4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 <<<<<<< HEAD
:mm
/filemap
.c
32 #include <linux/backing-dev.h>
34 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:mm
/filemap
.c
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/cpuset.h>
38 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
39 #include <linux/memcontrol.h>
43 * FIXME: remove all knowledge of the buffer layer from the core VM
45 #include <linux/buffer_head.h> /* for generic_osync_inode */
50 generic_file_direct_IO(int rw
, struct kiocb
*iocb
, const struct iovec
*iov
,
51 loff_t offset
, unsigned long nr_segs
);
54 * Shared mappings implemented 30.11.1994. It's not fully working yet,
57 * Shared mappings now work. 15.8.1995 Bruno.
59 * finished 'unifying' the page and buffer cache and SMP-threaded the
60 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
62 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
68 * ->i_mmap_lock (vmtruncate)
69 * ->private_lock (__free_pte->__set_page_dirty_buffers)
70 * ->swap_lock (exclusive_swap_page, others)
71 * ->mapping->tree_lock
74 * ->i_mmap_lock (truncate->unmap_mapping_range)
78 * ->page_table_lock or pte_lock (various, mainly in memory.c)
79 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
82 * ->lock_page (access_process_vm)
84 * ->i_mutex (generic_file_buffered_write)
85 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
88 * ->i_alloc_sem (various)
91 * ->sb_lock (fs/fs-writeback.c)
92 * ->mapping->tree_lock (__sync_single_inode)
95 * ->anon_vma.lock (vma_adjust)
98 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
100 * ->page_table_lock or pte_lock
101 * ->swap_lock (try_to_unmap_one)
102 * ->private_lock (try_to_unmap_one)
103 * ->tree_lock (try_to_unmap_one)
104 * ->zone.lru_lock (follow_page->mark_page_accessed)
105 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
106 * ->private_lock (page_remove_rmap->set_page_dirty)
107 * ->tree_lock (page_remove_rmap->set_page_dirty)
108 * ->inode_lock (page_remove_rmap->set_page_dirty)
109 * ->inode_lock (zap_pte_range->set_page_dirty)
110 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
113 * ->dcache_lock (proc_pid_lookup)
117 * Remove a page from the page cache and free it. Caller has to make
118 * sure the page is locked and that nobody else uses it - or that usage
119 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
121 void __remove_from_page_cache(struct page
*page
)
123 struct address_space
*mapping
= page
->mapping
;
125 mem_cgroup_uncharge_page(page
);
126 radix_tree_delete(&mapping
->page_tree
, page
->index
);
127 page
->mapping
= NULL
;
129 __dec_zone_page_state(page
, NR_FILE_PAGES
);
130 BUG_ON(page_mapped(page
));
133 * Some filesystems seem to re-dirty the page even after
134 * the VM has canceled the dirty bit (eg ext3 journaling).
136 * Fix it up by doing a final dirty accounting check after
137 * having removed the page entirely.
139 if (PageDirty(page
) && mapping_cap_account_dirty(mapping
)) {
140 dec_zone_page_state(page
, NR_FILE_DIRTY
);
141 dec_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
145 void remove_from_page_cache(struct page
*page
)
147 struct address_space
*mapping
= page
->mapping
;
149 BUG_ON(!PageLocked(page
));
151 write_lock_irq(&mapping
->tree_lock
);
152 __remove_from_page_cache(page
);
153 write_unlock_irq(&mapping
->tree_lock
);
156 static int sync_page(void *word
)
158 struct address_space
*mapping
;
161 page
= container_of((unsigned long *)word
, struct page
, flags
);
164 * page_mapping() is being called without PG_locked held.
165 * Some knowledge of the state and use of the page is used to
166 * reduce the requirements down to a memory barrier.
167 * The danger here is of a stale page_mapping() return value
168 * indicating a struct address_space different from the one it's
169 * associated with when it is associated with one.
170 * After smp_mb(), it's either the correct page_mapping() for
171 * the page, or an old page_mapping() and the page's own
172 * page_mapping() has gone NULL.
173 * The ->sync_page() address_space operation must tolerate
174 * page_mapping() going NULL. By an amazing coincidence,
175 * this comes about because none of the users of the page
176 * in the ->sync_page() methods make essential use of the
177 * page_mapping(), merely passing the page down to the backing
178 * device's unplug functions when it's non-NULL, which in turn
179 * ignore it for all cases but swap, where only page_private(page) is
180 * of interest. When page_mapping() does go NULL, the entire
181 * call stack gracefully ignores the page and returns.
185 mapping
= page_mapping(page
);
186 if (mapping
&& mapping
->a_ops
&& mapping
->a_ops
->sync_page
)
187 mapping
->a_ops
->sync_page(page
);
192 static int sync_page_killable(void *word
)
195 return fatal_signal_pending(current
) ? -EINTR
: 0;
199 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
200 * @mapping: address space structure to write
201 * @start: offset in bytes where the range starts
202 * @end: offset in bytes where the range ends (inclusive)
203 * @sync_mode: enable synchronous operation
205 * Start writeback against all of a mapping's dirty pages that lie
206 * within the byte offsets <start, end> inclusive.
208 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
209 * opposed to a regular memory cleansing writeback. The difference between
210 * these two operations is that if a dirty page/buffer is encountered, it must
211 * be waited upon, and not just skipped over.
213 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
214 loff_t end
, int sync_mode
)
217 struct writeback_control wbc
= {
218 .sync_mode
= sync_mode
,
219 .nr_to_write
= mapping
->nrpages
* 2,
220 .range_start
= start
,
224 if (!mapping_cap_writeback_dirty(mapping
))
227 ret
= do_writepages(mapping
, &wbc
);
231 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
234 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
237 int filemap_fdatawrite(struct address_space
*mapping
)
239 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
241 EXPORT_SYMBOL(filemap_fdatawrite
);
243 static int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
246 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
250 * filemap_flush - mostly a non-blocking flush
251 * @mapping: target address_space
253 * This is a mostly non-blocking flush. Not suitable for data-integrity
254 * purposes - I/O may not be started against all dirty pages.
256 int filemap_flush(struct address_space
*mapping
)
258 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
260 EXPORT_SYMBOL(filemap_flush
);
263 * wait_on_page_writeback_range - wait for writeback to complete
264 * @mapping: target address_space
265 * @start: beginning page index
266 * @end: ending page index
268 * Wait for writeback to complete against pages indexed by start->end
271 int wait_on_page_writeback_range(struct address_space
*mapping
,
272 pgoff_t start
, pgoff_t end
)
282 pagevec_init(&pvec
, 0);
284 while ((index
<= end
) &&
285 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
286 PAGECACHE_TAG_WRITEBACK
,
287 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
290 for (i
= 0; i
< nr_pages
; i
++) {
291 struct page
*page
= pvec
.pages
[i
];
293 /* until radix tree lookup accepts end_index */
294 if (page
->index
> end
)
297 wait_on_page_writeback(page
);
301 pagevec_release(&pvec
);
305 /* Check for outstanding write errors */
306 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
308 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
315 * sync_page_range - write and wait on all pages in the passed range
316 * @inode: target inode
317 * @mapping: target address_space
318 * @pos: beginning offset in pages to write
319 * @count: number of bytes to write
321 * Write and wait upon all the pages in the passed range. This is a "data
322 * integrity" operation. It waits upon in-flight writeout before starting and
323 * waiting upon new writeout. If there was an IO error, return it.
325 * We need to re-take i_mutex during the generic_osync_inode list walk because
326 * it is otherwise livelockable.
