1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
49 #include <linux/namei.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/selinux.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/inotify.h>
72 extern struct list_head audit_filter_list
[];
73 extern int audit_ever_enabled
;
75 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
76 * for saving names from getname(). */
77 #define AUDIT_NAMES 20
79 /* Indicates that audit should log the full pathname. */
80 #define AUDIT_NAME_FULL -1
82 /* no execve audit message should be longer than this (userspace limits) */
83 #define MAX_EXECVE_AUDIT_LEN 7500
85 /* number of audit rules */
88 /* determines whether we collect data for signals sent */
91 /* When fs/namei.c:getname() is called, we store the pointer in name and
92 * we don't let putname() free it (instead we free all of the saved
93 * pointers at syscall exit time).
95 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
98 int name_len
; /* number of name's characters to log */
99 unsigned name_put
; /* call __putname() for this name */
109 struct audit_aux_data
{
110 struct audit_aux_data
*next
;
114 #define AUDIT_AUX_IPCPERM 0
116 /* Number of target pids per aux struct. */
117 #define AUDIT_AUX_PIDS 16
119 struct audit_aux_data_mq_open
{
120 struct audit_aux_data d
;
126 struct audit_aux_data_mq_sendrecv
{
127 struct audit_aux_data d
;
130 unsigned int msg_prio
;
131 struct timespec abs_timeout
;
134 struct audit_aux_data_mq_notify
{
135 struct audit_aux_data d
;
137 struct sigevent notification
;
140 struct audit_aux_data_mq_getsetattr
{
141 struct audit_aux_data d
;
143 struct mq_attr mqstat
;
146 struct audit_aux_data_ipcctl
{
147 struct audit_aux_data d
;
149 unsigned long qbytes
;
156 struct audit_aux_data_execve
{
157 struct audit_aux_data d
;
160 struct mm_struct
*mm
;
163 struct audit_aux_data_socketcall
{
164 struct audit_aux_data d
;
166 unsigned long args
[0];
169 struct audit_aux_data_sockaddr
{
170 struct audit_aux_data d
;
175 struct audit_aux_data_fd_pair
{
176 struct audit_aux_data d
;
180 struct audit_aux_data_pids
{
181 struct audit_aux_data d
;
182 pid_t target_pid
[AUDIT_AUX_PIDS
];
183 uid_t target_auid
[AUDIT_AUX_PIDS
];
184 uid_t target_uid
[AUDIT_AUX_PIDS
];
185 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
186 u32 target_sid
[AUDIT_AUX_PIDS
];
187 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
191 struct audit_tree_refs
{
192 struct audit_tree_refs
*next
;
193 struct audit_chunk
*c
[31];
196 /* The per-task audit context. */
197 struct audit_context
{
198 int dummy
; /* must be the first element */
199 int in_syscall
; /* 1 if task is in a syscall */
200 enum audit_state state
;
201 unsigned int serial
; /* serial number for record */
202 struct timespec ctime
; /* time of syscall entry */
203 int major
; /* syscall number */
204 unsigned long argv
[4]; /* syscall arguments */
205 int return_valid
; /* return code is valid */
206 long return_code
;/* syscall return code */
207 int auditable
; /* 1 if record should be written */
209 struct audit_names names
[AUDIT_NAMES
];
210 char * filterkey
; /* key for rule that triggered record */
212 struct audit_context
*previous
; /* For nested syscalls */
213 struct audit_aux_data
*aux
;
214 struct audit_aux_data
*aux_pids
;
216 /* Save things to print about task_struct */
218 uid_t uid
, euid
, suid
, fsuid
;
219 gid_t gid
, egid
, sgid
, fsgid
;
220 unsigned long personality
;
226 unsigned int target_sessionid
;
228 char target_comm
[TASK_COMM_LEN
];
230 struct audit_tree_refs
*trees
, *first_trees
;
239 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
240 static inline int open_arg(int flags
, int mask
)
242 int n
= ACC_MODE(flags
);
243 if (flags
& (O_TRUNC
| O_CREAT
))
244 n
|= AUDIT_PERM_WRITE
;
248 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
250 unsigned n
= ctx
->major
;
251 switch (audit_classify_syscall(ctx
->arch
, n
)) {
253 if ((mask
& AUDIT_PERM_WRITE
) &&
254 audit_match_class(AUDIT_CLASS_WRITE
, n
))
256 if ((mask
& AUDIT_PERM_READ
) &&
257 audit_match_class(AUDIT_CLASS_READ
, n
))
259 if ((mask
& AUDIT_PERM_ATTR
) &&
260 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
263 case 1: /* 32bit on biarch */
264 if ((mask
& AUDIT_PERM_WRITE
) &&
265 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
267 if ((mask
& AUDIT_PERM_READ
) &&
268 audit_match_class(AUDIT_CLASS_READ_32
, n
))
270 if ((mask
& AUDIT_PERM_ATTR
) &&
271 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
275 return mask
& ACC_MODE(ctx
->argv
[1]);
277 return mask
& ACC_MODE(ctx
->argv
[2]);
278 case 4: /* socketcall */
279 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
281 return mask
& AUDIT_PERM_EXEC
;
288 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
289 * ->first_trees points to its beginning, ->trees - to the current end of data.
290 * ->tree_count is the number of free entries in array pointed to by ->trees.
291 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
292 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
293 * it's going to remain 1-element for almost any setup) until we free context itself.
294 * References in it _are_ dropped - at the same time we free/drop aux stuff.
