif_stop_queue(dev);
3190 dump_ring(dev);
3191 drain_ring(dev);
3192 free_ring(dev);
3195 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3196 if (wol) {
3197 /* restart the NIC in WOL mode.
3198 * The nic must be stopped for this.
3200 enable_wol_mode(dev, 0);
3201 } else {
3202 /* Restore PME enable bit unmolested */
3203 writel(np->SavedClkRun, ioaddr + ClkRun);
3206 return 0;
3210 static void __devexit natsemi_remove1 (struct pci_dev *pdev)
3212 struct net_device *dev = pci_get_drvdata(pdev);
3213 void __iomem * ioaddr = ns_ioaddr(dev);
3215 NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3216 unregister_netdev (dev);
3217 pci_release_regions (pdev);
3218 iounmap(ioaddr);
3219 free_netdev (dev);
3220 pci_set_drvdata(pdev, NULL);
3223 #ifdef CONFIG_PM
3226 * The ns83815 chip doesn't have explicit RxStop bits.
3227 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3228 * of the nic, thus this function must be very careful:
3230 * suspend/resume synchronization:
3231 * entry points:
3232 * netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3233 * start_tx, tx_timeout
3235 * No function accesses the hardware without checking np->hands_off.
3236 * the check occurs under spin_lock_irq(&np->lock);
3237 * exceptions:
3238 * * netdev_ioctl: noncritical access.
3239 * * netdev_open: cannot happen due to the device_detach
3240 * * netdev_close: doesn't hurt.
3241 * * netdev_timer: timer stopped by natsemi_suspend.
3242 * * intr_handler: doesn't acquire the spinlock. suspend calls
3243 * disable_irq() to enforce synchronization.
3244 * * natsemi_poll: checks before reenabling interrupts. suspend
3245 * sets hands_off, disables interrupts and then waits with
3246 * napi_disable().
3248 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3251 static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3253 struct net_device *dev = pci_get_drvdata (pdev);
3254 struct netdev_private *np = netdev_priv(dev);
3255 void __iomem * ioaddr = ns_ioaddr(dev);
3257 rtnl_lock();
3258 if (netif_running (dev)) {
3259 del_timer_sync(&np->timer);
3261 disable_irq(dev->irq);
3262 spin_lock_irq(&np->lock);
3264 natsemi_irq_disable(dev);
3265 np->hands_off = 1;
3266 natsemi_stop_rxtx(dev);
3267 netif_stop_queue(dev);
3269 spin_unlock_irq(&np->lock);
3270 enable_irq(dev->irq);
3272 napi_disable(&np->napi);
3274 /* Update the error counts. */
3275 __get_stats(dev);
3277 /* pci_power_off(pdev, -1); */
3278 drain_ring(dev);
3280 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3281 /* Restore PME enable bit */
3282 if (wol) {
3283 /* restart the NIC in WOL mode.
3284 * The nic must be stopped for this.
3285 * FIXME: use the WOL interrupt
3287 enable_wol_mode(dev, 0);
3288 } else {
3289 /* Restore PME enable bit unmolested */
3290 writel(np->SavedClkRun, ioaddr + ClkRun);
3294 netif_device_detach(dev);
3295 rtnl_unlock();
3296 return 0;
3300 static int natsemi_resume (struct pci_dev *pdev)
3302 struct net_device *dev = pci_get_drvdata (pdev);
3303 struct netdev_private *np = netdev_priv(dev);
3304 int ret = 0;
3306 rtnl_lock();
3307 if (netif_device_present(dev))
3308 goto out;
3309 if (netif_running(dev)) {
3310 BUG_ON(!np->hands_off);
3311 ret = pci_enable_device(pdev);
3312 if (ret < 0) {
3313 dev_err(&pdev->dev,
3314 "pci_enable_device() failed: %d\n", ret);
3315 goto out;
3317 /* pci_power_on(pdev); */
3319 napi_enable(&np->napi);
3321 natsemi_reset(dev);
3322 init_ring(dev);
3323 disable_irq(dev->irq);
3324 spin_lock_irq(&np->lock);
3325 np->hands_off = 0;
3326 init_registers(dev);
3327 netif_device_attach(dev);
3328 spin_unlock_irq(&np->lock);
3329 enable_irq(dev->irq);
3331 mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3333 netif_device_attach(dev);
3334 out:
3335 rtnl_unlock();
3336 return ret;
3339 #endif /* CONFIG_PM */
3341 static struct pci_driver natsemi_driver = {
3342 .name = DRV_NAME,
3343 .id_table = natsemi_pci_tbl,
3344 .probe = natsemi_probe1,
3345 .remove = __devexit_p(natsemi_remove1),
3346 #ifdef CONFIG_PM
3347 .suspend = natsemi_suspend,
3348 .resume = natsemi_resume,
3349 #endif
3352 static int __init natsemi_init_mod (void)
3354 /* when a module, this is printed whether or not devices are found in probe */
3355 #ifdef MODULE
3356 printk(version);
3357 #endif
3359 return pci_register_driver(&natsemi_driver);
3362 static void __exit natsemi_exit_mod (void)
3364 pci_unregister_driver (&natsemi_driver);
3367 module_init(natsemi_init_mod);
3368 module_exit(natsemi_exit_mod);