1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 ************************************************************************/
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
74 #include <linux/tcp.h>
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
80 #include <asm/div64.h>
85 #include "s2io-regs.h"
87 #define DRV_VERSION "2.0.26.15-2"
89 /* S2io Driver name & version. */
90 static char s2io_driver_name
[] = "Neterion";
91 static char s2io_driver_version
[] = DRV_VERSION
;
93 static int rxd_size
[2] = {32,48};
94 static int rxd_count
[2] = {127,85};
96 static inline int RXD_IS_UP2DT(struct RxD_t
*rxdp
)
100 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
101 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
121 static inline int rx_buffer_level(struct s2io_nic
* sp
, int rxb_size
, int ring
)
123 struct mac_info
*mac_control
;
125 mac_control
= &sp
->mac_control
;
126 if (rxb_size
<= rxd_count
[sp
->rxd_mode
])
128 else if ((mac_control
->rings
[ring
].pkt_cnt
- rxb_size
) > 16)
133 static inline int is_s2io_card_up(const struct s2io_nic
* sp
)
135 return test_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
138 /* Ethtool related variables and Macros. */
139 static char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
140 "Register test\t(offline)",
141 "Eeprom test\t(offline)",
142 "Link test\t(online)",
143 "RLDRAM test\t(offline)",
144 "BIST Test\t(offline)"
147 static char ethtool_xena_stats_keys
[][ETH_GSTRING_LEN
] = {
149 {"tmac_data_octets"},
153 {"tmac_pause_ctrl_frms"},
157 {"tmac_any_err_frms"},
158 {"tmac_ttl_less_fb_octets"},
159 {"tmac_vld_ip_octets"},
167 {"rmac_data_octets"},
168 {"rmac_fcs_err_frms"},
170 {"rmac_vld_mcst_frms"},
171 {"rmac_vld_bcst_frms"},
172 {"rmac_in_rng_len_err_frms"},
173 {"rmac_out_rng_len_err_frms"},
175 {"rmac_pause_ctrl_frms"},
176 {"rmac_unsup_ctrl_frms"},
178 {"rmac_accepted_ucst_frms"},
179 {"rmac_accepted_nucst_frms"},
180 {"rmac_discarded_frms"},
181 {"rmac_drop_events"},
182 {"rmac_ttl_less_fb_octets"},
184 {"rmac_usized_frms"},
185 {"rmac_osized_frms"},
187 {"rmac_jabber_frms"},
188 {"rmac_ttl_64_frms"},
189 {"rmac_ttl_65_127_frms"},
190 {"rmac_ttl_128_255_frms"},
191 {"rmac_ttl_256_511_frms"},
192 {"rmac_ttl_512_1023_frms"},
193 {"rmac_ttl_1024_1518_frms"},
201 {"rmac_err_drp_udp"},
202 {"rmac_xgmii_err_sym"},
220 {"rmac_xgmii_data_err_cnt"},
221 {"rmac_xgmii_ctrl_err_cnt"},
222 {"rmac_accepted_ip"},
226 {"new_rd_req_rtry_cnt"},
228 {"wr_rtry_rd_ack_cnt"},
231 {"new_wr_req_rtry_cnt"},
234 {"rd_rtry_wr_ack_cnt"},
244 static char ethtool_enhanced_stats_keys
[][ETH_GSTRING_LEN
] = {
245 {"rmac_ttl_1519_4095_frms"},
246 {"rmac_ttl_4096_8191_frms"},
247 {"rmac_ttl_8192_max_frms"},
248 {"rmac_ttl_gt_max_frms"},
249 {"rmac_osized_alt_frms"},
250 {"rmac_jabber_alt_frms"},
251 {"rmac_gt_max_alt_frms"},
253 {"rmac_len_discard"},
254 {"rmac_fcs_discard"},
257 {"rmac_red_discard"},
258 {"rmac_rts_discard"},
259 {"rmac_ingm_full_discard"},
263 static char ethtool_driver_stats_keys
[][ETH_GSTRING_LEN
] = {
264 {"\n DRIVER STATISTICS"},
265 {"single_bit_ecc_errs"},
266 {"double_bit_ecc_errs"},
279 {"alarm_transceiver_temp_high"},
280 {"alarm_transceiver_temp_low"},
281 {"alarm_laser_bias_current_high"},
282 {"alarm_laser_bias_current_low"},
283 {"alarm_laser_output_power_high"},
284 {"alarm_laser_output_power_low"},
285 {"warn_transceiver_temp_high"},
286 {"warn_transceiver_temp_low"},
287 {"warn_laser_bias_current_high"},
288 {"warn_laser_bias_current_low"},
289 {"warn_laser_output_power_high"},
290 {"warn_laser_output_power_low"},
291 {"lro_aggregated_pkts"},
292 {"lro_flush_both_count"},
293 {"lro_out_of_sequence_pkts"},
294 {"lro_flush_due_to_max_pkts"},
295 {"lro_avg_aggr_pkts"},
296 {"mem_alloc_fail_cnt"},
297 {"pci_map_fail_cnt"},
298 {"watchdog_timer_cnt"},
305 {"tx_tcode_buf_abort_cnt"},
306 {"tx_tcode_desc_abort_cnt"},
307 {"tx_tcode_parity_err_cnt"},
308 {"tx_tcode_link_loss_cnt"},
309 {"tx_tcode_list_proc_err_cnt"},
310 {"rx_tcode_parity_err_cnt"},
311 {"rx_tcode_abort_cnt"},
312 {"rx_tcode_parity_abort_cnt"},
313 {"rx_tcode_rda_fail_cnt"},
314 {"rx_tcode_unkn_prot_cnt"},
315 {"rx_tcode_fcs_err_cnt"},
316 {"rx_tcode_buf_size_err_cnt"},
317 {"rx_tcode_rxd_corrupt_cnt"},
318 {"rx_tcode_unkn_err_cnt"},
326 {"mac_tmac_err_cnt"},
327 {"mac_rmac_err_cnt"},
328 {"xgxs_txgxs_err_cnt"},
329 {"xgxs_rxgxs_err_cnt"},
331 {"prc_pcix_err_cnt"},
338 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
339 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
340 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
342 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
343 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
345 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
346 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
348 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
349 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
351 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
352 init_timer(&timer); \
353 timer.function = handle; \
354 timer.data = (unsigned long) arg; \
355 mod_timer(&timer, (jiffies + exp)) \
357 /* copy mac addr to def_mac_addr array */
358 static void do_s2io_copy_mac_addr(struct s2io_nic
*sp
, int offset
, u64 mac_addr
)
360 sp
->def_mac_addr
[offset
].mac_addr
[5] = (u8
) (mac_addr
);
361 sp
->def_mac_addr
[offset
].mac_addr
[4] = (u8
) (mac_addr
>> 8);
362 sp
->def_mac_addr
[offset
].mac_addr
[3] = (u8
) (mac_addr
>> 16);
363 sp
->def_mac_addr
[offset
].mac_addr
[2] = (u8
) (mac_addr
>> 24);
364 sp
->def_mac_addr
[offset
].mac_addr
[1] = (u8
) (mac_addr
>> 32);
365 sp
->def_mac_addr
[offset
].mac_addr
[0] = (u8
) (mac_addr
>> 40);
368 static void s2io_vlan_rx_register(struct net_device
*dev
,
369 struct vlan_group
*grp
)
372 struct s2io_nic
*nic
= dev
->priv
;
373 unsigned long flags
[MAX_TX_FIFOS
];
374 struct mac_info
*mac_control
= &nic
->mac_control
;
375 struct config_param
*config
= &nic
->config
;
377 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
378 spin_lock_irqsave(&mac_control
->fifos
[i
].tx_lock
, flags
[i
]);
381 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--)
382 spin_unlock_irqrestore(&mac_control
->fifos
[i
].tx_lock
,
386 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
387 static int vlan_strip_flag
;
390 * Constants to be programmed into the Xena's registers, to configure
395 static const u64 herc_act_dtx_cfg
[] = {
397 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
399 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
401 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
403 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
405 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
407 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
409 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
411 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
416 static const u64 xena_dtx_cfg
[] = {
418 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
420 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
422 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
424 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
426 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
428 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
433 * Constants for Fixing the MacAddress problem seen mostly on
436 static const u64 fix_mac
[] = {
437 0x0060000000000000ULL
, 0x0060600000000000ULL
,
438 0x0040600000000000ULL
, 0x0000600000000000ULL
,
439 0x0020600000000000ULL
, 0x0060600000000000ULL
,
440 0x0020600000000000ULL
, 0x0060600000000000ULL
,
441 0x0020600000000000ULL
, 0x0060600000000000ULL
,
442 0x0020600000000000ULL
, 0x0060600000000000ULL
,
443 0x0020600000000000ULL
, 0x0060600000000000ULL
,
444 0x0020600000000000ULL
, 0x0060600000000000ULL
,
445 0x0020600000000000ULL
, 0x0060600000000000ULL
,
446 0x0020600000000000ULL
, 0x0060600000000000ULL
,
447 0x0020600000000000ULL
, 0x0060600000000000ULL
,
448 0x0020600000000000ULL
, 0x0060600000000000ULL
,
449 0x0020600000000000ULL
, 0x0000600000000000ULL
,
450 0x0040600000000000ULL
, 0x0060600000000000ULL
,
454 MODULE_LICENSE("GPL");
455 MODULE_VERSION(DRV_VERSION
);
458 /* Module Loadable parameters. */
459 S2IO_PARM_INT(tx_fifo_num
, 1);
460 S2IO_PARM_INT(rx_ring_num
, 1);
463 S2IO_PARM_INT(rx_ring_mode
, 1);
464 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
465 S2IO_PARM_INT(rmac_pause_time
, 0x100);
466 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
467 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
468 S2IO_PARM_INT(shared_splits
, 0);
469 S2IO_PARM_INT(tmac_util_period
, 5);
470 S2IO_PARM_INT(rmac_util_period
, 5);
471 S2IO_PARM_INT(l3l4hdr_size
, 128);
472 /* Frequency of Rx desc syncs expressed as power of 2 */
473 S2IO_PARM_INT(rxsync_frequency
, 3);
474 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
475 S2IO_PARM_INT(intr_type
, 2);
476 /* Large receive offload feature */
477 static unsigned int lro_enable
;
478 module_param_named(lro
, lro_enable
, uint
, 0);
480 /* Max pkts to be aggregated by LRO at one time. If not specified,
481 * aggregation happens until we hit max IP pkt size(64K)
483 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
484 S2IO_PARM_INT(indicate_max_pkts
, 0);
486 S2IO_PARM_INT(napi
, 1);
487 S2IO_PARM_INT(ufo
, 0);
488 S2IO_PARM_INT(vlan_tag_strip
, NO_STRIP_IN_PROMISC
);
490 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
491 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
492 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
493 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
494 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
495 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
497 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
498 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
499 module_param_array(rts_frm_len
, uint
, NULL
, 0);
503 * This table lists all the devices that this driver supports.
505 static struct pci_device_id s2io_tbl
[] __devinitdata
= {
506 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
507 PCI_ANY_ID
, PCI_ANY_ID
},
508 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
509 PCI_ANY_ID
, PCI_ANY_ID
},
510 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
511 PCI_ANY_ID
, PCI_ANY_ID
},
512 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
513 PCI_ANY_ID
, PCI_ANY_ID
},
517 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
519 static struct pci_error_handlers s2io_err_handler
= {
520 .error_detected
= s2io_io_error_detected
,
521 .slot_reset
= s2io_io_slot_reset
,
522 .resume
= s2io_io_resume
,
525 static struct pci_driver s2io_driver
= {
527 .id_table
= s2io_tbl
,
528 .probe
= s2io_init_nic
,
529 .remove
= __devexit_p(s2io_rem_nic
),
530 .err_handler
= &s2io_err_handler
,
533 /* A simplifier macro used both by init and free shared_mem Fns(). */
534 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
537 * init_shared_mem - Allocation and Initialization of Memory
538 * @nic: Device private variable.
539 * Description: The function allocates all the memory areas shared
540 * between the NIC and the driver. This includes Tx descriptors,
541 * Rx descriptors and the statistics block.
544 static int init_shared_mem(struct s2io_nic
*nic
)
547 void *tmp_v_addr
, *tmp_v_addr_next
;
548 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
549 struct RxD_block
*pre_rxd_blk
= NULL
;
551 int lst_size
, lst_per_page
;
552 struct net_device
*dev
= nic
->dev
;
556 struct mac_info
*mac_control
;
557 struct config_param
*config
;
558 unsigned long long mem_allocated
= 0;
560 mac_control
= &nic
->mac_control
;
561 config
= &nic
->config
;
564 /* Allocation and initialization of TXDLs in FIOFs */
566 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
567 size
+= config
->tx_cfg
[i
].fifo_len
;
569 if (size
> MAX_AVAILABLE_TXDS
) {
570 DBG_PRINT(ERR_DBG
, "s2io: Requested TxDs too high, ");
571 DBG_PRINT(ERR_DBG
, "Requested: %d, max supported: 8192\n", size
);
576 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
577 size
= config
->tx_cfg
[i
].fifo_len
;
579 * Legal values are from 2 to 8192
582 DBG_PRINT(ERR_DBG
, "s2io: Invalid fifo len (%d)", size
);
583 DBG_PRINT(ERR_DBG
, "for fifo %d\n", i
);
584 DBG_PRINT(ERR_DBG
, "s2io: Legal values for fifo len"
590 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
591 lst_per_page
= PAGE_SIZE
/ lst_size
;
593 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
594 int fifo_len
= config
->tx_cfg
[i
].fifo_len
;
595 int list_holder_size
= fifo_len
* sizeof(struct list_info_hold
);
596 mac_control
->fifos
[i
].list_info
= kzalloc(list_holder_size
,
598 if (!mac_control
->fifos
[i
].list_info
) {
600 "Malloc failed for list_info\n");
603 mem_allocated
+= list_holder_size
;
605 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
606 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
608 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
609 mac_control
->fifos
[i
].tx_curr_put_info
.fifo_len
=
610 config
->tx_cfg
[i
].fifo_len
- 1;
611 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
612 mac_control
->fifos
[i
].tx_curr_get_info
.fifo_len
=
613 config
->tx_cfg
[i
].fifo_len
- 1;
614 mac_control
->fifos
[i
].fifo_no
= i
;
615 mac_control
->fifos
[i
].nic
= nic
;
616 mac_control
->fifos
[i
].max_txds
= MAX_SKB_FRAGS
+ 2;
618 for (j
= 0; j
< page_num
; j
++) {
622 tmp_v
= pci_alloc_consistent(nic
->pdev
,
626 "pci_alloc_consistent ");
627 DBG_PRINT(INFO_DBG
, "failed for TxDL\n");
630 /* If we got a zero DMA address(can happen on
631 * certain platforms like PPC), reallocate.
632 * Store virtual address of page we don't want,
636 mac_control
->zerodma_virt_addr
= tmp_v
;
638 "%s: Zero DMA address for TxDL. ", dev
->name
);
640 "Virtual address %p\n", tmp_v
);
641 tmp_v
= pci_alloc_consistent(nic
->pdev
,
645 "pci_alloc_consistent ");
646 DBG_PRINT(INFO_DBG
, "failed for TxDL\n");
649 mem_allocated
+= PAGE_SIZE
;
651 while (k
< lst_per_page
) {
652 int l
= (j
* lst_per_page
) + k
;
653 if (l
== config
->tx_cfg
[i
].fifo_len
)
655 mac_control
->fifos
[i
].list_info
[l
].list_virt_addr
=
656 tmp_v
+ (k
* lst_size
);
657 mac_control
->fifos
[i
].list_info
[l
].list_phy_addr
=
658 tmp_p
+ (k
* lst_size
);
664 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
665 size
= config
->tx_cfg
[i
].fifo_len
;
666 mac_control
->fifos
[i
].ufo_in_band_v
667 = kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
668 if (!mac_control
->fifos
[i
].ufo_in_band_v
)
670 mem_allocated
+= (size
* sizeof(u64
));
673 /* Allocation and initialization of RXDs in Rings */
675 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
676 if (config
->rx_cfg
[i
].num_rxd
%
677 (rxd_count
[nic
->rxd_mode
] + 1)) {
678 DBG_PRINT(ERR_DBG
, "%s: RxD count of ", dev
->name
);
679 DBG_PRINT(ERR_DBG
, "Ring%d is not a multiple of ",
681 DBG_PRINT(ERR_DBG
, "RxDs per Block");
684 size
+= config
->rx_cfg
[i
].num_rxd
;
685 mac_control
->rings
[i
].block_count
=
686 config
->rx_cfg
[i
].num_rxd
/
687 (rxd_count
[nic
->rxd_mode
] + 1 );
688 mac_control
->rings
[i
].pkt_cnt
= config
->rx_cfg
[i
].num_rxd
-
689 mac_control
->rings
[i
].block_count
;
691 if (nic
->rxd_mode
== RXD_MODE_1
)
692 size
= (size
* (sizeof(struct RxD1
)));
694 size
= (size
* (sizeof(struct RxD3
)));
696 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
697 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
698 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
699 mac_control
->rings
[i
].rx_curr_get_info
.ring_len
=
700 config
->rx_cfg
[i
].num_rxd
- 1;
701 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
702 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
703 mac_control
->rings
[i
].rx_curr_put_info
.ring_len
=
704 config
->rx_cfg
[i
].num_rxd
- 1;
705 mac_control
->rings
[i
].nic
= nic
;
706 mac_control
->rings
[i
].ring_no
= i
;
708 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
709 (rxd_count
[nic
->rxd_mode
] + 1);
710 /* Allocating all the Rx blocks */
711 for (j
= 0; j
< blk_cnt
; j
++) {
712 struct rx_block_info
*rx_blocks
;
715 rx_blocks
= &mac_control
->rings
[i
].rx_blocks
[j
];
716 size
= SIZE_OF_BLOCK
; //size is always page size
717 tmp_v_addr
= pci_alloc_consistent(nic
->pdev
, size
,
719 if (tmp_v_addr
== NULL
) {
721 * In case of failure, free_shared_mem()
722 * is called, which should free any
723 * memory that was alloced till the
726 rx_blocks
->block_virt_addr
= tmp_v_addr
;
729 mem_allocated
+= size
;
730 memset(tmp_v_addr
, 0, size
);
731 rx_blocks
->block_virt_addr
= tmp_v_addr
;
732 rx_blocks
->block_dma_addr
= tmp_p_addr
;
733 rx_blocks
->rxds
= kmalloc(sizeof(struct rxd_info
)*
734 rxd_count
[nic
->rxd_mode
],
736 if (!rx_blocks
->rxds
)
739 (sizeof(struct rxd_info
)* rxd_count
[nic
->rxd_mode
]);
740 for (l
=0; l
<rxd_count
[nic
->rxd_mode
];l
++) {
741 rx_blocks
->rxds
[l
].virt_addr
=
742 rx_blocks
->block_virt_addr
+
743 (rxd_size
[nic
->rxd_mode
] * l
);
744 rx_blocks
->rxds
[l
].dma_addr
=
745 rx_blocks
->block_dma_addr
+
746 (rxd_size
[nic
->rxd_mode
] * l
);
749 /* Interlinking all Rx Blocks */
750 for (j
= 0; j
< blk_cnt
; j
++) {
752 mac_control
->rings
[i
].rx_blocks
[j
].block_virt_addr
;
754 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
755 blk_cnt
].block_virt_addr
;
757 mac_control
->rings
[i
].rx_blocks
[j
].block_dma_addr
;
759 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
760 blk_cnt
].block_dma_addr
;
762 pre_rxd_blk
= (struct RxD_block
*) tmp_v_addr
;
763 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
764 (unsigned long) tmp_v_addr_next
;
765 pre_rxd_blk
->pNext_RxD_Blk_physical
=
766 (u64
) tmp_p_addr_next
;
769 if (nic
->rxd_mode
== RXD_MODE_3B
) {
771 * Allocation of Storages for buffer addresses in 2BUFF mode
772 * and the buffers as well.
774 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
775 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
776 (rxd_count
[nic
->rxd_mode
]+ 1);
777 mac_control
->rings
[i
].ba
=
778 kmalloc((sizeof(struct buffAdd
*) * blk_cnt
),
780 if (!mac_control
->rings
[i
].ba
)
782 mem_allocated
+=(sizeof(struct buffAdd
*) * blk_cnt
);
783 for (j
= 0; j
< blk_cnt
; j
++) {
785 mac_control
->rings
[i
].ba
[j
] =
786 kmalloc((sizeof(struct buffAdd
) *
787 (rxd_count
[nic
->rxd_mode
] + 1)),
789 if (!mac_control
->rings
[i
].ba
[j
])
791 mem_allocated
+= (sizeof(struct buffAdd
) * \
792 (rxd_count
[nic
->rxd_mode
] + 1));
793 while (k
!= rxd_count
[nic
->rxd_mode
]) {
794 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
796 ba
->ba_0_org
= (void *) kmalloc
797 (BUF0_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
801 (BUF0_LEN
+ ALIGN_SIZE
);
802 tmp
= (unsigned long)ba
->ba_0_org
;
804 tmp
&= ~((unsigned long) ALIGN_SIZE
);
805 ba
->ba_0
= (void *) tmp
;
807 ba
->ba_1_org
= (void *) kmalloc
808 (BUF1_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
812 += (BUF1_LEN
+ ALIGN_SIZE
);
813 tmp
= (unsigned long) ba
->ba_1_org
;
815 tmp
&= ~((unsigned long) ALIGN_SIZE
);
816 ba
->ba_1
= (void *) tmp
;
823 /* Allocation and initialization of Statistics block */
824 size
= sizeof(struct stat_block
);
825 mac_control
->stats_mem
= pci_alloc_consistent
826 (nic
->pdev
, size
, &mac_control
->stats_mem_phy
);
828 if (!mac_control
->stats_mem
) {
830 * In case of failure, free_shared_mem() is called, which
831 * should free any memory that was alloced till the
836 mem_allocated
+= size
;
837 mac_control
->stats_mem_sz
= size
;
839 tmp_v_addr
= mac_control
->stats_mem
;
840 mac_control
->stats_info
= (struct stat_block
*) tmp_v_addr
;
841 memset(tmp_v_addr
, 0, size
);
842 DBG_PRINT(INIT_DBG
, "%s:Ring Mem PHY: 0x%llx\n", dev
->name
,
843 (unsigned long long) tmp_p_addr
);
844 mac_control
->stats_info
->sw_stat
.mem_allocated
+= mem_allocated
;
849 * free_shared_mem - Free the allocated Memory
850 * @nic: Device private variable.
851 * Description: This function is to free all memory locations allocated by
852 * the init_shared_mem() function and return it to the kernel.
855 static void free_shared_mem(struct s2io_nic
*nic
)
857 int i
, j
, blk_cnt
, size
;
859 dma_addr_t tmp_p_addr
;
860 struct mac_info
*mac_control
;
861 struct config_param
*config
;
862 int lst_size
, lst_per_page
;
863 struct net_device
*dev
;
871 mac_control
= &nic
->mac_control
;
872 config
= &nic
->config
;
874 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
875 lst_per_page
= PAGE_SIZE
/ lst_size
;
877 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
878 page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
880 for (j
= 0; j
< page_num
; j
++) {
881 int mem_blks
= (j
* lst_per_page
);
882 if (!mac_control
->fifos
[i
].list_info
)
884 if (!mac_control
->fifos
[i
].list_info
[mem_blks
].
887 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
888 mac_control
->fifos
[i
].
891 mac_control
->fifos
[i
].
894 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
897 /* If we got a zero DMA address during allocation,
900 if (mac_control
->zerodma_virt_addr
) {
901 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
902 mac_control
->zerodma_virt_addr
,
905 "%s: Freeing TxDL with zero DMA addr. ",
907 DBG_PRINT(INIT_DBG
, "Virtual address %p\n",
908 mac_control
->zerodma_virt_addr
);
909 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
912 kfree(mac_control
->fifos
[i
].list_info
);
913 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
914 (nic
->config
.tx_cfg
[i
].fifo_len
*sizeof(struct list_info_hold
));
917 size
= SIZE_OF_BLOCK
;
918 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
919 blk_cnt
= mac_control
->rings
[i
].block_count
;
920 for (j
= 0; j
< blk_cnt
; j
++) {
921 tmp_v_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
923 tmp_p_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
925 if (tmp_v_addr
== NULL
)
927 pci_free_consistent(nic
->pdev
, size
,
928 tmp_v_addr
, tmp_p_addr
);
929 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= size
;
930 kfree(mac_control
->rings
[i
].rx_blocks
[j
].rxds
);
931 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
932 ( sizeof(struct rxd_info
)* rxd_count
[nic
->rxd_mode
]);
936 if (nic
->rxd_mode
== RXD_MODE_3B
) {
937 /* Freeing buffer storage addresses in 2BUFF mode. */
938 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
939 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
940 (rxd_count
[nic
->rxd_mode
] + 1);
941 for (j
= 0; j
< blk_cnt
; j
++) {
943 if (!mac_control
->rings
[i
].ba
[j
])
945 while (k
!= rxd_count
[nic
->rxd_mode
]) {
947 &mac_control
->rings
[i
].ba
[j
][k
];
949 nic
->mac_control
.stats_info
->sw_stat
.\
950 mem_freed
+= (BUF0_LEN
+ ALIGN_SIZE
);
952 nic
->mac_control
.stats_info
->sw_stat
.\
953 mem_freed
+= (BUF1_LEN
+ ALIGN_SIZE
);
956 kfree(mac_control
->rings
[i
].ba
[j
]);
957 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
958 (sizeof(struct buffAdd
) *
959 (rxd_count
[nic
->rxd_mode
] + 1));
961 kfree(mac_control
->rings
[i
].ba
);
962 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
963 (sizeof(struct buffAdd
*) * blk_cnt
);
967 for (i
= 0; i
< nic
->config
.tx_fifo_num
; i
++) {
968 if (mac_control
->fifos
[i
].ufo_in_band_v
) {
969 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
970 += (config
->tx_cfg
[i
].fifo_len
* sizeof(u64
));
971 kfree(mac_control
->fifos
[i
].ufo_in_band_v
);
975 if (mac_control
->stats_mem
) {
976 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
977 mac_control
->stats_mem_sz
;
978 pci_free_consistent(nic
->pdev
,
979 mac_control
->stats_mem_sz
,
980 mac_control
->stats_mem
,
981 mac_control
->stats_mem_phy
);
986 * s2io_verify_pci_mode -
989 static int s2io_verify_pci_mode(struct s2io_nic
*nic
)
991 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
992 register u64 val64
= 0;
995 val64
= readq(&bar0
->pci_mode
);
996 mode
= (u8
)GET_PCI_MODE(val64
);
998 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
999 return -1; /* Unknown PCI mode */
1003 #define NEC_VENID 0x1033
1004 #define NEC_DEVID 0x0125
1005 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
1007 struct pci_dev
*tdev
= NULL
;
1008 while ((tdev
= pci_get_device(PCI_ANY_ID
, PCI_ANY_ID
, tdev
)) != NULL
) {
1009 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
1010 if (tdev
->bus
== s2io_pdev
->bus
->parent
)
1018 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1020 * s2io_print_pci_mode -
1022 static int s2io_print_pci_mode(struct s2io_nic
*nic
)
1024 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1025 register u64 val64
= 0;
1027 struct config_param
*config
= &nic
->config
;
1029 val64
= readq(&bar0
->pci_mode
);
1030 mode
= (u8
)GET_PCI_MODE(val64
);
1032 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
1033 return -1; /* Unknown PCI mode */
1035 config
->bus_speed
= bus_speed
[mode
];
1037 if (s2io_on_nec_bridge(nic
->pdev
)) {
1038 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
1043 if (val64
& PCI_MODE_32_BITS
) {
1044 DBG_PRINT(ERR_DBG
, "%s: Device is on 32 bit ", nic
->dev
->name
);
1046 DBG_PRINT(ERR_DBG
, "%s: Device is on 64 bit ", nic
->dev
->name
);
1050 case PCI_MODE_PCI_33
:
1051 DBG_PRINT(ERR_DBG
, "33MHz PCI bus\n");
1053 case PCI_MODE_PCI_66
:
1054 DBG_PRINT(ERR_DBG
, "66MHz PCI bus\n");
1056 case PCI_MODE_PCIX_M1_66
:
1057 DBG_PRINT(ERR_DBG
, "66MHz PCIX(M1) bus\n");
1059 case PCI_MODE_PCIX_M1_100
:
1060 DBG_PRINT(ERR_DBG
, "100MHz PCIX(M1) bus\n");
1062 case PCI_MODE_PCIX_M1_133
:
1063 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M1) bus\n");
1065 case PCI_MODE_PCIX_M2_66
:
1066 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M2) bus\n");
1068 case PCI_MODE_PCIX_M2_100
:
1069 DBG_PRINT(ERR_DBG
, "200MHz PCIX(M2) bus\n");
1071 case PCI_MODE_PCIX_M2_133
:
1072 DBG_PRINT(ERR_DBG
, "266MHz PCIX(M2) bus\n");
1075 return -1; /* Unsupported bus speed */
1082 * init_tti - Initialization transmit traffic interrupt scheme
1083 * @nic: device private variable
1084 * @link: link status (UP/DOWN) used to enable/disable continuous
1085 * transmit interrupts
1086 * Description: The function configures transmit traffic interrupts
1087 * Return Value: SUCCESS on success and
1091 <<<<<<< HEAD
:drivers
/net
/s2io
.c
1092 int init_tti(struct s2io_nic
*nic
, int link
)
1094 static int init_tti(struct s2io_nic
*nic
, int link
)
1095 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:drivers
/net
/s2io
.c
1097 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1098 register u64 val64
= 0;
1100 struct config_param
*config
;
1102 config
= &nic
->config
;
1104 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
1106 * TTI Initialization. Default Tx timer gets us about
1107 * 250 interrupts per sec. Continuous interrupts are enabled
1110 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1111 int count
= (nic
->config
.bus_speed
* 125)/2;
1112 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1114 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1116 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1117 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1118 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1119 TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1121 if (use_continuous_tx_intrs
&& (link
== LINK_UP
))
1122 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1123 writeq(val64
, &bar0
->tti_data1_mem
);
1125 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1126 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1127 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1128 TTI_DATA2_MEM_TX_UFC_D(0x80);
1130 writeq(val64
, &bar0
->tti_data2_mem
);
1132 val64
= TTI_CMD_MEM_WE
| TTI_CMD_MEM_STROBE_NEW_CMD
|
1133 TTI_CMD_MEM_OFFSET(i
);
1134 writeq(val64
, &bar0
->tti_command_mem
);
1136 if (wait_for_cmd_complete(&bar0
->tti_command_mem
,
1137 TTI_CMD_MEM_STROBE_NEW_CMD
, S2IO_BIT_RESET
) != SUCCESS
)
1145 * init_nic - Initialization of hardware
1146 * @nic: device private variable
1147 * Description: The function sequentially configures every block
1148 * of the H/W from their reset values.