297 #ifdef CONFIG_AUDIT_TREE
298 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
300 struct audit_tree_refs
*p
= ctx
->trees
;
301 int left
= ctx
->tree_count
;
303 p
->c
[--left
] = chunk
;
304 ctx
->tree_count
= left
;
313 ctx
->tree_count
= 30;
319 static int grow_tree_refs(struct audit_context
*ctx
)
321 struct audit_tree_refs
*p
= ctx
->trees
;
322 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
328 p
->next
= ctx
->trees
;
330 ctx
->first_trees
= ctx
->trees
;
331 ctx
->tree_count
= 31;
336 static void unroll_tree_refs(struct audit_context
*ctx
,
337 struct audit_tree_refs
*p
, int count
)
339 #ifdef CONFIG_AUDIT_TREE
340 struct audit_tree_refs
*q
;
343 /* we started with empty chain */
344 p
= ctx
->first_trees
;
346 /* if the very first allocation has failed, nothing to do */
351 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
353 audit_put_chunk(q
->c
[n
]);
357 while (n
-- > ctx
->tree_count
) {
358 audit_put_chunk(q
->c
[n
]);
362 ctx
->tree_count
= count
;
366 static void free_tree_refs(struct audit_context
*ctx
)
368 struct audit_tree_refs
*p
, *q
;
369 for (p
= ctx
->first_trees
; p
; p
= q
) {
375 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
377 #ifdef CONFIG_AUDIT_TREE
378 struct audit_tree_refs
*p
;
383 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
384 for (n
= 0; n
< 31; n
++)
385 if (audit_tree_match(p
->c
[n
], tree
))
390 for (n
= ctx
->tree_count
; n
< 31; n
++)
391 if (audit_tree_match(p
->c
[n
], tree
))
398 /* Determine if any context name data matches a rule's watch data */
399 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
401 static int audit_filter_rules(struct task_struct
*tsk
,
402 struct audit_krule
*rule
,
403 struct audit_context
*ctx
,
404 struct audit_names
*name
,
405 enum audit_state
*state
)
407 int i
, j
, need_sid
= 1;
410 for (i
= 0; i
< rule
->field_count
; i
++) {
411 struct audit_field
*f
= &rule
->fields
[i
];
416 result
= audit_comparator(tsk
->pid
, f
->op
, f
->val
);
421 ctx
->ppid
= sys_getppid();
422 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
426 result
= audit_comparator(tsk
->uid
, f
->op
, f
->val
);
429 result
= audit_comparator(tsk
->euid
, f
->op
, f
->val
);
432 result
= audit_comparator(tsk
->suid
, f
->op
, f
->val
);
435 result
= audit_comparator(tsk
->fsuid
, f
->op
, f
->val
);
438 result
= audit_comparator(tsk
->gid
, f
->op
, f
->val
);
441 result
= audit_comparator(tsk
->egid
, f
->op
, f
->val
);
444 result
= audit_comparator(tsk
->sgid
, f
->op
, f
->val
);
447 result
= audit_comparator(tsk
->fsgid
, f
->op
, f
->val
);
450 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
454 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
458 if (ctx
&& ctx
->return_valid
)
459 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
462 if (ctx
&& ctx
->return_valid
) {
464 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
466 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
471 result
= audit_comparator(MAJOR(name
->dev
),
474 for (j
= 0; j
< ctx
->name_count
; j
++) {
475 if (audit_comparator(MAJOR(ctx
->names
[j
].dev
), f
->op
, f
->val
)) {
484 result
= audit_comparator(MINOR(name
->dev
),
487 for (j
= 0; j
< ctx
->name_count
; j
++) {
488 if (audit_comparator(MINOR(ctx
->names
[j
].dev
), f
->op
, f
->val
)) {
497 result
= (name
->ino
== f
->val
);
499 for (j
= 0; j
< ctx
->name_count
; j
++) {
500 if (audit_comparator(ctx
->names
[j
].ino
, f
->op
, f
->val
)) {
508 if (name
&& rule
->watch
->ino
!= (unsigned long)-1)
509 result
= (name
->dev
== rule
->watch
->dev
&&
510 name
->ino
== rule
->watch
->ino
);
514 result
= match_tree_refs(ctx
, rule
->tree
);
519 result
= audit_comparator(tsk
->loginuid
, f
->op
, f
->val
);
521 case AUDIT_SUBJ_USER
:
522 case AUDIT_SUBJ_ROLE
:
523 case AUDIT_SUBJ_TYPE
:
526 /* NOTE: this may return negative values indicating
527 a temporary error. We simply treat this as a
528 match for now to avoid losing information that
529 may be wanted. An error message will also be
533 selinux_get_task_sid(tsk
, &sid
);
536 result
= selinux_audit_rule_match(sid
, f
->type
,
545 case AUDIT_OBJ_LEV_LOW
:
546 case AUDIT_OBJ_LEV_HIGH
:
547 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
550 /* Find files that match */
552 result
= selinux_audit_rule_match(
553 name
->osid
, f
->type
, f
->op
,
556 for (j
= 0; j
< ctx
->name_count
; j
++) {
557 if (selinux_audit_rule_match(
566 /* Find ipc objects that match */
568 struct audit_aux_data
*aux
;
569 for (aux
= ctx
->aux
; aux
;
571 if (aux
->type
== AUDIT_IPC
) {
572 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
573 if (selinux_audit_rule_match(axi
->osid
, f
->type
, f
->op
, f
->se_rule
, ctx
)) {
587 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
589 case AUDIT_FILTERKEY
:
590 /* ignore this field for filtering */
594 result
= audit_match_perm(ctx
, f
->val
);
602 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
603 switch (rule
->action
) {
604 case AUDIT_NEVER
: *state
= AUDIT_DISABLED
; break;
605 case AUDIT_ALWAYS
: *state
= AUDIT_RECORD_CONTEXT
; break;
610 /* At process creation time, we can determine if system-call auditing is
611 * completely disabled for this task. Since we only have the task
612 * structure at this point, we can only check uid and gid.
614 static enum audit_state
audit_filter_task(struct task_struct
*tsk
)
616 struct audit_entry
*e
;
617 enum audit_state state
;
620 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
621 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
, &state
)) {
627 return AUDIT_BUILD_CONTEXT
;
630 /* At syscall entry and exit time, this filter is called if the
631 * audit_state is not low enough that auditing cannot take place, but is
632 * also not high enough that we already know we have to write an audit
633 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
635 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
636 struct audit_context
*ctx
,
637 struct list_head
*list
)
639 struct audit_entry
*e
;
640 enum audit_state state
;
642 if (audit_pid
&& tsk
->tgid
== audit_pid
)
643 return AUDIT_DISABLED
;
646 if (!list_empty(list
)) {
647 int word
= AUDIT_WORD(ctx
->major
);
648 int bit
= AUDIT_BIT(ctx
->major
);
650 list_for_each_entry_rcu(e
, list
, list
) {
651 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
652 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
660 return AUDIT_BUILD_CONTEXT
;
663 /* At syscall exit time, this filter is called if any audit_names[] have been
664 * collected during syscall processing. We only check rules in sublists at hash
665 * buckets applicable to the inode numbers in audit_names[].
666 * Regarding audit_state, same rules apply as for audit_filter_syscall().
668 enum audit_state
audit_filter_inodes(struct task_struct
*tsk
,
669 struct audit_context
*ctx
)
672 struct audit_entry
*e
;
673 enum audit_state state
;
675 if (audit_pid
&& tsk
->tgid
== audit_pid
)
676 return AUDIT_DISABLED
;
679 for (i
= 0; i
< ctx
->name_count
; i
++) {
680 int word
= AUDIT_WORD(ctx
->major
);
681 int bit
= AUDIT_BIT(ctx
->major
);
682 struct audit_names
*n
= &ctx
->names
[i
];
683 int h
= audit_hash_ino((u32
)n
->ino
);
684 struct list_head
*list
= &audit_inode_hash
[h
];
686 if (list_empty(list
))
689 list_for_each_entry_rcu(e
, list
, list
) {
690 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
691 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
)) {
698 return AUDIT_BUILD_CONTEXT
;
701 void audit_set_auditable(struct audit_context
*ctx
)
706 static inline struct audit_context
*audit_get_context(struct task_struct
*tsk
,
710 struct audit_context
*context
= tsk
->audit_context
;
712 if (likely(!context
))
714 context
->return_valid
= return_valid
;
717 * we need to fix up the return code in the audit logs if the actual
718 * return codes are later going to be fixed up by the arch specific
721 * This is actually a test for:
722 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
723 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