328 int sync_page_range(struct inode
*inode
, struct address_space
*mapping
,
329 loff_t pos
, loff_t count
)
331 pgoff_t start
= pos
>> PAGE_CACHE_SHIFT
;
332 pgoff_t end
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
335 if (!mapping_cap_writeback_dirty(mapping
) || !count
)
337 ret
= filemap_fdatawrite_range(mapping
, pos
, pos
+ count
- 1);
339 mutex_lock(&inode
->i_mutex
);
340 ret
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
341 mutex_unlock(&inode
->i_mutex
);
344 ret
= wait_on_page_writeback_range(mapping
, start
, end
);
347 EXPORT_SYMBOL(sync_page_range
);
350 * sync_page_range_nolock
351 * @inode: target inode
352 * @mapping: target address_space
353 * @pos: beginning offset in pages to write
354 * @count: number of bytes to write
356 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
357 * as it forces O_SYNC writers to different parts of the same file
358 * to be serialised right until io completion.
360 int sync_page_range_nolock(struct inode
*inode
, struct address_space
*mapping
,
361 loff_t pos
, loff_t count
)
363 pgoff_t start
= pos
>> PAGE_CACHE_SHIFT
;
364 pgoff_t end
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
367 if (!mapping_cap_writeback_dirty(mapping
) || !count
)
369 ret
= filemap_fdatawrite_range(mapping
, pos
, pos
+ count
- 1);
371 ret
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
373 ret
= wait_on_page_writeback_range(mapping
, start
, end
);
376 EXPORT_SYMBOL(sync_page_range_nolock
);
379 * filemap_fdatawait - wait for all under-writeback pages to complete
380 * @mapping: address space structure to wait for
382 * Walk the list of under-writeback pages of the given address space
383 * and wait for all of them.
385 int filemap_fdatawait(struct address_space
*mapping
)
387 loff_t i_size
= i_size_read(mapping
->host
);
392 return wait_on_page_writeback_range(mapping
, 0,
393 (i_size
- 1) >> PAGE_CACHE_SHIFT
);
395 EXPORT_SYMBOL(filemap_fdatawait
);
397 int filemap_write_and_wait(struct address_space
*mapping
)
401 if (mapping
->nrpages
) {
402 err
= filemap_fdatawrite(mapping
);
404 * Even if the above returned error, the pages may be
405 * written partially (e.g. -ENOSPC), so we wait for it.
406 * But the -EIO is special case, it may indicate the worst
407 * thing (e.g. bug) happened, so we avoid waiting for it.
410 int err2
= filemap_fdatawait(mapping
);
417 EXPORT_SYMBOL(filemap_write_and_wait
);
420 * filemap_write_and_wait_range - write out & wait on a file range
421 * @mapping: the address_space for the pages
422 * @lstart: offset in bytes where the range starts
423 * @lend: offset in bytes where the range ends (inclusive)
425 * Write out and wait upon file offsets lstart->lend, inclusive.
427 * Note that `lend' is inclusive (describes the last byte to be written) so
428 * that this function can be used to write to the very end-of-file (end = -1).
430 int filemap_write_and_wait_range(struct address_space
*mapping
,
431 loff_t lstart
, loff_t lend
)
435 if (mapping
->nrpages
) {
436 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
438 /* See comment of filemap_write_and_wait() */
440 int err2
= wait_on_page_writeback_range(mapping
,
441 lstart
>> PAGE_CACHE_SHIFT
,
442 lend
>> PAGE_CACHE_SHIFT
);
451 * add_to_page_cache - add newly allocated pagecache pages
453 * @mapping: the page's address_space
454 * @offset: page index
455 * @gfp_mask: page allocation mode
457 * This function is used to add newly allocated pagecache pages;
458 * the page is new, so we can just run SetPageLocked() against it.
459 * The other page state flags were set by rmqueue().
461 * This function does not add the page to the LRU. The caller must do that.
463 int add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
464 pgoff_t offset
, gfp_t gfp_mask
)
466 int error
= mem_cgroup_cache_charge(page
, current
->mm
,
467 gfp_mask
& ~__GFP_HIGHMEM
);
471 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
473 write_lock_irq(&mapping
->tree_lock
);
474 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
476 page_cache_get(page
);
478 page
->mapping
= mapping
;
479 page
->index
= offset
;
481 __inc_zone_page_state(page
, NR_FILE_PAGES
);
483 mem_cgroup_uncharge_page(page
);
485 write_unlock_irq(&mapping
->tree_lock
);
486 radix_tree_preload_end();
488 mem_cgroup_uncharge_page(page
);
492 EXPORT_SYMBOL(add_to_page_cache
);
494 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
495 pgoff_t offset
, gfp_t gfp_mask
)
497 int ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
504 struct page
*__page_cache_alloc(gfp_t gfp
)
506 if (cpuset_do_page_mem_spread()) {
507 int n
= cpuset_mem_spread_node();
508 return alloc_pages_node(n
, gfp
, 0);
510 return alloc_pages(gfp
, 0);
512 EXPORT_SYMBOL(__page_cache_alloc
);
515 static int __sleep_on_page_lock(void *word
)
522 * In order to wait for pages to become available there must be
523 * waitqueues associated with pages. By using a hash table of
524 * waitqueues where the bucket discipline is to maintain all
525 * waiters on the same queue and wake all when any of the pages
526 * become available, and for the woken contexts to check to be
527 * sure the appropriate page became available, this saves space
528 * at a cost of "thundering herd" phenomena during rare hash
531 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
533 const struct zone
*zone
= page_zone(page
);
535 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
538 static inline void wake_up_page(struct page
*page
, int bit
)
540 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
543 void wait_on_page_bit(struct page
*page
, int bit_nr
)
545 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
547 if (test_bit(bit_nr
, &page
->flags
))
548 __wait_on_bit(page_waitqueue(page
), &wait
, sync_page
,
549 TASK_UNINTERRUPTIBLE
);
551 EXPORT_SYMBOL(wait_on_page_bit
);
554 * unlock_page - unlock a locked page
557 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
558 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
559 * mechananism between PageLocked pages and PageWriteback pages is shared.
560 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
562 * The first mb is necessary to safely close the critical section opened by the
563 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
564 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
565 * parallel wait_on_page_locked()).
567 void unlock_page(struct page
*page
)
569 smp_mb__before_clear_bit();
570 if (!TestClearPageLocked(page
))
572 smp_mb__after_clear_bit();
573 wake_up_page(page
, PG_locked
);
575 EXPORT_SYMBOL(unlock_page
);
578 * end_page_writeback - end writeback against a page
581 void end_page_writeback(struct page
*page
)
583 if (!TestClearPageReclaim(page
) || rotate_reclaimable_page(page
)) {
584 if (!test_clear_page_writeback(page
))
587 smp_mb__after_clear_bit();
588 wake_up_page(page
, PG_writeback
);
590 EXPORT_SYMBOL(end_page_writeback
);
593 * __lock_page - get a lock on the page, assuming we need to sleep to get it
594 * @page: the page to lock
596 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
597 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
598 * chances are that on the second loop, the block layer's plug list is empty,
599 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
601 void __lock_page(struct page
*page
)
603 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
605 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sync_page
,
606 TASK_UNINTERRUPTIBLE
);
608 EXPORT_SYMBOL(__lock_page
);
610 int __lock_page_killable(struct page
*page
)
612 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
614 return __wait_on_bit_lock(page_waitqueue(page
), &wait
,
615 sync_page_killable
, TASK_KILLABLE
);
619 * Variant of lock_page that does not require the caller to hold a reference
620 * on the page's mapping.