1149 * Return Value: SUCCESS on success and
1150 * '-1' on failure (endian settings incorrect).
1153 static int init_nic(struct s2io_nic
*nic
)
1155 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1156 struct net_device
*dev
= nic
->dev
;
1157 register u64 val64
= 0;
1161 struct mac_info
*mac_control
;
1162 struct config_param
*config
;
1164 unsigned long long mem_share
;
1167 mac_control
= &nic
->mac_control
;
1168 config
= &nic
->config
;
1170 /* to set the swapper controle on the card */
1171 if(s2io_set_swapper(nic
)) {
1172 DBG_PRINT(ERR_DBG
,"ERROR: Setting Swapper failed\n");
1177 * Herc requires EOI to be removed from reset before XGXS, so..
1179 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1180 val64
= 0xA500000000ULL
;
1181 writeq(val64
, &bar0
->sw_reset
);
1183 val64
= readq(&bar0
->sw_reset
);
1186 /* Remove XGXS from reset state */
1188 writeq(val64
, &bar0
->sw_reset
);
1190 val64
= readq(&bar0
->sw_reset
);
1192 /* Ensure that it's safe to access registers by checking
1193 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1195 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1196 for (i
= 0; i
< 50; i
++) {
1197 val64
= readq(&bar0
->adapter_status
);
1198 if (!(val64
& ADAPTER_STATUS_RIC_RUNNING
))
1206 /* Enable Receiving broadcasts */
1207 add
= &bar0
->mac_cfg
;
1208 val64
= readq(&bar0
->mac_cfg
);
1209 val64
|= MAC_RMAC_BCAST_ENABLE
;
1210 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1211 writel((u32
) val64
, add
);
1212 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1213 writel((u32
) (val64
>> 32), (add
+ 4));
1215 /* Read registers in all blocks */
1216 val64
= readq(&bar0
->mac_int_mask
);
1217 val64
= readq(&bar0
->mc_int_mask
);
1218 val64
= readq(&bar0
->xgxs_int_mask
);
1222 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
1224 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1225 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1226 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
1227 &bar0
->dtx_control
, UF
);
1229 msleep(1); /* Necessary!! */
1233 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1234 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1235 &bar0
->dtx_control
, UF
);
1236 val64
= readq(&bar0
->dtx_control
);
1241 /* Tx DMA Initialization */
1243 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1244 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1245 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1246 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1249 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1251 vBIT(config
->tx_cfg
[i
].fifo_len
- 1, ((j
* 32) + 19),
1252 13) | vBIT(config
->tx_cfg
[i
].fifo_priority
,
1255 if (i
== (config
->tx_fifo_num
- 1)) {
1262 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1267 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1272 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1277 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1288 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1289 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1291 if ((nic
->device_type
== XFRAME_I_DEVICE
) &&
1292 (nic
->pdev
->revision
< 4))
1293 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1295 val64
= readq(&bar0
->tx_fifo_partition_0
);
1296 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1297 &bar0
->tx_fifo_partition_0
, (unsigned long long) val64
);
1300 * Initialization of Tx_PA_CONFIG register to ignore packet
1301 * integrity checking.
1303 val64
= readq(&bar0
->tx_pa_cfg
);
1304 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
| TX_PA_CFG_IGNORE_SNAP_OUI
|
1305 TX_PA_CFG_IGNORE_LLC_CTRL
| TX_PA_CFG_IGNORE_L2_ERR
;
1306 writeq(val64
, &bar0
->tx_pa_cfg
);
1308 /* Rx DMA intialization. */
1310 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1312 vBIT(config
->rx_cfg
[i
].ring_priority
, (5 + (i
* 8)),
1315 writeq(val64
, &bar0
->rx_queue_priority
);
1318 * Allocating equal share of memory to all the
1322 if (nic
->device_type
& XFRAME_II_DEVICE
)
1327 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1330 mem_share
= (mem_size
/ config
->rx_ring_num
+
1331 mem_size
% config
->rx_ring_num
);
1332 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1335 mem_share
= (mem_size
/ config
->rx_ring_num
);
1336 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1339 mem_share
= (mem_size
/ config
->rx_ring_num
);
1340 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1343 mem_share
= (mem_size
/ config
->rx_ring_num
);
1344 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1347 mem_share
= (mem_size
/ config
->rx_ring_num
);
1348 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1351 mem_share
= (mem_size
/ config
->rx_ring_num
);
1352 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1355 mem_share
= (mem_size
/ config
->rx_ring_num
);
1356 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1359 mem_share
= (mem_size
/ config
->rx_ring_num
);
1360 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1364 writeq(val64
, &bar0
->rx_queue_cfg
);
1367 * Filling Tx round robin registers
1368 * as per the number of FIFOs for equal scheduling priority
1370 switch (config
->tx_fifo_num
) {
1373 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1374 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1375 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1376 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1377 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1380 val64
= 0x0001000100010001ULL
;
1381 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1382 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1383 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1384 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1385 val64
= 0x0001000100000000ULL
;
1386 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1389 val64
= 0x0001020001020001ULL
;
1390 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1391 val64
= 0x0200010200010200ULL
;
1392 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1393 val64
= 0x0102000102000102ULL
;
1394 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1395 val64
= 0x0001020001020001ULL
;
1396 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1397 val64
= 0x0200010200000000ULL
;
1398 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1401 val64
= 0x0001020300010203ULL
;
1402 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1403 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1404 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1405 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1406 val64
= 0x0001020300000000ULL
;
1407 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1410 val64
= 0x0001020304000102ULL
;
1411 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1412 val64
= 0x0304000102030400ULL
;
1413 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1414 val64
= 0x0102030400010203ULL
;
1415 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1416 val64
= 0x0400010203040001ULL
;
1417 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1418 val64
= 0x0203040000000000ULL
;
1419 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1422 val64
= 0x0001020304050001ULL
;
1423 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1424 val64
= 0x0203040500010203ULL
;
1425 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1426 val64
= 0x0405000102030405ULL
;
1427 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1428 val64
= 0x0001020304050001ULL
;
1429 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1430 val64
= 0x0203040500000000ULL
;
1431 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1434 val64
= 0x0001020304050600ULL
;
1435 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1436 val64
= 0x0102030405060001ULL
;
1437 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1438 val64
= 0x0203040506000102ULL
;
1439 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1440 val64
= 0x0304050600010203ULL
;
1441 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1442 val64
= 0x0405060000000000ULL
;
1443 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1446 val64
= 0x0001020304050607ULL
;
1447 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1448 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1449 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1450 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1451 val64
= 0x0001020300000000ULL
;
1452 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1456 /* Enable all configured Tx FIFO partitions */
1457 val64
= readq(&bar0
->tx_fifo_partition_0
);
1458 val64
|= (TX_FIFO_PARTITION_EN
);
1459 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1461 /* Filling the Rx round robin registers as per the
1462 * number of Rings and steering based on QoS.
1464 switch (config
->rx_ring_num
) {
1466 val64
= 0x8080808080808080ULL
;
1467 writeq(val64
, &bar0
->rts_qos_steering
);
1470 val64
= 0x0000010000010000ULL
;
1471 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1472 val64
= 0x0100000100000100ULL
;
1473 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1474 val64
= 0x0001000001000001ULL
;
1475 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1476 val64
= 0x0000010000010000ULL
;
1477 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1478 val64
= 0x0100000000000000ULL
;
1479 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1481 val64
= 0x8080808040404040ULL
;
1482 writeq(val64
, &bar0
->rts_qos_steering
);
1485 val64
= 0x0001000102000001ULL
;
1486 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1487 val64
= 0x0001020000010001ULL
;
1488 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1489 val64
= 0x0200000100010200ULL
;
1490 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1491 val64
= 0x0001000102000001ULL
;
1492 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1493 val64
= 0x0001020000000000ULL
;
1494 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1496 val64
= 0x8080804040402020ULL
;
1497 writeq(val64
, &bar0
->rts_qos_steering
);
1500 val64
= 0x0001020300010200ULL
;
1501 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1502 val64
= 0x0100000102030001ULL
;
1503 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1504 val64
= 0x0200010000010203ULL
;
1505 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1506 val64
= 0x0001020001000001ULL
;
1507 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1508 val64
= 0x0203000100000000ULL
;
1509 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1511 val64
= 0x8080404020201010ULL
;
1512 writeq(val64
, &bar0
->rts_qos_steering
);
1515 val64
= 0x0001000203000102ULL
;
1516 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1517 val64
= 0x0001020001030004ULL
;
1518 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1519 val64
= 0x0001000203000102ULL
;
1520 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1521 val64
= 0x0001020001030004ULL
;
1522 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1523 val64
= 0x0001000000000000ULL
;
1524 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1526 val64
= 0x8080404020201008ULL
;
1527 writeq(val64
, &bar0
->rts_qos_steering
);
1530 val64
= 0x0001020304000102ULL
;
1531 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1532 val64
= 0x0304050001020001ULL
;
1533 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1534 val64
= 0x0203000100000102ULL
;
1535 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1536 val64
= 0x0304000102030405ULL
;
1537 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1538 val64
= 0x0001000200000000ULL
;
1539 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1541 val64
= 0x8080404020100804ULL
;
1542 writeq(val64
, &bar0
->rts_qos_steering
);
1545 val64
= 0x0001020001020300ULL
;
1546 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1547 val64
= 0x0102030400010203ULL
;
1548 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1549 val64
= 0x0405060001020001ULL
;
1550 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1551 val64
= 0x0304050000010200ULL
;
1552 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1553 val64
= 0x0102030000000000ULL
;
1554 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1556 val64
= 0x8080402010080402ULL
;
1557 writeq(val64
, &bar0
->rts_qos_steering
);
1560 val64
= 0x0001020300040105ULL
;
1561 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1562 val64
= 0x0200030106000204ULL
;
1563 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1564 val64
= 0x0103000502010007ULL
;
1565 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1566 val64
= 0x0304010002060500ULL
;
1567 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1568 val64
= 0x0103020400000000ULL
;
1569 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1571 val64
= 0x8040201008040201ULL
;
1572 writeq(val64
, &bar0
->rts_qos_steering
);
1578 for (i
= 0; i
< 8; i
++)
1579 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1581 /* Set the default rts frame length for the rings configured */
1582 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1583 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1584 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1586 /* Set the frame length for the configured rings
1587 * desired by the user
1589 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1590 /* If rts_frm_len[i] == 0 then it is assumed that user not
1591 * specified frame length steering.
1592 * If the user provides the frame length then program
1593 * the rts_frm_len register for those values or else
1594 * leave it as it is.
1596 if (rts_frm_len
[i
] != 0) {
1597 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1598 &bar0
->rts_frm_len_n
[i
]);
1602 /* Disable differentiated services steering logic */
1603 for (i
= 0; i
< 64; i
++) {
1604 if (rts_ds_steer(nic
, i
, 0) == FAILURE
) {
1605 DBG_PRINT(ERR_DBG
, "%s: failed rts ds steering",
1607 DBG_PRINT(ERR_DBG
, "set on codepoint %d\n", i
);
1612 /* Program statistics memory */
1613 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1615 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1616 val64
= STAT_BC(0x320);
1617 writeq(val64
, &bar0
->stat_byte_cnt
);
1621 * Initializing the sampling rate for the device to calculate the
1622 * bandwidth utilization.
1624 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1625 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1626 writeq(val64
, &bar0
->mac_link_util
);
1629 * Initializing the Transmit and Receive Traffic Interrupt
1633 /* Initialize TTI */
1634 if (SUCCESS
!= init_tti(nic
, nic
->last_link_state
))
1637 /* RTI Initialization */
1638 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1640 * Programmed to generate Apprx 500 Intrs per
1643 int count
= (nic
->config
.bus_speed
* 125)/4;
1644 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1646 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1647 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1648 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1649 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1651 writeq(val64
, &bar0
->rti_data1_mem
);
1653 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1654 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1655 if (nic
->config
.intr_type
== MSI_X
)
1656 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1657 RTI_DATA2_MEM_RX_UFC_D(0x40));
1659 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1660 RTI_DATA2_MEM_RX_UFC_D(0x80));
1661 writeq(val64
, &bar0
->rti_data2_mem
);
1663 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1664 val64
= RTI_CMD_MEM_WE
| RTI_CMD_MEM_STROBE_NEW_CMD
1665 | RTI_CMD_MEM_OFFSET(i
);
1666 writeq(val64
, &bar0
->rti_command_mem
);
1669 * Once the operation completes, the Strobe bit of the
1670 * command register will be reset. We poll for this
1671 * particular condition. We wait for a maximum of 500ms
1672 * for the operation to complete, if it's not complete
1673 * by then we return error.
1677 val64
= readq(&bar0
->rti_command_mem
);
1678 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
))
1682 DBG_PRINT(ERR_DBG
, "%s: RTI init Failed\n",
1692 * Initializing proper values as Pause threshold into all
1693 * the 8 Queues on Rx side.
1695 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1696 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1698 /* Disable RMAC PAD STRIPPING */
1699 add
= &bar0
->mac_cfg
;
1700 val64
= readq(&bar0
->mac_cfg
);
1701 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1702 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1703 writel((u32
) (val64
), add
);
1704 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1705 writel((u32
) (val64
>> 32), (add
+ 4));
1706 val64
= readq(&bar0
->mac_cfg
);
1708 /* Enable FCS stripping by adapter */
1709 add
= &bar0
->mac_cfg
;
1710 val64
= readq(&bar0
->mac_cfg
);
1711 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1712 if (nic
->device_type
== XFRAME_II_DEVICE
)
1713 writeq(val64
, &bar0
->mac_cfg
);
1715 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1716 writel((u32
) (val64
), add
);
1717 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1718 writel((u32
) (val64
>> 32), (add
+ 4));
1722 * Set the time value to be inserted in the pause frame
1723 * generated by xena.
1725 val64
= readq(&bar0
->rmac_pause_cfg
);
1726 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1727 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1728 writeq(val64
, &bar0
->rmac_pause_cfg
);
1731 * Set the Threshold Limit for Generating the pause frame
1732 * If the amount of data in any Queue exceeds ratio of
1733 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1734 * pause frame is generated
1737 for (i
= 0; i
< 4; i
++) {
1739 (((u64
) 0xFF00 | nic
->mac_control
.
1740 mc_pause_threshold_q0q3
)
1743 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1746 for (i
= 0; i
< 4; i
++) {
1748 (((u64
) 0xFF00 | nic
->mac_control
.
1749 mc_pause_threshold_q4q7
)
1752 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1755 * TxDMA will stop Read request if the number of read split has
1756 * exceeded the limit pointed by shared_splits
1758 val64
= readq(&bar0
->pic_control
);
1759 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1760 writeq(val64
, &bar0
->pic_control
);
1762 if (nic
->config
.bus_speed
== 266) {
1763 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1764 writeq(0x0, &bar0
->read_retry_delay
);
1765 writeq(0x0, &bar0
->write_retry_delay
);
1769 * Programming the Herc to split every write transaction
1770 * that does not start on an ADB to reduce disconnects.
1772 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1773 val64
= FAULT_BEHAVIOUR
| EXT_REQ_EN
|
1774 MISC_LINK_STABILITY_PRD(3);
1775 writeq(val64
, &bar0
->misc_control
);
1776 val64
= readq(&bar0
->pic_control2
);
1777 val64
&= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1778 writeq(val64
, &bar0
->pic_control2
);
1780 if (strstr(nic
->product_name
, "CX4")) {
1781 val64
= TMAC_AVG_IPG(0x17);
1782 writeq(val64
, &bar0
->tmac_avg_ipg
);
1787 #define LINK_UP_DOWN_INTERRUPT 1
1788 #define MAC_RMAC_ERR_TIMER 2
1790 static int s2io_link_fault_indication(struct s2io_nic
*nic
)
1792 if (nic
->config
.intr_type
!= INTA
)
1793 return MAC_RMAC_ERR_TIMER
;
1794 if (nic
->device_type
== XFRAME_II_DEVICE
)
1795 return LINK_UP_DOWN_INTERRUPT
;
1797 return MAC_RMAC_ERR_TIMER
;
1801 * do_s2io_write_bits - update alarm bits in alarm register
1802 * @value: alarm bits
1803 * @flag: interrupt status
1804 * @addr: address value
1805 * Description: update alarm bits in alarm register
1809 static void do_s2io_write_bits(u64 value
, int flag
, void __iomem
*addr
)
1813 temp64
= readq(addr
);
1815 if(flag
== ENABLE_INTRS
)
1816 temp64
&= ~((u64
) value
);
1818 temp64
|= ((u64
) value
);
1819 writeq(temp64
, addr
);
1822 static void en_dis_err_alarms(struct s2io_nic
*nic
, u16 mask
, int flag
)
1824 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1825 register u64 gen_int_mask
= 0;
1827 if (mask
& TX_DMA_INTR
) {
1829 gen_int_mask
|= TXDMA_INT_M
;
1831 do_s2io_write_bits(TXDMA_TDA_INT
| TXDMA_PFC_INT
|
1832 TXDMA_PCC_INT
| TXDMA_TTI_INT
|
1833 TXDMA_LSO_INT
| TXDMA_TPA_INT
|
1834 TXDMA_SM_INT
, flag
, &bar0
->txdma_int_mask
);
1836 do_s2io_write_bits(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
1837 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
1838 PFC_PCIX_ERR
| PFC_ECC_SG_ERR
, flag
,
1839 &bar0
->pfc_err_mask
);
1841 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
1842 TDA_SM1_ERR_ALARM
| TDA_Fn_ECC_SG_ERR
|
1843 TDA_PCIX_ERR
, flag
, &bar0
->tda_err_mask
);
1845 do_s2io_write_bits(PCC_FB_ECC_DB_ERR
| PCC_TXB_ECC_DB_ERR
|
1846 PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
1847 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
1848 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
1849 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_SG_ERR
|
1850 PCC_TXB_ECC_SG_ERR
, flag
, &bar0
->pcc_err_mask
);
1852 do_s2io_write_bits(TTI_SM_ERR_ALARM
| TTI_ECC_SG_ERR
|
1853 TTI_ECC_DB_ERR
, flag
, &bar0
->tti_err_mask
);
1855 do_s2io_write_bits(LSO6_ABORT
| LSO7_ABORT
|
1856 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
|
1857 LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
1858 flag
, &bar0
->lso_err_mask
);
1860 do_s2io_write_bits(TPA_SM_ERR_ALARM
| TPA_TX_FRM_DROP
,
1861 flag
, &bar0
->tpa_err_mask
);
1863 do_s2io_write_bits(SM_SM_ERR_ALARM
, flag
, &bar0
->sm_err_mask
);
1867 if (mask
& TX_MAC_INTR
) {
1868 gen_int_mask
|= TXMAC_INT_M
;
1869 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT
, flag
,
1870 &bar0
->mac_int_mask
);
1871 do_s2io_write_bits(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
|
1872 TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
1873 TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
1874 flag
, &bar0
->mac_tmac_err_mask
);
1877 if (mask
& TX_XGXS_INTR
) {
1878 gen_int_mask
|= TXXGXS_INT_M
;
1879 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS
, flag
,
1880 &bar0
->xgxs_int_mask
);
1881 do_s2io_write_bits(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
|
1882 TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
1883 flag
, &bar0
->xgxs_txgxs_err_mask
);
1886 if (mask
& RX_DMA_INTR
) {
1887 gen_int_mask
|= RXDMA_INT_M
;
1888 do_s2io_write_bits(RXDMA_INT_RC_INT_M
| RXDMA_INT_RPA_INT_M
|
1889 RXDMA_INT_RDA_INT_M
| RXDMA_INT_RTI_INT_M
,
1890 flag
, &bar0
->rxdma_int_mask
);
1891 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
|
1892 RC_PRCn_SM_ERR_ALARM
| RC_FTC_SM_ERR_ALARM
|
1893 RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
|
1894 RC_RDA_FAIL_WR_Rn
, flag
, &bar0
->rc_err_mask
);
1895 do_s2io_write_bits(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
|
1896 PRC_PCI_AB_F_WR_Rn
| PRC_PCI_DP_RD_Rn
|
1897 PRC_PCI_DP_WR_Rn
| PRC_PCI_DP_F_WR_Rn
, flag
,
1898 &bar0
->prc_pcix_err_mask
);
1899 do_s2io_write_bits(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
|
1900 RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
, flag
,
1901 &bar0
->rpa_err_mask
);
1902 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR
| RDA_FRM_ECC_DB_N_AERR
|
1903 RDA_SM1_ERR_ALARM
| RDA_SM0_ERR_ALARM
|
1904 RDA_RXD_ECC_DB_SERR
| RDA_RXDn_ECC_SG_ERR
|
1905 RDA_FRM_ECC_SG_ERR
| RDA_MISC_ERR
|RDA_PCIX_ERR
,
1906 flag
, &bar0
->rda_err_mask
);
1907 do_s2io_write_bits(RTI_SM_ERR_ALARM
|
1908 RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
1909 flag
, &bar0
->rti_err_mask
);
1912 if (mask
& RX_MAC_INTR
) {
1913 gen_int_mask
|= RXMAC_INT_M
;
1914 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT
, flag
,
1915 &bar0
->mac_int_mask
);
1916 do_s2io_write_bits(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
|
1917 RMAC_UNUSED_INT
| RMAC_SINGLE_ECC_ERR
|
1918 RMAC_DOUBLE_ECC_ERR
|
1919 RMAC_LINK_STATE_CHANGE_INT
,
1920 flag
, &bar0
->mac_rmac_err_mask
);
1923 if (mask
& RX_XGXS_INTR
)
1925 gen_int_mask
|= RXXGXS_INT_M
;
1926 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS
, flag
,
1927 &bar0
->xgxs_int_mask
);
1928 do_s2io_write_bits(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
, flag
,
1929 &bar0
->xgxs_rxgxs_err_mask
);
1932 if (mask
& MC_INTR
) {
1933 gen_int_mask
|= MC_INT_M
;
1934 do_s2io_write_bits(MC_INT_MASK_MC_INT
, flag
, &bar0
->mc_int_mask
);
1935 do_s2io_write_bits(MC_ERR_REG_SM_ERR
| MC_ERR_REG_ECC_ALL_SNG
|
1936 MC_ERR_REG_ECC_ALL_DBL
| PLL_LOCK_N
, flag
,
1937 &bar0
->mc_err_mask
);
1939 nic
->general_int_mask
= gen_int_mask
;
1941 /* Remove this line when alarm interrupts are enabled */
1942 nic
->general_int_mask
= 0;
1945 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1946 * @nic: device private variable,
1947 * @mask: A mask indicating which Intr block must be modified and,
1948 * @flag: A flag indicating whether to enable or disable the Intrs.
1949 * Description: This function will either disable or enable the interrupts
1950 * depending on the flag argument. The mask argument can be used to
1951 * enable/disable any Intr block.
1952 * Return Value: NONE.
1955 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
1957 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1958 register u64 temp64
= 0, intr_mask
= 0;
1960 intr_mask
= nic
->general_int_mask
;
1962 /* Top level interrupt classification */
1963 /* PIC Interrupts */
1964 if (mask
& TX_PIC_INTR
) {
1965 /* Enable PIC Intrs in the general intr mask register */
1966 intr_mask
|= TXPIC_INT_M
;
1967 if (flag
== ENABLE_INTRS
) {
1969 * If Hercules adapter enable GPIO otherwise
1970 * disable all PCIX, Flash, MDIO, IIC and GPIO
1971 * interrupts for now.
1974 if (s2io_link_fault_indication(nic
) ==
1975 LINK_UP_DOWN_INTERRUPT
) {
1976 do_s2io_write_bits(PIC_INT_GPIO
, flag
,
1977 &bar0
->pic_int_mask
);
1978 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP
, flag
,
1979 &bar0
->gpio_int_mask
);
1981 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
1982 } else if (flag
== DISABLE_INTRS
) {
1984 * Disable PIC Intrs in the general
1985 * intr mask register
1987 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
1991 /* Tx traffic interrupts */
1992 if (mask
& TX_TRAFFIC_INTR
) {
1993 intr_mask
|= TXTRAFFIC_INT_M
;
1994 if (flag
== ENABLE_INTRS
) {
1996 * Enable all the Tx side interrupts
1997 * writing 0 Enables all 64 TX interrupt levels
1999 writeq(0x0, &bar0
->tx_traffic_mask
);
2000 } else if (flag
== DISABLE_INTRS
) {
2002 * Disable Tx Traffic Intrs in the general intr mask
2005 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
2009 /* Rx traffic interrupts */
2010 if (mask
& RX_TRAFFIC_INTR
) {
2011 intr_mask
|= RXTRAFFIC_INT_M
;
2012 if (flag
== ENABLE_INTRS
) {
2013 /* writing 0 Enables all 8 RX interrupt levels */
2014 writeq(0x0, &bar0
->rx_traffic_mask
);
2015 } else if (flag
== DISABLE_INTRS
) {
2017 * Disable Rx Traffic Intrs in the general intr mask
2020 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
2024 temp64
= readq(&bar0
->general_int_mask
);
2025 if (flag
== ENABLE_INTRS
)
2026 temp64
&= ~((u64
) intr_mask
);
2028 temp64
= DISABLE_ALL_INTRS
;
2029 writeq(temp64
, &bar0
->general_int_mask
);
2031 nic
->general_int_mask
= readq(&bar0
->general_int_mask
);
2035 * verify_pcc_quiescent- Checks for PCC quiescent state
2036 * Return: 1 If PCC is quiescence
2037 * 0 If PCC is not quiescence
2039 static int verify_pcc_quiescent(struct s2io_nic
*sp
, int flag
)
2042 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2043 u64 val64
= readq(&bar0
->adapter_status
);
2045 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
2047 if (flag
== FALSE
) {
2048 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2049 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
))
2052 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2056 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2057 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
2058 ADAPTER_STATUS_RMAC_PCC_IDLE
))
2061 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
2062 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2070 * verify_xena_quiescence - Checks whether the H/W is ready
2071 * Description: Returns whether the H/W is ready to go or not. Depending
2072 * on whether adapter enable bit was written or not the comparison
2073 * differs and the calling function passes the input argument flag to
2075 * Return: 1 If xena is quiescence
2076 * 0 If Xena is not quiescence
2079 static int verify_xena_quiescence(struct s2io_nic
*sp
)
2082 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2083 u64 val64
= readq(&bar0
->adapter_status
);
2084 mode
= s2io_verify_pci_mode(sp
);
2086 if (!(val64
& ADAPTER_STATUS_TDMA_READY
)) {
2087 DBG_PRINT(ERR_DBG
, "%s", "TDMA is not ready!");
2090 if (!(val64
& ADAPTER_STATUS_RDMA_READY
)) {
2091 DBG_PRINT(ERR_DBG
, "%s", "RDMA is not ready!");
2094 if (!(val64
& ADAPTER_STATUS_PFC_READY
)) {
2095 DBG_PRINT(ERR_DBG
, "%s", "PFC is not ready!");
2098 if (!(val64
& ADAPTER_STATUS_TMAC_BUF_EMPTY
)) {
2099 DBG_PRINT(ERR_DBG
, "%s", "TMAC BUF is not empty!");
2102 if (!(val64
& ADAPTER_STATUS_PIC_QUIESCENT
)) {
2103 DBG_PRINT(ERR_DBG
, "%s", "PIC is not QUIESCENT!");
2106 if (!(val64
& ADAPTER_STATUS_MC_DRAM_READY
)) {
2107 DBG_PRINT(ERR_DBG
, "%s", "MC_DRAM is not ready!");
2110 if (!(val64
& ADAPTER_STATUS_MC_QUEUES_READY
)) {
2111 DBG_PRINT(ERR_DBG
, "%s", "MC_QUEUES is not ready!");
2114 if (!(val64
& ADAPTER_STATUS_M_PLL_LOCK
)) {
2115 DBG_PRINT(ERR_DBG
, "%s", "M_PLL is not locked!");
2120 * In PCI 33 mode, the P_PLL is not used, and therefore,
2121 * the the P_PLL_LOCK bit in the adapter_status register will
2124 if (!(val64
& ADAPTER_STATUS_P_PLL_LOCK
) &&
2125 sp
->device_type
== XFRAME_II_DEVICE
&& mode
!=
2127 DBG_PRINT(ERR_DBG
, "%s", "P_PLL is not locked!");
2130 if (!((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
2131 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
2132 DBG_PRINT(ERR_DBG
, "%s", "RC_PRC is not QUIESCENT!");
2139 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2140 * @sp: Pointer to device specifc structure
2142 * New procedure to clear mac address reading problems on Alpha platforms
2146 static void fix_mac_address(struct s2io_nic
* sp
)
2148 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2152 while (fix_mac
[i
] != END_SIGN
) {
2153 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
2155 val64
= readq(&bar0
->gpio_control
);
2160 * start_nic - Turns the device on
2161 * @nic : device private variable.
2163 * This function actually turns the device on. Before this function is
2164 * called,all Registers are configured from their reset states
2165 * and shared memory is allocated but the NIC is still quiescent. On
2166 * calling this function, the device interrupts are cleared and the NIC is
2167 * literally switched on by writing into the adapter control register.
2169 * SUCCESS on success and -1 on failure.
2172 static int start_nic(struct s2io_nic
*nic
)
2174 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2175 struct net_device
*dev
= nic
->dev
;
2176 register u64 val64
= 0;
2178 struct mac_info
*mac_control
;
2179 struct config_param
*config
;
2181 mac_control
= &nic
->mac_control
;
2182 config
= &nic
->config
;
2184 /* PRC Initialization and configuration */
2185 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2186 writeq((u64
) mac_control
->rings
[i
].rx_blocks
[0].block_dma_addr
,
2187 &bar0
->prc_rxd0_n
[i
]);
2189 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
2190 if (nic
->rxd_mode
== RXD_MODE_1
)
2191 val64
|= PRC_CTRL_RC_ENABLED
;
2193 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
2194 if (nic
->device_type
== XFRAME_II_DEVICE
)
2195 val64
|= PRC_CTRL_GROUP_READS
;
2196 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2197 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2198 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
2201 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2202 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2203 val64
= readq(&bar0
->rx_pa_cfg
);
2204 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
2205 writeq(val64
, &bar0
->rx_pa_cfg
);
2208 if (vlan_tag_strip
== 0) {
2209 val64
= readq(&bar0
->rx_pa_cfg
);
2210 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
2211 writeq(val64
, &bar0
->rx_pa_cfg
);
2212 vlan_strip_flag
= 0;
2216 * Enabling MC-RLDRAM. After enabling the device, we timeout
2217 * for around 100ms, which is approximately the time required
2218 * for the device to be ready for operation.