725 * but is faster than a bunch of ||
727 if (unlikely(return_code
<= -ERESTARTSYS
) &&
728 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
729 (return_code
!= -ENOIOCTLCMD
))
730 context
->return_code
= -EINTR
;
732 context
->return_code
= return_code
;
734 if (context
->in_syscall
&& !context
->dummy
&& !context
->auditable
) {
735 enum audit_state state
;
737 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
738 if (state
== AUDIT_RECORD_CONTEXT
) {
739 context
->auditable
= 1;
743 state
= audit_filter_inodes(tsk
, context
);
744 if (state
== AUDIT_RECORD_CONTEXT
)
745 context
->auditable
= 1;
751 tsk
->audit_context
= NULL
;
755 static inline void audit_free_names(struct audit_context
*context
)
760 if (context
->auditable
761 ||context
->put_count
+ context
->ino_count
!= context
->name_count
) {
762 printk(KERN_ERR
"%s:%d(:%d): major=%d in_syscall=%d"
763 " name_count=%d put_count=%d"
764 " ino_count=%d [NOT freeing]\n",
766 context
->serial
, context
->major
, context
->in_syscall
,
767 context
->name_count
, context
->put_count
,
769 for (i
= 0; i
< context
->name_count
; i
++) {
770 printk(KERN_ERR
"names[%d] = %p = %s\n", i
,
771 context
->names
[i
].name
,
772 context
->names
[i
].name
?: "(null)");
779 context
->put_count
= 0;
780 context
->ino_count
= 0;
783 for (i
= 0; i
< context
->name_count
; i
++) {
784 if (context
->names
[i
].name
&& context
->names
[i
].name_put
)
785 __putname(context
->names
[i
].name
);
787 context
->name_count
= 0;
788 path_put(&context
->pwd
);
789 context
->pwd
.dentry
= NULL
;
790 context
->pwd
.mnt
= NULL
;
793 static inline void audit_free_aux(struct audit_context
*context
)
795 struct audit_aux_data
*aux
;
797 while ((aux
= context
->aux
)) {
798 context
->aux
= aux
->next
;
801 while ((aux
= context
->aux_pids
)) {
802 context
->aux_pids
= aux
->next
;
807 static inline void audit_zero_context(struct audit_context
*context
,
808 enum audit_state state
)
810 memset(context
, 0, sizeof(*context
));
811 context
->state
= state
;
814 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
816 struct audit_context
*context
;
818 if (!(context
= kmalloc(sizeof(*context
), GFP_KERNEL
)))
820 audit_zero_context(context
, state
);
825 * audit_alloc - allocate an audit context block for a task
828 * Filter on the task information and allocate a per-task audit context
829 * if necessary. Doing so turns on system call auditing for the
830 * specified task. This is called from copy_process, so no lock is
833 int audit_alloc(struct task_struct
*tsk
)
835 struct audit_context
*context
;
836 enum audit_state state
;
838 if (likely(!audit_ever_enabled
))
839 return 0; /* Return if not auditing. */
841 state
= audit_filter_task(tsk
);
842 if (likely(state
== AUDIT_DISABLED
))
845 if (!(context
= audit_alloc_context(state
))) {
846 audit_log_lost("out of memory in audit_alloc");
850 tsk
->audit_context
= context
;
851 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
855 static inline void audit_free_context(struct audit_context
*context
)
857 struct audit_context
*previous
;
861 previous
= context
->previous
;
862 if (previous
|| (count
&& count
< 10)) {
864 printk(KERN_ERR
"audit(:%d): major=%d name_count=%d:"
865 " freeing multiple contexts (%d)\n",
866 context
->serial
, context
->major
,
867 context
->name_count
, count
);
869 audit_free_names(context
);
870 unroll_tree_refs(context
, NULL
, 0);
871 free_tree_refs(context
);
872 audit_free_aux(context
);
873 kfree(context
->filterkey
);
878 printk(KERN_ERR
"audit: freed %d contexts\n", count
);
881 void audit_log_task_context(struct audit_buffer
*ab
)
888 selinux_get_task_sid(current
, &sid
);
892 error
= selinux_sid_to_string(sid
, &ctx
, &len
);
894 if (error
!= -EINVAL
)
899 audit_log_format(ab
, " subj=%s", ctx
);
904 audit_panic("error in audit_log_task_context");
908 EXPORT_SYMBOL(audit_log_task_context
);
910 static void audit_log_task_info(struct audit_buffer
*ab
, struct task_struct
*tsk
)
912 char name
[sizeof(tsk
->comm
)];
913 struct mm_struct
*mm
= tsk
->mm
;
914 struct vm_area_struct
*vma
;
918 get_task_comm(name
, tsk
);
919 audit_log_format(ab
, " comm=");
920 audit_log_untrustedstring(ab
, name
);
923 down_read(&mm
->mmap_sem
);
926 if ((vma
->vm_flags
& VM_EXECUTABLE
) &&
928 audit_log_d_path(ab
, "exe=",
929 &vma
->vm_file
->f_path
);
934 up_read(&mm
->mmap_sem
);
936 audit_log_task_context(ab
);
939 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
940 uid_t auid
, uid_t uid
, unsigned int sessionid
,
943 struct audit_buffer
*ab
;
948 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
952 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
, auid
,
954 if (selinux_sid_to_string(sid
, &s
, &len
)) {
955 audit_log_format(ab
, " obj=(none)");
958 audit_log_format(ab
, " obj=%s", s
);
959 audit_log_format(ab
, " ocomm=");
960 audit_log_untrustedstring(ab
, comm
);
968 * to_send and len_sent accounting are very loose estimates. We aren't
969 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
970 * within about 500 bytes (next page boundry)
972 * why snprintf? an int is up to 12 digits long. if we just assumed when
973 * logging that a[%d]= was going to be 16 characters long we would be wasting
974 * space in every audit message. In one 7500 byte message we can log up to
975 * about 1000 min size arguments. That comes down to about 50% waste of space
976 * if we didn't do the snprintf to find out how long arg_num_len was.
978 static int audit_log_single_execve_arg(struct audit_context
*context
,
979 struct audit_buffer
**ab
,
982 const char __user
*p
,
985 char arg_num_len_buf
[12];
986 const char __user
*tmp_p
= p
;
987 /* how many digits are in arg_num? 3 is the length of a=\n */
988 size_t arg_num_len
= snprintf(arg_num_len_buf
, 12, "%d", arg_num
) + 3;
989 size_t len
, len_left
, to_send
;
990 size_t max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
;
991 unsigned int i
, has_cntl
= 0, too_long
= 0;
994 /* strnlen_user includes the null we don't want to send */
995 len_left
= len
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
998 * We just created this mm, if we can't find the strings
999 * we just copied into it something is _very_ wrong. Similar
1000 * for strings that are too long, we should not have created
1003 <<<<<<< HEAD
:kernel
/auditsc
.c
1004 if (unlikely((len
= -1) || len
> MAX_ARG_STRLEN
- 1)) {
1006 if (unlikely((len
== -1) || len
> MAX_ARG_STRLEN
- 1)) {
1007 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/auditsc
.c
1009 send_sig(SIGKILL
, current
, 0);
1010 <<<<<<< HEAD
:kernel
/auditsc
.c
1013 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/auditsc
.c
1016 /* walk the whole argument looking for non-ascii chars */
1018 if (len_left
> MAX_EXECVE_AUDIT_LEN
)
1019 to_send
= MAX_EXECVE_AUDIT_LEN
;
1022 ret
= copy_from_user(buf
, tmp_p
, to_send
);
1024 * There is no reason for this copy to be short. We just
1025 * copied them here, and the mm hasn't been exposed to user-
1030 send_sig(SIGKILL
, current
, 0);
1031 <<<<<<< HEAD
:kernel
/auditsc
.c
1034 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/auditsc
.c
1036 buf
[to_send
] = '\0';
1037 has_cntl
= audit_string_contains_control(buf
, to_send
);
1040 * hex messages get logged as 2 bytes, so we can only
1041 * send half as much in each message
1043 max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
/ 2;
1046 len_left
-= to_send
;
1048 } while (len_left
> 0);
1052 if (len
> max_execve_audit_len
)
1055 /* rewalk the argument actually logging the message */
1056 for (i
= 0; len_left
> 0; i
++) {
1059 if (len_left
> max_execve_audit_len
)
1060 to_send
= max_execve_audit_len
;
1064 /* do we have space left to send this argument in this ab? */
1065 room_left
= MAX_EXECVE_AUDIT_LEN
- arg_num_len
- *len_sent
;
1067 room_left
-= (to_send
* 2);
1069 room_left
-= to_send
;
1070 if (room_left
< 0) {
1073 *ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EXECVE
);
1079 * first record needs to say how long the original string was
1080 * so we can be sure nothing was lost.