622 void __lock_page_nosync(struct page
*page
)
624 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
625 __wait_on_bit_lock(page_waitqueue(page
), &wait
, __sleep_on_page_lock
,
626 TASK_UNINTERRUPTIBLE
);
630 * find_get_page - find and get a page reference
631 * @mapping: the address_space to search
632 * @offset: the page index
634 * Is there a pagecache struct page at the given (mapping, offset) tuple?
635 * If yes, increment its refcount and return it; if no, return NULL.
637 struct page
* find_get_page(struct address_space
*mapping
, pgoff_t offset
)
641 read_lock_irq(&mapping
->tree_lock
);
642 page
= radix_tree_lookup(&mapping
->page_tree
, offset
);
644 page_cache_get(page
);
645 read_unlock_irq(&mapping
->tree_lock
);
648 EXPORT_SYMBOL(find_get_page
);
651 * find_lock_page - locate, pin and lock a pagecache page
652 * @mapping: the address_space to search
653 * @offset: the page index
655 * Locates the desired pagecache page, locks it, increments its reference
656 * count and returns its address.
658 * Returns zero if the page was not present. find_lock_page() may sleep.
660 struct page
*find_lock_page(struct address_space
*mapping
,
666 read_lock_irq(&mapping
->tree_lock
);
667 page
= radix_tree_lookup(&mapping
->page_tree
, offset
);
669 page_cache_get(page
);
670 if (TestSetPageLocked(page
)) {
671 read_unlock_irq(&mapping
->tree_lock
);
674 /* Has the page been truncated while we slept? */
675 if (unlikely(page
->mapping
!= mapping
)) {
677 page_cache_release(page
);
680 VM_BUG_ON(page
->index
!= offset
);
684 read_unlock_irq(&mapping
->tree_lock
);
688 EXPORT_SYMBOL(find_lock_page
);
691 * find_or_create_page - locate or add a pagecache page
692 * @mapping: the page's address_space
693 * @index: the page's index into the mapping
694 * @gfp_mask: page allocation mode
696 * Locates a page in the pagecache. If the page is not present, a new page
697 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
698 * LRU list. The returned page is locked and has its reference count
701 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
704 * find_or_create_page() returns the desired page's address, or zero on
707 struct page
*find_or_create_page(struct address_space
*mapping
,
708 pgoff_t index
, gfp_t gfp_mask
)
713 page
= find_lock_page(mapping
, index
);
715 page
= __page_cache_alloc(gfp_mask
);
718 err
= add_to_page_cache_lru(page
, mapping
, index
, gfp_mask
);
720 page_cache_release(page
);
728 EXPORT_SYMBOL(find_or_create_page
);
731 * find_get_pages - gang pagecache lookup
732 * @mapping: The address_space to search
733 * @start: The starting page index
734 * @nr_pages: The maximum number of pages
735 * @pages: Where the resulting pages are placed
737 * find_get_pages() will search for and return a group of up to
738 * @nr_pages pages in the mapping. The pages are placed at @pages.
739 * find_get_pages() takes a reference against the returned pages.
741 * The search returns a group of mapping-contiguous pages with ascending
742 * indexes. There may be holes in the indices due to not-present pages.
744 * find_get_pages() returns the number of pages which were found.
746 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
747 unsigned int nr_pages
, struct page
**pages
)
752 read_lock_irq(&mapping
->tree_lock
);
753 ret
= radix_tree_gang_lookup(&mapping
->page_tree
,
754 (void **)pages
, start
, nr_pages
);
755 for (i
= 0; i
< ret
; i
++)
756 page_cache_get(pages
[i
]);
757 read_unlock_irq(&mapping
->tree_lock
);
762 * find_get_pages_contig - gang contiguous pagecache lookup
763 * @mapping: The address_space to search
764 * @index: The starting page index
765 * @nr_pages: The maximum number of pages
766 * @pages: Where the resulting pages are placed
768 * find_get_pages_contig() works exactly like find_get_pages(), except
769 * that the returned number of pages are guaranteed to be contiguous.
771 * find_get_pages_contig() returns the number of pages which were found.
773 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
774 unsigned int nr_pages
, struct page
**pages
)
779 read_lock_irq(&mapping
->tree_lock
);
780 ret
= radix_tree_gang_lookup(&mapping
->page_tree
,
781 (void **)pages
, index
, nr_pages
);
782 for (i
= 0; i
< ret
; i
++) {
783 if (pages
[i
]->mapping
== NULL
|| pages
[i
]->index
!= index
)
786 page_cache_get(pages
[i
]);
789 read_unlock_irq(&mapping
->tree_lock
);
792 EXPORT_SYMBOL(find_get_pages_contig
);
795 * find_get_pages_tag - find and return pages that match @tag
796 * @mapping: the address_space to search
797 * @index: the starting page index
798 * @tag: the tag index
799 * @nr_pages: the maximum number of pages
800 * @pages: where the resulting pages are placed
802 * Like find_get_pages, except we only return pages which are tagged with
803 * @tag. We update @index to index the next page for the traversal.
805 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
806 int tag
, unsigned int nr_pages
, struct page
**pages
)
811 read_lock_irq(&mapping
->tree_lock
);
812 ret
= radix_tree_gang_lookup_tag(&mapping
->page_tree
,
813 (void **)pages
, *index
, nr_pages
, tag
);
814 for (i
= 0; i
< ret
; i
++)
815 page_cache_get(pages
[i
]);
817 *index
= pages
[ret
- 1]->index
+ 1;
818 read_unlock_irq(&mapping
->tree_lock
);
821 EXPORT_SYMBOL(find_get_pages_tag
);
824 * grab_cache_page_nowait - returns locked page at given index in given cache
825 * @mapping: target address_space
826 * @index: the page index
828 * Same as grab_cache_page(), but do not wait if the page is unavailable.
829 * This is intended for speculative data generators, where the data can
830 * be regenerated if the page couldn't be grabbed. This routine should
831 * be safe to call while holding the lock for another page.
833 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
834 * and deadlock against the caller's locked page.
837 grab_cache_page_nowait(struct address_space
*mapping
, pgoff_t index
)
839 struct page
*page
= find_get_page(mapping
, index
);
842 if (!TestSetPageLocked(page
))
844 page_cache_release(page
);
847 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~__GFP_FS
);
848 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
)) {
849 page_cache_release(page
);
854 EXPORT_SYMBOL(grab_cache_page_nowait
);
857 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
858 * a _large_ part of the i/o request. Imagine the worst scenario:
860 * ---R__________________________________________B__________
861 * ^ reading here ^ bad block(assume 4k)
863 * read(R) => miss => readahead(R...B) => media error => frustrating retries
864 * => failing the whole request => read(R) => read(R+1) =>
865 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
866 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
867 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
869 * It is going insane. Fix it by quickly scaling down the readahead size.
871 static void shrink_readahead_size_eio(struct file
*filp
,
872 struct file_ra_state
*ra
)
881 * do_generic_file_read - generic file read routine
882 * @filp: the file to read
883 * @ppos: current file position
884 * @desc: read_descriptor
885 * @actor: read method
887 * This is a generic file read routine, and uses the
888 * mapping->a_ops->readpage() function for the actual low-level stuff.
890 * This is really ugly. But the goto's actually try to clarify some
891 * of the logic when it comes to error handling etc.