2220 val64
= readq(&bar0
->mc_rldram_mrs
);
2221 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
2222 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
2223 val64
= readq(&bar0
->mc_rldram_mrs
);
2225 msleep(100); /* Delay by around 100 ms. */
2227 /* Enabling ECC Protection. */
2228 val64
= readq(&bar0
->adapter_control
);
2229 val64
&= ~ADAPTER_ECC_EN
;
2230 writeq(val64
, &bar0
->adapter_control
);
2233 * Verify if the device is ready to be enabled, if so enable
2236 val64
= readq(&bar0
->adapter_status
);
2237 if (!verify_xena_quiescence(nic
)) {
2238 DBG_PRINT(ERR_DBG
, "%s: device is not ready, ", dev
->name
);
2239 DBG_PRINT(ERR_DBG
, "Adapter status reads: 0x%llx\n",
2240 (unsigned long long) val64
);
2245 * With some switches, link might be already up at this point.
2246 * Because of this weird behavior, when we enable laser,
2247 * we may not get link. We need to handle this. We cannot
2248 * figure out which switch is misbehaving. So we are forced to
2249 * make a global change.
2252 /* Enabling Laser. */
2253 val64
= readq(&bar0
->adapter_control
);
2254 val64
|= ADAPTER_EOI_TX_ON
;
2255 writeq(val64
, &bar0
->adapter_control
);
2257 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2259 * Dont see link state interrupts initally on some switches,
2260 * so directly scheduling the link state task here.
2262 schedule_work(&nic
->set_link_task
);
2264 /* SXE-002: Initialize link and activity LED */
2265 subid
= nic
->pdev
->subsystem_device
;
2266 if (((subid
& 0xFF) >= 0x07) &&
2267 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2268 val64
= readq(&bar0
->gpio_control
);
2269 val64
|= 0x0000800000000000ULL
;
2270 writeq(val64
, &bar0
->gpio_control
);
2271 val64
= 0x0411040400000000ULL
;
2272 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2278 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2280 static struct sk_buff
*s2io_txdl_getskb(struct fifo_info
*fifo_data
, struct \
2281 TxD
*txdlp
, int get_off
)
2283 struct s2io_nic
*nic
= fifo_data
->nic
;
2284 struct sk_buff
*skb
;
2289 if (txds
->Host_Control
== (u64
)(long)fifo_data
->ufo_in_band_v
) {
2290 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2291 txds
->Buffer_Pointer
, sizeof(u64
),
2296 skb
= (struct sk_buff
*) ((unsigned long)
2297 txds
->Host_Control
);
2299 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2302 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2303 txds
->Buffer_Pointer
,
2304 skb
->len
- skb
->data_len
,
2306 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2309 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2310 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2311 if (!txds
->Buffer_Pointer
)
2313 pci_unmap_page(nic
->pdev
, (dma_addr_t
)
2314 txds
->Buffer_Pointer
,
2315 frag
->size
, PCI_DMA_TODEVICE
);
2318 memset(txdlp
,0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2323 * free_tx_buffers - Free all queued Tx buffers
2324 * @nic : device private variable.
2326 * Free all queued Tx buffers.
2327 * Return Value: void
2330 static void free_tx_buffers(struct s2io_nic
*nic
)
2332 struct net_device
*dev
= nic
->dev
;
2333 struct sk_buff
*skb
;
2336 struct mac_info
*mac_control
;
2337 struct config_param
*config
;
2340 mac_control
= &nic
->mac_control
;
2341 config
= &nic
->config
;
2343 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2344 unsigned long flags
;
2345 spin_lock_irqsave(&mac_control
->fifos
[i
].tx_lock
, flags
);
2346 for (j
= 0; j
< config
->tx_cfg
[i
].fifo_len
- 1; j
++) {
2347 txdp
= (struct TxD
*) \
2348 mac_control
->fifos
[i
].list_info
[j
].list_virt_addr
;
2349 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2351 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
2358 "%s:forcibly freeing %d skbs on FIFO%d\n",
2360 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
2361 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
2362 spin_unlock_irqrestore(&mac_control
->fifos
[i
].tx_lock
, flags
);
2367 * stop_nic - To stop the nic
2368 * @nic ; device private variable.
2370 * This function does exactly the opposite of what the start_nic()
2371 * function does. This function is called to stop the device.
2376 static void stop_nic(struct s2io_nic
*nic
)
2378 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2379 register u64 val64
= 0;
2381 struct mac_info
*mac_control
;
2382 struct config_param
*config
;
2384 mac_control
= &nic
->mac_control
;
2385 config
= &nic
->config
;
2387 /* Disable all interrupts */
2388 en_dis_err_alarms(nic
, ENA_ALL_INTRS
, DISABLE_INTRS
);
2389 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2390 interruptible
|= TX_PIC_INTR
;
2391 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2393 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2394 val64
= readq(&bar0
->adapter_control
);
2395 val64
&= ~(ADAPTER_CNTL_EN
);
2396 writeq(val64
, &bar0
->adapter_control
);
2400 * fill_rx_buffers - Allocates the Rx side skbs
2401 * @nic: device private variable
2402 * @ring_no: ring number
2404 * The function allocates Rx side skbs and puts the physical
2405 * address of these buffers into the RxD buffer pointers, so that the NIC
2406 * can DMA the received frame into these locations.
2407 * The NIC supports 3 receive modes, viz
2409 * 2. three buffer and
2410 * 3. Five buffer modes.
2411 * Each mode defines how many fragments the received frame will be split
2412 * up into by the NIC. The frame is split into L3 header, L4 Header,
2413 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2414 * is split into 3 fragments. As of now only single buffer mode is
2417 * SUCCESS on success or an appropriate -ve value on failure.
2420 static int fill_rx_buffers(struct s2io_nic
*nic
, int ring_no
)
2422 struct net_device
*dev
= nic
->dev
;
2423 struct sk_buff
*skb
;
2425 int off
, off1
, size
, block_no
, block_no1
;
2428 struct mac_info
*mac_control
;
2429 struct config_param
*config
;
2432 unsigned long flags
;
2433 struct RxD_t
*first_rxdp
= NULL
;
2434 u64 Buffer0_ptr
= 0, Buffer1_ptr
= 0;
2437 struct swStat
*stats
= &nic
->mac_control
.stats_info
->sw_stat
;
2439 mac_control
= &nic
->mac_control
;
2440 config
= &nic
->config
;
2441 alloc_cnt
= mac_control
->rings
[ring_no
].pkt_cnt
-
2442 atomic_read(&nic
->rx_bufs_left
[ring_no
]);
2444 block_no1
= mac_control
->rings
[ring_no
].rx_curr_get_info
.block_index
;
2445 off1
= mac_control
->rings
[ring_no
].rx_curr_get_info
.offset
;
2446 while (alloc_tab
< alloc_cnt
) {
2447 block_no
= mac_control
->rings
[ring_no
].rx_curr_put_info
.
2449 off
= mac_control
->rings
[ring_no
].rx_curr_put_info
.offset
;
2451 rxdp
= mac_control
->rings
[ring_no
].
2452 rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2454 if ((block_no
== block_no1
) && (off
== off1
) &&
2455 (rxdp
->Host_Control
)) {
2456 DBG_PRINT(INTR_DBG
, "%s: Get and Put",
2458 DBG_PRINT(INTR_DBG
, " info equated\n");
2461 if (off
&& (off
== rxd_count
[nic
->rxd_mode
])) {
2462 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2464 if (mac_control
->rings
[ring_no
].rx_curr_put_info
.
2465 block_index
== mac_control
->rings
[ring_no
].
2467 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2469 block_no
= mac_control
->rings
[ring_no
].
2470 rx_curr_put_info
.block_index
;
2471 if (off
== rxd_count
[nic
->rxd_mode
])
2473 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2475 rxdp
= mac_control
->rings
[ring_no
].
2476 rx_blocks
[block_no
].block_virt_addr
;
2477 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2481 spin_lock_irqsave(&nic
->put_lock
, flags
);
2482 mac_control
->rings
[ring_no
].put_pos
=
2483 (block_no
* (rxd_count
[nic
->rxd_mode
] + 1)) + off
;
2484 spin_unlock_irqrestore(&nic
->put_lock
, flags
);
2486 mac_control
->rings
[ring_no
].put_pos
=
2487 (block_no
* (rxd_count
[nic
->rxd_mode
] + 1)) + off
;
2489 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2490 ((nic
->rxd_mode
== RXD_MODE_3B
) &&
2491 (rxdp
->Control_2
& s2BIT(0)))) {
2492 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2496 /* calculate size of skb based on ring mode */
2497 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
2498 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2499 if (nic
->rxd_mode
== RXD_MODE_1
)
2500 size
+= NET_IP_ALIGN
;
2502 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2505 skb
= dev_alloc_skb(size
);
2507 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
2508 DBG_PRINT(INFO_DBG
, "memory to allocate SKBs\n");
2511 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2513 nic
->mac_control
.stats_info
->sw_stat
. \
2514 mem_alloc_fail_cnt
++;
2517 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
2519 if (nic
->rxd_mode
== RXD_MODE_1
) {
2520 /* 1 buffer mode - normal operation mode */
2521 rxdp1
= (struct RxD1
*)rxdp
;
2522 memset(rxdp
, 0, sizeof(struct RxD1
));
2523 skb_reserve(skb
, NET_IP_ALIGN
);
2524 rxdp1
->Buffer0_ptr
= pci_map_single
2525 (nic
->pdev
, skb
->data
, size
- NET_IP_ALIGN
,
2526 PCI_DMA_FROMDEVICE
);
2527 if( (rxdp1
->Buffer0_ptr
== 0) ||
2528 (rxdp1
->Buffer0_ptr
==
2530 goto pci_map_failed
;
2533 SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2535 } else if (nic
->rxd_mode
== RXD_MODE_3B
) {
2538 * 2 buffer mode provides 128
2539 * byte aligned receive buffers.
2542 rxdp3
= (struct RxD3
*)rxdp
;
2543 /* save buffer pointers to avoid frequent dma mapping */
2544 Buffer0_ptr
= rxdp3
->Buffer0_ptr
;
2545 Buffer1_ptr
= rxdp3
->Buffer1_ptr
;
2546 memset(rxdp
, 0, sizeof(struct RxD3
));
2547 /* restore the buffer pointers for dma sync*/
2548 rxdp3
->Buffer0_ptr
= Buffer0_ptr
;
2549 rxdp3
->Buffer1_ptr
= Buffer1_ptr
;
2551 ba
= &mac_control
->rings
[ring_no
].ba
[block_no
][off
];
2552 skb_reserve(skb
, BUF0_LEN
);
2553 tmp
= (u64
)(unsigned long) skb
->data
;
2556 skb
->data
= (void *) (unsigned long)tmp
;
2557 skb_reset_tail_pointer(skb
);
2559 if (!(rxdp3
->Buffer0_ptr
))
2560 rxdp3
->Buffer0_ptr
=
2561 pci_map_single(nic
->pdev
, ba
->ba_0
, BUF0_LEN
,
2562 PCI_DMA_FROMDEVICE
);
2564 pci_dma_sync_single_for_device(nic
->pdev
,
2565 (dma_addr_t
) rxdp3
->Buffer0_ptr
,
2566 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2567 if( (rxdp3
->Buffer0_ptr
== 0) ||
2568 (rxdp3
->Buffer0_ptr
== DMA_ERROR_CODE
))
2569 goto pci_map_failed
;
2571 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2572 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2573 /* Two buffer mode */
2576 * Buffer2 will have L3/L4 header plus
2579 rxdp3
->Buffer2_ptr
= pci_map_single
2580 (nic
->pdev
, skb
->data
, dev
->mtu
+ 4,
2581 PCI_DMA_FROMDEVICE
);
2583 if( (rxdp3
->Buffer2_ptr
== 0) ||
2584 (rxdp3
->Buffer2_ptr
== DMA_ERROR_CODE
))
2585 goto pci_map_failed
;
2587 rxdp3
->Buffer1_ptr
=
2588 pci_map_single(nic
->pdev
,
2590 PCI_DMA_FROMDEVICE
);
2591 if( (rxdp3
->Buffer1_ptr
== 0) ||
2592 (rxdp3
->Buffer1_ptr
== DMA_ERROR_CODE
)) {
2595 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
2597 PCI_DMA_FROMDEVICE
);
2598 goto pci_map_failed
;
2600 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2601 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2604 rxdp
->Control_2
|= s2BIT(0);
2606 rxdp
->Host_Control
= (unsigned long) (skb
);
2607 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2608 rxdp
->Control_1
|= RXD_OWN_XENA
;
2610 if (off
== (rxd_count
[nic
->rxd_mode
] + 1))
2612 mac_control
->rings
[ring_no
].rx_curr_put_info
.offset
= off
;
2614 rxdp
->Control_2
|= SET_RXD_MARKER
;
2615 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2618 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2622 atomic_inc(&nic
->rx_bufs_left
[ring_no
]);
2627 /* Transfer ownership of first descriptor to adapter just before
2628 * exiting. Before that, use memory barrier so that ownership
2629 * and other fields are seen by adapter correctly.
2633 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2638 stats
->pci_map_fail_cnt
++;
2639 stats
->mem_freed
+= skb
->truesize
;
2640 dev_kfree_skb_irq(skb
);
2644 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2646 struct net_device
*dev
= sp
->dev
;
2648 struct sk_buff
*skb
;
2650 struct mac_info
*mac_control
;
2655 mac_control
= &sp
->mac_control
;
2656 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2657 rxdp
= mac_control
->rings
[ring_no
].
2658 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2659 skb
= (struct sk_buff
*)
2660 ((unsigned long) rxdp
->Host_Control
);
2664 if (sp
->rxd_mode
== RXD_MODE_1
) {
2665 rxdp1
= (struct RxD1
*)rxdp
;
2666 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2669 HEADER_ETHERNET_II_802_3_SIZE
2670 + HEADER_802_2_SIZE
+
2672 PCI_DMA_FROMDEVICE
);
2673 memset(rxdp
, 0, sizeof(struct RxD1
));
2674 } else if(sp
->rxd_mode
== RXD_MODE_3B
) {
2675 rxdp3
= (struct RxD3
*)rxdp
;
2676 ba
= &mac_control
->rings
[ring_no
].
2678 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2681 PCI_DMA_FROMDEVICE
);
2682 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2685 PCI_DMA_FROMDEVICE
);
2686 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2689 PCI_DMA_FROMDEVICE
);
2690 memset(rxdp
, 0, sizeof(struct RxD3
));
2692 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
2694 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
2699 * free_rx_buffers - Frees all Rx buffers
2700 * @sp: device private variable.
2702 * This function will free all Rx buffers allocated by host.
2707 static void free_rx_buffers(struct s2io_nic
*sp
)
2709 struct net_device
*dev
= sp
->dev
;
2710 int i
, blk
= 0, buf_cnt
= 0;
2711 struct mac_info
*mac_control
;
2712 struct config_param
*config
;
2714 mac_control
= &sp
->mac_control
;
2715 config
= &sp
->config
;
2717 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2718 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2719 free_rxd_blk(sp
,i
,blk
);
2721 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
2722 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
2723 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
2724 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
2725 atomic_set(&sp
->rx_bufs_left
[i
], 0);
2726 DBG_PRINT(INIT_DBG
, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2727 dev
->name
, buf_cnt
, i
);
2732 * s2io_poll - Rx interrupt handler for NAPI support
2733 * @napi : pointer to the napi structure.
2734 * @budget : The number of packets that were budgeted to be processed
2735 * during one pass through the 'Poll" function.
2737 * Comes into picture only if NAPI support has been incorporated. It does
2738 * the same thing that rx_intr_handler does, but not in a interrupt context
2739 * also It will process only a given number of packets.
2741 * 0 on success and 1 if there are No Rx packets to be processed.
2744 static int s2io_poll(struct napi_struct
*napi
, int budget
)
2746 struct s2io_nic
*nic
= container_of(napi
, struct s2io_nic
, napi
);
2747 struct net_device
*dev
= nic
->dev
;
2748 int pkt_cnt
= 0, org_pkts_to_process
;
2749 struct mac_info
*mac_control
;
2750 struct config_param
*config
;
2751 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2754 mac_control
= &nic
->mac_control
;
2755 config
= &nic
->config
;
2757 nic
->pkts_to_process
= budget
;
2758 org_pkts_to_process
= nic
->pkts_to_process
;
2760 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
2761 readl(&bar0
->rx_traffic_int
);
2763 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2764 rx_intr_handler(&mac_control
->rings
[i
]);
2765 pkt_cnt
= org_pkts_to_process
- nic
->pkts_to_process
;
2766 if (!nic
->pkts_to_process
) {
2767 /* Quota for the current iteration has been met */
2772 netif_rx_complete(dev
, napi
);
2774 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2775 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2776 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2777 DBG_PRINT(INFO_DBG
, " in Rx Poll!!\n");
2781 /* Re enable the Rx interrupts. */
2782 writeq(0x0, &bar0
->rx_traffic_mask
);
2783 readl(&bar0
->rx_traffic_mask
);
2787 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2788 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2789 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2790 DBG_PRINT(INFO_DBG
, " in Rx Poll!!\n");
2797 #ifdef CONFIG_NET_POLL_CONTROLLER
2799 * s2io_netpoll - netpoll event handler entry point
2800 * @dev : pointer to the device structure.
2802 * This function will be called by upper layer to check for events on the
2803 * interface in situations where interrupts are disabled. It is used for
2804 * specific in-kernel networking tasks, such as remote consoles and kernel
2805 * debugging over the network (example netdump in RedHat).
2807 static void s2io_netpoll(struct net_device
*dev
)
2809 struct s2io_nic
*nic
= dev
->priv
;
2810 struct mac_info
*mac_control
;
2811 struct config_param
*config
;
2812 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2813 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2816 if (pci_channel_offline(nic
->pdev
))
2819 disable_irq(dev
->irq
);
2821 mac_control
= &nic
->mac_control
;
2822 config
= &nic
->config
;
2824 writeq(val64
, &bar0
->rx_traffic_int
);
2825 writeq(val64
, &bar0
->tx_traffic_int
);
2827 /* we need to free up the transmitted skbufs or else netpoll will
2828 * run out of skbs and will fail and eventually netpoll application such
2829 * as netdump will fail.
2831 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2832 tx_intr_handler(&mac_control
->fifos
[i
]);
2834 /* check for received packet and indicate up to network */
2835 for (i
= 0; i
< config
->rx_ring_num
; i
++)
2836 rx_intr_handler(&mac_control
->rings
[i
]);
2838 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2839 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2840 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2841 DBG_PRINT(INFO_DBG
, " in Rx Netpoll!!\n");
2845 enable_irq(dev
->irq
);
2851 * rx_intr_handler - Rx interrupt handler
2852 * @nic: device private variable.
2854 * If the interrupt is because of a received frame or if the
2855 * receive ring contains fresh as yet un-processed frames,this function is
2856 * called. It picks out the RxD at which place the last Rx processing had
2857 * stopped and sends the skb to the OSM's Rx handler and then increments
2862 static void rx_intr_handler(struct ring_info
*ring_data
)
2864 struct s2io_nic
*nic
= ring_data
->nic
;
2865 struct net_device
*dev
= (struct net_device
*) nic
->dev
;
2866 int get_block
, put_block
, put_offset
;
2867 struct rx_curr_get_info get_info
, put_info
;
2869 struct sk_buff
*skb
;
2875 spin_lock(&nic
->rx_lock
);
2877 get_info
= ring_data
->rx_curr_get_info
;
2878 get_block
= get_info
.block_index
;
2879 memcpy(&put_info
, &ring_data
->rx_curr_put_info
, sizeof(put_info
));
2880 put_block
= put_info
.block_index
;
2881 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
2883 spin_lock(&nic
->put_lock
);
2884 put_offset
= ring_data
->put_pos
;
2885 spin_unlock(&nic
->put_lock
);
2887 put_offset
= ring_data
->put_pos
;
2889 while (RXD_IS_UP2DT(rxdp
)) {
2891 * If your are next to put index then it's
2892 * FIFO full condition
2894 if ((get_block
== put_block
) &&
2895 (get_info
.offset
+ 1) == put_info
.offset
) {
2896 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",dev
->name
);
2899 skb
= (struct sk_buff
*) ((unsigned long)rxdp
->Host_Control
);
2901 DBG_PRINT(ERR_DBG
, "%s: The skb is ",
2903 DBG_PRINT(ERR_DBG
, "Null in Rx Intr\n");
2904 spin_unlock(&nic
->rx_lock
);
2907 if (nic
->rxd_mode
== RXD_MODE_1
) {
2908 rxdp1
= (struct RxD1
*)rxdp
;
2909 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2912 HEADER_ETHERNET_II_802_3_SIZE
+
2915 PCI_DMA_FROMDEVICE
);
2916 } else if (nic
->rxd_mode
== RXD_MODE_3B
) {
2917 rxdp3
= (struct RxD3
*)rxdp
;
2918 pci_dma_sync_single_for_cpu(nic
->pdev
, (dma_addr_t
)
2920 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2921 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2924 PCI_DMA_FROMDEVICE
);
2926 prefetch(skb
->data
);
2927 rx_osm_handler(ring_data
, rxdp
);
2929 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2930 rxdp
= ring_data
->rx_blocks
[get_block
].
2931 rxds
[get_info
.offset
].virt_addr
;
2932 if (get_info
.offset
== rxd_count
[nic
->rxd_mode
]) {
2933 get_info
.offset
= 0;
2934 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2936 if (get_block
== ring_data
->block_count
)
2938 ring_data
->rx_curr_get_info
.block_index
= get_block
;
2939 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
2942 nic
->pkts_to_process
-= 1;
2943 if ((napi
) && (!nic
->pkts_to_process
))
2946 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
2950 /* Clear all LRO sessions before exiting */
2951 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
2952 struct lro
*lro
= &nic
->lro0_n
[i
];
2954 update_L3L4_header(nic
, lro
);
2955 queue_rx_frame(lro
->parent
);
2956 clear_lro_session(lro
);
2961 spin_unlock(&nic
->rx_lock
);
2965 * tx_intr_handler - Transmit interrupt handler
2966 * @nic : device private variable
2968 * If an interrupt was raised to indicate DMA complete of the
2969 * Tx packet, this function is called. It identifies the last TxD
2970 * whose buffer was freed and frees all skbs whose data have already
2971 * DMA'ed into the NICs internal memory.
2976 static void tx_intr_handler(struct fifo_info
*fifo_data
)
2978 struct s2io_nic
*nic
= fifo_data
->nic
;
2979 struct net_device
*dev
= (struct net_device
*) nic
->dev
;
2980 struct tx_curr_get_info get_info
, put_info
;
2981 struct sk_buff
*skb
;
2983 unsigned long flags
= 0;
2986 if (!spin_trylock_irqsave(&fifo_data
->tx_lock
, flags
))
2989 get_info
= fifo_data
->tx_curr_get_info
;
2990 memcpy(&put_info
, &fifo_data
->tx_curr_put_info
, sizeof(put_info
));
2991 txdlp
= (struct TxD
*) fifo_data
->list_info
[get_info
.offset
].
2993 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
2994 (get_info
.offset
!= put_info
.offset
) &&
2995 (txdlp
->Host_Control
)) {
2996 /* Check for TxD errors */
2997 if (txdlp
->Control_1
& TXD_T_CODE
) {
2998 unsigned long long err
;
2999 err
= txdlp
->Control_1
& TXD_T_CODE
;
3001 nic
->mac_control
.stats_info
->sw_stat
.
3005 /* update t_code statistics */
3006 err_mask
= err
>> 48;
3009 nic
->mac_control
.stats_info
->sw_stat
.
3014 nic
->mac_control
.stats_info
->sw_stat
.
3015 tx_desc_abort_cnt
++;
3019 nic
->mac_control
.stats_info
->sw_stat
.
3020 tx_parity_err_cnt
++;
3024 nic
->mac_control
.stats_info
->sw_stat
.
3029 nic
->mac_control
.stats_info
->sw_stat
.
3030 tx_list_proc_err_cnt
++;
3035 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
3037 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3038 DBG_PRINT(ERR_DBG
, "%s: Null skb ",
3040 DBG_PRINT(ERR_DBG
, "in Tx Free Intr\n");
3044 /* Updating the statistics block */
3045 nic
->stats
.tx_bytes
+= skb
->len
;
3046 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
3047 dev_kfree_skb_irq(skb
);
3050 if (get_info
.offset
== get_info
.fifo_len
+ 1)
3051 get_info
.offset
= 0;
3052 txdlp
= (struct TxD
*) fifo_data
->list_info
3053 [get_info
.offset
].list_virt_addr
;
3054 fifo_data
->tx_curr_get_info
.offset
=
3058 if (netif_queue_stopped(dev
))
3059 netif_wake_queue(dev
);
3061 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3065 * s2io_mdio_write - Function to write in to MDIO registers
3066 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3067 * @addr : address value
3068 * @value : data value
3069 * @dev : pointer to net_device structure
3071 * This function is used to write values to the MDIO registers
3074 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
, struct net_device
*dev
)
3077 struct s2io_nic
*sp
= dev
->priv
;
3078 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3080 //address transaction
3081 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3082 | MDIO_MMD_DEV_ADDR(mmd_type
)
3083 | MDIO_MMS_PRT_ADDR(0x0);
3084 writeq(val64
, &bar0
->mdio_control
);
3085 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3086 writeq(val64
, &bar0
->mdio_control
);
3091 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3092 | MDIO_MMD_DEV_ADDR(mmd_type
)
3093 | MDIO_MMS_PRT_ADDR(0x0)
3094 | MDIO_MDIO_DATA(value
)
3095 | MDIO_OP(MDIO_OP_WRITE_TRANS
);
3096 writeq(val64
, &bar0
->mdio_control
);
3097 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3098 writeq(val64
, &bar0
->mdio_control
);
3102 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3103 | MDIO_MMD_DEV_ADDR(mmd_type
)
3104 | MDIO_MMS_PRT_ADDR(0x0)
3105 | MDIO_OP(MDIO_OP_READ_TRANS
);
3106 writeq(val64
, &bar0
->mdio_control
);
3107 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3108 writeq(val64
, &bar0
->mdio_control
);
3114 * s2io_mdio_read - Function to write in to MDIO registers
3115 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3116 * @addr : address value
3117 * @dev : pointer to net_device structure
3119 * This function is used to read values to the MDIO registers
3122 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
3126 struct s2io_nic
*sp
= dev
->priv
;
3127 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3129 /* address transaction */
3130 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3131 | MDIO_MMD_DEV_ADDR(mmd_type
)
3132 | MDIO_MMS_PRT_ADDR(0x0);
3133 writeq(val64
, &bar0
->mdio_control
);
3134 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3135 writeq(val64
, &bar0
->mdio_control
);
3138 /* Data transaction */
3140 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3141 | MDIO_MMD_DEV_ADDR(mmd_type
)
3142 | MDIO_MMS_PRT_ADDR(0x0)
3143 | MDIO_OP(MDIO_OP_READ_TRANS
);
3144 writeq(val64
, &bar0
->mdio_control
);
3145 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3146 writeq(val64
, &bar0
->mdio_control
);
3149 /* Read the value from regs */
3150 rval64
= readq(&bar0
->mdio_control
);
3151 rval64
= rval64
& 0xFFFF0000;
3152 rval64
= rval64
>> 16;
3156 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3157 * @counter : couter value to be updated
3158 * @flag : flag to indicate the status
3159 * @type : counter type
3161 * This function is to check the status of the xpak counters value
3165 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
, u16 flag
, u16 type
)
3170 for(i
= 0; i
<index
; i
++)
3175 *counter
= *counter
+ 1;
3176 val64
= *regs_stat
& mask
;
3177 val64
= val64
>> (index
* 0x2);
3184 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3185 "service. Excessive temperatures may "
3186 "result in premature transceiver "
3190 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3191 "service Excessive bias currents may "
3192 "indicate imminent laser diode "
3196 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3197 "service Excessive laser output "
3198 "power may saturate far-end "
3202 DBG_PRINT(ERR_DBG
, "Incorrect XPAK Alarm "
3207 val64
= val64
<< (index
* 0x2);
3208 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
3211 *regs_stat
= *regs_stat
& (~mask
);
3216 * s2io_updt_xpak_counter - Function to update the xpak counters
3217 * @dev : pointer to net_device struct
3219 * This function is to upate the status of the xpak counters value
3222 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3230 struct s2io_nic
*sp
= dev
->priv
;
3231 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
3233 /* Check the communication with the MDIO slave */
3236 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3237 if((val64
== 0xFFFF) || (val64
== 0x0000))
3239 DBG_PRINT(ERR_DBG
, "ERR: MDIO slave access failed - "
3240 "Returned %llx\n", (unsigned long long)val64
);
3244 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3247 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - ");
3248 DBG_PRINT(ERR_DBG
, "Returned: %llx- Expected: 0x2040\n",
3249 (unsigned long long)val64
);
3253 /* Loading the DOM register to MDIO register */
3255 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR
, addr
, val16
, dev
);
3256 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3258 /* Reading the Alarm flags */
3261 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3263 flag
= CHECKBIT(val64
, 0x7);
3265 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_transceiver_temp_high
,
3266 &stat_info
->xpak_stat
.xpak_regs_stat
,
3269 if(CHECKBIT(val64
, 0x6))
3270 stat_info
->xpak_stat
.alarm_transceiver_temp_low
++;
3272 flag
= CHECKBIT(val64
, 0x3);
3274 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_bias_current_high
,
3275 &stat_info
->xpak_stat
.xpak_regs_stat
,
3278 if(CHECKBIT(val64
, 0x2))
3279 stat_info
->xpak_stat
.alarm_laser_bias_current_low
++;
3281 flag
= CHECKBIT(val64
, 0x1);
3283 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_output_power_high
,
3284 &stat_info
->xpak_stat
.xpak_regs_stat
,
3287 if(CHECKBIT(val64
, 0x0))
3288 stat_info
->xpak_stat
.alarm_laser_output_power_low
++;
3290 /* Reading the Warning flags */
3293 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3295 if(CHECKBIT(val64
, 0x7))
3296 stat_info
->xpak_stat
.warn_transceiver_temp_high
++;
3298 if(CHECKBIT(val64
, 0x6))
3299 stat_info
->xpak_stat
.warn_transceiver_temp_low
++;
3301 if(CHECKBIT(val64
, 0x3))
3302 stat_info
->xpak_stat
.warn_laser_bias_current_high
++;
3304 if(CHECKBIT(val64
, 0x2))
3305 stat_info
->xpak_stat
.warn_laser_bias_current_low
++;
3307 if(CHECKBIT(val64
, 0x1))
3308 stat_info
->xpak_stat
.warn_laser_output_power_high
++;
3310 if(CHECKBIT(val64
, 0x0))
3311 stat_info
->xpak_stat
.warn_laser_output_power_low
++;
3315 * wait_for_cmd_complete - waits for a command to complete.