1082 if ((i
== 0) && (too_long
))
1083 <<<<<<< HEAD
:kernel
/auditsc
.c
1084 audit_log_format(*ab
, "a%d_len=%ld ", arg_num
,
1086 audit_log_format(*ab
, "a%d_len=%zu ", arg_num
,
1087 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/auditsc
.c
1088 has_cntl
? 2*len
: len
);
1091 * normally arguments are small enough to fit and we already
1092 * filled buf above when we checked for control characters
1093 * so don't bother with another copy_from_user
1095 if (len
>= max_execve_audit_len
)
1096 ret
= copy_from_user(buf
, p
, to_send
);
1101 send_sig(SIGKILL
, current
, 0);
1102 <<<<<<< HEAD
:kernel
/auditsc
.c
1105 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:kernel
/auditsc
.c
1107 buf
[to_send
] = '\0';
1109 /* actually log it */
1110 audit_log_format(*ab
, "a%d", arg_num
);
1112 audit_log_format(*ab
, "[%d]", i
);
1113 audit_log_format(*ab
, "=");
1115 audit_log_hex(*ab
, buf
, to_send
);
1117 audit_log_format(*ab
, "\"%s\"", buf
);
1118 audit_log_format(*ab
, "\n");
1121 len_left
-= to_send
;
1122 *len_sent
+= arg_num_len
;
1124 *len_sent
+= to_send
* 2;
1126 *len_sent
+= to_send
;
1128 /* include the null we didn't log */
1132 static void audit_log_execve_info(struct audit_context
*context
,
1133 struct audit_buffer
**ab
,
1134 struct audit_aux_data_execve
*axi
)
1137 size_t len
, len_sent
= 0;
1138 const char __user
*p
;
1141 if (axi
->mm
!= current
->mm
)
1142 return; /* execve failed, no additional info */
1144 p
= (const char __user
*)axi
->mm
->arg_start
;
1146 audit_log_format(*ab
, "argc=%d ", axi
->argc
);
1149 * we need some kernel buffer to hold the userspace args. Just
1150 * allocate one big one rather than allocating one of the right size
1151 * for every single argument inside audit_log_single_execve_arg()
1152 * should be <8k allocation so should be pretty safe.
1154 buf
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1156 audit_panic("out of memory for argv string\n");
1160 for (i
= 0; i
< axi
->argc
; i
++) {
1161 len
= audit_log_single_execve_arg(context
, ab
, i
,
1170 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
1172 int i
, call_panic
= 0;
1173 struct audit_buffer
*ab
;
1174 struct audit_aux_data
*aux
;
1177 /* tsk == current */
1178 context
->pid
= tsk
->pid
;
1180 context
->ppid
= sys_getppid();
1181 context
->uid
= tsk
->uid
;
1182 context
->gid
= tsk
->gid
;
1183 context
->euid
= tsk
->euid
;
1184 context
->suid
= tsk
->suid
;
1185 context
->fsuid
= tsk
->fsuid
;
1186 context
->egid
= tsk
->egid
;
1187 context
->sgid
= tsk
->sgid
;
1188 context
->fsgid
= tsk
->fsgid
;
1189 context
->personality
= tsk
->personality
;
1191 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1193 return; /* audit_panic has been called */
1194 audit_log_format(ab
, "arch=%x syscall=%d",
1195 context
->arch
, context
->major
);
1196 if (context
->personality
!= PER_LINUX
)
1197 audit_log_format(ab
, " per=%lx", context
->personality
);
1198 if (context
->return_valid
)
1199 audit_log_format(ab
, " success=%s exit=%ld",
1200 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1201 context
->return_code
);
1203 mutex_lock(&tty_mutex
);
1204 read_lock(&tasklist_lock
);
1205 if (tsk
->signal
&& tsk
->signal
->tty
&& tsk
->signal
->tty
->name
)
1206 tty
= tsk
->signal
->tty
->name
;
1209 read_unlock(&tasklist_lock
);
1210 audit_log_format(ab
,
1211 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1212 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1213 " euid=%u suid=%u fsuid=%u"
1214 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1219 context
->name_count
,
1225 context
->euid
, context
->suid
, context
->fsuid
,
1226 context
->egid
, context
->sgid
, context
->fsgid
, tty
,
1229 mutex_unlock(&tty_mutex
);
1231 audit_log_task_info(ab
, tsk
);
1232 if (context
->filterkey
) {
1233 audit_log_format(ab
, " key=");
1234 audit_log_untrustedstring(ab
, context
->filterkey
);
1236 audit_log_format(ab
, " key=(null)");
1239 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1241 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1243 continue; /* audit_panic has been called */
1245 switch (aux
->type
) {
1246 case AUDIT_MQ_OPEN
: {
1247 struct audit_aux_data_mq_open
*axi
= (void *)aux
;
1248 audit_log_format(ab
,
1249 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1250 "mq_msgsize=%ld mq_curmsgs=%ld",
1251 axi
->oflag
, axi
->mode
, axi
->attr
.mq_flags
,
1252 axi
->attr
.mq_maxmsg
, axi
->attr
.mq_msgsize
,
1253 axi
->attr
.mq_curmsgs
);
1256 case AUDIT_MQ_SENDRECV
: {
1257 struct audit_aux_data_mq_sendrecv
*axi
= (void *)aux
;
1258 audit_log_format(ab
,
1259 "mqdes=%d msg_len=%zd msg_prio=%u "
1260 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1261 axi
->mqdes
, axi
->msg_len
, axi
->msg_prio
,
1262 axi
->abs_timeout
.tv_sec
, axi
->abs_timeout
.tv_nsec
);
1265 case AUDIT_MQ_NOTIFY
: {
1266 struct audit_aux_data_mq_notify
*axi
= (void *)aux
;
1267 audit_log_format(ab
,
1268 "mqdes=%d sigev_signo=%d",
1270 axi
->notification
.sigev_signo
);
1273 case AUDIT_MQ_GETSETATTR
: {
1274 struct audit_aux_data_mq_getsetattr
*axi
= (void *)aux
;
1275 audit_log_format(ab
,
1276 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1279 axi
->mqstat
.mq_flags
, axi
->mqstat
.mq_maxmsg
,
1280 axi
->mqstat
.mq_msgsize
, axi
->mqstat
.mq_curmsgs
);
1284 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
1285 audit_log_format(ab
,
1286 "ouid=%u ogid=%u mode=%#o",
1287 axi
->uid
, axi
->gid
, axi
->mode
);
1288 if (axi
->osid
!= 0) {
1291 if (selinux_sid_to_string(
1292 axi
->osid
, &ctx
, &len
)) {
1293 audit_log_format(ab
, " osid=%u",
1297 audit_log_format(ab
, " obj=%s", ctx
);
1302 case AUDIT_IPC_SET_PERM
: {
1303 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
1304 audit_log_format(ab
,
1305 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1306 axi
->qbytes
, axi
->uid
, axi
->gid
, axi
->mode
);
1309 case AUDIT_EXECVE
: {
1310 struct audit_aux_data_execve
*axi
= (void *)aux
;
1311 audit_log_execve_info(context
, &ab
, axi
);
1314 case AUDIT_SOCKETCALL
: {
1316 struct audit_aux_data_socketcall
*axs
= (void *)aux
;
1317 audit_log_format(ab
, "nargs=%d", axs
->nargs
);
1318 for (i
=0; i
<axs
->nargs
; i
++)
1319 audit_log_format(ab
, " a%d=%lx", i
, axs
->args
[i
]);
1322 case AUDIT_SOCKADDR
: {
1323 struct audit_aux_data_sockaddr
*axs
= (void *)aux
;
1325 audit_log_format(ab
, "saddr=");
1326 audit_log_hex(ab
, axs
->a
, axs
->len
);
1329 case AUDIT_FD_PAIR
: {
1330 struct audit_aux_data_fd_pair
*axs
= (void *)aux
;
1331 audit_log_format(ab
, "fd0=%d fd1=%d", axs
->fd
[0], axs
->fd
[1]);
1338 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1339 struct audit_aux_data_pids
*axs
= (void *)aux
;
1342 for (i
= 0; i
< axs
->pid_count
; i
++)
1343 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1344 axs
->target_auid
[i
],
1346 axs
->target_sessionid
[i
],
1348 axs
->target_comm
[i
]))
1352 if (context
->target_pid
&&
1353 audit_log_pid_context(context
, context
->target_pid
,
1354 context
->target_auid
, context
->target_uid
,
1355 context
->target_sessionid
,
1356 context
->target_sid
, context
->target_comm
))
1359 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1360 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1362 audit_log_d_path(ab
, "cwd=", &context
->pwd
);
1366 for (i
= 0; i
< context
->name_count
; i
++) {
1367 struct audit_names
*n
= &context
->names
[i
];
1369 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PATH
);
1371 continue; /* audit_panic has been called */
1373 audit_log_format(ab
, "item=%d", i
);
1376 switch(n
->name_len
) {
1377 case AUDIT_NAME_FULL
:
1378 /* log the full path */
1379 audit_log_format(ab
, " name=");