893 static void do_generic_file_read(struct file
*filp
, loff_t
*ppos
,
894 read_descriptor_t
*desc
, read_actor_t actor
)
896 struct address_space
*mapping
= filp
->f_mapping
;
897 struct inode
*inode
= mapping
->host
;
898 struct file_ra_state
*ra
= &filp
->f_ra
;
902 unsigned long offset
; /* offset into pagecache page */
903 unsigned int prev_offset
;
906 index
= *ppos
>> PAGE_CACHE_SHIFT
;
907 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
908 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
909 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
910 offset
= *ppos
& ~PAGE_CACHE_MASK
;
916 unsigned long nr
, ret
;
920 page
= find_get_page(mapping
, index
);
922 page_cache_sync_readahead(mapping
,
924 index
, last_index
- index
);
925 page
= find_get_page(mapping
, index
);
926 if (unlikely(page
== NULL
))
929 if (PageReadahead(page
)) {
930 page_cache_async_readahead(mapping
,
932 index
, last_index
- index
);
934 if (!PageUptodate(page
))
935 goto page_not_up_to_date
;
938 * i_size must be checked after we know the page is Uptodate.
940 * Checking i_size after the check allows us to calculate
941 * the correct value for "nr", which means the zero-filled
942 * part of the page is not copied back to userspace (unless
943 * another truncate extends the file - this is desired though).
946 isize
= i_size_read(inode
);
947 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
948 if (unlikely(!isize
|| index
> end_index
)) {
949 page_cache_release(page
);
953 /* nr is the maximum number of bytes to copy from this page */
954 nr
= PAGE_CACHE_SIZE
;
955 if (index
== end_index
) {
956 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
958 page_cache_release(page
);
964 /* If users can be writing to this page using arbitrary
965 * virtual addresses, take care about potential aliasing
966 * before reading the page on the kernel side.
968 if (mapping_writably_mapped(mapping
))
969 flush_dcache_page(page
);
972 * When a sequential read accesses a page several times,
973 * only mark it as accessed the first time.
975 if (prev_index
!= index
|| offset
!= prev_offset
)
976 mark_page_accessed(page
);
980 * Ok, we have the page, and it's up-to-date, so
981 * now we can copy it to user space...
983 * The actor routine returns how many bytes were actually used..
984 * NOTE! This may not be the same as how much of a user buffer
985 * we filled up (we may be padding etc), so we can only update
986 * "pos" here (the actor routine has to update the user buffer
987 * pointers and the remaining count).
989 ret
= actor(desc
, page
, offset
, nr
);
991 index
+= offset
>> PAGE_CACHE_SHIFT
;
992 offset
&= ~PAGE_CACHE_MASK
;
993 prev_offset
= offset
;
995 page_cache_release(page
);
996 if (ret
== nr
&& desc
->count
)
1000 page_not_up_to_date
:
1001 /* Get exclusive access to the page ... */
1002 if (lock_page_killable(page
))
1005 /* Did it get truncated before we got the lock? */
1006 if (!page
->mapping
) {
1008 page_cache_release(page
);
1012 /* Did somebody else fill it already? */
1013 if (PageUptodate(page
)) {
1019 /* Start the actual read. The read will unlock the page. */
1020 error
= mapping
->a_ops
->readpage(filp
, page
);
1022 if (unlikely(error
)) {
1023 if (error
== AOP_TRUNCATED_PAGE
) {
1024 page_cache_release(page
);
1027 goto readpage_error
;
1030 if (!PageUptodate(page
)) {
1031 if (lock_page_killable(page
))
1033 if (!PageUptodate(page
)) {
1034 if (page
->mapping
== NULL
) {
1036 * invalidate_inode_pages got it
1039 page_cache_release(page
);
1043 shrink_readahead_size_eio(filp
, ra
);
1054 /* UHHUH! A synchronous read error occurred. Report it */
1055 desc
->error
= error
;
1056 page_cache_release(page
);
1061 * Ok, it wasn't cached, so we need to create a new
1064 page
= page_cache_alloc_cold(mapping
);
1066 desc
->error
= -ENOMEM
;
1069 error
= add_to_page_cache_lru(page
, mapping
,
1072 page_cache_release(page
);
1073 if (error
== -EEXIST
)
1075 desc
->error
= error
;
1082 ra
->prev_pos
= prev_index
;
1083 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1084 ra
->prev_pos
|= prev_offset
;
1086 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1088 file_accessed(filp
);
1091 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
1092 unsigned long offset
, unsigned long size
)
1095 unsigned long left
, count
= desc
->count
;
1101 * Faults on the destination of a read are common, so do it before
1104 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
1105 kaddr
= kmap_atomic(page
, KM_USER0
);
1106 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
1107 kaddr
+ offset
, size
);
1108 kunmap_atomic(kaddr
, KM_USER0
);
1113 /* Do it the slow way */
1115 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
1120 desc
->error
= -EFAULT
;
1123 desc
->count
= count
- size
;
1124 desc
->written
+= size
;
1125 desc
->arg
.buf
+= size
;
1130 * Performs necessary checks before doing a write
1131 * @iov: io vector request
1132 * @nr_segs: number of segments in the iovec
1133 * @count: number of bytes to write
1134 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1136 * Adjust number of segments and amount of bytes to write (nr_segs should be
1137 * properly initialized first). Returns appropriate error code that caller
1138 * should return or zero in case that write should be allowed.
1140 int generic_segment_checks(const struct iovec
*iov
,
1141 unsigned long *nr_segs
, size_t *count
, int access_flags
)
1145 for (seg
= 0; seg
< *nr_segs
; seg
++) {
1146 const struct iovec
*iv
= &iov
[seg
];
1149 * If any segment has a negative length, or the cumulative
1150 * length ever wraps negative then return -EINVAL.
1153 if (unlikely((ssize_t
)(cnt
|iv
->iov_len
) < 0))
1155 if (access_ok(access_flags
, iv
->iov_base
, iv
->iov_len
))
1160 cnt
-= iv
->iov_len
; /* This segment is no good */
1166 EXPORT_SYMBOL(generic_segment_checks
);
1169 * generic_file_aio_read - generic filesystem read routine
1170 * @iocb: kernel I/O control block
1171 * @iov: io vector request
1172 * @nr_segs: number of segments in the iovec
1173 * @pos: current file position
1175 * This is the "read()" routine for all filesystems
1176 * that can use the page cache directly.
1179 generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
1180 unsigned long nr_segs
, loff_t pos
)
1182 struct file
*filp
= iocb
->ki_filp
;
1186 loff_t
*ppos
= &iocb
->ki_pos
;
1189 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1193 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1194 if (filp
->f_flags
& O_DIRECT
) {
1196 struct address_space
*mapping
;
1197 struct inode
*inode
;
1199 mapping
= filp
->f_mapping
;
1200 inode
= mapping
->host
;
1203 goto out
; /* skip atime */
1204 size
= i_size_read(inode
);
1206 retval
= generic_file_direct_IO(READ
, iocb
,
1209 *ppos
= pos
+ retval
;
1211 if (likely(retval
!= 0)) {
1212 file_accessed(filp
);
1219 for (seg
= 0; seg
< nr_segs
; seg
++) {
1220 read_descriptor_t desc
;
1223 desc
.arg
.buf
= iov
[seg
].iov_base
;
1224 desc
.count
= iov
[seg
].iov_len
;
1225 if (desc
.count
== 0)
1228 do_generic_file_read(filp
,ppos
,&desc
,file_read_actor
);
1229 retval
+= desc
.written
;
1231 retval
= retval
?: desc
.error
;
1241 EXPORT_SYMBOL(generic_file_aio_read
);
1244 do_readahead(struct address_space
*mapping
, struct file
*filp
,
1245 pgoff_t index
, unsigned long nr
)
1247 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
1250 force_page_cache_readahead(mapping
, filp
, index
,
1251 max_sane_readahead(nr
));
1255 asmlinkage ssize_t
sys_readahead(int fd
, loff_t offset
, size_t count
)
1263 if (file
->f_mode
& FMODE_READ
) {
1264 struct address_space
*mapping
= file
->f_mapping
;
1265 pgoff_t start
= offset
>> PAGE_CACHE_SHIFT
;
1266 pgoff_t end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1267 unsigned long len
= end
- start
+ 1;
1268 ret
= do_readahead(mapping
, file
, start
, len
);
1277 * page_cache_read - adds requested page to the page cache if not already there
1278 * @file: file to read
1279 * @offset: page index
1281 * This adds the requested page to the page cache if it isn't already there,
1282 * and schedules an I/O to read in its contents from disk.