3316 * @sp : private member of the device structure, which is a pointer to the
3317 * s2io_nic structure.
3318 * Description: Function that waits for a command to Write into RMAC
3319 * ADDR DATA registers to be completed and returns either success or
3320 * error depending on whether the command was complete or not.
3322 * SUCCESS on success and FAILURE on failure.
3325 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
,
3328 int ret
= FAILURE
, cnt
= 0, delay
= 1;
3331 if ((bit_state
!= S2IO_BIT_RESET
) && (bit_state
!= S2IO_BIT_SET
))
3335 val64
= readq(addr
);
3336 if (bit_state
== S2IO_BIT_RESET
) {
3337 if (!(val64
& busy_bit
)) {
3342 if (!(val64
& busy_bit
)) {
3359 * check_pci_device_id - Checks if the device id is supported
3361 * Description: Function to check if the pci device id is supported by driver.
3362 * Return value: Actual device id if supported else PCI_ANY_ID
3364 static u16
check_pci_device_id(u16 id
)
3367 case PCI_DEVICE_ID_HERC_WIN
:
3368 case PCI_DEVICE_ID_HERC_UNI
:
3369 return XFRAME_II_DEVICE
;
3370 case PCI_DEVICE_ID_S2IO_UNI
:
3371 case PCI_DEVICE_ID_S2IO_WIN
:
3372 return XFRAME_I_DEVICE
;
3379 * s2io_reset - Resets the card.
3380 * @sp : private member of the device structure.
3381 * Description: Function to Reset the card. This function then also
3382 * restores the previously saved PCI configuration space registers as
3383 * the card reset also resets the configuration space.
3388 static void s2io_reset(struct s2io_nic
* sp
)
3390 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3395 unsigned long long up_cnt
, down_cnt
, up_time
, down_time
, reset_cnt
;
3396 unsigned long long mem_alloc_cnt
, mem_free_cnt
, watchdog_cnt
;
3398 DBG_PRINT(INIT_DBG
,"%s - Resetting XFrame card %s\n",
3399 __FUNCTION__
, sp
->dev
->name
);
3401 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3402 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3404 val64
= SW_RESET_ALL
;
3405 writeq(val64
, &bar0
->sw_reset
);
3406 if (strstr(sp
->product_name
, "CX4")) {
3410 for (i
= 0; i
< S2IO_MAX_PCI_CONFIG_SPACE_REINIT
; i
++) {
3412 /* Restore the PCI state saved during initialization. */
3413 pci_restore_state(sp
->pdev
);
3414 pci_read_config_word(sp
->pdev
, 0x2, &val16
);
3415 if (check_pci_device_id(val16
) != (u16
)PCI_ANY_ID
)
3420 if (check_pci_device_id(val16
) == (u16
)PCI_ANY_ID
) {
3421 DBG_PRINT(ERR_DBG
,"%s SW_Reset failed!\n", __FUNCTION__
);
3424 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, pci_cmd
);
3428 /* Set swapper to enable I/O register access */
3429 s2io_set_swapper(sp
);
3431 /* restore mac_addr entries */
3432 do_s2io_restore_unicast_mc(sp
);
3434 /* Restore the MSIX table entries from local variables */
3435 restore_xmsi_data(sp
);
3437 /* Clear certain PCI/PCI-X fields after reset */
3438 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3439 /* Clear "detected parity error" bit */
3440 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3442 /* Clearing PCIX Ecc status register */
3443 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3445 /* Clearing PCI_STATUS error reflected here */
3446 writeq(s2BIT(62), &bar0
->txpic_int_reg
);
3449 /* Reset device statistics maintained by OS */
3450 memset(&sp
->stats
, 0, sizeof (struct net_device_stats
));
3452 up_cnt
= sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
;
3453 down_cnt
= sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
;
3454 up_time
= sp
->mac_control
.stats_info
->sw_stat
.link_up_time
;
3455 down_time
= sp
->mac_control
.stats_info
->sw_stat
.link_down_time
;
3456 reset_cnt
= sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
;
3457 mem_alloc_cnt
= sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
;
3458 mem_free_cnt
= sp
->mac_control
.stats_info
->sw_stat
.mem_freed
;
3459 watchdog_cnt
= sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
;
3460 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3461 memset(sp
->mac_control
.stats_info
, 0, sizeof(struct stat_block
));
3462 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3463 sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
= up_cnt
;
3464 sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
= down_cnt
;
3465 sp
->mac_control
.stats_info
->sw_stat
.link_up_time
= up_time
;
3466 sp
->mac_control
.stats_info
->sw_stat
.link_down_time
= down_time
;
3467 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
= reset_cnt
;
3468 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
= mem_alloc_cnt
;
3469 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
= mem_free_cnt
;
3470 sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
= watchdog_cnt
;
3472 /* SXE-002: Configure link and activity LED to turn it off */
3473 subid
= sp
->pdev
->subsystem_device
;
3474 if (((subid
& 0xFF) >= 0x07) &&
3475 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3476 val64
= readq(&bar0
->gpio_control
);
3477 val64
|= 0x0000800000000000ULL
;
3478 writeq(val64
, &bar0
->gpio_control
);
3479 val64
= 0x0411040400000000ULL
;
3480 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3484 * Clear spurious ECC interrupts that would have occured on
3485 * XFRAME II cards after reset.
3487 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3488 val64
= readq(&bar0
->pcc_err_reg
);
3489 writeq(val64
, &bar0
->pcc_err_reg
);
3492 sp
->device_enabled_once
= FALSE
;
3496 * s2io_set_swapper - to set the swapper controle on the card
3497 * @sp : private member of the device structure,
3498 * pointer to the s2io_nic structure.
3499 * Description: Function to set the swapper control on the card
3500 * correctly depending on the 'endianness' of the system.
3502 * SUCCESS on success and FAILURE on failure.
3505 static int s2io_set_swapper(struct s2io_nic
* sp
)
3507 struct net_device
*dev
= sp
->dev
;
3508 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3509 u64 val64
, valt
, valr
;
3512 * Set proper endian settings and verify the same by reading
3513 * the PIF Feed-back register.
3516 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3517 if (val64
!= 0x0123456789ABCDEFULL
) {
3519 u64 value
[] = { 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3520 0x8100008181000081ULL
, /* FE=1, SE=0 */
3521 0x4200004242000042ULL
, /* FE=0, SE=1 */
3522 0}; /* FE=0, SE=0 */
3525 writeq(value
[i
], &bar0
->swapper_ctrl
);
3526 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3527 if (val64
== 0x0123456789ABCDEFULL
)
3532 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3534 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3535 (unsigned long long) val64
);
3540 valr
= readq(&bar0
->swapper_ctrl
);
3543 valt
= 0x0123456789ABCDEFULL
;
3544 writeq(valt
, &bar0
->xmsi_address
);
3545 val64
= readq(&bar0
->xmsi_address
);
3549 u64 value
[] = { 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3550 0x0081810000818100ULL
, /* FE=1, SE=0 */
3551 0x0042420000424200ULL
, /* FE=0, SE=1 */
3552 0}; /* FE=0, SE=0 */
3555 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3556 writeq(valt
, &bar0
->xmsi_address
);
3557 val64
= readq(&bar0
->xmsi_address
);
3563 unsigned long long x
= val64
;
3564 DBG_PRINT(ERR_DBG
, "Write failed, Xmsi_addr ");
3565 DBG_PRINT(ERR_DBG
, "reads:0x%llx\n", x
);
3569 val64
= readq(&bar0
->swapper_ctrl
);
3570 val64
&= 0xFFFF000000000000ULL
;
3574 * The device by default set to a big endian format, so a
3575 * big endian driver need not set anything.
3577 val64
|= (SWAPPER_CTRL_TXP_FE
|
3578 SWAPPER_CTRL_TXP_SE
|
3579 SWAPPER_CTRL_TXD_R_FE
|
3580 SWAPPER_CTRL_TXD_W_FE
|
3581 SWAPPER_CTRL_TXF_R_FE
|
3582 SWAPPER_CTRL_RXD_R_FE
|
3583 SWAPPER_CTRL_RXD_W_FE
|
3584 SWAPPER_CTRL_RXF_W_FE
|
3585 SWAPPER_CTRL_XMSI_FE
|
3586 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3587 if (sp
->config
.intr_type
== INTA
)
3588 val64
|= SWAPPER_CTRL_XMSI_SE
;
3589 writeq(val64
, &bar0
->swapper_ctrl
);
3592 * Initially we enable all bits to make it accessible by the
3593 * driver, then we selectively enable only those bits that
3596 val64
|= (SWAPPER_CTRL_TXP_FE
|
3597 SWAPPER_CTRL_TXP_SE
|
3598 SWAPPER_CTRL_TXD_R_FE
|
3599 SWAPPER_CTRL_TXD_R_SE
|
3600 SWAPPER_CTRL_TXD_W_FE
|
3601 SWAPPER_CTRL_TXD_W_SE
|
3602 SWAPPER_CTRL_TXF_R_FE
|
3603 SWAPPER_CTRL_RXD_R_FE
|
3604 SWAPPER_CTRL_RXD_R_SE
|
3605 SWAPPER_CTRL_RXD_W_FE
|
3606 SWAPPER_CTRL_RXD_W_SE
|
3607 SWAPPER_CTRL_RXF_W_FE
|
3608 SWAPPER_CTRL_XMSI_FE
|
3609 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3610 if (sp
->config
.intr_type
== INTA
)
3611 val64
|= SWAPPER_CTRL_XMSI_SE
;
3612 writeq(val64
, &bar0
->swapper_ctrl
);
3614 val64
= readq(&bar0
->swapper_ctrl
);
3617 * Verifying if endian settings are accurate by reading a
3618 * feedback register.
3620 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3621 if (val64
!= 0x0123456789ABCDEFULL
) {
3622 /* Endian settings are incorrect, calls for another dekko. */
3623 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3625 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3626 (unsigned long long) val64
);
3633 static int wait_for_msix_trans(struct s2io_nic
*nic
, int i
)
3635 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3637 int ret
= 0, cnt
= 0;
3640 val64
= readq(&bar0
->xmsi_access
);
3641 if (!(val64
& s2BIT(15)))
3647 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3654 static void restore_xmsi_data(struct s2io_nic
*nic
)
3656 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3660 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3661 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3662 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3663 val64
= (s2BIT(7) | s2BIT(15) | vBIT(i
, 26, 6));
3664 writeq(val64
, &bar0
->xmsi_access
);
3665 if (wait_for_msix_trans(nic
, i
)) {
3666 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3672 static void store_xmsi_data(struct s2io_nic
*nic
)
3674 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3675 u64 val64
, addr
, data
;
3678 /* Store and display */
3679 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3680 val64
= (s2BIT(15) | vBIT(i
, 26, 6));
3681 writeq(val64
, &bar0
->xmsi_access
);
3682 if (wait_for_msix_trans(nic
, i
)) {
3683 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3686 addr
= readq(&bar0
->xmsi_address
);
3687 data
= readq(&bar0
->xmsi_data
);
3689 nic
->msix_info
[i
].addr
= addr
;
3690 nic
->msix_info
[i
].data
= data
;
3695 static int s2io_enable_msi_x(struct s2io_nic
*nic
)
3697 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3699 u16 msi_control
; /* Temp variable */
3700 int ret
, i
, j
, msix_indx
= 1;
3702 nic
->entries
= kcalloc(MAX_REQUESTED_MSI_X
, sizeof(struct msix_entry
),
3704 if (!nic
->entries
) {
3705 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n", \
3707 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
3710 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
3711 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3714 kcalloc(MAX_REQUESTED_MSI_X
, sizeof(struct s2io_msix_entry
),
3716 if (!nic
->s2io_entries
) {
3717 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3719 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
3720 kfree(nic
->entries
);
3721 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3722 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3725 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
3726 += (MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3728 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3729 nic
->entries
[i
].entry
= i
;
3730 nic
->s2io_entries
[i
].entry
= i
;
3731 nic
->s2io_entries
[i
].arg
= NULL
;
3732 nic
->s2io_entries
[i
].in_use
= 0;
3735 tx_mat
= readq(&bar0
->tx_mat0_n
[0]);
3736 for (i
=0; i
<nic
->config
.tx_fifo_num
; i
++, msix_indx
++) {
3737 tx_mat
|= TX_MAT_SET(i
, msix_indx
);
3738 nic
->s2io_entries
[msix_indx
].arg
= &nic
->mac_control
.fifos
[i
];
3739 nic
->s2io_entries
[msix_indx
].type
= MSIX_FIFO_TYPE
;
3740 nic
->s2io_entries
[msix_indx
].in_use
= MSIX_FLG
;
3742 writeq(tx_mat
, &bar0
->tx_mat0_n
[0]);
3744 rx_mat
= readq(&bar0
->rx_mat
);
3745 for (j
= 0; j
< nic
->config
.rx_ring_num
; j
++, msix_indx
++) {
3746 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3747 nic
->s2io_entries
[msix_indx
].arg
3748 = &nic
->mac_control
.rings
[j
];
3749 nic
->s2io_entries
[msix_indx
].type
= MSIX_RING_TYPE
;
3750 nic
->s2io_entries
[msix_indx
].in_use
= MSIX_FLG
;
3752 writeq(rx_mat
, &bar0
->rx_mat
);
3754 nic
->avail_msix_vectors
= 0;
3755 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, MAX_REQUESTED_MSI_X
);
3756 /* We fail init if error or we get less vectors than min required */
3757 if (ret
>= (nic
->config
.tx_fifo_num
+ nic
->config
.rx_ring_num
+ 1)) {
3758 nic
->avail_msix_vectors
= ret
;
3759 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, ret
);
3762 DBG_PRINT(ERR_DBG
, "%s: Enabling MSIX failed\n", nic
->dev
->name
);
3763 kfree(nic
->entries
);
3764 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3765 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3766 kfree(nic
->s2io_entries
);
3767 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3768 += (MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3769 nic
->entries
= NULL
;
3770 nic
->s2io_entries
= NULL
;
3771 nic
->avail_msix_vectors
= 0;
3774 if (!nic
->avail_msix_vectors
)
3775 nic
->avail_msix_vectors
= MAX_REQUESTED_MSI_X
;
3778 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3779 * in the herc NIC. (Temp change, needs to be removed later)
3781 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3782 msi_control
|= 0x1; /* Enable MSI */
3783 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3788 /* Handle software interrupt used during MSI(X) test */
3789 static irqreturn_t
s2io_test_intr(int irq
, void *dev_id
)
3791 struct s2io_nic
*sp
= dev_id
;
3793 sp
->msi_detected
= 1;
3794 wake_up(&sp
->msi_wait
);
3799 /* Test interrupt path by forcing a a software IRQ */
3800 static int s2io_test_msi(struct s2io_nic
*sp
)
3802 struct pci_dev
*pdev
= sp
->pdev
;
3803 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3807 err
= request_irq(sp
->entries
[1].vector
, s2io_test_intr
, 0,
3810 DBG_PRINT(ERR_DBG
, "%s: PCI %s: cannot assign irq %d\n",
3811 sp
->dev
->name
, pci_name(pdev
), pdev
->irq
);
3815 init_waitqueue_head (&sp
->msi_wait
);
3816 sp
->msi_detected
= 0;
3818 saved64
= val64
= readq(&bar0
->scheduled_int_ctrl
);
3819 val64
|= SCHED_INT_CTRL_ONE_SHOT
;
3820 val64
|= SCHED_INT_CTRL_TIMER_EN
;
3821 val64
|= SCHED_INT_CTRL_INT2MSI(1);
3822 writeq(val64
, &bar0
->scheduled_int_ctrl
);
3824 wait_event_timeout(sp
->msi_wait
, sp
->msi_detected
, HZ
/10);
3826 if (!sp
->msi_detected
) {
3827 /* MSI(X) test failed, go back to INTx mode */
3828 DBG_PRINT(ERR_DBG
, "%s: PCI %s: No interrupt was generated "
3829 "using MSI(X) during test\n", sp
->dev
->name
,
3835 free_irq(sp
->entries
[1].vector
, sp
);
3837 writeq(saved64
, &bar0
->scheduled_int_ctrl
);
3842 static void remove_msix_isr(struct s2io_nic
*sp
)
3847 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3848 if (sp
->s2io_entries
[i
].in_use
==
3849 MSIX_REGISTERED_SUCCESS
) {
3850 int vector
= sp
->entries
[i
].vector
;
3851 void *arg
= sp
->s2io_entries
[i
].arg
;
3852 free_irq(vector
, arg
);
3857 kfree(sp
->s2io_entries
);
3859 sp
->s2io_entries
= NULL
;
3861 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
3862 msi_control
&= 0xFFFE; /* Disable MSI */
3863 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
3865 pci_disable_msix(sp
->pdev
);
3868 static void remove_inta_isr(struct s2io_nic
*sp
)
3870 struct net_device
*dev
= sp
->dev
;
3872 free_irq(sp
->pdev
->irq
, dev
);
3875 /* ********************************************************* *
3876 * Functions defined below concern the OS part of the driver *
3877 * ********************************************************* */
3880 * s2io_open - open entry point of the driver
3881 * @dev : pointer to the device structure.
3883 * This function is the open entry point of the driver. It mainly calls a
3884 * function to allocate Rx buffers and inserts them into the buffer
3885 * descriptors and then enables the Rx part of the NIC.
3887 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3891 static int s2io_open(struct net_device
*dev
)
3893 struct s2io_nic
*sp
= dev
->priv
;
3897 * Make sure you have link off by default every time
3898 * Nic is initialized
3900 netif_carrier_off(dev
);
3901 sp
->last_link_state
= 0;
3903 if (sp
->config
.intr_type
== MSI_X
) {
3904 int ret
= s2io_enable_msi_x(sp
);
3907 ret
= s2io_test_msi(sp
);
3908 /* rollback MSI-X, will re-enable during add_isr() */
3909 remove_msix_isr(sp
);
3914 "%s: MSI-X requested but failed to enable\n",
3916 sp
->config
.intr_type
= INTA
;
3920 /* NAPI doesn't work well with MSI(X) */
3921 if (sp
->config
.intr_type
!= INTA
) {
3923 sp
->config
.napi
= 0;
3926 /* Initialize H/W and enable interrupts */
3927 err
= s2io_card_up(sp
);
3929 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
3931 goto hw_init_failed
;
3934 if (do_s2io_prog_unicast(dev
, dev
->dev_addr
) == FAILURE
) {
3935 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
3938 goto hw_init_failed
;
3941 netif_start_queue(dev
);
3945 if (sp
->config
.intr_type
== MSI_X
) {
3948 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
3949 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3951 if (sp
->s2io_entries
) {
3952 kfree(sp
->s2io_entries
);
3953 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
3954 += (MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3961 * s2io_close -close entry point of the driver
3962 * @dev : device pointer.
3964 * This is the stop entry point of the driver. It needs to undo exactly
3965 * whatever was done by the open entry point,thus it's usually referred to
3966 * as the close function.Among other things this function mainly stops the
3967 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3969 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3973 static int s2io_close(struct net_device
*dev
)
3975 struct s2io_nic
*sp
= dev
->priv
;
3976 struct config_param
*config
= &sp
->config
;
3980 /* Return if the device is already closed *
3981 * Can happen when s2io_card_up failed in change_mtu *
3983 if (!is_s2io_card_up(sp
))
3986 netif_stop_queue(dev
);
3988 /* delete all populated mac entries */
3989 for (offset
= 1; offset
< config
->max_mc_addr
; offset
++) {
3990 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
3991 if (tmp64
!= S2IO_DISABLE_MAC_ENTRY
)
3992 do_s2io_delete_unicast_mc(sp
, tmp64
);
3995 /* Reset card, kill tasklet and free Tx and Rx buffers. */
4002 * s2io_xmit - Tx entry point of te driver
4003 * @skb : the socket buffer containing the Tx data.
4004 * @dev : device pointer.
4006 * This function is the Tx entry point of the driver. S2IO NIC supports
4007 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4008 * NOTE: when device cant queue the pkt,just the trans_start variable will
4011 * 0 on success & 1 on failure.
4014 static int s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
4016 struct s2io_nic
*sp
= dev
->priv
;
4017 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
4020 struct TxFIFO_element __iomem
*tx_fifo
;
4021 unsigned long flags
= 0;
4023 int vlan_priority
= 0;
4024 struct fifo_info
*fifo
= NULL
;
4025 struct mac_info
*mac_control
;
4026 struct config_param
*config
;
4028 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
4030 mac_control
= &sp
->mac_control
;
4031 config
= &sp
->config
;
4033 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
4035 if (unlikely(skb
->len
<= 0)) {
4036 DBG_PRINT(TX_DBG
, "%s:Buffer has no data..\n", dev
->name
);
4037 dev_kfree_skb_any(skb
);
4041 if (!is_s2io_card_up(sp
)) {
4042 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
4049 /* Get Fifo number to Transmit based on vlan priority */
4050 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
4051 vlan_tag
= vlan_tx_tag_get(skb
);
4052 vlan_priority
= vlan_tag
>> 13;
4053 queue
= config
->fifo_mapping
[vlan_priority
];
4056 fifo
= &mac_control
->fifos
[queue
];
4057 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
4058 put_off
= (u16
) fifo
->tx_curr_put_info
.offset
;
4059 get_off
= (u16
) fifo
->tx_curr_get_info
.offset
;
4060 txdp
= (struct TxD
*) fifo
->list_info
[put_off
].list_virt_addr
;
4062 queue_len
= fifo
->tx_curr_put_info
.fifo_len
+ 1;
4063 /* Avoid "put" pointer going beyond "get" pointer */
4064 if (txdp
->Host_Control
||
4065 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4066 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
4067 netif_stop_queue(dev
);
4069 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4073 offload_type
= s2io_offload_type(skb
);
4074 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
4075 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
4076 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
4078 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
4080 (TXD_TX_CKO_IPV4_EN
| TXD_TX_CKO_TCP_EN
|
4083 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
4084 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
4085 txdp
->Control_2
|= TXD_INT_NUMBER(fifo
->fifo_no
);
4087 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
4088 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
4089 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
4092 frg_len
= skb
->len
- skb
->data_len
;
4093 if (offload_type
== SKB_GSO_UDP
) {
4096 ufo_size
= s2io_udp_mss(skb
);
4098 txdp
->Control_1
|= TXD_UFO_EN
;
4099 txdp
->Control_1
|= TXD_UFO_MSS(ufo_size
);
4100 txdp
->Control_1
|= TXD_BUFFER0_SIZE(8);
4102 fifo
->ufo_in_band_v
[put_off
] =
4103 (u64
)skb_shinfo(skb
)->ip6_frag_id
;
4105 fifo
->ufo_in_band_v
[put_off
] =
4106 (u64
)skb_shinfo(skb
)->ip6_frag_id
<< 32;
4108 txdp
->Host_Control
= (unsigned long)fifo
->ufo_in_band_v
;
4109 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
,
4110 fifo
->ufo_in_band_v
,
4111 sizeof(u64
), PCI_DMA_TODEVICE
);
4112 if((txdp
->Buffer_Pointer
== 0) ||
4113 (txdp
->Buffer_Pointer
== DMA_ERROR_CODE
))
4114 goto pci_map_failed
;
4118 txdp
->Buffer_Pointer
= pci_map_single
4119 (sp
->pdev
, skb
->data
, frg_len
, PCI_DMA_TODEVICE
);
4120 if((txdp
->Buffer_Pointer
== 0) ||
4121 (txdp
->Buffer_Pointer
== DMA_ERROR_CODE
))
4122 goto pci_map_failed
;
4124 txdp
->Host_Control
= (unsigned long) skb
;
4125 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
4126 if (offload_type
== SKB_GSO_UDP
)
4127 txdp
->Control_1
|= TXD_UFO_EN
;
4129 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
4130 /* For fragmented SKB. */
4131 for (i
= 0; i
< frg_cnt
; i
++) {
4132 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4133 /* A '0' length fragment will be ignored */
4137 txdp
->Buffer_Pointer
= (u64
) pci_map_page
4138 (sp
->pdev
, frag
->page
, frag
->page_offset
,
4139 frag
->size
, PCI_DMA_TODEVICE
);
4140 txdp
->Control_1
= TXD_BUFFER0_SIZE(frag
->size
);
4141 if (offload_type
== SKB_GSO_UDP
)
4142 txdp
->Control_1
|= TXD_UFO_EN
;
4144 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
4146 if (offload_type
== SKB_GSO_UDP
)
4147 frg_cnt
++; /* as Txd0 was used for inband header */
4149 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
4150 val64
= fifo
->list_info
[put_off
].list_phy_addr
;
4151 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
4153 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
4156 val64
|= TX_FIFO_SPECIAL_FUNC
;
4158 writeq(val64
, &tx_fifo
->List_Control
);
4163 if (put_off
== fifo
->tx_curr_put_info
.fifo_len
+ 1)
4165 fifo
->tx_curr_put_info
.offset
= put_off
;
4167 /* Avoid "put" pointer going beyond "get" pointer */
4168 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4169 sp
->mac_control
.stats_info
->sw_stat
.fifo_full_cnt
++;
4171 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4173 netif_stop_queue(dev
);
4175 mac_control
->stats_info
->sw_stat
.mem_allocated
+= skb
->truesize
;
4176 dev
->trans_start
= jiffies
;
4177 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4181 stats
->pci_map_fail_cnt
++;
4182 netif_stop_queue(dev
);
4183 stats
->mem_freed
+= skb
->truesize
;
4185 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4190 s2io_alarm_handle(unsigned long data
)
4192 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
4193 struct net_device
*dev
= sp
->dev
;
4195 s2io_handle_errors(dev
);
4196 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4199 static int s2io_chk_rx_buffers(struct s2io_nic
*sp
, int rng_n
)
4201 int rxb_size
, level
;
4204 rxb_size
= atomic_read(&sp
->rx_bufs_left
[rng_n
]);
4205 level
= rx_buffer_level(sp
, rxb_size
, rng_n
);
4207 if ((level
== PANIC
) && (!TASKLET_IN_USE
)) {
4209 DBG_PRINT(INTR_DBG
, "%s: Rx BD hit ", __FUNCTION__
);
4210 DBG_PRINT(INTR_DBG
, "PANIC levels\n");
4211 if ((ret
= fill_rx_buffers(sp
, rng_n
)) == -ENOMEM
) {
4212 DBG_PRINT(INFO_DBG
, "Out of memory in %s",
4214 clear_bit(0, (&sp
->tasklet_status
));
4217 clear_bit(0, (&sp
->tasklet_status
));
4218 } else if (level
== LOW
)
4219 tasklet_schedule(&sp
->task
);
4221 } else if (fill_rx_buffers(sp
, rng_n
) == -ENOMEM
) {
4222 DBG_PRINT(INFO_DBG
, "%s:Out of memory", sp
->dev
->name
);
4223 DBG_PRINT(INFO_DBG
, " in Rx Intr!!\n");
4228 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4230 struct ring_info
*ring
= (struct ring_info
*)dev_id
;
4231 struct s2io_nic
*sp
= ring
->nic
;
4233 if (!is_s2io_card_up(sp
))
4236 rx_intr_handler(ring
);
4237 s2io_chk_rx_buffers(sp
, ring
->ring_no
);
4242 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4244 struct fifo_info
*fifo
= (struct fifo_info
*)dev_id
;
4245 struct s2io_nic
*sp
= fifo
->nic
;
4247 if (!is_s2io_card_up(sp
))
4250 tx_intr_handler(fifo
);
4253 static void s2io_txpic_intr_handle(struct s2io_nic
*sp
)
4255 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4258 val64
= readq(&bar0
->pic_int_status
);
4259 if (val64
& PIC_INT_GPIO
) {
4260 val64
= readq(&bar0
->gpio_int_reg
);
4261 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4262 (val64
& GPIO_INT_REG_LINK_UP
)) {
4264 * This is unstable state so clear both up/down
4265 * interrupt and adapter to re-evaluate the link state.
4267 val64
|= GPIO_INT_REG_LINK_DOWN
;
4268 val64
|= GPIO_INT_REG_LINK_UP
;
4269 writeq(val64
, &bar0
->gpio_int_reg
);
4270 val64
= readq(&bar0
->gpio_int_mask
);
4271 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4272 GPIO_INT_MASK_LINK_DOWN
);
4273 writeq(val64
, &bar0
->gpio_int_mask
);
4275 else if (val64
& GPIO_INT_REG_LINK_UP
) {
4276 val64
= readq(&bar0
->adapter_status
);
4277 /* Enable Adapter */
4278 val64
= readq(&bar0
->adapter_control
);
4279 val64
|= ADAPTER_CNTL_EN
;
4280 writeq(val64
, &bar0
->adapter_control
);
4281 val64
|= ADAPTER_LED_ON
;
4282 writeq(val64
, &bar0
->adapter_control
);
4283 if (!sp
->device_enabled_once
)
4284 sp
->device_enabled_once
= 1;
4286 s2io_link(sp
, LINK_UP
);
4288 * unmask link down interrupt and mask link-up
4291 val64
= readq(&bar0
->gpio_int_mask
);
4292 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4293 val64
|= GPIO_INT_MASK_LINK_UP
;
4294 writeq(val64
, &bar0
->gpio_int_mask
);
4296 }else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4297 val64
= readq(&bar0
->adapter_status
);
4298 s2io_link(sp
, LINK_DOWN
);
4299 /* Link is down so unmaks link up interrupt */
4300 val64
= readq(&bar0
->gpio_int_mask
);
4301 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4302 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4303 writeq(val64
, &bar0
->gpio_int_mask
);
4306 val64
= readq(&bar0
->adapter_control
);
4307 val64
= val64
&(~ADAPTER_LED_ON
);
4308 writeq(val64
, &bar0
->adapter_control
);
4311 val64
= readq(&bar0
->gpio_int_mask
);
4315 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4316 * @value: alarm bits
4317 * @addr: address value
4318 * @cnt: counter variable
4319 * Description: Check for alarm and increment the counter
4321 * 1 - if alarm bit set
4322 * 0 - if alarm bit is not set
4324 static int do_s2io_chk_alarm_bit(u64 value
, void __iomem
* addr
,
4325 unsigned long long *cnt
)
4328 val64
= readq(addr
);
4329 if ( val64
& value
) {
4330 writeq(val64
, addr
);
4339 * s2io_handle_errors - Xframe error indication handler
4340 * @nic: device private variable
4341 * Description: Handle alarms such as loss of link, single or
4342 * double ECC errors, critical and serious errors.