1380 audit_log_untrustedstring(ab
, n
->name
);
1383 /* name was specified as a relative path and the
1384 * directory component is the cwd */
1385 audit_log_d_path(ab
, " name=", &context
->pwd
);
1388 /* log the name's directory component */
1389 audit_log_format(ab
, " name=");
1390 audit_log_n_untrustedstring(ab
, n
->name_len
,
1394 audit_log_format(ab
, " name=(null)");
1396 if (n
->ino
!= (unsigned long)-1) {
1397 audit_log_format(ab
, " inode=%lu"
1398 " dev=%02x:%02x mode=%#o"
1399 " ouid=%u ogid=%u rdev=%02x:%02x",
1412 if (selinux_sid_to_string(
1413 n
->osid
, &ctx
, &len
)) {
1414 audit_log_format(ab
, " osid=%u", n
->osid
);
1417 audit_log_format(ab
, " obj=%s", ctx
);
1424 /* Send end of event record to help user space know we are finished */
1425 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1429 audit_panic("error converting sid to string");
1433 * audit_free - free a per-task audit context
1434 * @tsk: task whose audit context block to free
1436 * Called from copy_process and do_exit
1438 void audit_free(struct task_struct
*tsk
)
1440 struct audit_context
*context
;
1442 context
= audit_get_context(tsk
, 0, 0);
1443 if (likely(!context
))
1446 /* Check for system calls that do not go through the exit
1447 * function (e.g., exit_group), then free context block.
1448 * We use GFP_ATOMIC here because we might be doing this
1449 * in the context of the idle thread */
1450 /* that can happen only if we are called from do_exit() */
1451 if (context
->in_syscall
&& context
->auditable
)
1452 audit_log_exit(context
, tsk
);
1454 audit_free_context(context
);
1458 * audit_syscall_entry - fill in an audit record at syscall entry
1459 * @tsk: task being audited
1460 * @arch: architecture type
1461 * @major: major syscall type (function)
1462 * @a1: additional syscall register 1
1463 * @a2: additional syscall register 2
1464 * @a3: additional syscall register 3
1465 * @a4: additional syscall register 4
1467 * Fill in audit context at syscall entry. This only happens if the
1468 * audit context was created when the task was created and the state or
1469 * filters demand the audit context be built. If the state from the
1470 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1471 * then the record will be written at syscall exit time (otherwise, it
1472 * will only be written if another part of the kernel requests that it
1475 void audit_syscall_entry(int arch
, int major
,
1476 unsigned long a1
, unsigned long a2
,
1477 unsigned long a3
, unsigned long a4
)
1479 struct task_struct
*tsk
= current
;
1480 struct audit_context
*context
= tsk
->audit_context
;
1481 enum audit_state state
;
1486 * This happens only on certain architectures that make system
1487 * calls in kernel_thread via the entry.S interface, instead of
1488 * with direct calls. (If you are porting to a new
1489 * architecture, hitting this condition can indicate that you
1490 * got the _exit/_leave calls backward in entry.S.)
1494 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1496 * This also happens with vm86 emulation in a non-nested manner
1497 * (entries without exits), so this case must be caught.
1499 if (context
->in_syscall
) {
1500 struct audit_context
*newctx
;
1504 "audit(:%d) pid=%d in syscall=%d;"
1505 " entering syscall=%d\n",
1506 context
->serial
, tsk
->pid
, context
->major
, major
);
1508 newctx
= audit_alloc_context(context
->state
);
1510 newctx
->previous
= context
;
1512 tsk
->audit_context
= newctx
;
1514 /* If we can't alloc a new context, the best we
1515 * can do is to leak memory (any pending putname
1516 * will be lost). The only other alternative is
1517 * to abandon auditing. */
1518 audit_zero_context(context
, context
->state
);
1521 BUG_ON(context
->in_syscall
|| context
->name_count
);
1526 context
->arch
= arch
;
1527 context
->major
= major
;
1528 context
->argv
[0] = a1
;
1529 context
->argv
[1] = a2
;
1530 context
->argv
[2] = a3
;
1531 context
->argv
[3] = a4
;
1533 state
= context
->state
;
1534 context
->dummy
= !audit_n_rules
;
1535 if (!context
->dummy
&& (state
== AUDIT_SETUP_CONTEXT
|| state
== AUDIT_BUILD_CONTEXT
))
1536 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_ENTRY
]);
1537 if (likely(state
== AUDIT_DISABLED
))
1540 context
->serial
= 0;
1541 context
->ctime
= CURRENT_TIME
;
1542 context
->in_syscall
= 1;
1543 context
->auditable
= !!(state
== AUDIT_RECORD_CONTEXT
);
1548 * audit_syscall_exit - deallocate audit context after a system call
1549 * @tsk: task being audited
1550 * @valid: success/failure flag
1551 * @return_code: syscall return value
1553 * Tear down after system call. If the audit context has been marked as
1554 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1555 * filtering, or because some other part of the kernel write an audit
1556 * message), then write out the syscall information. In call cases,
1557 * free the names stored from getname().
1559 void audit_syscall_exit(int valid
, long return_code
)
1561 struct task_struct
*tsk
= current
;
1562 struct audit_context
*context
;
1564 context
= audit_get_context(tsk
, valid
, return_code
);
1566 if (likely(!context
))
1569 if (context
->in_syscall
&& context
->auditable
)
1570 audit_log_exit(context
, tsk
);
1572 context
->in_syscall
= 0;
1573 context
->auditable
= 0;
1575 if (context
->previous
) {
1576 struct audit_context
*new_context
= context
->previous
;
1577 context
->previous
= NULL
;
1578 audit_free_context(context
);
1579 tsk
->audit_context
= new_context
;
1581 audit_free_names(context
);
1582 unroll_tree_refs(context
, NULL
, 0);
1583 audit_free_aux(context
);
1584 context
->aux
= NULL
;
1585 context
->aux_pids
= NULL
;
1586 context
->target_pid
= 0;
1587 context
->target_sid
= 0;
1588 kfree(context
->filterkey
);
1589 context
->filterkey
= NULL
;
1590 tsk
->audit_context
= context
;
1594 static inline void handle_one(const struct inode
*inode
)
1596 #ifdef CONFIG_AUDIT_TREE
1597 struct audit_context
*context
;
1598 struct audit_tree_refs
*p
;
1599 struct audit_chunk
*chunk
;
1601 if (likely(list_empty(&inode
->inotify_watches
)))
1603 context
= current
->audit_context
;
1605 count
= context
->tree_count
;
1607 chunk
= audit_tree_lookup(inode
);
1611 if (likely(put_tree_ref(context
, chunk
)))
1613 if (unlikely(!grow_tree_refs(context
))) {
1614 printk(KERN_WARNING
"out of memory, audit has lost a tree reference");
1615 audit_set_auditable(context
);
1616 audit_put_chunk(chunk
);
1617 unroll_tree_refs(context
, p
, count
);
1620 put_tree_ref(context
, chunk
);
1624 static void handle_path(const struct dentry
*dentry
)
1626 #ifdef CONFIG_AUDIT_TREE
1627 struct audit_context
*context
;
1628 struct audit_tree_refs
*p
;
1629 const struct dentry
*d
, *parent
;
1630 struct audit_chunk
*drop
;
1634 context
= current
->audit_context
;
1636 count
= context
->tree_count
;
1641 seq
= read_seqbegin(&rename_lock
);
1643 struct inode
*inode
= d
->d_inode
;
1644 if (inode
&& unlikely(!list_empty(&inode
->inotify_watches
))) {
1645 struct audit_chunk
*chunk
;
1646 chunk
= audit_tree_lookup(inode
);
1648 if (unlikely(!put_tree_ref(context
, chunk
))) {
1654 parent
= d
->d_parent
;
1659 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1662 /* just a race with rename */
1663 unroll_tree_refs(context
, p
, count
);
1666 audit_put_chunk(drop
);
1667 if (grow_tree_refs(context
)) {
1668 /* OK, got more space */
1669 unroll_tree_refs(context
, p
, count
);
1674 "out of memory, audit has lost a tree reference");
1675 unroll_tree_refs(context
, p
, count
);
1676 audit_set_auditable(context
);
1684 * audit_getname - add a name to the list
1685 * @name: name to add
1687 * Add a name to the list of audit names for this context.