1284 static int page_cache_read(struct file
*file
, pgoff_t offset
)
1286 struct address_space
*mapping
= file
->f_mapping
;
1291 page
= page_cache_alloc_cold(mapping
);
1295 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1297 ret
= mapping
->a_ops
->readpage(file
, page
);
1298 else if (ret
== -EEXIST
)
1299 ret
= 0; /* losing race to add is OK */
1301 page_cache_release(page
);
1303 } while (ret
== AOP_TRUNCATED_PAGE
);
1308 #define MMAP_LOTSAMISS (100)
1311 * filemap_fault - read in file data for page fault handling
1312 * @vma: vma in which the fault was taken
1313 * @vmf: struct vm_fault containing details of the fault
1315 * filemap_fault() is invoked via the vma operations vector for a
1316 * mapped memory region to read in file data during a page fault.
1318 * The goto's are kind of ugly, but this streamlines the normal case of having
1319 * it in the page cache, and handles the special cases reasonably without
1320 * having a lot of duplicated code.
1322 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1325 struct file
*file
= vma
->vm_file
;
1326 struct address_space
*mapping
= file
->f_mapping
;
1327 struct file_ra_state
*ra
= &file
->f_ra
;
1328 struct inode
*inode
= mapping
->host
;
1331 int did_readaround
= 0;
1334 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1335 if (vmf
->pgoff
>= size
)
1336 return VM_FAULT_SIGBUS
;
1338 /* If we don't want any read-ahead, don't bother */
1339 if (VM_RandomReadHint(vma
))
1340 goto no_cached_page
;
1343 * Do we have something in the page cache already?
1346 page
= find_lock_page(mapping
, vmf
->pgoff
);
1348 * For sequential accesses, we use the generic readahead logic.
1350 if (VM_SequentialReadHint(vma
)) {
1352 page_cache_sync_readahead(mapping
, ra
, file
,
1354 page
= find_lock_page(mapping
, vmf
->pgoff
);
1356 goto no_cached_page
;
1358 if (PageReadahead(page
)) {
1359 page_cache_async_readahead(mapping
, ra
, file
, page
,
1365 unsigned long ra_pages
;
1370 * Do we miss much more than hit in this file? If so,
1371 * stop bothering with read-ahead. It will only hurt.
1373 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1374 goto no_cached_page
;
1377 * To keep the pgmajfault counter straight, we need to
1378 * check did_readaround, as this is an inner loop.
1380 if (!did_readaround
) {
1381 ret
= VM_FAULT_MAJOR
;
1382 count_vm_event(PGMAJFAULT
);
1385 ra_pages
= max_sane_readahead(file
->f_ra
.ra_pages
);
1389 if (vmf
->pgoff
> ra_pages
/ 2)
1390 start
= vmf
->pgoff
- ra_pages
/ 2;
1391 do_page_cache_readahead(mapping
, file
, start
, ra_pages
);
1393 page
= find_lock_page(mapping
, vmf
->pgoff
);
1395 goto no_cached_page
;
1398 if (!did_readaround
)
1402 * We have a locked page in the page cache, now we need to check
1403 * that it's up-to-date. If not, it is going to be due to an error.
1405 if (unlikely(!PageUptodate(page
)))
1406 goto page_not_uptodate
;
1408 /* Must recheck i_size under page lock */
1409 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1410 if (unlikely(vmf
->pgoff
>= size
)) {
1412 page_cache_release(page
);
1413 return VM_FAULT_SIGBUS
;
1417 * Found the page and have a reference on it.
1419 mark_page_accessed(page
);
1420 ra
->prev_pos
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
1422 return ret
| VM_FAULT_LOCKED
;
1426 * We're only likely to ever get here if MADV_RANDOM is in
1429 error
= page_cache_read(file
, vmf
->pgoff
);
1432 * The page we want has now been added to the page cache.
1433 * In the unlikely event that someone removed it in the
1434 * meantime, we'll just come back here and read it again.
1440 * An error return from page_cache_read can result if the
1441 * system is low on memory, or a problem occurs while trying
1444 if (error
== -ENOMEM
)
1445 return VM_FAULT_OOM
;
1446 return VM_FAULT_SIGBUS
;
1450 if (!did_readaround
) {
1451 ret
= VM_FAULT_MAJOR
;
1452 count_vm_event(PGMAJFAULT
);
1456 * Umm, take care of errors if the page isn't up-to-date.
1457 * Try to re-read it _once_. We do this synchronously,
1458 * because there really aren't any performance issues here
1459 * and we need to check for errors.
1461 ClearPageError(page
);
1462 error
= mapping
->a_ops
->readpage(file
, page
);
1463 page_cache_release(page
);
1465 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1468 /* Things didn't work out. Return zero to tell the mm layer so. */
1469 shrink_readahead_size_eio(file
, ra
);
1470 return VM_FAULT_SIGBUS
;
1472 EXPORT_SYMBOL(filemap_fault
);
1474 struct vm_operations_struct generic_file_vm_ops
= {
1475 .fault
= filemap_fault
,
1478 /* This is used for a general mmap of a disk file */
1480 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1482 struct address_space
*mapping
= file
->f_mapping
;
1484 if (!mapping
->a_ops
->readpage
)
1486 file_accessed(file
);
1487 vma
->vm_ops
= &generic_file_vm_ops
;
1488 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1493 * This is for filesystems which do not implement ->writepage.
1495 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1497 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1499 return generic_file_mmap(file
, vma
);
1502 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1506 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1510 #endif /* CONFIG_MMU */
1512 EXPORT_SYMBOL(generic_file_mmap
);
1513 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1515 static struct page
*__read_cache_page(struct address_space
*mapping
,
1517 int (*filler
)(void *,struct page
*),
1523 page
= find_get_page(mapping
, index
);
1525 page
= page_cache_alloc_cold(mapping
);
1527 return ERR_PTR(-ENOMEM
);
1528 err
= add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
);
1529 if (unlikely(err
)) {
1530 page_cache_release(page
);
1533 /* Presumably ENOMEM for radix tree node */
1534 return ERR_PTR(err
);
1536 err
= filler(data
, page
);
1538 page_cache_release(page
);
1539 page
= ERR_PTR(err
);
1546 * Same as read_cache_page, but don't wait for page to become unlocked
1547 * after submitting it to the filler.