4346 static void s2io_handle_errors(void * dev_id
)
4348 struct net_device
*dev
= (struct net_device
*) dev_id
;
4349 struct s2io_nic
*sp
= dev
->priv
;
4350 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4351 u64 temp64
= 0,val64
=0;
4354 struct swStat
*sw_stat
= &sp
->mac_control
.stats_info
->sw_stat
;
4355 struct xpakStat
*stats
= &sp
->mac_control
.stats_info
->xpak_stat
;
4357 if (!is_s2io_card_up(sp
))
4360 if (pci_channel_offline(sp
->pdev
))
4363 memset(&sw_stat
->ring_full_cnt
, 0,
4364 sizeof(sw_stat
->ring_full_cnt
));
4366 /* Handling the XPAK counters update */
4367 if(stats
->xpak_timer_count
< 72000) {
4368 /* waiting for an hour */
4369 stats
->xpak_timer_count
++;
4371 s2io_updt_xpak_counter(dev
);
4372 /* reset the count to zero */
4373 stats
->xpak_timer_count
= 0;
4376 /* Handling link status change error Intr */
4377 if (s2io_link_fault_indication(sp
) == MAC_RMAC_ERR_TIMER
) {
4378 val64
= readq(&bar0
->mac_rmac_err_reg
);
4379 writeq(val64
, &bar0
->mac_rmac_err_reg
);
4380 if (val64
& RMAC_LINK_STATE_CHANGE_INT
)
4381 schedule_work(&sp
->set_link_task
);
4384 /* In case of a serious error, the device will be Reset. */
4385 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY
, &bar0
->serr_source
,
4386 &sw_stat
->serious_err_cnt
))
4389 /* Check for data parity error */
4390 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT
, &bar0
->gpio_int_reg
,
4391 &sw_stat
->parity_err_cnt
))
4394 /* Check for ring full counter */
4395 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4396 val64
= readq(&bar0
->ring_bump_counter1
);
4397 for (i
=0; i
<4; i
++) {
4398 temp64
= ( val64
& vBIT(0xFFFF,(i
*16),16));
4399 temp64
>>= 64 - ((i
+1)*16);
4400 sw_stat
->ring_full_cnt
[i
] += temp64
;
4403 val64
= readq(&bar0
->ring_bump_counter2
);
4404 for (i
=0; i
<4; i
++) {
4405 temp64
= ( val64
& vBIT(0xFFFF,(i
*16),16));
4406 temp64
>>= 64 - ((i
+1)*16);
4407 sw_stat
->ring_full_cnt
[i
+4] += temp64
;
4411 val64
= readq(&bar0
->txdma_int_status
);
4412 /*check for pfc_err*/
4413 if (val64
& TXDMA_PFC_INT
) {
4414 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
4415 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
4416 PFC_PCIX_ERR
, &bar0
->pfc_err_reg
,
4417 &sw_stat
->pfc_err_cnt
))
4419 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR
, &bar0
->pfc_err_reg
,
4420 &sw_stat
->pfc_err_cnt
);
4423 /*check for tda_err*/
4424 if (val64
& TXDMA_TDA_INT
) {
4425 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
4426 TDA_SM1_ERR_ALARM
, &bar0
->tda_err_reg
,
4427 &sw_stat
->tda_err_cnt
))
4429 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR
| TDA_PCIX_ERR
,
4430 &bar0
->tda_err_reg
, &sw_stat
->tda_err_cnt
);
4432 /*check for pcc_err*/
4433 if (val64
& TXDMA_PCC_INT
) {
4434 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
4435 | PCC_N_SERR
| PCC_6_COF_OV_ERR
4436 | PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
4437 | PCC_7_LSO_OV_ERR
| PCC_FB_ECC_DB_ERR
4438 | PCC_TXB_ECC_DB_ERR
, &bar0
->pcc_err_reg
,
4439 &sw_stat
->pcc_err_cnt
))
4441 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR
| PCC_TXB_ECC_SG_ERR
,
4442 &bar0
->pcc_err_reg
, &sw_stat
->pcc_err_cnt
);
4445 /*check for tti_err*/
4446 if (val64
& TXDMA_TTI_INT
) {
4447 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM
, &bar0
->tti_err_reg
,
4448 &sw_stat
->tti_err_cnt
))
4450 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR
| TTI_ECC_DB_ERR
,
4451 &bar0
->tti_err_reg
, &sw_stat
->tti_err_cnt
);
4454 /*check for lso_err*/
4455 if (val64
& TXDMA_LSO_INT
) {
4456 if (do_s2io_chk_alarm_bit(LSO6_ABORT
| LSO7_ABORT
4457 | LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
,
4458 &bar0
->lso_err_reg
, &sw_stat
->lso_err_cnt
))
4460 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
4461 &bar0
->lso_err_reg
, &sw_stat
->lso_err_cnt
);
4464 /*check for tpa_err*/
4465 if (val64
& TXDMA_TPA_INT
) {
4466 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM
, &bar0
->tpa_err_reg
,
4467 &sw_stat
->tpa_err_cnt
))
4469 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP
, &bar0
->tpa_err_reg
,
4470 &sw_stat
->tpa_err_cnt
);
4473 /*check for sm_err*/
4474 if (val64
& TXDMA_SM_INT
) {
4475 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM
, &bar0
->sm_err_reg
,
4476 &sw_stat
->sm_err_cnt
))
4480 val64
= readq(&bar0
->mac_int_status
);
4481 if (val64
& MAC_INT_STATUS_TMAC_INT
) {
4482 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
,
4483 &bar0
->mac_tmac_err_reg
,
4484 &sw_stat
->mac_tmac_err_cnt
))
4486 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
4487 | TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
4488 &bar0
->mac_tmac_err_reg
,
4489 &sw_stat
->mac_tmac_err_cnt
);
4492 val64
= readq(&bar0
->xgxs_int_status
);
4493 if (val64
& XGXS_INT_STATUS_TXGXS
) {
4494 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
,
4495 &bar0
->xgxs_txgxs_err_reg
,
4496 &sw_stat
->xgxs_txgxs_err_cnt
))
4498 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
4499 &bar0
->xgxs_txgxs_err_reg
,
4500 &sw_stat
->xgxs_txgxs_err_cnt
);
4503 val64
= readq(&bar0
->rxdma_int_status
);
4504 if (val64
& RXDMA_INT_RC_INT_M
) {
4505 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
4506 | RC_PRCn_SM_ERR_ALARM
|RC_FTC_SM_ERR_ALARM
,
4507 &bar0
->rc_err_reg
, &sw_stat
->rc_err_cnt
))
4509 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
4510 | RC_RDA_FAIL_WR_Rn
, &bar0
->rc_err_reg
,
4511 &sw_stat
->rc_err_cnt
);
4512 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
4513 | PRC_PCI_AB_F_WR_Rn
, &bar0
->prc_pcix_err_reg
,
4514 &sw_stat
->prc_pcix_err_cnt
))
4516 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn
| PRC_PCI_DP_WR_Rn
4517 | PRC_PCI_DP_F_WR_Rn
, &bar0
->prc_pcix_err_reg
,
4518 &sw_stat
->prc_pcix_err_cnt
);
4521 if (val64
& RXDMA_INT_RPA_INT_M
) {
4522 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
,
4523 &bar0
->rpa_err_reg
, &sw_stat
->rpa_err_cnt
))
4525 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
,
4526 &bar0
->rpa_err_reg
, &sw_stat
->rpa_err_cnt
);
4529 if (val64
& RXDMA_INT_RDA_INT_M
) {
4530 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4531 | RDA_FRM_ECC_DB_N_AERR
| RDA_SM1_ERR_ALARM
4532 | RDA_SM0_ERR_ALARM
| RDA_RXD_ECC_DB_SERR
,
4533 &bar0
->rda_err_reg
, &sw_stat
->rda_err_cnt
))
4535 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR
| RDA_FRM_ECC_SG_ERR
4536 | RDA_MISC_ERR
| RDA_PCIX_ERR
,
4537 &bar0
->rda_err_reg
, &sw_stat
->rda_err_cnt
);
4540 if (val64
& RXDMA_INT_RTI_INT_M
) {
4541 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM
, &bar0
->rti_err_reg
,
4542 &sw_stat
->rti_err_cnt
))
4544 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
4545 &bar0
->rti_err_reg
, &sw_stat
->rti_err_cnt
);
4548 val64
= readq(&bar0
->mac_int_status
);
4549 if (val64
& MAC_INT_STATUS_RMAC_INT
) {
4550 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
,
4551 &bar0
->mac_rmac_err_reg
,
4552 &sw_stat
->mac_rmac_err_cnt
))
4554 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT
|RMAC_SINGLE_ECC_ERR
|
4555 RMAC_DOUBLE_ECC_ERR
, &bar0
->mac_rmac_err_reg
,
4556 &sw_stat
->mac_rmac_err_cnt
);
4559 val64
= readq(&bar0
->xgxs_int_status
);
4560 if (val64
& XGXS_INT_STATUS_RXGXS
) {
4561 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
,
4562 &bar0
->xgxs_rxgxs_err_reg
,
4563 &sw_stat
->xgxs_rxgxs_err_cnt
))
4567 val64
= readq(&bar0
->mc_int_status
);
4568 if(val64
& MC_INT_STATUS_MC_INT
) {
4569 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR
, &bar0
->mc_err_reg
,
4570 &sw_stat
->mc_err_cnt
))
4573 /* Handling Ecc errors */
4574 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
4575 writeq(val64
, &bar0
->mc_err_reg
);
4576 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
4577 sw_stat
->double_ecc_errs
++;
4578 if (sp
->device_type
!= XFRAME_II_DEVICE
) {
4580 * Reset XframeI only if critical error
4583 (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
4584 MC_ERR_REG_MIRI_ECC_DB_ERR_1
))
4588 sw_stat
->single_ecc_errs
++;
4594 netif_stop_queue(dev
);
4595 schedule_work(&sp
->rst_timer_task
);
4596 sw_stat
->soft_reset_cnt
++;
4601 * s2io_isr - ISR handler of the device .
4602 * @irq: the irq of the device.
4603 * @dev_id: a void pointer to the dev structure of the NIC.
4604 * Description: This function is the ISR handler of the device. It
4605 * identifies the reason for the interrupt and calls the relevant
4606 * service routines. As a contongency measure, this ISR allocates the
4607 * recv buffers, if their numbers are below the panic value which is
4608 * presently set to 25% of the original number of rcv buffers allocated.
4610 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4611 * IRQ_NONE: will be returned if interrupt is not from our device
4613 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4615 struct net_device
*dev
= (struct net_device
*) dev_id
;
4616 struct s2io_nic
*sp
= dev
->priv
;
4617 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4620 struct mac_info
*mac_control
;
4621 struct config_param
*config
;
4623 /* Pretend we handled any irq's from a disconnected card */
4624 if (pci_channel_offline(sp
->pdev
))
4627 if (!is_s2io_card_up(sp
))
4630 mac_control
= &sp
->mac_control
;
4631 config
= &sp
->config
;
4634 * Identify the cause for interrupt and call the appropriate
4635 * interrupt handler. Causes for the interrupt could be;
4640 reason
= readq(&bar0
->general_int_status
);
4642 if (unlikely(reason
== S2IO_MINUS_ONE
) ) {
4643 /* Nothing much can be done. Get out */
4647 if (reason
& (GEN_INTR_RXTRAFFIC
|
4648 GEN_INTR_TXTRAFFIC
| GEN_INTR_TXPIC
))
4650 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4653 if (reason
& GEN_INTR_RXTRAFFIC
) {
4654 if (likely(netif_rx_schedule_prep(dev
,
4656 __netif_rx_schedule(dev
, &sp
->napi
);
4657 writeq(S2IO_MINUS_ONE
,
4658 &bar0
->rx_traffic_mask
);
4660 writeq(S2IO_MINUS_ONE
,
4661 &bar0
->rx_traffic_int
);
4665 * rx_traffic_int reg is an R1 register, writing all 1's
4666 * will ensure that the actual interrupt causing bit
4667 * get's cleared and hence a read can be avoided.
4669 if (reason
& GEN_INTR_RXTRAFFIC
)
4670 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4672 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4673 rx_intr_handler(&mac_control
->rings
[i
]);
4677 * tx_traffic_int reg is an R1 register, writing all 1's
4678 * will ensure that the actual interrupt causing bit get's
4679 * cleared and hence a read can be avoided.
4681 if (reason
& GEN_INTR_TXTRAFFIC
)
4682 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4684 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4685 tx_intr_handler(&mac_control
->fifos
[i
]);
4687 if (reason
& GEN_INTR_TXPIC
)
4688 s2io_txpic_intr_handle(sp
);
4691 * Reallocate the buffers from the interrupt handler itself.
4693 if (!config
->napi
) {
4694 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4695 s2io_chk_rx_buffers(sp
, i
);
4697 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4698 readl(&bar0
->general_int_status
);
4704 /* The interrupt was not raised by us */
4714 static void s2io_updt_stats(struct s2io_nic
*sp
)
4716 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4720 if (is_s2io_card_up(sp
)) {
4721 /* Apprx 30us on a 133 MHz bus */
4722 val64
= SET_UPDT_CLICKS(10) |
4723 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4724 writeq(val64
, &bar0
->stat_cfg
);
4727 val64
= readq(&bar0
->stat_cfg
);
4728 if (!(val64
& s2BIT(0)))
4732 break; /* Updt failed */
4738 * s2io_get_stats - Updates the device statistics structure.
4739 * @dev : pointer to the device structure.
4741 * This function updates the device statistics structure in the s2io_nic
4742 * structure and returns a pointer to the same.
4744 * pointer to the updated net_device_stats structure.
4747 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4749 struct s2io_nic
*sp
= dev
->priv
;
4750 struct mac_info
*mac_control
;
4751 struct config_param
*config
;
4754 mac_control
= &sp
->mac_control
;
4755 config
= &sp
->config
;
4757 /* Configure Stats for immediate updt */
4758 s2io_updt_stats(sp
);
4760 sp
->stats
.tx_packets
=
4761 le32_to_cpu(mac_control
->stats_info
->tmac_frms
);
4762 sp
->stats
.tx_errors
=
4763 le32_to_cpu(mac_control
->stats_info
->tmac_any_err_frms
);
4764 sp
->stats
.rx_errors
=
4765 le64_to_cpu(mac_control
->stats_info
->rmac_drop_frms
);
4766 sp
->stats
.multicast
=
4767 le32_to_cpu(mac_control
->stats_info
->rmac_vld_mcst_frms
);
4768 sp
->stats
.rx_length_errors
=
4769 le64_to_cpu(mac_control
->stats_info
->rmac_long_frms
);
4771 return (&sp
->stats
);
4775 * s2io_set_multicast - entry point for multicast address enable/disable.
4776 * @dev : pointer to the device structure
4778 * This function is a driver entry point which gets called by the kernel
4779 * whenever multicast addresses must be enabled/disabled. This also gets
4780 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4781 * determine, if multicast address must be enabled or if promiscuous mode
4782 * is to be disabled etc.
4787 static void s2io_set_multicast(struct net_device
*dev
)
4790 struct dev_mc_list
*mclist
;
4791 struct s2io_nic
*sp
= dev
->priv
;
4792 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4793 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
4795 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, mac_addr
= 0;
4797 struct config_param
*config
= &sp
->config
;
4799 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
4800 /* Enable all Multicast addresses */
4801 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
4802 &bar0
->rmac_addr_data0_mem
);
4803 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
4804 &bar0
->rmac_addr_data1_mem
);
4805 val64
= RMAC_ADDR_CMD_MEM_WE
|
4806 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4807 RMAC_ADDR_CMD_MEM_OFFSET(config
->max_mc_addr
- 1);
4808 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4809 /* Wait till command completes */
4810 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4811 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4815 sp
->all_multi_pos
= config
->max_mc_addr
- 1;
4816 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
4817 /* Disable all Multicast addresses */
4818 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4819 &bar0
->rmac_addr_data0_mem
);
4820 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4821 &bar0
->rmac_addr_data1_mem
);
4822 val64
= RMAC_ADDR_CMD_MEM_WE
|
4823 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4824 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
4825 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4826 /* Wait till command completes */
4827 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4828 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4832 sp
->all_multi_pos
= 0;
4835 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
4836 /* Put the NIC into promiscuous mode */
4837 add
= &bar0
->mac_cfg
;
4838 val64
= readq(&bar0
->mac_cfg
);
4839 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
4841 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4842 writel((u32
) val64
, add
);
4843 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4844 writel((u32
) (val64
>> 32), (add
+ 4));
4846 if (vlan_tag_strip
!= 1) {
4847 val64
= readq(&bar0
->rx_pa_cfg
);
4848 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
4849 writeq(val64
, &bar0
->rx_pa_cfg
);
4850 vlan_strip_flag
= 0;
4853 val64
= readq(&bar0
->mac_cfg
);
4854 sp
->promisc_flg
= 1;
4855 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
4857 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
4858 /* Remove the NIC from promiscuous mode */
4859 add
= &bar0
->mac_cfg
;
4860 val64
= readq(&bar0
->mac_cfg
);
4861 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
4863 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4864 writel((u32
) val64
, add
);
4865 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4866 writel((u32
) (val64
>> 32), (add
+ 4));
4868 if (vlan_tag_strip
!= 0) {
4869 val64
= readq(&bar0
->rx_pa_cfg
);
4870 val64
|= RX_PA_CFG_STRIP_VLAN_TAG
;
4871 writeq(val64
, &bar0
->rx_pa_cfg
);
4872 vlan_strip_flag
= 1;
4875 val64
= readq(&bar0
->mac_cfg
);
4876 sp
->promisc_flg
= 0;
4877 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n",
4881 /* Update individual M_CAST address list */
4882 if ((!sp
->m_cast_flg
) && dev
->mc_count
) {
4884 (config
->max_mc_addr
- config
->max_mac_addr
)) {
4885 DBG_PRINT(ERR_DBG
, "%s: No more Rx filters ",
4887 DBG_PRINT(ERR_DBG
, "can be added, please enable ");
4888 DBG_PRINT(ERR_DBG
, "ALL_MULTI instead\n");
4892 prev_cnt
= sp
->mc_addr_count
;
4893 sp
->mc_addr_count
= dev
->mc_count
;
4895 /* Clear out the previous list of Mc in the H/W. */
4896 for (i
= 0; i
< prev_cnt
; i
++) {
4897 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4898 &bar0
->rmac_addr_data0_mem
);
4899 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4900 &bar0
->rmac_addr_data1_mem
);
4901 val64
= RMAC_ADDR_CMD_MEM_WE
|
4902 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4903 RMAC_ADDR_CMD_MEM_OFFSET
4904 (config
->mc_start_offset
+ i
);
4905 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4907 /* Wait for command completes */
4908 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4909 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4911 DBG_PRINT(ERR_DBG
, "%s: Adding ",
4913 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
4918 /* Create the new Rx filter list and update the same in H/W. */
4919 for (i
= 0, mclist
= dev
->mc_list
; i
< dev
->mc_count
;
4920 i
++, mclist
= mclist
->next
) {
4921 memcpy(sp
->usr_addrs
[i
].addr
, mclist
->dmi_addr
,
4924 for (j
= 0; j
< ETH_ALEN
; j
++) {
4925 mac_addr
|= mclist
->dmi_addr
[j
];
4929 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
4930 &bar0
->rmac_addr_data0_mem
);
4931 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4932 &bar0
->rmac_addr_data1_mem
);
4933 val64
= RMAC_ADDR_CMD_MEM_WE
|
4934 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4935 RMAC_ADDR_CMD_MEM_OFFSET
4936 (i
+ config
->mc_start_offset
);
4937 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4939 /* Wait for command completes */
4940 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4941 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4943 DBG_PRINT(ERR_DBG
, "%s: Adding ",
4945 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
4952 /* read from CAM unicast & multicast addresses and store it in
4953 * def_mac_addr structure
4955 void do_s2io_store_unicast_mc(struct s2io_nic
*sp
)
4959 struct config_param
*config
= &sp
->config
;
4961 /* store unicast & multicast mac addresses */
4962 for (offset
= 0; offset
< config
->max_mc_addr
; offset
++) {
4963 mac_addr
= do_s2io_read_unicast_mc(sp
, offset
);
4964 /* if read fails disable the entry */
4965 if (mac_addr
== FAILURE
)
4966 mac_addr
= S2IO_DISABLE_MAC_ENTRY
;
4967 do_s2io_copy_mac_addr(sp
, offset
, mac_addr
);
4971 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
4972 static void do_s2io_restore_unicast_mc(struct s2io_nic
*sp
)
4975 struct config_param
*config
= &sp
->config
;
4976 /* restore unicast mac address */
4977 for (offset
= 0; offset
< config
->max_mac_addr
; offset
++)
4978 do_s2io_prog_unicast(sp
->dev
,
4979 sp
->def_mac_addr
[offset
].mac_addr
);
4981 /* restore multicast mac address */
4982 for (offset
= config
->mc_start_offset
;
4983 offset
< config
->max_mc_addr
; offset
++)
4984 do_s2io_add_mc(sp
, sp
->def_mac_addr
[offset
].mac_addr
);
4987 /* add a multicast MAC address to CAM */
4988 static int do_s2io_add_mc(struct s2io_nic
*sp
, u8
*addr
)
4992 struct config_param
*config
= &sp
->config
;
4994 for (i
= 0; i
< ETH_ALEN
; i
++) {
4996 mac_addr
|= addr
[i
];
4998 if ((0ULL == mac_addr
) || (mac_addr
== S2IO_DISABLE_MAC_ENTRY
))
5001 /* check if the multicast mac already preset in CAM */
5002 for (i
= config
->mc_start_offset
; i
< config
->max_mc_addr
; i
++) {
5004 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5005 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5008 if (tmp64
== mac_addr
)
5011 if (i
== config
->max_mc_addr
) {
5013 "CAM full no space left for multicast MAC\n");
5016 /* Update the internal structure with this new mac address */
5017 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5019 return (do_s2io_add_mac(sp
, mac_addr
, i
));
5022 /* add MAC address to CAM */
5023 static int do_s2io_add_mac(struct s2io_nic
*sp
, u64 addr
, int off
)
5026 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5028 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr
),
5029 &bar0
->rmac_addr_data0_mem
);
5032 RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5033 RMAC_ADDR_CMD_MEM_OFFSET(off
);
5034 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5036 /* Wait till command completes */
5037 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5038 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5040 DBG_PRINT(INFO_DBG
, "do_s2io_add_mac failed\n");
5045 /* deletes a specified unicast/multicast mac entry from CAM */
5046 static int do_s2io_delete_unicast_mc(struct s2io_nic
*sp
, u64 addr
)
5049 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, tmp64
;
5050 struct config_param
*config
= &sp
->config
;
5053 offset
< config
->max_mc_addr
; offset
++) {
5054 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
5055 if (tmp64
== addr
) {
5056 /* disable the entry by writing 0xffffffffffffULL */
5057 if (do_s2io_add_mac(sp
, dis_addr
, offset
) == FAILURE
)
5059 /* store the new mac list from CAM */
5060 do_s2io_store_unicast_mc(sp
);
5064 DBG_PRINT(ERR_DBG
, "MAC address 0x%llx not found in CAM\n",
5065 (unsigned long long)addr
);
5069 /* read mac entries from CAM */
5070 static u64
do_s2io_read_unicast_mc(struct s2io_nic
*sp
, int offset
)
5072 u64 tmp64
= 0xffffffffffff0000ULL
, val64
;
5073 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5077 RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5078 RMAC_ADDR_CMD_MEM_OFFSET(offset
);
5079 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5081 /* Wait till command completes */
5082 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5083 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5085 DBG_PRINT(INFO_DBG
, "do_s2io_read_unicast_mc failed\n");
5088 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
5089 return (tmp64
>> 16);
5093 * s2io_set_mac_addr driver entry point
5096 static int s2io_set_mac_addr(struct net_device
*dev
, void *p
)
5098 struct sockaddr
*addr
= p
;
5100 if (!is_valid_ether_addr(addr
->sa_data
))
5103 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
5105 /* store the MAC address in CAM */
5106 return (do_s2io_prog_unicast(dev
, dev
->dev_addr
));
5109 * do_s2io_prog_unicast - Programs the Xframe mac address
5110 * @dev : pointer to the device structure.
5111 * @addr: a uchar pointer to the new mac address which is to be set.
5112 * Description : This procedure will program the Xframe to receive
5113 * frames with new Mac Address
5114 * Return value: SUCCESS on success and an appropriate (-)ve integer
5115 * as defined in errno.h file on failure.
5118 static int do_s2io_prog_unicast(struct net_device
*dev
, u8
*addr
)
5120 struct s2io_nic
*sp
= dev
->priv
;
5121 register u64 mac_addr
= 0, perm_addr
= 0;
5124 struct config_param
*config
= &sp
->config
;
5127 * Set the new MAC address as the new unicast filter and reflect this
5128 * change on the device address registered with the OS. It will be
5131 for (i
= 0; i
< ETH_ALEN
; i
++) {
5133 mac_addr
|= addr
[i
];
5135 perm_addr
|= sp
->def_mac_addr
[0].mac_addr
[i
];
5138 /* check if the dev_addr is different than perm_addr */
5139 if (mac_addr
== perm_addr
)
5142 /* check if the mac already preset in CAM */
5143 for (i
= 1; i
< config
->max_mac_addr
; i
++) {
5144 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5145 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5148 if (tmp64
== mac_addr
) {
5150 "MAC addr:0x%llx already present in CAM\n",
5151 (unsigned long long)mac_addr
);
5155 if (i
== config
->max_mac_addr
) {
5156 DBG_PRINT(ERR_DBG
, "CAM full no space left for Unicast MAC\n");
5159 /* Update the internal structure with this new mac address */
5160 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5161 return (do_s2io_add_mac(sp
, mac_addr
, i
));
5165 * s2io_ethtool_sset - Sets different link parameters.
5166 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5167 * @info: pointer to the structure with parameters given by ethtool to set
5170 * The function sets different link parameters provided by the user onto
5176 static int s2io_ethtool_sset(struct net_device
*dev
,
5177 struct ethtool_cmd
*info
)
5179 struct s2io_nic
*sp
= dev
->priv
;
5180 if ((info
->autoneg
== AUTONEG_ENABLE
) ||
5181 (info
->speed
!= SPEED_10000
) || (info
->duplex
!= DUPLEX_FULL
))
5184 s2io_close(sp
->dev
);
5192 * s2io_ethtol_gset - Return link specific information.
5193 * @sp : private member of the device structure, pointer to the
5194 * s2io_nic structure.
5195 * @info : pointer to the structure with parameters given by ethtool
5196 * to return link information.
5198 * Returns link specific information like speed, duplex etc.. to ethtool.
5200 * return 0 on success.
5203 static int s2io_ethtool_gset(struct net_device
*dev
, struct ethtool_cmd
*info
)
5205 struct s2io_nic
*sp
= dev
->priv
;
5206 info
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5207 info
->advertising
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5208 info
->port
= PORT_FIBRE
;
5210 /* info->transceiver */
5211 info
->transceiver
= XCVR_EXTERNAL
;
5213 if (netif_carrier_ok(sp
->dev
)) {
5214 info
->speed
= 10000;
5215 info
->duplex
= DUPLEX_FULL
;
5221 info
->autoneg
= AUTONEG_DISABLE
;
5226 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5227 * @sp : private member of the device structure, which is a pointer to the
5228 * s2io_nic structure.
5229 * @info : pointer to the structure with parameters given by ethtool to
5230 * return driver information.
5232 * Returns driver specefic information like name, version etc.. to ethtool.
5237 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
5238 struct ethtool_drvinfo
*info
)
5240 struct s2io_nic
*sp
= dev
->priv
;
5242 strncpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
5243 strncpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
5244 strncpy(info
->fw_version
, "", sizeof(info
->fw_version
));
5245 strncpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
5246 info
->regdump_len
= XENA_REG_SPACE
;
5247 info
->eedump_len
= XENA_EEPROM_SPACE
;
5251 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5252 * @sp: private member of the device structure, which is a pointer to the
5253 * s2io_nic structure.
5254 * @regs : pointer to the structure with parameters given by ethtool for
5255 * dumping the registers.
5256 * @reg_space: The input argumnet into which all the registers are dumped.
5258 * Dumps the entire register space of xFrame NIC into the user given
5264 static void s2io_ethtool_gregs(struct net_device
*dev
,
5265 struct ethtool_regs
*regs
, void *space
)
5269 u8
*reg_space
= (u8
*) space
;
5270 struct s2io_nic
*sp
= dev
->priv
;
5272 regs
->len
= XENA_REG_SPACE
;
5273 regs
->version
= sp
->pdev
->subsystem_device
;
5275 for (i
= 0; i
< regs
->len
; i
+= 8) {
5276 reg
= readq(sp
->bar0
+ i
);
5277 memcpy((reg_space
+ i
), ®
, 8);
5282 * s2io_phy_id - timer function that alternates adapter LED.
5283 * @data : address of the private member of the device structure, which
5284 * is a pointer to the s2io_nic structure, provided as an u32.
5285 * Description: This is actually the timer function that alternates the
5286 * adapter LED bit of the adapter control bit to set/reset every time on
5287 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5288 * once every second.
5290 static void s2io_phy_id(unsigned long data
)
5292 struct s2io_nic
*sp
= (struct s2io_nic
*) data
;
5293 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5297 subid
= sp
->pdev
->subsystem_device
;
5298 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
5299 ((subid
& 0xFF) >= 0x07)) {
5300 val64
= readq(&bar0
->gpio_control
);
5301 val64
^= GPIO_CTRL_GPIO_0
;
5302 writeq(val64
, &bar0
->gpio_control
);
5304 val64
= readq(&bar0
->adapter_control
);
5305 val64
^= ADAPTER_LED_ON
;
5306 writeq(val64
, &bar0
->adapter_control
);
5309 mod_timer(&sp
->id_timer
, jiffies
+ HZ
/ 2);
5313 * s2io_ethtool_idnic - To physically identify the nic on the system.