1688 * Called from fs/namei.c:getname().
1690 void __audit_getname(const char *name
)
1692 struct audit_context
*context
= current
->audit_context
;
1694 if (IS_ERR(name
) || !name
)
1697 if (!context
->in_syscall
) {
1698 #if AUDIT_DEBUG == 2
1699 printk(KERN_ERR
"%s:%d(:%d): ignoring getname(%p)\n",
1700 __FILE__
, __LINE__
, context
->serial
, name
);
1705 BUG_ON(context
->name_count
>= AUDIT_NAMES
);
1706 context
->names
[context
->name_count
].name
= name
;
1707 context
->names
[context
->name_count
].name_len
= AUDIT_NAME_FULL
;
1708 context
->names
[context
->name_count
].name_put
= 1;
1709 context
->names
[context
->name_count
].ino
= (unsigned long)-1;
1710 context
->names
[context
->name_count
].osid
= 0;
1711 ++context
->name_count
;
1712 if (!context
->pwd
.dentry
) {
1713 read_lock(¤t
->fs
->lock
);
1714 context
->pwd
= current
->fs
->pwd
;
1715 path_get(¤t
->fs
->pwd
);
1716 read_unlock(¤t
->fs
->lock
);
1721 /* audit_putname - intercept a putname request
1722 * @name: name to intercept and delay for putname
1724 * If we have stored the name from getname in the audit context,
1725 * then we delay the putname until syscall exit.
1726 * Called from include/linux/fs.h:putname().
1728 void audit_putname(const char *name
)
1730 struct audit_context
*context
= current
->audit_context
;
1733 if (!context
->in_syscall
) {
1734 #if AUDIT_DEBUG == 2
1735 printk(KERN_ERR
"%s:%d(:%d): __putname(%p)\n",
1736 __FILE__
, __LINE__
, context
->serial
, name
);
1737 if (context
->name_count
) {
1739 for (i
= 0; i
< context
->name_count
; i
++)
1740 printk(KERN_ERR
"name[%d] = %p = %s\n", i
,
1741 context
->names
[i
].name
,
1742 context
->names
[i
].name
?: "(null)");
1749 ++context
->put_count
;
1750 if (context
->put_count
> context
->name_count
) {
1751 printk(KERN_ERR
"%s:%d(:%d): major=%d"
1752 " in_syscall=%d putname(%p) name_count=%d"
1755 context
->serial
, context
->major
,
1756 context
->in_syscall
, name
, context
->name_count
,
1757 context
->put_count
);
1764 static int audit_inc_name_count(struct audit_context
*context
,
1765 const struct inode
*inode
)
1767 if (context
->name_count
>= AUDIT_NAMES
) {
1769 printk(KERN_DEBUG
"name_count maxed, losing inode data: "
1770 "dev=%02x:%02x, inode=%lu",
1771 MAJOR(inode
->i_sb
->s_dev
),
1772 MINOR(inode
->i_sb
->s_dev
),
1776 printk(KERN_DEBUG
"name_count maxed, losing inode data");
1779 context
->name_count
++;
1781 context
->ino_count
++;
1786 /* Copy inode data into an audit_names. */
1787 static void audit_copy_inode(struct audit_names
*name
, const struct inode
*inode
)
1789 name
->ino
= inode
->i_ino
;
1790 name
->dev
= inode
->i_sb
->s_dev
;
1791 name
->mode
= inode
->i_mode
;
1792 name
->uid
= inode
->i_uid
;
1793 name
->gid
= inode
->i_gid
;
1794 name
->rdev
= inode
->i_rdev
;
1795 selinux_get_inode_sid(inode
, &name
->osid
);
1799 * audit_inode - store the inode and device from a lookup
1800 * @name: name being audited
1801 * @dentry: dentry being audited
1803 * Called from fs/namei.c:path_lookup().
1805 void __audit_inode(const char *name
, const struct dentry
*dentry
)
1808 struct audit_context
*context
= current
->audit_context
;
1809 const struct inode
*inode
= dentry
->d_inode
;
1811 if (!context
->in_syscall
)
1813 if (context
->name_count
1814 && context
->names
[context
->name_count
-1].name
1815 && context
->names
[context
->name_count
-1].name
== name
)
1816 idx
= context
->name_count
- 1;
1817 else if (context
->name_count
> 1
1818 && context
->names
[context
->name_count
-2].name
1819 && context
->names
[context
->name_count
-2].name
== name
)
1820 idx
= context
->name_count
- 2;
1822 /* FIXME: how much do we care about inodes that have no
1823 * associated name? */
1824 if (audit_inc_name_count(context
, inode
))
1826 idx
= context
->name_count
- 1;
1827 context
->names
[idx
].name
= NULL
;
1829 handle_path(dentry
);
1830 audit_copy_inode(&context
->names
[idx
], inode
);
1834 * audit_inode_child - collect inode info for created/removed objects
1835 * @dname: inode's dentry name
1836 * @dentry: dentry being audited
1837 * @parent: inode of dentry parent
1839 * For syscalls that create or remove filesystem objects, audit_inode
1840 * can only collect information for the filesystem object's parent.
1841 * This call updates the audit context with the child's information.
1842 * Syscalls that create a new filesystem object must be hooked after
1843 * the object is created. Syscalls that remove a filesystem object
1844 * must be hooked prior, in order to capture the target inode during
1845 * unsuccessful attempts.