1549 struct page
*read_cache_page_async(struct address_space
*mapping
,
1551 int (*filler
)(void *,struct page
*),
1558 page
= __read_cache_page(mapping
, index
, filler
, data
);
1561 if (PageUptodate(page
))
1565 if (!page
->mapping
) {
1567 page_cache_release(page
);
1570 if (PageUptodate(page
)) {
1574 err
= filler(data
, page
);
1576 page_cache_release(page
);
1577 return ERR_PTR(err
);
1580 mark_page_accessed(page
);
1583 EXPORT_SYMBOL(read_cache_page_async
);
1586 * read_cache_page - read into page cache, fill it if needed
1587 * @mapping: the page's address_space
1588 * @index: the page index
1589 * @filler: function to perform the read
1590 * @data: destination for read data
1592 * Read into the page cache. If a page already exists, and PageUptodate() is
1593 * not set, try to fill the page then wait for it to become unlocked.
1595 * If the page does not get brought uptodate, return -EIO.
1597 struct page
*read_cache_page(struct address_space
*mapping
,
1599 int (*filler
)(void *,struct page
*),
1604 page
= read_cache_page_async(mapping
, index
, filler
, data
);
1607 wait_on_page_locked(page
);
1608 if (!PageUptodate(page
)) {
1609 page_cache_release(page
);
1610 page
= ERR_PTR(-EIO
);
1615 EXPORT_SYMBOL(read_cache_page
);
1618 * The logic we want is
1620 * if suid or (sgid and xgrp)
1623 int should_remove_suid(struct dentry
*dentry
)
1625 mode_t mode
= dentry
->d_inode
->i_mode
;
1628 /* suid always must be killed */
1629 if (unlikely(mode
& S_ISUID
))
1630 kill
= ATTR_KILL_SUID
;
1633 * sgid without any exec bits is just a mandatory locking mark; leave
1634 * it alone. If some exec bits are set, it's a real sgid; kill it.
1636 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1637 kill
|= ATTR_KILL_SGID
;
1639 if (unlikely(kill
&& !capable(CAP_FSETID
)))
1644 EXPORT_SYMBOL(should_remove_suid
);
1646 int __remove_suid(struct dentry
*dentry
, int kill
)
1648 struct iattr newattrs
;
1650 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1651 return notify_change(dentry
, &newattrs
);
1654 int remove_suid(struct dentry
*dentry
)
1656 int killsuid
= should_remove_suid(dentry
);
1657 int killpriv
= security_inode_need_killpriv(dentry
);
1663 error
= security_inode_killpriv(dentry
);
1664 if (!error
&& killsuid
)
1665 error
= __remove_suid(dentry
, killsuid
);
1669 EXPORT_SYMBOL(remove_suid
);
1671 static size_t __iovec_copy_from_user_inatomic(char *vaddr
,
1672 const struct iovec
*iov
, size_t base
, size_t bytes
)
1674 size_t copied
= 0, left
= 0;
1677 char __user
*buf
= iov
->iov_base
+ base
;
1678 int copy
= min(bytes
, iov
->iov_len
- base
);
1681 left
= __copy_from_user_inatomic_nocache(vaddr
, buf
, copy
);
1690 return copied
- left
;
1694 * Copy as much as we can into the page and return the number of bytes which
1695 * were sucessfully copied. If a fault is encountered then return the number of
1696 * bytes which were copied.
1698 size_t iov_iter_copy_from_user_atomic(struct page
*page
,
1699 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1704 BUG_ON(!in_atomic());
1705 kaddr
= kmap_atomic(page
, KM_USER0
);
1706 if (likely(i
->nr_segs
== 1)) {
1708 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1709 left
= __copy_from_user_inatomic_nocache(kaddr
+ offset
,
1711 copied
= bytes
- left
;
1713 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1714 i
->iov
, i
->iov_offset
, bytes
);
1716 kunmap_atomic(kaddr
, KM_USER0
);
1720 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic
);
1723 * This has the same sideeffects and return value as
1724 * iov_iter_copy_from_user_atomic().
1725 * The difference is that it attempts to resolve faults.
1726 * Page must not be locked.
1728 size_t iov_iter_copy_from_user(struct page
*page
,
1729 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1735 if (likely(i
->nr_segs
== 1)) {
1737 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1738 left
= __copy_from_user_nocache(kaddr
+ offset
, buf
, bytes
);
1739 copied
= bytes
- left
;
1741 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1742 i
->iov
, i
->iov_offset
, bytes
);
1747 EXPORT_SYMBOL(iov_iter_copy_from_user
);
1749 <<<<<<< HEAD
:mm
/filemap
.c
1750 static void __iov_iter_advance_iov(struct iov_iter
*i
, size_t bytes
)
1752 void iov_iter_advance(struct iov_iter
*i
, size_t bytes
)
1753 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:mm
/filemap
.c
1755 <<<<<<< HEAD
:mm
/filemap
.c
1757 BUG_ON(i
->count
< bytes
);
1759 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:mm
/filemap
.c
1760 if (likely(i
->nr_segs
== 1)) {
1761 i
->iov_offset
+= bytes
;
1762 <<<<<<< HEAD
:mm
/filemap
.c
1765 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:mm
/filemap
.c
1767 const struct iovec
*iov
= i
->iov
;
1768 size_t base
= i
->iov_offset
;
1771 * The !iov->iov_len check ensures we skip over unlikely
1772 <<<<<<< HEAD:mm/filemap.c
1773 * zero-length segments.
1775 * zero-length segments (without overruning the iovec).
1776 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:mm/filemap.c
1778 <<<<<<< HEAD
:mm
/filemap
.c
1779 while (bytes
|| !iov
->iov_len
) {
1780 int copy
= min(bytes
, iov
->iov_len
- base
);
1782 while (bytes
|| unlikely(!iov
->iov_len
&& i
->count
)) {
1784 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:mm
/filemap
.c
1786 <<<<<<< HEAD
:mm
/filemap
.c
1788 copy
= min(bytes
, iov
->iov_len
- base
);
1789 BUG_ON(!i
->count
|| i
->count
< copy
);
1791 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:mm
/filemap
.c
1794 if (iov
->iov_len
== base
) {
1800 i
->iov_offset
= base
;
1803 <<<<<<< HEAD
:mm
/filemap
.c
1805 void iov_iter_advance(struct iov_iter
*i
, size_t bytes
)
1807 BUG_ON(i
->count
< bytes
);
1809 __iov_iter_advance_iov(i
, bytes
);
1813 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a
:mm
/filemap
.c
1814 EXPORT_SYMBOL(iov_iter_advance
);
1817 * Fault in the first iovec of the given iov_iter, to a maximum length
1818 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1819 * accessed (ie. because it is an invalid address).
1821 * writev-intensive code may want this to prefault several iovecs -- that
1822 * would be possible (callers must not rely on the fact that _only_ the
1823 * first iovec will be faulted with the current implementation).
1825 int iov_iter_fault_in_readable(struct iov_iter
*i
, size_t bytes
)
1827 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1828 bytes
= min(bytes
, i
->iov
->iov_len
- i
->iov_offset
);
1829 return fault_in_pages_readable(buf
, bytes
);
1831 EXPORT_SYMBOL(iov_iter_fault_in_readable
);
1834 * Return the count of just the current iov_iter segment.
1836 size_t iov_iter_single_seg_count(struct iov_iter
*i
)
1838 const struct iovec
*iov
= i
->iov
;
1839 if (i
->nr_segs
== 1)
1842 return min(i
->count
, iov
->iov_len
- i
->iov_offset
);
1844 EXPORT_SYMBOL(iov_iter_single_seg_count
);
1847 * Performs necessary checks before doing a write
1849 * Can adjust writing position or amount of bytes to write.
1850 * Returns appropriate error code that caller should return or
1851 * zero in case that write should be allowed.