5314 * @sp : private member of the device structure, which is a pointer to the
5315 * s2io_nic structure.
5316 * @id : pointer to the structure with identification parameters given by
5318 * Description: Used to physically identify the NIC on the system.
5319 * The Link LED will blink for a time specified by the user for
5321 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5322 * identification is possible only if it's link is up.
5324 * int , returns 0 on success
5327 static int s2io_ethtool_idnic(struct net_device
*dev
, u32 data
)
5329 u64 val64
= 0, last_gpio_ctrl_val
;
5330 struct s2io_nic
*sp
= dev
->priv
;
5331 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5334 subid
= sp
->pdev
->subsystem_device
;
5335 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5336 if ((sp
->device_type
== XFRAME_I_DEVICE
) &&
5337 ((subid
& 0xFF) < 0x07)) {
5338 val64
= readq(&bar0
->adapter_control
);
5339 if (!(val64
& ADAPTER_CNTL_EN
)) {
5341 "Adapter Link down, cannot blink LED\n");
5345 if (sp
->id_timer
.function
== NULL
) {
5346 init_timer(&sp
->id_timer
);
5347 sp
->id_timer
.function
= s2io_phy_id
;
5348 sp
->id_timer
.data
= (unsigned long) sp
;
5350 mod_timer(&sp
->id_timer
, jiffies
);
5352 msleep_interruptible(data
* HZ
);
5354 msleep_interruptible(MAX_FLICKER_TIME
);
5355 del_timer_sync(&sp
->id_timer
);
5357 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
)) {
5358 writeq(last_gpio_ctrl_val
, &bar0
->gpio_control
);
5359 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5365 static void s2io_ethtool_gringparam(struct net_device
*dev
,
5366 struct ethtool_ringparam
*ering
)
5368 struct s2io_nic
*sp
= dev
->priv
;
5369 int i
,tx_desc_count
=0,rx_desc_count
=0;
5371 if (sp
->rxd_mode
== RXD_MODE_1
)
5372 ering
->rx_max_pending
= MAX_RX_DESC_1
;
5373 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5374 ering
->rx_max_pending
= MAX_RX_DESC_2
;
5376 ering
->tx_max_pending
= MAX_TX_DESC
;
5377 for (i
= 0 ; i
< sp
->config
.tx_fifo_num
; i
++)
5378 tx_desc_count
+= sp
->config
.tx_cfg
[i
].fifo_len
;
5380 DBG_PRINT(INFO_DBG
,"\nmax txds : %d\n",sp
->config
.max_txds
);
5381 ering
->tx_pending
= tx_desc_count
;
5383 for (i
= 0 ; i
< sp
->config
.rx_ring_num
; i
++)
5384 rx_desc_count
+= sp
->config
.rx_cfg
[i
].num_rxd
;
5386 ering
->rx_pending
= rx_desc_count
;
5388 ering
->rx_mini_max_pending
= 0;
5389 ering
->rx_mini_pending
= 0;
5390 if(sp
->rxd_mode
== RXD_MODE_1
)
5391 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_1
;
5392 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5393 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_2
;
5394 ering
->rx_jumbo_pending
= rx_desc_count
;
5398 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5399 * @sp : private member of the device structure, which is a pointer to the
5400 * s2io_nic structure.
5401 * @ep : pointer to the structure with pause parameters given by ethtool.
5403 * Returns the Pause frame generation and reception capability of the NIC.
5407 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
5408 struct ethtool_pauseparam
*ep
)
5411 struct s2io_nic
*sp
= dev
->priv
;
5412 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5414 val64
= readq(&bar0
->rmac_pause_cfg
);
5415 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
5416 ep
->tx_pause
= TRUE
;
5417 if (val64
& RMAC_PAUSE_RX_ENABLE
)
5418 ep
->rx_pause
= TRUE
;
5419 ep
->autoneg
= FALSE
;
5423 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5424 * @sp : private member of the device structure, which is a pointer to the
5425 * s2io_nic structure.
5426 * @ep : pointer to the structure with pause parameters given by ethtool.
5428 * It can be used to set or reset Pause frame generation or reception
5429 * support of the NIC.
5431 * int, returns 0 on Success
5434 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
5435 struct ethtool_pauseparam
*ep
)
5438 struct s2io_nic
*sp
= dev
->priv
;
5439 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5441 val64
= readq(&bar0
->rmac_pause_cfg
);
5443 val64
|= RMAC_PAUSE_GEN_ENABLE
;
5445 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
5447 val64
|= RMAC_PAUSE_RX_ENABLE
;
5449 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
5450 writeq(val64
, &bar0
->rmac_pause_cfg
);
5455 * read_eeprom - reads 4 bytes of data from user given offset.
5456 * @sp : private member of the device structure, which is a pointer to the
5457 * s2io_nic structure.
5458 * @off : offset at which the data must be written
5459 * @data : Its an output parameter where the data read at the given
5462 * Will read 4 bytes of data from the user given offset and return the
5464 * NOTE: Will allow to read only part of the EEPROM visible through the
5467 * -1 on failure and 0 on success.
5470 #define S2IO_DEV_ID 5
5471 static int read_eeprom(struct s2io_nic
* sp
, int off
, u64
* data
)
5476 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5478 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5479 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
5480 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ
|
5481 I2C_CONTROL_CNTL_START
;
5482 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5484 while (exit_cnt
< 5) {
5485 val64
= readq(&bar0
->i2c_control
);
5486 if (I2C_CONTROL_CNTL_END(val64
)) {
5487 *data
= I2C_CONTROL_GET_DATA(val64
);
5496 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5497 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5498 SPI_CONTROL_BYTECNT(0x3) |
5499 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
5500 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5501 val64
|= SPI_CONTROL_REQ
;
5502 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5503 while (exit_cnt
< 5) {
5504 val64
= readq(&bar0
->spi_control
);
5505 if (val64
& SPI_CONTROL_NACK
) {
5508 } else if (val64
& SPI_CONTROL_DONE
) {
5509 *data
= readq(&bar0
->spi_data
);
5522 * write_eeprom - actually writes the relevant part of the data value.
5523 * @sp : private member of the device structure, which is a pointer to the
5524 * s2io_nic structure.
5525 * @off : offset at which the data must be written
5526 * @data : The data that is to be written
5527 * @cnt : Number of bytes of the data that are actually to be written into
5528 * the Eeprom. (max of 3)
5530 * Actually writes the relevant part of the data value into the Eeprom
5531 * through the I2C bus.
5533 * 0 on success, -1 on failure.
5536 static int write_eeprom(struct s2io_nic
* sp
, int off
, u64 data
, int cnt
)
5538 int exit_cnt
= 0, ret
= -1;
5540 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5542 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5543 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
5544 I2C_CONTROL_BYTE_CNT(cnt
) | I2C_CONTROL_SET_DATA((u32
)data
) |
5545 I2C_CONTROL_CNTL_START
;
5546 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5548 while (exit_cnt
< 5) {
5549 val64
= readq(&bar0
->i2c_control
);
5550 if (I2C_CONTROL_CNTL_END(val64
)) {
5551 if (!(val64
& I2C_CONTROL_NACK
))
5560 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5561 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
5562 writeq(SPI_DATA_WRITE(data
,(cnt
<<3)), &bar0
->spi_data
);
5564 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5565 SPI_CONTROL_BYTECNT(write_cnt
) |
5566 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
5567 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5568 val64
|= SPI_CONTROL_REQ
;
5569 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5570 while (exit_cnt
< 5) {
5571 val64
= readq(&bar0
->spi_control
);
5572 if (val64
& SPI_CONTROL_NACK
) {
5575 } else if (val64
& SPI_CONTROL_DONE
) {
5585 static void s2io_vpd_read(struct s2io_nic
*nic
)
5589 int i
=0, cnt
, fail
= 0;
5590 int vpd_addr
= 0x80;
5592 if (nic
->device_type
== XFRAME_II_DEVICE
) {
5593 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
5597 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
5600 strcpy(nic
->serial_num
, "NOT AVAILABLE");
5602 vpd_data
= kmalloc(256, GFP_KERNEL
);
5604 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
5607 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
+= 256;
5609 for (i
= 0; i
< 256; i
+=4 ) {
5610 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
5611 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
5612 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
5613 for (cnt
= 0; cnt
<5; cnt
++) {
5615 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
5620 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
5624 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
5625 (u32
*)&vpd_data
[i
]);
5629 /* read serial number of adapter */
5630 for (cnt
= 0; cnt
< 256; cnt
++) {
5631 if ((vpd_data
[cnt
] == 'S') &&
5632 (vpd_data
[cnt
+1] == 'N') &&
5633 (vpd_data
[cnt
+2] < VPD_STRING_LEN
)) {
5634 memset(nic
->serial_num
, 0, VPD_STRING_LEN
);
5635 memcpy(nic
->serial_num
, &vpd_data
[cnt
+ 3],
5642 if ((!fail
) && (vpd_data
[1] < VPD_STRING_LEN
)) {
5643 memset(nic
->product_name
, 0, vpd_data
[1]);
5644 memcpy(nic
->product_name
, &vpd_data
[3], vpd_data
[1]);
5647 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= 256;
5651 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5652 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5653 * @eeprom : pointer to the user level structure provided by ethtool,
5654 * containing all relevant information.
5655 * @data_buf : user defined value to be written into Eeprom.
5656 * Description: Reads the values stored in the Eeprom at given offset
5657 * for a given length. Stores these values int the input argument data
5658 * buffer 'data_buf' and returns these to the caller (ethtool.)
5663 static int s2io_ethtool_geeprom(struct net_device
*dev
,
5664 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
5668 struct s2io_nic
*sp
= dev
->priv
;
5670 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
5672 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
5673 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
5675 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
5676 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
5677 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
5681 memcpy((data_buf
+ i
), &valid
, 4);
5687 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5688 * @sp : private member of the device structure, which is a pointer to the
5689 * s2io_nic structure.
5690 * @eeprom : pointer to the user level structure provided by ethtool,
5691 * containing all relevant information.
5692 * @data_buf ; user defined value to be written into Eeprom.
5694 * Tries to write the user provided value in the Eeprom, at the offset
5695 * given by the user.
5697 * 0 on success, -EFAULT on failure.
5700 static int s2io_ethtool_seeprom(struct net_device
*dev
,
5701 struct ethtool_eeprom
*eeprom
,
5704 int len
= eeprom
->len
, cnt
= 0;
5705 u64 valid
= 0, data
;
5706 struct s2io_nic
*sp
= dev
->priv
;
5708 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5710 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5711 DBG_PRINT(ERR_DBG
, "is wrong, Its not 0x%x\n",
5717 data
= (u32
) data_buf
[cnt
] & 0x000000FF;
5719 valid
= (u32
) (data
<< 24);
5723 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5725 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5727 "write into the specified offset\n");
5738 * s2io_register_test - reads and writes into all clock domains.
5739 * @sp : private member of the device structure, which is a pointer to the
5740 * s2io_nic structure.
5741 * @data : variable that returns the result of each of the test conducted b
5744 * Read and write into all clock domains. The NIC has 3 clock domains,
5745 * see that registers in all the three regions are accessible.
5750 static int s2io_register_test(struct s2io_nic
* sp
, uint64_t * data
)
5752 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5753 u64 val64
= 0, exp_val
;
5756 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5757 if (val64
!= 0x123456789abcdefULL
) {
5759 DBG_PRINT(INFO_DBG
, "Read Test level 1 fails\n");
5762 val64
= readq(&bar0
->rmac_pause_cfg
);
5763 if (val64
!= 0xc000ffff00000000ULL
) {
5765 DBG_PRINT(INFO_DBG
, "Read Test level 2 fails\n");
5768 val64
= readq(&bar0
->rx_queue_cfg
);
5769 if (sp
->device_type
== XFRAME_II_DEVICE
)
5770 exp_val
= 0x0404040404040404ULL
;
5772 exp_val
= 0x0808080808080808ULL
;
5773 if (val64
!= exp_val
) {
5775 DBG_PRINT(INFO_DBG
, "Read Test level 3 fails\n");
5778 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5779 if (val64
!= 0x000000001923141EULL
) {
5781 DBG_PRINT(INFO_DBG
, "Read Test level 4 fails\n");
5784 val64
= 0x5A5A5A5A5A5A5A5AULL
;
5785 writeq(val64
, &bar0
->xmsi_data
);
5786 val64
= readq(&bar0
->xmsi_data
);
5787 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
5789 DBG_PRINT(ERR_DBG
, "Write Test level 1 fails\n");
5792 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
5793 writeq(val64
, &bar0
->xmsi_data
);
5794 val64
= readq(&bar0
->xmsi_data
);
5795 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
5797 DBG_PRINT(ERR_DBG
, "Write Test level 2 fails\n");
5805 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5806 * @sp : private member of the device structure, which is a pointer to the
5807 * s2io_nic structure.
5808 * @data:variable that returns the result of each of the test conducted by
5811 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5817 static int s2io_eeprom_test(struct s2io_nic
* sp
, uint64_t * data
)
5820 u64 ret_data
, org_4F0
, org_7F0
;
5821 u8 saved_4F0
= 0, saved_7F0
= 0;
5822 struct net_device
*dev
= sp
->dev
;
5824 /* Test Write Error at offset 0 */
5825 /* Note that SPI interface allows write access to all areas
5826 * of EEPROM. Hence doing all negative testing only for Xframe I.
5828 if (sp
->device_type
== XFRAME_I_DEVICE
)
5829 if (!write_eeprom(sp
, 0, 0, 3))
5832 /* Save current values at offsets 0x4F0 and 0x7F0 */
5833 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
5835 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
5838 /* Test Write at offset 4f0 */
5839 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
5841 if (read_eeprom(sp
, 0x4F0, &ret_data
))
5844 if (ret_data
!= 0x012345) {
5845 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
5846 "Data written %llx Data read %llx\n",
5847 dev
->name
, (unsigned long long)0x12345,
5848 (unsigned long long)ret_data
);
5852 /* Reset the EEPROM data go FFFF */
5853 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
5855 /* Test Write Request Error at offset 0x7c */
5856 if (sp
->device_type
== XFRAME_I_DEVICE
)
5857 if (!write_eeprom(sp
, 0x07C, 0, 3))
5860 /* Test Write Request at offset 0x7f0 */
5861 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
5863 if (read_eeprom(sp
, 0x7F0, &ret_data
))
5866 if (ret_data
!= 0x012345) {
5867 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
5868 "Data written %llx Data read %llx\n",
5869 dev
->name
, (unsigned long long)0x12345,
5870 (unsigned long long)ret_data
);
5874 /* Reset the EEPROM data go FFFF */
5875 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
5877 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5878 /* Test Write Error at offset 0x80 */
5879 if (!write_eeprom(sp
, 0x080, 0, 3))
5882 /* Test Write Error at offset 0xfc */
5883 if (!write_eeprom(sp
, 0x0FC, 0, 3))
5886 /* Test Write Error at offset 0x100 */
5887 if (!write_eeprom(sp
, 0x100, 0, 3))
5890 /* Test Write Error at offset 4ec */
5891 if (!write_eeprom(sp
, 0x4EC, 0, 3))
5895 /* Restore values at offsets 0x4F0 and 0x7F0 */
5897 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
5899 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
5906 * s2io_bist_test - invokes the MemBist test of the card .
5907 * @sp : private member of the device structure, which is a pointer to the
5908 * s2io_nic structure.
5909 * @data:variable that returns the result of each of the test conducted by
5912 * This invokes the MemBist test of the card. We give around
5913 * 2 secs time for the Test to complete. If it's still not complete
5914 * within this peiod, we consider that the test failed.
5916 * 0 on success and -1 on failure.
5919 static int s2io_bist_test(struct s2io_nic
* sp
, uint64_t * data
)
5922 int cnt
= 0, ret
= -1;
5924 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
5925 bist
|= PCI_BIST_START
;
5926 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
5929 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
5930 if (!(bist
& PCI_BIST_START
)) {
5931 *data
= (bist
& PCI_BIST_CODE_MASK
);
5943 * s2io-link_test - verifies the link state of the nic
5944 * @sp ; private member of the device structure, which is a pointer to the
5945 * s2io_nic structure.
5946 * @data: variable that returns the result of each of the test conducted by
5949 * The function verifies the link state of the NIC and updates the input
5950 * argument 'data' appropriately.
5955 static int s2io_link_test(struct s2io_nic
* sp
, uint64_t * data
)
5957 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5960 val64
= readq(&bar0
->adapter_status
);
5961 if(!(LINK_IS_UP(val64
)))
5970 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5971 * @sp - private member of the device structure, which is a pointer to the
5972 * s2io_nic structure.
5973 * @data - variable that returns the result of each of the test
5974 * conducted by the driver.
5976 * This is one of the offline test that tests the read and write
5977 * access to the RldRam chip on the NIC.
5982 static int s2io_rldram_test(struct s2io_nic
* sp
, uint64_t * data
)
5984 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5986 int cnt
, iteration
= 0, test_fail
= 0;
5988 val64
= readq(&bar0
->adapter_control
);
5989 val64
&= ~ADAPTER_ECC_EN
;
5990 writeq(val64
, &bar0
->adapter_control
);
5992 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
5993 val64
|= MC_RLDRAM_TEST_MODE
;
5994 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
5996 val64
= readq(&bar0
->mc_rldram_mrs
);
5997 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
5998 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6000 val64
|= MC_RLDRAM_MRS_ENABLE
;
6001 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6003 while (iteration
< 2) {
6004 val64
= 0x55555555aaaa0000ULL
;
6005 if (iteration
== 1) {
6006 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6008 writeq(val64
, &bar0
->mc_rldram_test_d0
);
6010 val64
= 0xaaaa5a5555550000ULL
;
6011 if (iteration
== 1) {
6012 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6014 writeq(val64
, &bar0
->mc_rldram_test_d1
);
6016 val64
= 0x55aaaaaaaa5a0000ULL
;
6017 if (iteration
== 1) {
6018 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6020 writeq(val64
, &bar0
->mc_rldram_test_d2
);
6022 val64
= (u64
) (0x0000003ffffe0100ULL
);
6023 writeq(val64
, &bar0
->mc_rldram_test_add
);
6025 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_WRITE
|
6027 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6029 for (cnt
= 0; cnt
< 5; cnt
++) {
6030 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6031 if (val64
& MC_RLDRAM_TEST_DONE
)
6039 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
6040 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6042 for (cnt
= 0; cnt
< 5; cnt
++) {
6043 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6044 if (val64
& MC_RLDRAM_TEST_DONE
)
6052 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6053 if (!(val64
& MC_RLDRAM_TEST_PASS
))
6061 /* Bring the adapter out of test mode */
6062 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
6068 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6069 * @sp : private member of the device structure, which is a pointer to the
6070 * s2io_nic structure.
6071 * @ethtest : pointer to a ethtool command specific structure that will be
6072 * returned to the user.
6073 * @data : variable that returns the result of each of the test
6074 * conducted by the driver.
6076 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6077 * the health of the card.
6082 static void s2io_ethtool_test(struct net_device
*dev
,
6083 struct ethtool_test
*ethtest
,
6086 struct s2io_nic
*sp
= dev
->priv
;
6087 int orig_state
= netif_running(sp
->dev
);
6089 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
6090 /* Offline Tests. */
6092 s2io_close(sp
->dev
);
6094 if (s2io_register_test(sp
, &data
[0]))
6095 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6099 if (s2io_rldram_test(sp
, &data
[3]))
6100 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6104 if (s2io_eeprom_test(sp
, &data
[1]))
6105 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6107 if (s2io_bist_test(sp
, &data
[4]))
6108 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6118 "%s: is not up, cannot run test\n",
6127 if (s2io_link_test(sp
, &data
[2]))
6128 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6137 static void s2io_get_ethtool_stats(struct net_device
*dev
,
6138 struct ethtool_stats
*estats
,
6142 struct s2io_nic
*sp
= dev
->priv
;
6143 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
6145 s2io_updt_stats(sp
);
6147 (u64
)le32_to_cpu(stat_info
->tmac_frms_oflow
) << 32 |
6148 le32_to_cpu(stat_info
->tmac_frms
);
6150 (u64
)le32_to_cpu(stat_info
->tmac_data_octets_oflow
) << 32 |
6151 le32_to_cpu(stat_info
->tmac_data_octets
);
6152 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_drop_frms
);
6154 (u64
)le32_to_cpu(stat_info
->tmac_mcst_frms_oflow
) << 32 |
6155 le32_to_cpu(stat_info
->tmac_mcst_frms
);
6157 (u64
)le32_to_cpu(stat_info
->tmac_bcst_frms_oflow
) << 32 |
6158 le32_to_cpu(stat_info
->tmac_bcst_frms
);
6159 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_pause_ctrl_frms
);
6161 (u64
)le32_to_cpu(stat_info
->tmac_ttl_octets_oflow
) << 32 |
6162 le32_to_cpu(stat_info
->tmac_ttl_octets
);
6164 (u64
)le32_to_cpu(stat_info
->tmac_ucst_frms_oflow
) << 32 |
6165 le32_to_cpu(stat_info
->tmac_ucst_frms
);
6167 (u64
)le32_to_cpu(stat_info
->tmac_nucst_frms_oflow
) << 32 |
6168 le32_to_cpu(stat_info
->tmac_nucst_frms
);
6170 (u64
)le32_to_cpu(stat_info
->tmac_any_err_frms_oflow
) << 32 |
6171 le32_to_cpu(stat_info
->tmac_any_err_frms
);
6172 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_ttl_less_fb_octets
);
6173 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_vld_ip_octets
);
6175 (u64
)le32_to_cpu(stat_info
->tmac_vld_ip_oflow
) << 32 |
6176 le32_to_cpu(stat_info
->tmac_vld_ip
);
6178 (u64
)le32_to_cpu(stat_info
->tmac_drop_ip_oflow
) << 32 |
6179 le32_to_cpu(stat_info
->tmac_drop_ip
);
6181 (u64
)le32_to_cpu(stat_info
->tmac_icmp_oflow
) << 32 |
6182 le32_to_cpu(stat_info
->tmac_icmp
);
6184 (u64
)le32_to_cpu(stat_info
->tmac_rst_tcp_oflow
) << 32 |
6185 le32_to_cpu(stat_info
->tmac_rst_tcp
);
6186 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_tcp
);
6187 tmp_stats
[i
++] = (u64
)le32_to_cpu(stat_info
->tmac_udp_oflow
) << 32 |
6188 le32_to_cpu(stat_info
->tmac_udp
);
6190 (u64
)le32_to_cpu(stat_info
->rmac_vld_frms_oflow
) << 32 |
6191 le32_to_cpu(stat_info
->rmac_vld_frms
);
6193 (u64
)le32_to_cpu(stat_info
->rmac_data_octets_oflow
) << 32 |
6194 le32_to_cpu(stat_info
->rmac_data_octets
);
6195 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_fcs_err_frms
);
6196 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_drop_frms
);
6198 (u64
)le32_to_cpu(stat_info
->rmac_vld_mcst_frms_oflow
) << 32 |
6199 le32_to_cpu(stat_info
->rmac_vld_mcst_frms
);
6201 (u64
)le32_to_cpu(stat_info
->rmac_vld_bcst_frms_oflow
) << 32 |
6202 le32_to_cpu(stat_info
->rmac_vld_bcst_frms
);
6203 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_in_rng_len_err_frms
);
6204 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_out_rng_len_err_frms
);
6205 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_long_frms
);
6206 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_pause_ctrl_frms
);
6207 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_unsup_ctrl_frms
);
6209 (u64
)le32_to_cpu(stat_info
->rmac_ttl_octets_oflow
) << 32 |
6210 le32_to_cpu(stat_info
->rmac_ttl_octets
);
6212 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ucst_frms_oflow
)
6213 << 32 | le32_to_cpu(stat_info
->rmac_accepted_ucst_frms
);
6215 (u64
)le32_to_cpu(stat_info
->rmac_accepted_nucst_frms_oflow
)
6216 << 32 | le32_to_cpu(stat_info
->rmac_accepted_nucst_frms
);
6218 (u64
)le32_to_cpu(stat_info
->rmac_discarded_frms_oflow
) << 32 |
6219 le32_to_cpu(stat_info
->rmac_discarded_frms
);
6221 (u64
)le32_to_cpu(stat_info
->rmac_drop_events_oflow
)
6222 << 32 | le32_to_cpu(stat_info
->rmac_drop_events
);
6223 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_less_fb_octets
);
6224 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_frms
);
6226 (u64
)le32_to_cpu(stat_info
->rmac_usized_frms_oflow
) << 32 |
6227 le32_to_cpu(stat_info
->rmac_usized_frms
);
6229 (u64
)le32_to_cpu(stat_info
->rmac_osized_frms_oflow
) << 32 |
6230 le32_to_cpu(stat_info
->rmac_osized_frms
);
6232 (u64
)le32_to_cpu(stat_info
->rmac_frag_frms_oflow
) << 32 |
6233 le32_to_cpu(stat_info
->rmac_frag_frms
);
6235 (u64
)le32_to_cpu(stat_info
->rmac_jabber_frms_oflow
) << 32 |
6236 le32_to_cpu(stat_info
->rmac_jabber_frms
);
6237 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_64_frms
);
6238 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_65_127_frms
);
6239 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_128_255_frms
);
6240 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_256_511_frms
);
6241 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_512_1023_frms
);
6242 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_1024_1518_frms
);
6244 (u64
)le32_to_cpu(stat_info
->rmac_ip_oflow
) << 32 |
6245 le32_to_cpu(stat_info
->rmac_ip
);
6246 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ip_octets
);
6247 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_hdr_err_ip
);
6249 (u64
)le32_to_cpu(stat_info
->rmac_drop_ip_oflow
) << 32 |
6250 le32_to_cpu(stat_info
->rmac_drop_ip
);
6252 (u64
)le32_to_cpu(stat_info
->rmac_icmp_oflow
) << 32 |
6253 le32_to_cpu(stat_info
->rmac_icmp
);
6254 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_tcp
);
6256 (u64
)le32_to_cpu(stat_info
->rmac_udp_oflow
) << 32 |
6257 le32_to_cpu(stat_info
->rmac_udp
);
6259 (u64
)le32_to_cpu(stat_info
->rmac_err_drp_udp_oflow
) << 32 |
6260 le32_to_cpu(stat_info
->rmac_err_drp_udp
);
6261 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_err_sym
);
6262 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q0
);
6263 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q1
);
6264 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q2
);
6265 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q3
);
6266 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q4
);
6267 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q5
);
6268 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q6
);
6269 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q7
);
6270 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q0
);
6271 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q1
);
6272 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q2
);
6273 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q3
);
6274 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q4
);
6275 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q5
);
6276 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q6
);
6277 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q7
);
6279 (u64
)le32_to_cpu(stat_info
->rmac_pause_cnt_oflow
) << 32 |
6280 le32_to_cpu(stat_info
->rmac_pause_cnt
);
6281 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_data_err_cnt
);
6282 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_ctrl_err_cnt
);
6284 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ip_oflow
) << 32 |
6285 le32_to_cpu(stat_info
->rmac_accepted_ip
);
6286 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_err_tcp
);
6287 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_req_cnt
);
6288 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_cnt
);
6289 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_rtry_cnt
);
6290 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_cnt
);
6291 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_rd_ack_cnt
);
6292 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_req_cnt
);
6293 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_cnt
);
6294 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_rtry_cnt
);
6295 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_cnt
);
6296 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_disc_cnt
);
6297 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_wr_ack_cnt
);
6298 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txp_wr_cnt
);
6299 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_rd_cnt
);
6300 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_wr_cnt
);
6301 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_rd_cnt
);
6302 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_wr_cnt
);
6303 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txf_rd_cnt
);
6304 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxf_wr_cnt
);
6306 /* Enhanced statistics exist only for Hercules */
6307 if(sp
->device_type
== XFRAME_II_DEVICE
) {
6309 le64_to_cpu(stat_info
->rmac_ttl_1519_4095_frms
);
6311 le64_to_cpu(stat_info
->rmac_ttl_4096_8191_frms
);
6313 le64_to_cpu(stat_info
->rmac_ttl_8192_max_frms
);
6314 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_gt_max_frms
);
6315 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_osized_alt_frms
);
6316 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_jabber_alt_frms
);
6317 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_gt_max_alt_frms
);
6318 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_vlan_frms
);
6319 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_len_discard
);
6320 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_fcs_discard
);
6321 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_pf_discard
);
6322 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_da_discard
);
6323 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_red_discard
);
6324 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_rts_discard
);
6325 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_ingm_full_discard
);
6326 tmp_stats
[i
++] = le32_to_cpu(stat_info
->link_fault_cnt
);
6330 tmp_stats
[i
++] = stat_info
->sw_stat
.single_ecc_errs
;
6331 tmp_stats
[i
++] = stat_info
->sw_stat
.double_ecc_errs
;
6332 tmp_stats
[i
++] = stat_info
->sw_stat
.parity_err_cnt
;
6333 tmp_stats
[i
++] = stat_info
->sw_stat
.serious_err_cnt
;
6334 tmp_stats
[i
++] = stat_info
->sw_stat
.soft_reset_cnt
;
6335 tmp_stats
[i
++] = stat_info
->sw_stat
.fifo_full_cnt
;
6336 for (k
= 0; k
< MAX_RX_RINGS
; k
++)
6337 tmp_stats
[i
++] = stat_info
->sw_stat
.ring_full_cnt
[k
];
6338 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_high
;
6339 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_low
;
6340 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_high
;
6341 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_low
;
6342 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_high
;
6343 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_low
;
6344 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_high
;
6345 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_low
;
6346 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_high
;
6347 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_low
;
6348 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_high
;
6349 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_low
;
6350 tmp_stats
[i
++] = stat_info
->sw_stat
.clubbed_frms_cnt
;
6351 tmp_stats
[i
++] = stat_info
->sw_stat
.sending_both
;
6352 tmp_stats
[i
++] = stat_info
->sw_stat
.outof_sequence_pkts
;
6353 tmp_stats
[i
++] = stat_info
->sw_stat
.flush_max_pkts
;
6354 if (stat_info
->sw_stat
.num_aggregations
) {
6355 u64 tmp
= stat_info
->sw_stat
.sum_avg_pkts_aggregated
;
6358 * Since 64-bit divide does not work on all platforms,
6359 * do repeated subtraction.