1847 void __audit_inode_child(const char *dname
, const struct dentry
*dentry
,
1848 const struct inode
*parent
)
1851 struct audit_context
*context
= current
->audit_context
;
1852 const char *found_parent
= NULL
, *found_child
= NULL
;
1853 const struct inode
*inode
= dentry
->d_inode
;
1856 if (!context
->in_syscall
)
1861 /* determine matching parent */
1865 /* parent is more likely, look for it first */
1866 for (idx
= 0; idx
< context
->name_count
; idx
++) {
1867 struct audit_names
*n
= &context
->names
[idx
];
1872 if (n
->ino
== parent
->i_ino
&&
1873 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
1874 n
->name_len
= dirlen
; /* update parent data in place */
1875 found_parent
= n
->name
;
1880 /* no matching parent, look for matching child */
1881 for (idx
= 0; idx
< context
->name_count
; idx
++) {
1882 struct audit_names
*n
= &context
->names
[idx
];
1887 /* strcmp() is the more likely scenario */
1888 if (!strcmp(dname
, n
->name
) ||
1889 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
1891 audit_copy_inode(n
, inode
);
1893 n
->ino
= (unsigned long)-1;
1894 found_child
= n
->name
;
1900 if (!found_parent
) {
1901 if (audit_inc_name_count(context
, parent
))
1903 idx
= context
->name_count
- 1;
1904 context
->names
[idx
].name
= NULL
;
1905 audit_copy_inode(&context
->names
[idx
], parent
);
1909 if (audit_inc_name_count(context
, inode
))
1911 idx
= context
->name_count
- 1;
1913 /* Re-use the name belonging to the slot for a matching parent
1914 * directory. All names for this context are relinquished in
1915 * audit_free_names() */
1917 context
->names
[idx
].name
= found_parent
;
1918 context
->names
[idx
].name_len
= AUDIT_NAME_FULL
;
1919 /* don't call __putname() */
1920 context
->names
[idx
].name_put
= 0;
1922 context
->names
[idx
].name
= NULL
;
1926 audit_copy_inode(&context
->names
[idx
], inode
);
1928 context
->names
[idx
].ino
= (unsigned long)-1;
1931 EXPORT_SYMBOL_GPL(__audit_inode_child
);
1934 * auditsc_get_stamp - get local copies of audit_context values
1935 * @ctx: audit_context for the task
1936 * @t: timespec to store time recorded in the audit_context
1937 * @serial: serial value that is recorded in the audit_context
1939 * Also sets the context as auditable.
1941 void auditsc_get_stamp(struct audit_context
*ctx
,
1942 struct timespec
*t
, unsigned int *serial
)
1945 ctx
->serial
= audit_serial();
1946 t
->tv_sec
= ctx
->ctime
.tv_sec
;
1947 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
1948 *serial
= ctx
->serial
;
1952 /* global counter which is incremented every time something logs in */
1953 static atomic_t session_id
= ATOMIC_INIT(0);
1956 * audit_set_loginuid - set a task's audit_context loginuid
1957 * @task: task whose audit context is being modified
1958 * @loginuid: loginuid value
1962 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1964 int audit_set_loginuid(struct task_struct
*task
, uid_t loginuid
)
1966 unsigned int sessionid
= atomic_inc_return(&session_id
);
1967 struct audit_context
*context
= task
->audit_context
;
1969 if (context
&& context
->in_syscall
) {
1970 struct audit_buffer
*ab
;
1972 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
1974 audit_log_format(ab
, "login pid=%d uid=%u "
1975 "old auid=%u new auid=%u"
1976 " old ses=%u new ses=%u",
1977 task
->pid
, task
->uid
,
1978 task
->loginuid
, loginuid
,
1979 task
->sessionid
, sessionid
);
1983 task
->sessionid
= sessionid
;
1984 task
->loginuid
= loginuid
;
1989 * __audit_mq_open - record audit data for a POSIX MQ open
1992 * @u_attr: queue attributes
1994 * Returns 0 for success or NULL context or < 0 on error.
1996 int __audit_mq_open(int oflag
, mode_t mode
, struct mq_attr __user
*u_attr
)
1998 struct audit_aux_data_mq_open
*ax
;
1999 struct audit_context
*context
= current
->audit_context
;
2004 if (likely(!context
))
2007 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2011 if (u_attr
!= NULL
) {
2012 if (copy_from_user(&ax
->attr
, u_attr
, sizeof(ax
->attr
))) {
2017 memset(&ax
->attr
, 0, sizeof(ax
->attr
));
2022 ax
->d
.type
= AUDIT_MQ_OPEN
;
2023 ax
->d
.next
= context
->aux
;
2024 context
->aux
= (void *)ax
;
2029 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2030 * @mqdes: MQ descriptor
2031 * @msg_len: Message length
2032 * @msg_prio: Message priority
2033 * @u_abs_timeout: Message timeout in absolute time
2035 * Returns 0 for success or NULL context or < 0 on error.
2037 int __audit_mq_timedsend(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2038 const struct timespec __user
*u_abs_timeout
)
2040 struct audit_aux_data_mq_sendrecv
*ax
;
2041 struct audit_context
*context
= current
->audit_context
;
2046 if (likely(!context
))
2049 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2053 if (u_abs_timeout
!= NULL
) {
2054 if (copy_from_user(&ax
->abs_timeout
, u_abs_timeout
, sizeof(ax
->abs_timeout
))) {
2059 memset(&ax
->abs_timeout
, 0, sizeof(ax
->abs_timeout
));
2062 ax
->msg_len
= msg_len
;
2063 ax
->msg_prio
= msg_prio
;
2065 ax
->d
.type
= AUDIT_MQ_SENDRECV
;
2066 ax
->d
.next
= context
->aux
;
2067 context
->aux
= (void *)ax
;
2072 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2073 * @mqdes: MQ descriptor
2074 * @msg_len: Message length
2075 * @u_msg_prio: Message priority
2076 * @u_abs_timeout: Message timeout in absolute time
2078 * Returns 0 for success or NULL context or < 0 on error.
2080 int __audit_mq_timedreceive(mqd_t mqdes
, size_t msg_len
,
2081 unsigned int __user
*u_msg_prio
,
2082 const struct timespec __user
*u_abs_timeout
)
2084 struct audit_aux_data_mq_sendrecv
*ax
;
2085 struct audit_context
*context
= current
->audit_context
;
2090 if (likely(!context
))
2093 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2097 if (u_msg_prio
!= NULL
) {
2098 if (get_user(ax
->msg_prio
, u_msg_prio
)) {
2105 if (u_abs_timeout
!= NULL
) {
2106 if (copy_from_user(&ax
->abs_timeout
, u_abs_timeout
, sizeof(ax
->abs_timeout
))) {
2111 memset(&ax
->abs_timeout
, 0, sizeof(ax
->abs_timeout
));
2114 ax
->msg_len
= msg_len
;
2116 ax
->d
.type
= AUDIT_MQ_SENDRECV
;
2117 ax
->d
.next
= context
->aux
;
2118 context
->aux
= (void *)ax
;
2123 * __audit_mq_notify - record audit data for a POSIX MQ notify
2124 * @mqdes: MQ descriptor
2125 * @u_notification: Notification event
2127 * Returns 0 for success or NULL context or < 0 on error.
2130 int __audit_mq_notify(mqd_t mqdes
, const struct sigevent __user
*u_notification
)
2132 struct audit_aux_data_mq_notify
*ax
;
2133 struct audit_context
*context
= current
->audit_context
;
2138 if (likely(!context
))
2141 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2145 if (u_notification
!= NULL
) {
2146 if (copy_from_user(&ax
->notification
, u_notification
, sizeof(ax
->notification
))) {
2151 memset(&ax
->notification
, 0, sizeof(ax
->notification
));
2155 ax
->d
.type
= AUDIT_MQ_NOTIFY
;
2156 ax
->d
.next
= context
->aux
;
2157 context
->aux
= (void *)ax
;
2162 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2163 * @mqdes: MQ descriptor
2166 * Returns 0 for success or NULL context or < 0 on error.
2168 int __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2170 struct audit_aux_data_mq_getsetattr
*ax
;
2171 struct audit_context
*context
= current
->audit_context
;
2176 if (likely(!context
))
2179 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2184 ax
->mqstat
= *mqstat
;
2186 ax
->d
.type
= AUDIT_MQ_GETSETATTR
;
2187 ax
->d
.next
= context
->aux
;
2188 context
->aux
= (void *)ax
;
2193 * audit_ipc_obj - record audit data for ipc object
2194 * @ipcp: ipc permissions
2196 * Returns 0 for success or NULL context or < 0 on error.