1853 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
1855 struct inode
*inode
= file
->f_mapping
->host
;
1856 unsigned long limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
1858 if (unlikely(*pos
< 0))
1862 /* FIXME: this is for backwards compatibility with 2.4 */
1863 if (file
->f_flags
& O_APPEND
)
1864 *pos
= i_size_read(inode
);
1866 if (limit
!= RLIM_INFINITY
) {
1867 if (*pos
>= limit
) {
1868 send_sig(SIGXFSZ
, current
, 0);
1871 if (*count
> limit
- (typeof(limit
))*pos
) {
1872 *count
= limit
- (typeof(limit
))*pos
;
1880 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
1881 !(file
->f_flags
& O_LARGEFILE
))) {
1882 if (*pos
>= MAX_NON_LFS
) {
1885 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
1886 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
1891 * Are we about to exceed the fs block limit ?
1893 * If we have written data it becomes a short write. If we have
1894 * exceeded without writing data we send a signal and return EFBIG.
1895 * Linus frestrict idea will clean these up nicely..
1897 if (likely(!isblk
)) {
1898 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
1899 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
1902 /* zero-length writes at ->s_maxbytes are OK */
1905 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
1906 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
1910 if (bdev_read_only(I_BDEV(inode
)))
1912 isize
= i_size_read(inode
);
1913 if (*pos
>= isize
) {
1914 if (*count
|| *pos
> isize
)
1918 if (*pos
+ *count
> isize
)
1919 *count
= isize
- *pos
;
1926 EXPORT_SYMBOL(generic_write_checks
);
1928 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
1929 loff_t pos
, unsigned len
, unsigned flags
,
1930 struct page
**pagep
, void **fsdata
)
1932 const struct address_space_operations
*aops
= mapping
->a_ops
;
1934 if (aops
->write_begin
) {
1935 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
1939 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1940 unsigned offset
= pos
& (PAGE_CACHE_SIZE
- 1);
1941 struct inode
*inode
= mapping
->host
;
1944 page
= __grab_cache_page(mapping
, index
);
1949 if (flags
& AOP_FLAG_UNINTERRUPTIBLE
&& !PageUptodate(page
)) {
1951 * There is no way to resolve a short write situation
1952 * for a !Uptodate page (except by double copying in
1953 * the caller done by generic_perform_write_2copy).
1955 * Instead, we have to bring it uptodate here.
1957 ret
= aops
->readpage(file
, page
);
1958 page_cache_release(page
);
1960 if (ret
== AOP_TRUNCATED_PAGE
)
1967 ret
= aops
->prepare_write(file
, page
, offset
, offset
+len
);
1970 page_cache_release(page
);
1971 if (pos
+ len
> inode
->i_size
)
1972 vmtruncate(inode
, inode
->i_size
);
1977 EXPORT_SYMBOL(pagecache_write_begin
);
1979 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
1980 loff_t pos
, unsigned len
, unsigned copied
,
1981 struct page
*page
, void *fsdata
)
1983 const struct address_space_operations
*aops
= mapping
->a_ops
;
1986 if (aops
->write_end
) {
1987 mark_page_accessed(page
);
1988 ret
= aops
->write_end(file
, mapping
, pos
, len
, copied
,
1991 unsigned offset
= pos
& (PAGE_CACHE_SIZE
- 1);
1992 struct inode
*inode
= mapping
->host
;
1994 flush_dcache_page(page
);
1995 ret
= aops
->commit_write(file
, page
, offset
, offset
+len
);
1997 mark_page_accessed(page
);
1998 page_cache_release(page
);
2001 if (pos
+ len
> inode
->i_size
)
2002 vmtruncate(inode
, inode
->i_size
);
2004 ret
= min_t(size_t, copied
, ret
);
2011 EXPORT_SYMBOL(pagecache_write_end
);
2014 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2015 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
2016 size_t count
, size_t ocount
)
2018 struct file
*file
= iocb
->ki_filp
;
2019 struct address_space
*mapping
= file
->f_mapping
;
2020 struct inode
*inode
= mapping
->host
;
2023 if (count
!= ocount
)
2024 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
2026 written
= generic_file_direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
2028 loff_t end
= pos
+ written
;
2029 if (end
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2030 i_size_write(inode
, end
);
2031 mark_inode_dirty(inode
);
2037 * Sync the fs metadata but not the minor inode changes and
2038 * of course not the data as we did direct DMA for the IO.
2039 * i_mutex is held, which protects generic_osync_inode() from
2040 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2042 if ((written
>= 0 || written
== -EIOCBQUEUED
) &&
2043 ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2044 int err
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
2050 EXPORT_SYMBOL(generic_file_direct_write
);
2053 * Find or create a page at the given pagecache position. Return the locked
2054 * page. This function is specifically for buffered writes.
2056 struct page
*__grab_cache_page(struct address_space
*mapping
, pgoff_t index
)
2061 page
= find_lock_page(mapping
, index
);
2065 page
= page_cache_alloc(mapping
);
2068 status
= add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
);
2069 if (unlikely(status
)) {
2070 page_cache_release(page
);
2071 if (status
== -EEXIST
)
2077 EXPORT_SYMBOL(__grab_cache_page
);
2079 static ssize_t
generic_perform_write_2copy(struct file
*file
,
2080 struct iov_iter
*i
, loff_t pos
)
2082 struct address_space
*mapping
= file
->f_mapping
;
2083 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2084 struct inode
*inode
= mapping
->host
;
2086 ssize_t written
= 0;
2089 struct page
*src_page
;
2091 pgoff_t index
; /* Pagecache index for current page */
2092 unsigned long offset
; /* Offset into pagecache page */
2093 unsigned long bytes
; /* Bytes to write to page */
2094 size_t copied
; /* Bytes copied from user */
2096 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2097 index
= pos
>> PAGE_CACHE_SHIFT
;
2098 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2102 * a non-NULL src_page indicates that we're doing the
2103 * copy via get_user_pages and kmap.
2108 * Bring in the user page that we will copy from _first_.
2109 * Otherwise there's a nasty deadlock on copying from the
2110 * same page as we're writing to, without it being marked
2113 * Not only is this an optimisation, but it is also required
2114 * to check that the address is actually valid, when atomic
2115 * usercopies are used, below.
2117 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2122 page
= __grab_cache_page(mapping
, index
);
2129 * non-uptodate pages cannot cope with short copies, and we
2130 * cannot take a pagefault with the destination page locked.
2131 * So pin the source page to copy it.
2133 if (!PageUptodate(page
) && !segment_eq(get_fs(), KERNEL_DS
)) {
2136 src_page
= alloc_page(GFP_KERNEL
);
2138 page_cache_release(page
);
2144 * Cannot get_user_pages with a page locked for the
2145 * same reason as we can't take a page fault with a
2146 * page locked (as explained below).
2148 copied
= iov_iter_copy_from_user(src_page
, i
,
2150 if (unlikely(copied
== 0)) {
2152 page_cache_release(page
);
2153 page_cache_release(src_page
);
2160 * Can't handle the page going uptodate here, because
2161 * that means we would use non-atomic usercopies, which
2162 * zero out the tail of the page, which can cause
2163 * zeroes to become transiently visible. We could just
2164 * use a non-zeroing copy, but the APIs aren't too
2167 if (unlikely(!page
->mapping
|| PageUptodate(page
))) {
2169 page_cache_release(page
);
2170 page_cache_release(src_page
);
2175 status
= a_ops
->prepare_write(file
, page
, offset
, offset
+bytes
);
2176 if (unlikely(status
))
2177 goto fs_write_aop_error
;
2181 * Must not enter the pagefault handler here, because
2182 * we hold the page lock, so we might recursively
2183 * deadlock on the same lock, or get an ABBA deadlock
2184 * against a different lock, or against the mmap_sem
2185 * (which nests outside the page lock). So increment
2186 * preempt count, and use _atomic usercopies.