6361 while (tmp
>= stat_info
->sw_stat
.num_aggregations
) {
6362 tmp
-= stat_info
->sw_stat
.num_aggregations
;
6365 tmp_stats
[i
++] = count
;
6369 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_alloc_fail_cnt
;
6370 tmp_stats
[i
++] = stat_info
->sw_stat
.pci_map_fail_cnt
;
6371 tmp_stats
[i
++] = stat_info
->sw_stat
.watchdog_timer_cnt
;
6372 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_allocated
;
6373 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_freed
;
6374 tmp_stats
[i
++] = stat_info
->sw_stat
.link_up_cnt
;
6375 tmp_stats
[i
++] = stat_info
->sw_stat
.link_down_cnt
;
6376 tmp_stats
[i
++] = stat_info
->sw_stat
.link_up_time
;
6377 tmp_stats
[i
++] = stat_info
->sw_stat
.link_down_time
;
6379 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_buf_abort_cnt
;
6380 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_desc_abort_cnt
;
6381 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_parity_err_cnt
;
6382 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_link_loss_cnt
;
6383 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_list_proc_err_cnt
;
6385 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_parity_err_cnt
;
6386 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_abort_cnt
;
6387 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_parity_abort_cnt
;
6388 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_rda_fail_cnt
;
6389 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_unkn_prot_cnt
;
6390 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_fcs_err_cnt
;
6391 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_buf_size_err_cnt
;
6392 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_rxd_corrupt_cnt
;
6393 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_unkn_err_cnt
;
6394 tmp_stats
[i
++] = stat_info
->sw_stat
.tda_err_cnt
;
6395 tmp_stats
[i
++] = stat_info
->sw_stat
.pfc_err_cnt
;
6396 tmp_stats
[i
++] = stat_info
->sw_stat
.pcc_err_cnt
;
6397 tmp_stats
[i
++] = stat_info
->sw_stat
.tti_err_cnt
;
6398 tmp_stats
[i
++] = stat_info
->sw_stat
.tpa_err_cnt
;
6399 tmp_stats
[i
++] = stat_info
->sw_stat
.sm_err_cnt
;
6400 tmp_stats
[i
++] = stat_info
->sw_stat
.lso_err_cnt
;
6401 tmp_stats
[i
++] = stat_info
->sw_stat
.mac_tmac_err_cnt
;
6402 tmp_stats
[i
++] = stat_info
->sw_stat
.mac_rmac_err_cnt
;
6403 tmp_stats
[i
++] = stat_info
->sw_stat
.xgxs_txgxs_err_cnt
;
6404 tmp_stats
[i
++] = stat_info
->sw_stat
.xgxs_rxgxs_err_cnt
;
6405 tmp_stats
[i
++] = stat_info
->sw_stat
.rc_err_cnt
;
6406 tmp_stats
[i
++] = stat_info
->sw_stat
.prc_pcix_err_cnt
;
6407 tmp_stats
[i
++] = stat_info
->sw_stat
.rpa_err_cnt
;
6408 tmp_stats
[i
++] = stat_info
->sw_stat
.rda_err_cnt
;
6409 tmp_stats
[i
++] = stat_info
->sw_stat
.rti_err_cnt
;
6410 tmp_stats
[i
++] = stat_info
->sw_stat
.mc_err_cnt
;
6413 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
6415 return (XENA_REG_SPACE
);
6419 static u32
s2io_ethtool_get_rx_csum(struct net_device
* dev
)
6421 struct s2io_nic
*sp
= dev
->priv
;
6423 return (sp
->rx_csum
);
6426 static int s2io_ethtool_set_rx_csum(struct net_device
*dev
, u32 data
)
6428 struct s2io_nic
*sp
= dev
->priv
;
6438 static int s2io_get_eeprom_len(struct net_device
*dev
)
6440 return (XENA_EEPROM_SPACE
);
6443 static int s2io_get_sset_count(struct net_device
*dev
, int sset
)
6445 struct s2io_nic
*sp
= dev
->priv
;
6449 return S2IO_TEST_LEN
;
6451 switch(sp
->device_type
) {
6452 case XFRAME_I_DEVICE
:
6453 return XFRAME_I_STAT_LEN
;
6454 case XFRAME_II_DEVICE
:
6455 return XFRAME_II_STAT_LEN
;
6464 static void s2io_ethtool_get_strings(struct net_device
*dev
,
6465 u32 stringset
, u8
* data
)
6468 struct s2io_nic
*sp
= dev
->priv
;
6470 switch (stringset
) {
6472 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
6475 stat_size
= sizeof(ethtool_xena_stats_keys
);
6476 memcpy(data
, ðtool_xena_stats_keys
,stat_size
);
6477 if(sp
->device_type
== XFRAME_II_DEVICE
) {
6478 memcpy(data
+ stat_size
,
6479 ðtool_enhanced_stats_keys
,
6480 sizeof(ethtool_enhanced_stats_keys
));
6481 stat_size
+= sizeof(ethtool_enhanced_stats_keys
);
6484 memcpy(data
+ stat_size
, ðtool_driver_stats_keys
,
6485 sizeof(ethtool_driver_stats_keys
));
6489 static int s2io_ethtool_op_set_tx_csum(struct net_device
*dev
, u32 data
)
6492 dev
->features
|= NETIF_F_IP_CSUM
;
6494 dev
->features
&= ~NETIF_F_IP_CSUM
;
6499 static u32
s2io_ethtool_op_get_tso(struct net_device
*dev
)
6501 return (dev
->features
& NETIF_F_TSO
) != 0;
6503 static int s2io_ethtool_op_set_tso(struct net_device
*dev
, u32 data
)
6506 dev
->features
|= (NETIF_F_TSO
| NETIF_F_TSO6
);
6508 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
);
6513 static const struct ethtool_ops netdev_ethtool_ops
= {
6514 .get_settings
= s2io_ethtool_gset
,
6515 .set_settings
= s2io_ethtool_sset
,
6516 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
6517 .get_regs_len
= s2io_ethtool_get_regs_len
,
6518 .get_regs
= s2io_ethtool_gregs
,
6519 .get_link
= ethtool_op_get_link
,
6520 .get_eeprom_len
= s2io_get_eeprom_len
,
6521 .get_eeprom
= s2io_ethtool_geeprom
,
6522 .set_eeprom
= s2io_ethtool_seeprom
,
6523 .get_ringparam
= s2io_ethtool_gringparam
,
6524 .get_pauseparam
= s2io_ethtool_getpause_data
,
6525 .set_pauseparam
= s2io_ethtool_setpause_data
,
6526 .get_rx_csum
= s2io_ethtool_get_rx_csum
,
6527 .set_rx_csum
= s2io_ethtool_set_rx_csum
,
6528 .set_tx_csum
= s2io_ethtool_op_set_tx_csum
,
6529 .set_sg
= ethtool_op_set_sg
,
6530 .get_tso
= s2io_ethtool_op_get_tso
,
6531 .set_tso
= s2io_ethtool_op_set_tso
,
6532 .set_ufo
= ethtool_op_set_ufo
,
6533 .self_test
= s2io_ethtool_test
,
6534 .get_strings
= s2io_ethtool_get_strings
,
6535 .phys_id
= s2io_ethtool_idnic
,
6536 .get_ethtool_stats
= s2io_get_ethtool_stats
,
6537 .get_sset_count
= s2io_get_sset_count
,
6541 * s2io_ioctl - Entry point for the Ioctl
6542 * @dev : Device pointer.
6543 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6544 * a proprietary structure used to pass information to the driver.
6545 * @cmd : This is used to distinguish between the different commands that
6546 * can be passed to the IOCTL functions.
6548 * Currently there are no special functionality supported in IOCTL, hence
6549 * function always return EOPNOTSUPPORTED
6552 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
6558 * s2io_change_mtu - entry point to change MTU size for the device.
6559 * @dev : device pointer.
6560 * @new_mtu : the new MTU size for the device.
6561 * Description: A driver entry point to change MTU size for the device.
6562 * Before changing the MTU the device must be stopped.
6564 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6568 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
6570 struct s2io_nic
*sp
= dev
->priv
;
6573 if ((new_mtu
< MIN_MTU
) || (new_mtu
> S2IO_JUMBO_SIZE
)) {
6574 DBG_PRINT(ERR_DBG
, "%s: MTU size is invalid.\n",
6580 if (netif_running(dev
)) {
6582 netif_stop_queue(dev
);
6583 ret
= s2io_card_up(sp
);
6585 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6589 if (netif_queue_stopped(dev
))
6590 netif_wake_queue(dev
);
6591 } else { /* Device is down */
6592 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6593 u64 val64
= new_mtu
;
6595 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
6602 * s2io_tasklet - Bottom half of the ISR.
6603 * @dev_adr : address of the device structure in dma_addr_t format.
6605 * This is the tasklet or the bottom half of the ISR. This is
6606 * an extension of the ISR which is scheduled by the scheduler to be run
6607 * when the load on the CPU is low. All low priority tasks of the ISR can
6608 * be pushed into the tasklet. For now the tasklet is used only to
6609 * replenish the Rx buffers in the Rx buffer descriptors.
6614 static void s2io_tasklet(unsigned long dev_addr
)
6616 struct net_device
*dev
= (struct net_device
*) dev_addr
;
6617 struct s2io_nic
*sp
= dev
->priv
;
6619 struct mac_info
*mac_control
;
6620 struct config_param
*config
;
6622 mac_control
= &sp
->mac_control
;
6623 config
= &sp
->config
;
6625 if (!TASKLET_IN_USE
) {
6626 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6627 ret
= fill_rx_buffers(sp
, i
);
6628 if (ret
== -ENOMEM
) {
6629 DBG_PRINT(INFO_DBG
, "%s: Out of ",
6631 DBG_PRINT(INFO_DBG
, "memory in tasklet\n");
6633 } else if (ret
== -EFILL
) {
6635 "%s: Rx Ring %d is full\n",
6640 clear_bit(0, (&sp
->tasklet_status
));
6645 * s2io_set_link - Set the LInk status
6646 * @data: long pointer to device private structue
6647 * Description: Sets the link status for the adapter
6650 static void s2io_set_link(struct work_struct
*work
)
6652 struct s2io_nic
*nic
= container_of(work
, struct s2io_nic
, set_link_task
);
6653 struct net_device
*dev
= nic
->dev
;
6654 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6660 if (!netif_running(dev
))
6663 if (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
))) {
6664 /* The card is being reset, no point doing anything */
6668 subid
= nic
->pdev
->subsystem_device
;
6669 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
6671 * Allow a small delay for the NICs self initiated
6672 * cleanup to complete.
6677 val64
= readq(&bar0
->adapter_status
);
6678 if (LINK_IS_UP(val64
)) {
6679 if (!(readq(&bar0
->adapter_control
) & ADAPTER_CNTL_EN
)) {
6680 if (verify_xena_quiescence(nic
)) {
6681 val64
= readq(&bar0
->adapter_control
);
6682 val64
|= ADAPTER_CNTL_EN
;
6683 writeq(val64
, &bar0
->adapter_control
);
6684 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6685 nic
->device_type
, subid
)) {
6686 val64
= readq(&bar0
->gpio_control
);
6687 val64
|= GPIO_CTRL_GPIO_0
;
6688 writeq(val64
, &bar0
->gpio_control
);
6689 val64
= readq(&bar0
->gpio_control
);
6691 val64
|= ADAPTER_LED_ON
;
6692 writeq(val64
, &bar0
->adapter_control
);
6694 nic
->device_enabled_once
= TRUE
;
6696 DBG_PRINT(ERR_DBG
, "%s: Error: ", dev
->name
);
6697 DBG_PRINT(ERR_DBG
, "device is not Quiescent\n");
6698 netif_stop_queue(dev
);
6701 val64
= readq(&bar0
->adapter_control
);
6702 val64
|= ADAPTER_LED_ON
;
6703 writeq(val64
, &bar0
->adapter_control
);
6704 s2io_link(nic
, LINK_UP
);
6706 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
6708 val64
= readq(&bar0
->gpio_control
);
6709 val64
&= ~GPIO_CTRL_GPIO_0
;
6710 writeq(val64
, &bar0
->gpio_control
);
6711 val64
= readq(&bar0
->gpio_control
);
6714 val64
= readq(&bar0
->adapter_control
);
6715 val64
= val64
&(~ADAPTER_LED_ON
);
6716 writeq(val64
, &bar0
->adapter_control
);
6717 s2io_link(nic
, LINK_DOWN
);
6719 clear_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
));
6725 static int set_rxd_buffer_pointer(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6727 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
6728 u64
*temp2
, int size
)
6730 struct net_device
*dev
= sp
->dev
;
6731 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
6733 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
6734 struct RxD1
*rxdp1
= (struct RxD1
*)rxdp
;
6737 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
6739 * As Rx frame are not going to be processed,
6740 * using same mapped address for the Rxd
6743 rxdp1
->Buffer0_ptr
= *temp0
;
6745 *skb
= dev_alloc_skb(size
);
6747 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
6748 DBG_PRINT(INFO_DBG
, "memory to allocate ");
6749 DBG_PRINT(INFO_DBG
, "1 buf mode SKBs\n");
6750 sp
->mac_control
.stats_info
->sw_stat
. \
6751 mem_alloc_fail_cnt
++;
6754 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6755 += (*skb
)->truesize
;
6756 /* storing the mapped addr in a temp variable
6757 * such it will be used for next rxd whose
6758 * Host Control is NULL
6760 rxdp1
->Buffer0_ptr
= *temp0
=
6761 pci_map_single( sp
->pdev
, (*skb
)->data
,
6762 size
- NET_IP_ALIGN
,
6763 PCI_DMA_FROMDEVICE
);
6764 if( (rxdp1
->Buffer0_ptr
== 0) ||
6765 (rxdp1
->Buffer0_ptr
== DMA_ERROR_CODE
)) {
6766 goto memalloc_failed
;
6768 rxdp
->Host_Control
= (unsigned long) (*skb
);
6770 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
6771 struct RxD3
*rxdp3
= (struct RxD3
*)rxdp
;
6772 /* Two buffer Mode */
6774 rxdp3
->Buffer2_ptr
= *temp2
;
6775 rxdp3
->Buffer0_ptr
= *temp0
;
6776 rxdp3
->Buffer1_ptr
= *temp1
;
6778 *skb
= dev_alloc_skb(size
);
6780 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
6781 DBG_PRINT(INFO_DBG
, "memory to allocate ");
6782 DBG_PRINT(INFO_DBG
, "2 buf mode SKBs\n");
6783 sp
->mac_control
.stats_info
->sw_stat
. \
6784 mem_alloc_fail_cnt
++;
6787 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6788 += (*skb
)->truesize
;
6789 rxdp3
->Buffer2_ptr
= *temp2
=
6790 pci_map_single(sp
->pdev
, (*skb
)->data
,
6792 PCI_DMA_FROMDEVICE
);
6793 if( (rxdp3
->Buffer2_ptr
== 0) ||
6794 (rxdp3
->Buffer2_ptr
== DMA_ERROR_CODE
)) {
6795 goto memalloc_failed
;
6797 rxdp3
->Buffer0_ptr
= *temp0
=
6798 pci_map_single( sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6799 PCI_DMA_FROMDEVICE
);
6800 if( (rxdp3
->Buffer0_ptr
== 0) ||
6801 (rxdp3
->Buffer0_ptr
== DMA_ERROR_CODE
)) {
6802 pci_unmap_single (sp
->pdev
,
6803 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6804 dev
->mtu
+ 4, PCI_DMA_FROMDEVICE
);
6805 goto memalloc_failed
;
6807 rxdp
->Host_Control
= (unsigned long) (*skb
);
6809 /* Buffer-1 will be dummy buffer not used */
6810 rxdp3
->Buffer1_ptr
= *temp1
=
6811 pci_map_single(sp
->pdev
, ba
->ba_1
, BUF1_LEN
,
6812 PCI_DMA_FROMDEVICE
);
6813 if( (rxdp3
->Buffer1_ptr
== 0) ||
6814 (rxdp3
->Buffer1_ptr
== DMA_ERROR_CODE
)) {
6815 pci_unmap_single (sp
->pdev
,
6816 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
6817 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
6818 pci_unmap_single (sp
->pdev
,
6819 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6820 dev
->mtu
+ 4, PCI_DMA_FROMDEVICE
);
6821 goto memalloc_failed
;
6827 stats
->pci_map_fail_cnt
++;
6828 stats
->mem_freed
+= (*skb
)->truesize
;
6829 dev_kfree_skb(*skb
);
6833 static void set_rxd_buffer_size(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6836 struct net_device
*dev
= sp
->dev
;
6837 if (sp
->rxd_mode
== RXD_MODE_1
) {
6838 rxdp
->Control_2
= SET_BUFFER0_SIZE_1( size
- NET_IP_ALIGN
);
6839 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
6840 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
6841 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
6842 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3( dev
->mtu
+ 4);
6846 static int rxd_owner_bit_reset(struct s2io_nic
*sp
)
6848 int i
, j
, k
, blk_cnt
= 0, size
;
6849 struct mac_info
* mac_control
= &sp
->mac_control
;
6850 struct config_param
*config
= &sp
->config
;
6851 struct net_device
*dev
= sp
->dev
;
6852 struct RxD_t
*rxdp
= NULL
;
6853 struct sk_buff
*skb
= NULL
;
6854 struct buffAdd
*ba
= NULL
;
6855 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
6857 /* Calculate the size based on ring mode */
6858 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
6859 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
6860 if (sp
->rxd_mode
== RXD_MODE_1
)
6861 size
+= NET_IP_ALIGN
;
6862 else if (sp
->rxd_mode
== RXD_MODE_3B
)
6863 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
6865 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6866 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
6867 (rxd_count
[sp
->rxd_mode
] +1);
6869 for (j
= 0; j
< blk_cnt
; j
++) {
6870 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
6871 rxdp
= mac_control
->rings
[i
].
6872 rx_blocks
[j
].rxds
[k
].virt_addr
;
6873 if(sp
->rxd_mode
== RXD_MODE_3B
)
6874 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
6875 if (set_rxd_buffer_pointer(sp
, rxdp
, ba
,
6876 &skb
,(u64
*)&temp0_64
,
6883 set_rxd_buffer_size(sp
, rxdp
, size
);
6885 /* flip the Ownership bit to Hardware */
6886 rxdp
->Control_1
|= RXD_OWN_XENA
;
6894 static int s2io_add_isr(struct s2io_nic
* sp
)
6897 struct net_device
*dev
= sp
->dev
;
6900 if (sp
->config
.intr_type
== MSI_X
)
6901 ret
= s2io_enable_msi_x(sp
);
6903 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
6904 sp
->config
.intr_type
= INTA
;
6907 /* Store the values of the MSIX table in the struct s2io_nic structure */
6908 store_xmsi_data(sp
);
6910 /* After proper initialization of H/W, register ISR */
6911 if (sp
->config
.intr_type
== MSI_X
) {
6912 int i
, msix_tx_cnt
=0,msix_rx_cnt
=0;
6914 for (i
=1; (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
); i
++) {
6915 if (sp
->s2io_entries
[i
].type
== MSIX_FIFO_TYPE
) {
6916 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-TX",
6918 err
= request_irq(sp
->entries
[i
].vector
,
6919 s2io_msix_fifo_handle
, 0, sp
->desc
[i
],
6920 sp
->s2io_entries
[i
].arg
);
6921 /* If either data or addr is zero print it */
6922 if(!(sp
->msix_info
[i
].addr
&&
6923 sp
->msix_info
[i
].data
)) {
6924 DBG_PRINT(ERR_DBG
, "%s @ Addr:0x%llx "
6925 "Data:0x%lx\n",sp
->desc
[i
],
6926 (unsigned long long)
6927 sp
->msix_info
[i
].addr
,
6929 ntohl(sp
->msix_info
[i
].data
));
6934 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-RX",
6936 err
= request_irq(sp
->entries
[i
].vector
,
6937 s2io_msix_ring_handle
, 0, sp
->desc
[i
],
6938 sp
->s2io_entries
[i
].arg
);
6939 /* If either data or addr is zero print it */
6940 if(!(sp
->msix_info
[i
].addr
&&
6941 sp
->msix_info
[i
].data
)) {
6942 DBG_PRINT(ERR_DBG
, "%s @ Addr:0x%llx "
6943 "Data:0x%lx\n",sp
->desc
[i
],
6944 (unsigned long long)
6945 sp
->msix_info
[i
].addr
,
6947 ntohl(sp
->msix_info
[i
].data
));
6953 remove_msix_isr(sp
);
6954 DBG_PRINT(ERR_DBG
,"%s:MSI-X-%d registration "
6955 "failed\n", dev
->name
, i
);
6956 DBG_PRINT(ERR_DBG
, "%s: defaulting to INTA\n",
6958 sp
->config
.intr_type
= INTA
;
6961 sp
->s2io_entries
[i
].in_use
= MSIX_REGISTERED_SUCCESS
;
6964 printk(KERN_INFO
"MSI-X-TX %d entries enabled\n",
6966 printk(KERN_INFO
"MSI-X-RX %d entries enabled\n",
6970 if (sp
->config
.intr_type
== INTA
) {
6971 err
= request_irq((int) sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
6974 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
6981 static void s2io_rem_isr(struct s2io_nic
* sp
)
6983 if (sp
->config
.intr_type
== MSI_X
)
6984 remove_msix_isr(sp
);
6986 remove_inta_isr(sp
);
6989 static void do_s2io_card_down(struct s2io_nic
* sp
, int do_io
)
6992 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6993 unsigned long flags
;
6994 register u64 val64
= 0;
6995 struct config_param
*config
;
6996 config
= &sp
->config
;
6998 if (!is_s2io_card_up(sp
))
7001 del_timer_sync(&sp
->alarm_timer
);
7002 /* If s2io_set_link task is executing, wait till it completes. */
7003 while (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
))) {
7006 clear_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7010 napi_disable(&sp
->napi
);
7012 /* disable Tx and Rx traffic on the NIC */
7019 tasklet_kill(&sp
->task
);
7021 /* Check if the device is Quiescent and then Reset the NIC */
7023 /* As per the HW requirement we need to replenish the
7024 * receive buffer to avoid the ring bump. Since there is
7025 * no intention of processing the Rx frame at this pointwe are
7026 * just settting the ownership bit of rxd in Each Rx
7027 * ring to HW and set the appropriate buffer size
7028 * based on the ring mode
7030 rxd_owner_bit_reset(sp
);
7032 val64
= readq(&bar0
->adapter_status
);
7033 if (verify_xena_quiescence(sp
)) {
7034 if(verify_pcc_quiescent(sp
, sp
->device_enabled_once
))
7042 "s2io_close:Device not Quiescent ");
7043 DBG_PRINT(ERR_DBG
, "adaper status reads 0x%llx\n",
7044 (unsigned long long) val64
);
7051 /* Free all Tx buffers */
7052 free_tx_buffers(sp
);
7054 /* Free all Rx buffers */
7055 spin_lock_irqsave(&sp
->rx_lock
, flags
);
7056 free_rx_buffers(sp
);
7057 spin_unlock_irqrestore(&sp
->rx_lock
, flags
);
7059 clear_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
));
7062 static void s2io_card_down(struct s2io_nic
* sp
)
7064 do_s2io_card_down(sp
, 1);
7067 static int s2io_card_up(struct s2io_nic
* sp
)
7070 struct mac_info
*mac_control
;
7071 struct config_param
*config
;
7072 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
7075 /* Initialize the H/W I/O registers */
7078 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
7086 * Initializing the Rx buffers. For now we are considering only 1
7087 * Rx ring and initializing buffers into 30 Rx blocks
7089 mac_control
= &sp
->mac_control
;
7090 config
= &sp
->config
;
7092 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7093 if ((ret
= fill_rx_buffers(sp
, i
))) {
7094 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
7097 free_rx_buffers(sp
);
7100 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
7101 atomic_read(&sp
->rx_bufs_left
[i
]));
7104 /* Initialise napi */
7106 napi_enable(&sp
->napi
);
7108 /* Maintain the state prior to the open */
7109 if (sp
->promisc_flg
)
7110 sp
->promisc_flg
= 0;
7111 if (sp
->m_cast_flg
) {
7113 sp
->all_multi_pos
= 0;
7116 /* Setting its receive mode */
7117 s2io_set_multicast(dev
);
7120 /* Initialize max aggregatable pkts per session based on MTU */
7121 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
7122 /* Check if we can use(if specified) user provided value */
7123 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
7124 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
7127 /* Enable Rx Traffic and interrupts on the NIC */
7128 if (start_nic(sp
)) {
7129 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
7131 free_rx_buffers(sp
);
7135 /* Add interrupt service routine */
7136 if (s2io_add_isr(sp
) != 0) {
7137 if (sp
->config
.intr_type
== MSI_X
)
7140 free_rx_buffers(sp
);
7144 S2IO_TIMER_CONF(sp
->alarm_timer
, s2io_alarm_handle
, sp
, (HZ
/2));
7146 /* Enable tasklet for the device */
7147 tasklet_init(&sp
->task
, s2io_tasklet
, (unsigned long) dev
);
7149 /* Enable select interrupts */
7150 en_dis_err_alarms(sp
, ENA_ALL_INTRS
, ENABLE_INTRS
);
7151 if (sp
->config
.intr_type
!= INTA
)
7152 en_dis_able_nic_intrs(sp
, ENA_ALL_INTRS
, DISABLE_INTRS
);
7154 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
7155 interruptible
|= TX_PIC_INTR
;
7156 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7159 set_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7164 * s2io_restart_nic - Resets the NIC.
7165 * @data : long pointer to the device private structure
7167 * This function is scheduled to be run by the s2io_tx_watchdog
7168 * function after 0.5 secs to reset the NIC. The idea is to reduce
7169 * the run time of the watch dog routine which is run holding a
7173 static void s2io_restart_nic(struct work_struct
*work
)
7175 struct s2io_nic
*sp
= container_of(work
, struct s2io_nic
, rst_timer_task
);
7176 struct net_device
*dev
= sp
->dev
;
7180 if (!netif_running(dev
))
7184 if (s2io_card_up(sp
)) {
7185 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
7188 netif_wake_queue(dev
);
7189 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n",
7196 * s2io_tx_watchdog - Watchdog for transmit side.
7197 * @dev : Pointer to net device structure
7199 * This function is triggered if the Tx Queue is stopped
7200 * for a pre-defined amount of time when the Interface is still up.
7201 * If the Interface is jammed in such a situation, the hardware is
7202 * reset (by s2io_close) and restarted again (by s2io_open) to
7203 * overcome any problem that might have been caused in the hardware.
7208 static void s2io_tx_watchdog(struct net_device
*dev
)
7210 struct s2io_nic
*sp
= dev
->priv
;
7212 if (netif_carrier_ok(dev
)) {
7213 sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
++;
7214 schedule_work(&sp
->rst_timer_task
);
7215 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
++;
7220 * rx_osm_handler - To perform some OS related operations on SKB.
7221 * @sp: private member of the device structure,pointer to s2io_nic structure.
7222 * @skb : the socket buffer pointer.
7223 * @len : length of the packet
7224 * @cksum : FCS checksum of the frame.
7225 * @ring_no : the ring from which this RxD was extracted.
7227 * This function is called by the Rx interrupt serivce routine to perform
7228 * some OS related operations on the SKB before passing it to the upper
7229 * layers. It mainly checks if the checksum is OK, if so adds it to the
7230 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7231 * to the upper layer. If the checksum is wrong, it increments the Rx
7232 * packet error count, frees the SKB and returns error.
7234 * SUCCESS on success and -1 on failure.
7236 static int rx_osm_handler(struct ring_info
*ring_data
, struct RxD_t
* rxdp
)
7238 struct s2io_nic
*sp
= ring_data
->nic
;
7239 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
7240 struct sk_buff
*skb
= (struct sk_buff
*)
7241 ((unsigned long) rxdp
->Host_Control
);
7242 int ring_no
= ring_data
->ring_no
;
7243 u16 l3_csum
, l4_csum
;
7244 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
7251 /* Check for parity error */
7253 sp
->mac_control
.stats_info
->sw_stat
.parity_err_cnt
++;
7255 err_mask
= err
>> 48;
7258 sp
->mac_control
.stats_info
->sw_stat
.
7259 rx_parity_err_cnt
++;
7263 sp
->mac_control
.stats_info
->sw_stat
.
7268 sp
->mac_control
.stats_info
->sw_stat
.
7269 rx_parity_abort_cnt
++;
7273 sp
->mac_control
.stats_info
->sw_stat
.
7278 sp
->mac_control
.stats_info
->sw_stat
.
7283 sp
->mac_control
.stats_info
->sw_stat
.
7288 sp
->mac_control
.stats_info
->sw_stat
.
7289 rx_buf_size_err_cnt
++;
7293 sp
->mac_control
.stats_info
->sw_stat
.
7294 rx_rxd_corrupt_cnt
++;
7298 sp
->mac_control
.stats_info
->sw_stat
.
7303 * Drop the packet if bad transfer code. Exception being
7304 * 0x5, which could be due to unsupported IPv6 extension header.
7305 * In this case, we let stack handle the packet.
7306 * Note that in this case, since checksum will be incorrect,
7307 * stack will validate the same.
7309 if (err_mask
!= 0x5) {
7310 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%x\n",
7311 dev
->name
, err_mask
);
7312 sp
->stats
.rx_crc_errors
++;
7313 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
7316 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
7317 rxdp
->Host_Control
= 0;
7322 /* Updating statistics */
7323 sp
->stats
.rx_packets
++;
7324 rxdp
->Host_Control
= 0;
7325 if (sp
->rxd_mode
== RXD_MODE_1
) {
7326 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
7328 sp
->stats
.rx_bytes
+= len
;
7331 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7332 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
7333 int get_off
= ring_data
->rx_curr_get_info
.offset
;
7334 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
7335 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
7336 unsigned char *buff
= skb_push(skb
, buf0_len
);
7338 struct buffAdd
*ba
= &ring_data
->ba
[get_block
][get_off
];
7339 sp
->stats
.rx_bytes
+= buf0_len
+ buf2_len
;
7340 memcpy(buff
, ba
->ba_0
, buf0_len
);
7341 skb_put(skb
, buf2_len
);
7344 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) && ((!sp
->lro
) ||
7345 (sp
->lro
&& (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
)))) &&
7347 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
7348 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
7349 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
7351 * NIC verifies if the Checksum of the received
7352 * frame is Ok or not and accordingly returns
7353 * a flag in the RxD.