2198 int __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2200 struct audit_aux_data_ipcctl
*ax
;
2201 struct audit_context
*context
= current
->audit_context
;
2203 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2207 ax
->uid
= ipcp
->uid
;
2208 ax
->gid
= ipcp
->gid
;
2209 ax
->mode
= ipcp
->mode
;
2210 selinux_get_ipc_sid(ipcp
, &ax
->osid
);
2212 ax
->d
.type
= AUDIT_IPC
;
2213 ax
->d
.next
= context
->aux
;
2214 context
->aux
= (void *)ax
;
2219 * audit_ipc_set_perm - record audit data for new ipc permissions
2220 * @qbytes: msgq bytes
2221 * @uid: msgq user id
2222 * @gid: msgq group id
2223 * @mode: msgq mode (permissions)
2225 * Returns 0 for success or NULL context or < 0 on error.
2227 int __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, mode_t mode
)
2229 struct audit_aux_data_ipcctl
*ax
;
2230 struct audit_context
*context
= current
->audit_context
;
2232 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2236 ax
->qbytes
= qbytes
;
2241 ax
->d
.type
= AUDIT_IPC_SET_PERM
;
2242 ax
->d
.next
= context
->aux
;
2243 context
->aux
= (void *)ax
;
2247 int audit_bprm(struct linux_binprm
*bprm
)
2249 struct audit_aux_data_execve
*ax
;
2250 struct audit_context
*context
= current
->audit_context
;
2252 if (likely(!audit_enabled
|| !context
|| context
->dummy
))
2255 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2259 ax
->argc
= bprm
->argc
;
2260 ax
->envc
= bprm
->envc
;
2262 ax
->d
.type
= AUDIT_EXECVE
;
2263 ax
->d
.next
= context
->aux
;
2264 context
->aux
= (void *)ax
;
2270 * audit_socketcall - record audit data for sys_socketcall
2271 * @nargs: number of args
2274 * Returns 0 for success or NULL context or < 0 on error.
2276 int audit_socketcall(int nargs
, unsigned long *args
)
2278 struct audit_aux_data_socketcall
*ax
;
2279 struct audit_context
*context
= current
->audit_context
;
2281 if (likely(!context
|| context
->dummy
))
2284 ax
= kmalloc(sizeof(*ax
) + nargs
* sizeof(unsigned long), GFP_KERNEL
);
2289 memcpy(ax
->args
, args
, nargs
* sizeof(unsigned long));
2291 ax
->d
.type
= AUDIT_SOCKETCALL
;
2292 ax
->d
.next
= context
->aux
;
2293 context
->aux
= (void *)ax
;
2298 * __audit_fd_pair - record audit data for pipe and socketpair
2299 * @fd1: the first file descriptor
2300 * @fd2: the second file descriptor
2302 * Returns 0 for success or NULL context or < 0 on error.
2304 int __audit_fd_pair(int fd1
, int fd2
)
2306 struct audit_context
*context
= current
->audit_context
;
2307 struct audit_aux_data_fd_pair
*ax
;
2309 if (likely(!context
)) {
2313 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2321 ax
->d
.type
= AUDIT_FD_PAIR
;
2322 ax
->d
.next
= context
->aux
;
2323 context
->aux
= (void *)ax
;
2328 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2329 * @len: data length in user space
2330 * @a: data address in kernel space
2332 * Returns 0 for success or NULL context or < 0 on error.
2334 int audit_sockaddr(int len
, void *a
)
2336 struct audit_aux_data_sockaddr
*ax
;
2337 struct audit_context
*context
= current
->audit_context
;
2339 if (likely(!context
|| context
->dummy
))
2342 ax
= kmalloc(sizeof(*ax
) + len
, GFP_KERNEL
);
2347 memcpy(ax
->a
, a
, len
);
2349 ax
->d
.type
= AUDIT_SOCKADDR
;
2350 ax
->d
.next
= context
->aux
;
2351 context
->aux
= (void *)ax
;
2355 void __audit_ptrace(struct task_struct
*t
)
2357 struct audit_context
*context
= current
->audit_context
;
2359 context
->target_pid
= t
->pid
;
2360 context
->target_auid
= audit_get_loginuid(t
);
2361 context
->target_uid
= t
->uid
;
2362 context
->target_sessionid
= audit_get_sessionid(t
);
2363 selinux_get_task_sid(t
, &context
->target_sid
);
2364 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2368 * audit_signal_info - record signal info for shutting down audit subsystem
2369 * @sig: signal value
2370 * @t: task being signaled
2372 * If the audit subsystem is being terminated, record the task (pid)
2373 * and uid that is doing that.
2375 int __audit_signal_info(int sig
, struct task_struct
*t
)
2377 struct audit_aux_data_pids
*axp
;
2378 struct task_struct
*tsk
= current
;
2379 struct audit_context
*ctx
= tsk
->audit_context
;
2380 extern pid_t audit_sig_pid
;
2381 extern uid_t audit_sig_uid
;
2382 extern u32 audit_sig_sid
;
2384 if (audit_pid
&& t
->tgid
== audit_pid
) {
2385 if (sig
== SIGTERM
|| sig
== SIGHUP
|| sig
== SIGUSR1
) {
2386 audit_sig_pid
= tsk
->pid
;
2387 if (tsk
->loginuid
!= -1)
2388 audit_sig_uid
= tsk
->loginuid
;
2390 audit_sig_uid
= tsk
->uid
;
2391 selinux_get_task_sid(tsk
, &audit_sig_sid
);
2393 if (!audit_signals
|| audit_dummy_context())
2397 /* optimize the common case by putting first signal recipient directly
2398 * in audit_context */
2399 if (!ctx
->target_pid
) {
2400 ctx
->target_pid
= t
->tgid
;
2401 ctx
->target_auid
= audit_get_loginuid(t
);
2402 ctx
->target_uid
= t
->uid
;
2403 ctx
->target_sessionid
= audit_get_sessionid(t
);
2404 selinux_get_task_sid(t
, &ctx
->target_sid
);
2405 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2409 axp
= (void *)ctx
->aux_pids
;
2410 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2411 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2415 axp
->d
.type
= AUDIT_OBJ_PID
;
2416 axp
->d
.next
= ctx
->aux_pids
;
2417 ctx
->aux_pids
= (void *)axp
;
2419 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2421 axp
->target_pid
[axp
->pid_count
] = t
->tgid
;
2422 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2423 axp
->target_uid
[axp
->pid_count
] = t
->uid
;
2424 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2425 selinux_get_task_sid(t
, &axp
->target_sid
[axp
->pid_count
]);
2426 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2433 * audit_core_dumps - record information about processes that end abnormally
2434 * @signr: signal value
2436 * If a process ends with a core dump, something fishy is going on and we
2437 * should record the event for investigation.
2439 void audit_core_dumps(long signr
)
2441 struct audit_buffer
*ab
;
2443 uid_t auid
= audit_get_loginuid(current
);
2444 unsigned int sessionid
= audit_get_sessionid(current
);
2449 if (signr
== SIGQUIT
) /* don't care for those */
2452 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2453 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2454 auid
, current
->uid
, current
->gid
, sessionid
);
2455 selinux_get_task_sid(current
, &sid
);
2460 if (selinux_sid_to_string(sid
, &ctx
, &len
))
2461 audit_log_format(ab
, " ssid=%u", sid
);
2463 audit_log_format(ab
, " subj=%s", ctx
);
2466 audit_log_format(ab
, " pid=%d comm=", current
->pid
);
2467 audit_log_untrustedstring(ab
, current
->comm
);
2468 audit_log_format(ab
, " sig=%ld", signr
);