7355 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
7361 ret
= s2io_club_tcp_session(skb
->data
, &tcp
,
7365 case 3: /* Begin anew */
7368 case 1: /* Aggregate */
7370 lro_append_pkt(sp
, lro
,
7374 case 4: /* Flush session */
7376 lro_append_pkt(sp
, lro
,
7378 queue_rx_frame(lro
->parent
);
7379 clear_lro_session(lro
);
7380 sp
->mac_control
.stats_info
->
7381 sw_stat
.flush_max_pkts
++;
7384 case 2: /* Flush both */
7385 lro
->parent
->data_len
=
7387 sp
->mac_control
.stats_info
->
7388 sw_stat
.sending_both
++;
7389 queue_rx_frame(lro
->parent
);
7390 clear_lro_session(lro
);
7392 case 0: /* sessions exceeded */
7393 case -1: /* non-TCP or not
7397 * First pkt in session not
7398 * L3/L4 aggregatable
7403 "%s: Samadhana!!\n",
7410 * Packet with erroneous checksum, let the
7411 * upper layers deal with it.
7413 skb
->ip_summed
= CHECKSUM_NONE
;
7416 skb
->ip_summed
= CHECKSUM_NONE
;
7418 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
7420 skb
->protocol
= eth_type_trans(skb
, dev
);
7421 if ((sp
->vlgrp
&& RXD_GET_VLAN_TAG(rxdp
->Control_2
) &&
7423 /* Queueing the vlan frame to the upper layer */
7425 vlan_hwaccel_receive_skb(skb
, sp
->vlgrp
,
7426 RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7428 vlan_hwaccel_rx(skb
, sp
->vlgrp
,
7429 RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7432 netif_receive_skb(skb
);
7438 queue_rx_frame(skb
);
7440 dev
->last_rx
= jiffies
;
7442 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
7447 * s2io_link - stops/starts the Tx queue.
7448 * @sp : private member of the device structure, which is a pointer to the
7449 * s2io_nic structure.
7450 * @link : inidicates whether link is UP/DOWN.
7452 * This function stops/starts the Tx queue depending on whether the link
7453 * status of the NIC is is down or up. This is called by the Alarm
7454 * interrupt handler whenever a link change interrupt comes up.
7459 static void s2io_link(struct s2io_nic
* sp
, int link
)
7461 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
7463 if (link
!= sp
->last_link_state
) {
7465 if (link
== LINK_DOWN
) {
7466 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
7467 netif_carrier_off(dev
);
7468 if(sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
)
7469 sp
->mac_control
.stats_info
->sw_stat
.link_up_time
=
7470 jiffies
- sp
->start_time
;
7471 sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
++;
7473 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
7474 if (sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
)
7475 sp
->mac_control
.stats_info
->sw_stat
.link_down_time
=
7476 jiffies
- sp
->start_time
;
7477 sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
++;
7478 netif_carrier_on(dev
);
7481 sp
->last_link_state
= link
;
7482 sp
->start_time
= jiffies
;
7486 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7487 * @sp : private member of the device structure, which is a pointer to the
7488 * s2io_nic structure.
7490 * This function initializes a few of the PCI and PCI-X configuration registers
7491 * with recommended values.
7496 static void s2io_init_pci(struct s2io_nic
* sp
)
7498 u16 pci_cmd
= 0, pcix_cmd
= 0;
7500 /* Enable Data Parity Error Recovery in PCI-X command register. */
7501 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7503 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7505 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7508 /* Set the PErr Response bit in PCI command register. */
7509 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7510 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
7511 (pci_cmd
| PCI_COMMAND_PARITY
));
7512 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7515 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
)
7517 if ((tx_fifo_num
> MAX_TX_FIFOS
) ||
7518 (tx_fifo_num
< FIFO_DEFAULT_NUM
)) {
7519 DBG_PRINT(ERR_DBG
, "s2io: Requested number of tx fifos "
7520 "(%d) not supported\n", tx_fifo_num
);
7522 ((tx_fifo_num
> MAX_TX_FIFOS
)? MAX_TX_FIFOS
:
7523 ((tx_fifo_num
< FIFO_DEFAULT_NUM
) ? FIFO_DEFAULT_NUM
:
7525 DBG_PRINT(ERR_DBG
, "s2io: Default to %d ", tx_fifo_num
);
7526 DBG_PRINT(ERR_DBG
, "tx fifos\n");
7529 if ( rx_ring_num
> 8) {
7530 DBG_PRINT(ERR_DBG
, "s2io: Requested number of Rx rings not "
7532 DBG_PRINT(ERR_DBG
, "s2io: Default to 8 Rx rings\n");
7535 if (*dev_intr_type
!= INTA
)
7538 if ((*dev_intr_type
!= INTA
) && (*dev_intr_type
!= MSI_X
)) {
7539 DBG_PRINT(ERR_DBG
, "s2io: Wrong intr_type requested. "
7540 "Defaulting to INTA\n");
7541 *dev_intr_type
= INTA
;
7544 if ((*dev_intr_type
== MSI_X
) &&
7545 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
7546 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
7547 DBG_PRINT(ERR_DBG
, "s2io: Xframe I does not support MSI_X. "
7548 "Defaulting to INTA\n");
7549 *dev_intr_type
= INTA
;
7552 if ((rx_ring_mode
!= 1) && (rx_ring_mode
!= 2)) {
7553 DBG_PRINT(ERR_DBG
, "s2io: Requested ring mode not supported\n");
7554 DBG_PRINT(ERR_DBG
, "s2io: Defaulting to 1-buffer mode\n");
7561 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7562 * or Traffic class respectively.
7563 * @nic: device private variable
7564 * Description: The function configures the receive steering to
7565 * desired receive ring.
7566 * Return Value: SUCCESS on success and
7567 * '-1' on failure (endian settings incorrect).
7569 static int rts_ds_steer(struct s2io_nic
*nic
, u8 ds_codepoint
, u8 ring
)
7571 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
7572 register u64 val64
= 0;
7574 if (ds_codepoint
> 63)
7577 val64
= RTS_DS_MEM_DATA(ring
);
7578 writeq(val64
, &bar0
->rts_ds_mem_data
);
7580 val64
= RTS_DS_MEM_CTRL_WE
|
7581 RTS_DS_MEM_CTRL_STROBE_NEW_CMD
|
7582 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint
);
7584 writeq(val64
, &bar0
->rts_ds_mem_ctrl
);
7586 return wait_for_cmd_complete(&bar0
->rts_ds_mem_ctrl
,
7587 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED
,
7592 * s2io_init_nic - Initialization of the adapter .
7593 * @pdev : structure containing the PCI related information of the device.
7594 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7596 * The function initializes an adapter identified by the pci_dec structure.
7597 * All OS related initialization including memory and device structure and
7598 * initlaization of the device private variable is done. Also the swapper
7599 * control register is initialized to enable read and write into the I/O
7600 * registers of the device.
7602 * returns 0 on success and negative on failure.
7605 static int __devinit
7606 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
7608 struct s2io_nic
*sp
;
7609 struct net_device
*dev
;
7611 int dma_flag
= FALSE
;
7612 u32 mac_up
, mac_down
;
7613 u64 val64
= 0, tmp64
= 0;
7614 struct XENA_dev_config __iomem
*bar0
= NULL
;
7616 struct mac_info
*mac_control
;
7617 struct config_param
*config
;
7619 u8 dev_intr_type
= intr_type
;
7620 DECLARE_MAC_BUF(mac
);
7622 if ((ret
= s2io_verify_parm(pdev
, &dev_intr_type
)))
7625 if ((ret
= pci_enable_device(pdev
))) {
7627 "s2io_init_nic: pci_enable_device failed\n");
7631 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
7632 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 64bit DMA\n");
7634 if (pci_set_consistent_dma_mask
7635 (pdev
, DMA_64BIT_MASK
)) {
7637 "Unable to obtain 64bit DMA for \
7638 consistent allocations\n");
7639 pci_disable_device(pdev
);
7642 } else if (!pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) {
7643 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 32bit DMA\n");
7645 pci_disable_device(pdev
);
7648 if ((ret
= pci_request_regions(pdev
, s2io_driver_name
))) {
7649 DBG_PRINT(ERR_DBG
, "%s: Request Regions failed - %x \n", __FUNCTION__
, ret
);
7650 pci_disable_device(pdev
);
7654 dev
= alloc_etherdev(sizeof(struct s2io_nic
));
7656 DBG_PRINT(ERR_DBG
, "Device allocation failed\n");
7657 pci_disable_device(pdev
);
7658 pci_release_regions(pdev
);
7662 pci_set_master(pdev
);
7663 pci_set_drvdata(pdev
, dev
);
7664 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7666 /* Private member variable initialized to s2io NIC structure */
7668 memset(sp
, 0, sizeof(struct s2io_nic
));
7671 sp
->high_dma_flag
= dma_flag
;
7672 sp
->device_enabled_once
= FALSE
;
7673 if (rx_ring_mode
== 1)
7674 sp
->rxd_mode
= RXD_MODE_1
;
7675 if (rx_ring_mode
== 2)
7676 sp
->rxd_mode
= RXD_MODE_3B
;
7678 sp
->config
.intr_type
= dev_intr_type
;
7680 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
7681 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
7682 sp
->device_type
= XFRAME_II_DEVICE
;
7684 sp
->device_type
= XFRAME_I_DEVICE
;
7686 sp
->lro
= lro_enable
;
7688 /* Initialize some PCI/PCI-X fields of the NIC. */
7692 * Setting the device configuration parameters.
7693 * Most of these parameters can be specified by the user during
7694 * module insertion as they are module loadable parameters. If
7695 * these parameters are not not specified during load time, they
7696 * are initialized with default values.
7698 mac_control
= &sp
->mac_control
;
7699 config
= &sp
->config
;
7701 config
->napi
= napi
;
7703 /* Tx side parameters. */
7704 config
->tx_fifo_num
= tx_fifo_num
;
7705 for (i
= 0; i
< MAX_TX_FIFOS
; i
++) {
7706 config
->tx_cfg
[i
].fifo_len
= tx_fifo_len
[i
];
7707 config
->tx_cfg
[i
].fifo_priority
= i
;
7710 /* mapping the QoS priority to the configured fifos */
7711 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
7712 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
][i
];
7714 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
7715 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7716 config
->tx_cfg
[i
].f_no_snoop
=
7717 (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
7718 if (config
->tx_cfg
[i
].fifo_len
< 65) {
7719 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
7723 /* + 2 because one Txd for skb->data and one Txd for UFO */
7724 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
7726 /* Rx side parameters. */
7727 config
->rx_ring_num
= rx_ring_num
;
7728 for (i
= 0; i
< MAX_RX_RINGS
; i
++) {
7729 config
->rx_cfg
[i
].num_rxd
= rx_ring_sz
[i
] *
7730 (rxd_count
[sp
->rxd_mode
] + 1);
7731 config
->rx_cfg
[i
].ring_priority
= i
;
7734 for (i
= 0; i
< rx_ring_num
; i
++) {
7735 config
->rx_cfg
[i
].ring_org
= RING_ORG_BUFF1
;
7736 config
->rx_cfg
[i
].f_no_snoop
=
7737 (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
7740 /* Setting Mac Control parameters */
7741 mac_control
->rmac_pause_time
= rmac_pause_time
;
7742 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
7743 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
7746 /* Initialize Ring buffer parameters. */
7747 for (i
= 0; i
< config
->rx_ring_num
; i
++)
7748 atomic_set(&sp
->rx_bufs_left
[i
], 0);
7750 /* initialize the shared memory used by the NIC and the host */
7751 if (init_shared_mem(sp
)) {
7752 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n",
7755 goto mem_alloc_failed
;
7758 sp
->bar0
= ioremap(pci_resource_start(pdev
, 0),
7759 pci_resource_len(pdev
, 0));
7761 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem1\n",
7764 goto bar0_remap_failed
;
7767 sp
->bar1
= ioremap(pci_resource_start(pdev
, 2),
7768 pci_resource_len(pdev
, 2));
7770 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem2\n",
7773 goto bar1_remap_failed
;
7776 dev
->irq
= pdev
->irq
;
7777 dev
->base_addr
= (unsigned long) sp
->bar0
;
7779 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7780 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
7781 mac_control
->tx_FIFO_start
[j
] = (struct TxFIFO_element __iomem
*)
7782 (sp
->bar1
+ (j
* 0x00020000));
7785 /* Driver entry points */
7786 dev
->open
= &s2io_open
;
7787 dev
->stop
= &s2io_close
;
7788 dev
->hard_start_xmit
= &s2io_xmit
;
7789 dev
->get_stats
= &s2io_get_stats
;
7790 dev
->set_multicast_list
= &s2io_set_multicast
;
7791 dev
->do_ioctl
= &s2io_ioctl
;
7792 dev
->set_mac_address
= &s2io_set_mac_addr
;
7793 dev
->change_mtu
= &s2io_change_mtu
;
7794 SET_ETHTOOL_OPS(dev
, &netdev_ethtool_ops
);
7795 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
7796 dev
->vlan_rx_register
= s2io_vlan_rx_register
;
7799 * will use eth_mac_addr() for dev->set_mac_address
7800 * mac address will be set every time dev->open() is called
7802 netif_napi_add(dev
, &sp
->napi
, s2io_poll
, 32);
7804 #ifdef CONFIG_NET_POLL_CONTROLLER
7805 dev
->poll_controller
= s2io_netpoll
;
7808 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
7809 if (sp
->high_dma_flag
== TRUE
)
7810 dev
->features
|= NETIF_F_HIGHDMA
;
7811 dev
->features
|= NETIF_F_TSO
;
7812 dev
->features
|= NETIF_F_TSO6
;
7813 if ((sp
->device_type
& XFRAME_II_DEVICE
) && (ufo
)) {
7814 dev
->features
|= NETIF_F_UFO
;
7815 dev
->features
|= NETIF_F_HW_CSUM
;
7818 dev
->tx_timeout
= &s2io_tx_watchdog
;
7819 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
7820 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
7821 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
7823 pci_save_state(sp
->pdev
);
7825 /* Setting swapper control on the NIC, for proper reset operation */
7826 if (s2io_set_swapper(sp
)) {
7827 DBG_PRINT(ERR_DBG
, "%s:swapper settings are wrong\n",
7830 goto set_swap_failed
;
7833 /* Verify if the Herc works on the slot its placed into */
7834 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7835 mode
= s2io_verify_pci_mode(sp
);
7837 DBG_PRINT(ERR_DBG
, "%s: ", __FUNCTION__
);
7838 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
7840 goto set_swap_failed
;
7844 /* Not needed for Herc */
7845 if (sp
->device_type
& XFRAME_I_DEVICE
) {
7847 * Fix for all "FFs" MAC address problems observed on
7850 fix_mac_address(sp
);
7855 * MAC address initialization.
7856 * For now only one mac address will be read and used.
7859 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
7860 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET
);
7861 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
7862 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
7863 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
, S2IO_BIT_RESET
);
7864 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
7865 mac_down
= (u32
) tmp64
;
7866 mac_up
= (u32
) (tmp64
>> 32);
7868 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
7869 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
7870 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
7871 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
7872 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
7873 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
7875 /* Set the factory defined MAC address initially */
7876 dev
->addr_len
= ETH_ALEN
;
7877 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
7878 memcpy(dev
->perm_addr
, dev
->dev_addr
, ETH_ALEN
);
7880 /* initialize number of multicast & unicast MAC entries variables */
7881 if (sp
->device_type
== XFRAME_I_DEVICE
) {
7882 config
->max_mc_addr
= S2IO_XENA_MAX_MC_ADDRESSES
;
7883 config
->max_mac_addr
= S2IO_XENA_MAX_MAC_ADDRESSES
;
7884 config
->mc_start_offset
= S2IO_XENA_MC_ADDR_START_OFFSET
;
7885 } else if (sp
->device_type
== XFRAME_II_DEVICE
) {
7886 config
->max_mc_addr
= S2IO_HERC_MAX_MC_ADDRESSES
;
7887 config
->max_mac_addr
= S2IO_HERC_MAX_MAC_ADDRESSES
;
7888 config
->mc_start_offset
= S2IO_HERC_MC_ADDR_START_OFFSET
;
7891 /* store mac addresses from CAM to s2io_nic structure */
7892 do_s2io_store_unicast_mc(sp
);
7894 /* Store the values of the MSIX table in the s2io_nic structure */
7895 store_xmsi_data(sp
);
7896 /* reset Nic and bring it to known state */
7900 * Initialize the tasklet status and link state flags
7901 * and the card state parameter
7903 sp
->tasklet_status
= 0;
7906 /* Initialize spinlocks */
7907 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
7908 spin_lock_init(&mac_control
->fifos
[i
].tx_lock
);
7911 spin_lock_init(&sp
->put_lock
);
7912 spin_lock_init(&sp
->rx_lock
);
7915 * SXE-002: Configure link and activity LED to init state
7918 subid
= sp
->pdev
->subsystem_device
;
7919 if ((subid
& 0xFF) >= 0x07) {
7920 val64
= readq(&bar0
->gpio_control
);
7921 val64
|= 0x0000800000000000ULL
;
7922 writeq(val64
, &bar0
->gpio_control
);
7923 val64
= 0x0411040400000000ULL
;
7924 writeq(val64
, (void __iomem
*) bar0
+ 0x2700);
7925 val64
= readq(&bar0
->gpio_control
);
7928 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
7930 if (register_netdev(dev
)) {
7931 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
7933 goto register_failed
;
7936 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2007 Neterion Inc.\n");
7937 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n",dev
->name
,
7938 sp
->product_name
, pdev
->revision
);
7939 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
7940 s2io_driver_version
);
7941 DBG_PRINT(ERR_DBG
, "%s: MAC ADDR: %s\n",
7942 dev
->name
, print_mac(mac
, dev
->dev_addr
));
7943 DBG_PRINT(ERR_DBG
, "SERIAL NUMBER: %s\n", sp
->serial_num
);
7944 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7945 mode
= s2io_print_pci_mode(sp
);
7947 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
7949 unregister_netdev(dev
);
7950 goto set_swap_failed
;
7953 switch(sp
->rxd_mode
) {
7955 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
7959 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
7965 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
7966 switch(sp
->config
.intr_type
) {
7968 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
7971 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
7975 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
7978 DBG_PRINT(ERR_DBG
, "%s: UDP Fragmentation Offload(UFO)"
7979 " enabled\n", dev
->name
);
7980 /* Initialize device name */
7981 sprintf(sp
->name
, "%s Neterion %s", dev
->name
, sp
->product_name
);
7984 * Make Link state as off at this point, when the Link change
7985 * interrupt comes the state will be automatically changed to
7988 netif_carrier_off(dev
);
7999 free_shared_mem(sp
);
8000 pci_disable_device(pdev
);
8001 pci_release_regions(pdev
);
8002 pci_set_drvdata(pdev
, NULL
);
8009 * s2io_rem_nic - Free the PCI device
8010 * @pdev: structure containing the PCI related information of the device.
8011 * Description: This function is called by the Pci subsystem to release a
8012 * PCI device and free up all resource held up by the device. This could
8013 * be in response to a Hot plug event or when the driver is to be removed
8017 static void __devexit
s2io_rem_nic(struct pci_dev
*pdev
)
8019 struct net_device
*dev
=
8020 (struct net_device
*) pci_get_drvdata(pdev
);
8021 struct s2io_nic
*sp
;
8024 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
8028 flush_scheduled_work();
8031 unregister_netdev(dev
);
8033 free_shared_mem(sp
);
8036 pci_release_regions(pdev
);
8037 pci_set_drvdata(pdev
, NULL
);
8039 pci_disable_device(pdev
);
8043 * s2io_starter - Entry point for the driver
8044 * Description: This function is the entry point for the driver. It verifies
8045 * the module loadable parameters and initializes PCI configuration space.
8048 static int __init
s2io_starter(void)
8050 return pci_register_driver(&s2io_driver
);
8054 * s2io_closer - Cleanup routine for the driver
8055 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8058 static __exit
void s2io_closer(void)
8060 pci_unregister_driver(&s2io_driver
);
8061 DBG_PRINT(INIT_DBG
, "cleanup done\n");
8064 module_init(s2io_starter
);
8065 module_exit(s2io_closer
);
8067 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
8068 struct tcphdr
**tcp
, struct RxD_t
*rxdp
)
8071 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
8073 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
8074 DBG_PRINT(INIT_DBG
,"%s: Non-TCP frames not supported for LRO\n",
8080 * By default the VLAN field in the MAC is stripped by the card, if this
8081 * feature is turned off in rx_pa_cfg register, then the ip_off field
8082 * has to be shifted by a further 2 bytes
8085 case 0: /* DIX type */
8086 case 4: /* DIX type with VLAN */
8087 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
8089 /* LLC, SNAP etc are considered non-mergeable */
8094 *ip
= (struct iphdr
*)((u8
*)buffer
+ ip_off
);
8095 ip_len
= (u8
)((*ip
)->ihl
);
8097 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
8102 static int check_for_socket_match(struct lro
*lro
, struct iphdr
*ip
,
8105 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8106 if ((lro
->iph
->saddr
!= ip
->saddr
) || (lro
->iph
->daddr
!= ip
->daddr
) ||
8107 (lro
->tcph
->source
!= tcp
->source
) || (lro
->tcph
->dest
!= tcp
->dest
))
8112 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
8114 return(ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2));
8117 static void initiate_new_session(struct lro
*lro
, u8
*l2h
,
8118 struct iphdr
*ip
, struct tcphdr
*tcp
, u32 tcp_pyld_len
)
8120 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8124 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
8125 lro
->tcp_ack
= tcp
->ack_seq
;
8127 lro
->total_len
= ntohs(ip
->tot_len
);
8130 * check if we saw TCP timestamp. Other consistency checks have
8131 * already been done.
8133 if (tcp
->doff
== 8) {
8135 ptr
= (__be32
*)(tcp
+1);
8137 lro
->cur_tsval
= ntohl(*(ptr
+1));
8138 lro
->cur_tsecr
= *(ptr
+2);
8143 static void update_L3L4_header(struct s2io_nic
*sp
, struct lro
*lro
)
8145 struct iphdr
*ip
= lro
->iph
;
8146 struct tcphdr
*tcp
= lro
->tcph
;
8148 struct stat_block
*statinfo
= sp
->mac_control
.stats_info
;
8149 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8151 /* Update L3 header */
8152 ip
->tot_len
= htons(lro
->total_len
);
8154 nchk
= ip_fast_csum((u8
*)lro
->iph
, ip
->ihl
);
8157 /* Update L4 header */
8158 tcp
->ack_seq
= lro
->tcp_ack
;
8159 tcp
->window
= lro
->window
;
8161 /* Update tsecr field if this session has timestamps enabled */
8163 __be32
*ptr
= (__be32
*)(tcp
+ 1);
8164 *(ptr
+2) = lro
->cur_tsecr
;
8167 /* Update counters required for calculation of
8168 * average no. of packets aggregated.
8170 statinfo
->sw_stat
.sum_avg_pkts_aggregated
+= lro
->sg_num
;
8171 statinfo
->sw_stat
.num_aggregations
++;
8174 static void aggregate_new_rx(struct lro
*lro
, struct iphdr
*ip
,
8175 struct tcphdr
*tcp
, u32 l4_pyld
)
8177 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8178 lro
->total_len
+= l4_pyld
;
8179 lro
->frags_len
+= l4_pyld
;
8180 lro
->tcp_next_seq
+= l4_pyld
;
8183 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8184 lro
->tcp_ack
= tcp
->ack_seq
;
8185 lro
->window
= tcp
->window
;
8189 /* Update tsecr and tsval from this packet */
8190 ptr
= (__be32
*)(tcp
+1);
8191 lro
->cur_tsval
= ntohl(*(ptr
+1));
8192 lro
->cur_tsecr
= *(ptr
+ 2);
8196 static int verify_l3_l4_lro_capable(struct lro
*l_lro
, struct iphdr
*ip
,
8197 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
8201 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8203 if (!tcp_pyld_len
) {
8204 /* Runt frame or a pure ack */
8208 if (ip
->ihl
!= 5) /* IP has options */
8211 /* If we see CE codepoint in IP header, packet is not mergeable */
8212 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
8215 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8216 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
|| tcp
->syn
|| tcp
->fin
||
8217 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
8219 * Currently recognize only the ack control word and
8220 * any other control field being set would result in
8221 * flushing the LRO session
8227 * Allow only one TCP timestamp option. Don't aggregate if
8228 * any other options are detected.
8230 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
8233 if (tcp
->doff
== 8) {
8234 ptr
= (u8
*)(tcp
+ 1);
8235 while (*ptr
== TCPOPT_NOP
)
8237 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
8240 /* Ensure timestamp value increases monotonically */
8242 if (l_lro
->cur_tsval
> ntohl(*((__be32
*)(ptr
+2))))
8245 /* timestamp echo reply should be non-zero */
8246 if (*((__be32
*)(ptr
+6)) == 0)
8254 s2io_club_tcp_session(u8
*buffer
, u8
**tcp
, u32
*tcp_len
, struct lro
**lro
,
8255 struct RxD_t
*rxdp
, struct s2io_nic
*sp
)
8258 struct tcphdr
*tcph
;
8261 if (!(ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
8263 DBG_PRINT(INFO_DBG
,"IP Saddr: %x Daddr: %x\n",
8264 ip
->saddr
, ip
->daddr
);
8269 tcph
= (struct tcphdr
*)*tcp
;
8270 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
8271 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
8272 struct lro
*l_lro
= &sp
->lro0_n
[i
];
8273 if (l_lro
->in_use
) {
8274 if (check_for_socket_match(l_lro
, ip
, tcph
))
8276 /* Sock pair matched */
8279 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
8280 DBG_PRINT(INFO_DBG
, "%s:Out of order. expected "
8281 "0x%x, actual 0x%x\n", __FUNCTION__
,
8282 (*lro
)->tcp_next_seq
,
8285 sp
->mac_control
.stats_info
->
8286 sw_stat
.outof_sequence_pkts
++;
8291 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,*tcp_len
))
8292 ret
= 1; /* Aggregate */
8294 ret
= 2; /* Flush both */
8300 /* Before searching for available LRO objects,
8301 * check if the pkt is L3/L4 aggregatable. If not
8302 * don't create new LRO session. Just send this
8305 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
)) {
8309 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
8310 struct lro
*l_lro
= &sp
->lro0_n
[i
];
8311 if (!(l_lro
->in_use
)) {
8313 ret
= 3; /* Begin anew */
8319 if (ret
== 0) { /* sessions exceeded */
8320 DBG_PRINT(INFO_DBG
,"%s:All LRO sessions already in use\n",
8328 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
);
8331 update_L3L4_header(sp
, *lro
);
8334 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
8335 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
8336 update_L3L4_header(sp
, *lro
);
8337 ret
= 4; /* Flush the LRO */
8341 DBG_PRINT(ERR_DBG
,"%s:Dont know, can't say!!\n",
8349 static void clear_lro_session(struct lro
*lro
)
8351 static u16 lro_struct_size
= sizeof(struct lro
);
8353 memset(lro
, 0, lro_struct_size
);
8356 static void queue_rx_frame(struct sk_buff
*skb
)
8358 struct net_device
*dev
= skb
->dev
;
8360 skb
->protocol
= eth_type_trans(skb
, dev
);
8362 netif_receive_skb(skb
);
8367 static void lro_append_pkt(struct s2io_nic
*sp
, struct lro
*lro
,
8368 struct sk_buff
*skb
,
8371 struct sk_buff
*first
= lro
->parent
;
8373 first
->len
+= tcp_len
;
8374 first
->data_len
= lro
->frags_len
;
8375 skb_pull(skb
, (skb
->len
- tcp_len
));
8376 if (skb_shinfo(first
)->frag_list
)
8377 lro
->last_frag
->next
= skb
;
8379 skb_shinfo(first
)->frag_list
= skb
;
8380 first
->truesize
+= skb
->truesize
;
8381 lro
->last_frag
= skb
;
8382 sp
->mac_control
.stats_info
->sw_stat
.clubbed_frms_cnt
++;
8387 * s2io_io_error_detected - called when PCI error is detected
8388 * @pdev: Pointer to PCI device
8389 * @state: The current pci connection state
8391 * This function is called after a PCI bus error affecting
8392 * this device has been detected.
8394 static pci_ers_result_t
s2io_io_error_detected(struct pci_dev
*pdev
,
8395 pci_channel_state_t state
)
8397 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8398 struct s2io_nic
*sp
= netdev
->priv
;
8400 netif_device_detach(netdev
);
8402 if (netif_running(netdev
)) {
8403 /* Bring down the card, while avoiding PCI I/O */
8404 do_s2io_card_down(sp
, 0);
8406 pci_disable_device(pdev
);
8408 return PCI_ERS_RESULT_NEED_RESET
;
8412 * s2io_io_slot_reset - called after the pci bus has been reset.
8413 * @pdev: Pointer to PCI device
8415 * Restart the card from scratch, as if from a cold-boot.
8416 * At this point, the card has exprienced a hard reset,
8417 * followed by fixups by BIOS, and has its config space
8418 * set up identically to what it was at cold boot.
8420 static pci_ers_result_t
s2io_io_slot_reset(struct pci_dev
*pdev
)
8422 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8423 struct s2io_nic
*sp
= netdev
->priv
;
8425 if (pci_enable_device(pdev
)) {
8426 printk(KERN_ERR
"s2io: "
8427 "Cannot re-enable PCI device after reset.\n");
8428 return PCI_ERS_RESULT_DISCONNECT
;
8431 pci_set_master(pdev
);
8434 return PCI_ERS_RESULT_RECOVERED
;
8438 * s2io_io_resume - called when traffic can start flowing again.
8439 * @pdev: Pointer to PCI device
8441 * This callback is called when the error recovery driver tells
8442 * us that its OK to resume normal operation.
8444 static void s2io_io_resume(struct pci_dev
*pdev
)
8446 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8447 struct s2io_nic
*sp
= netdev
->priv
;
8449 if (netif_running(netdev
)) {
8450 if (s2io_card_up(sp
)) {
8451 printk(KERN_ERR
"s2io: "
8452 "Can't bring device back up after reset.\n");
8456 if (s2io_set_mac_addr(netdev
, netdev
->dev_addr
) == FAILURE
) {
8458 printk(KERN_ERR
"s2io: "
8459 "Can't resetore mac addr after reset.\n");
8464 netif_device_attach(netdev
);
8465 netif_wake_queue(netdev
);