2188 * The page is uptodate so we are OK to encounter a
2189 * short copy: if unmodified parts of the page are
2190 * marked dirty and written out to disk, it doesn't
2193 pagefault_disable();
2194 copied
= iov_iter_copy_from_user_atomic(page
, i
,
2199 src
= kmap_atomic(src_page
, KM_USER0
);
2200 dst
= kmap_atomic(page
, KM_USER1
);
2201 memcpy(dst
+ offset
, src
+ offset
, bytes
);
2202 kunmap_atomic(dst
, KM_USER1
);
2203 kunmap_atomic(src
, KM_USER0
);
2206 flush_dcache_page(page
);
2208 status
= a_ops
->commit_write(file
, page
, offset
, offset
+bytes
);
2209 if (unlikely(status
< 0))
2210 goto fs_write_aop_error
;
2211 if (unlikely(status
> 0)) /* filesystem did partial write */
2212 copied
= min_t(size_t, copied
, status
);
2215 mark_page_accessed(page
);
2216 page_cache_release(page
);
2218 page_cache_release(src_page
);
2220 iov_iter_advance(i
, copied
);
2224 balance_dirty_pages_ratelimited(mapping
);
2230 page_cache_release(page
);
2232 page_cache_release(src_page
);
2235 * prepare_write() may have instantiated a few blocks
2236 * outside i_size. Trim these off again. Don't need
2237 * i_size_read because we hold i_mutex.
2239 if (pos
+ bytes
> inode
->i_size
)
2240 vmtruncate(inode
, inode
->i_size
);
2242 } while (iov_iter_count(i
));
2244 return written
? written
: status
;
2247 static ssize_t
generic_perform_write(struct file
*file
,
2248 struct iov_iter
*i
, loff_t pos
)
2250 struct address_space
*mapping
= file
->f_mapping
;
2251 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2253 ssize_t written
= 0;
2254 unsigned int flags
= 0;
2257 * Copies from kernel address space cannot fail (NFSD is a big user).
2259 if (segment_eq(get_fs(), KERNEL_DS
))
2260 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2264 pgoff_t index
; /* Pagecache index for current page */
2265 unsigned long offset
; /* Offset into pagecache page */
2266 unsigned long bytes
; /* Bytes to write to page */
2267 size_t copied
; /* Bytes copied from user */
2270 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2271 index
= pos
>> PAGE_CACHE_SHIFT
;
2272 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2278 * Bring in the user page that we will copy from _first_.
2279 * Otherwise there's a nasty deadlock on copying from the
2280 * same page as we're writing to, without it being marked
2283 * Not only is this an optimisation, but it is also required
2284 * to check that the address is actually valid, when atomic
2285 * usercopies are used, below.
2287 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2292 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2294 if (unlikely(status
))
2297 pagefault_disable();
2298 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2300 flush_dcache_page(page
);
2302 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2304 if (unlikely(status
< 0))
2310 iov_iter_advance(i
, copied
);
2311 if (unlikely(copied
== 0)) {
2313 * If we were unable to copy any data at all, we must
2314 * fall back to a single segment length write.
2316 * If we didn't fallback here, we could livelock
2317 * because not all segments in the iov can be copied at
2318 * once without a pagefault.
2320 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2321 iov_iter_single_seg_count(i
));
2327 balance_dirty_pages_ratelimited(mapping
);
2329 } while (iov_iter_count(i
));
2331 return written
? written
: status
;
2335 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2336 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
2337 size_t count
, ssize_t written
)
2339 struct file
*file
= iocb
->ki_filp
;
2340 struct address_space
*mapping
= file
->f_mapping
;
2341 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2342 struct inode
*inode
= mapping
->host
;
2346 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
2347 if (a_ops
->write_begin
)
2348 status
= generic_perform_write(file
, &i
, pos
);
2350 status
= generic_perform_write_2copy(file
, &i
, pos
);
2352 if (likely(status
>= 0)) {
2354 *ppos
= pos
+ status
;
2357 * For now, when the user asks for O_SYNC, we'll actually give
2360 if (unlikely((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2361 if (!a_ops
->writepage
|| !is_sync_kiocb(iocb
))
2362 status
= generic_osync_inode(inode
, mapping
,
2363 OSYNC_METADATA
|OSYNC_DATA
);
2368 * If we get here for O_DIRECT writes then we must have fallen through
2369 * to buffered writes (block instantiation inside i_size). So we sync
2370 * the file data here, to try to honour O_DIRECT expectations.
2372 if (unlikely(file
->f_flags
& O_DIRECT
) && written
)
2373 status
= filemap_write_and_wait(mapping
);
2375 return written
? written
: status
;
2377 EXPORT_SYMBOL(generic_file_buffered_write
);
2380 __generic_file_aio_write_nolock(struct kiocb
*iocb
, const struct iovec
*iov
,
2381 unsigned long nr_segs
, loff_t
*ppos
)
2383 struct file
*file
= iocb
->ki_filp
;
2384 struct address_space
* mapping
= file
->f_mapping
;
2385 size_t ocount
; /* original count */
2386 size_t count
; /* after file limit checks */
2387 struct inode
*inode
= mapping
->host
;
2393 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
2400 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2402 /* We can write back this queue in page reclaim */
2403 current
->backing_dev_info
= mapping
->backing_dev_info
;
2406 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2413 err
= remove_suid(file
->f_path
.dentry
);
2417 file_update_time(file
);
2419 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2420 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2422 ssize_t written_buffered
;
2424 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
,
2425 ppos
, count
, ocount
);
2426 if (written
< 0 || written
== count
)
2429 * direct-io write to a hole: fall through to buffered I/O
2430 * for completing the rest of the request.
2434 written_buffered
= generic_file_buffered_write(iocb
, iov
,
2435 nr_segs
, pos
, ppos
, count
,
2438 * If generic_file_buffered_write() retuned a synchronous error
2439 * then we want to return the number of bytes which were
2440 * direct-written, or the error code if that was zero. Note
2441 * that this differs from normal direct-io semantics, which
2442 * will return -EFOO even if some bytes were written.
2444 if (written_buffered
< 0) {
2445 err
= written_buffered
;
2450 * We need to ensure that the page cache pages are written to
2451 * disk and invalidated to preserve the expected O_DIRECT
2454 endbyte
= pos
+ written_buffered
- written
- 1;
2455 err
= do_sync_mapping_range(file
->f_mapping
, pos
, endbyte
,
2456 SYNC_FILE_RANGE_WAIT_BEFORE
|
2457 SYNC_FILE_RANGE_WRITE
|
2458 SYNC_FILE_RANGE_WAIT_AFTER
);
2460 written
= written_buffered
;
2461 invalidate_mapping_pages(mapping
,
2462 pos
>> PAGE_CACHE_SHIFT
,
2463 endbyte
>> PAGE_CACHE_SHIFT
);
2466 * We don't know how much we wrote, so just return
2467 * the number of bytes which were direct-written
2471 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2472 pos
, ppos
, count
, written
);
2475 current
->backing_dev_info
= NULL
;
2476 return written
? written
: err
;
2479 ssize_t
generic_file_aio_write_nolock(struct kiocb
*iocb
,
2480 const struct iovec
*iov
, unsigned long nr_segs
, loff_t pos
)
2482 struct file
*file
= iocb
->ki_filp
;
2483 struct address_space
*mapping
= file
->f_mapping
;
2484 struct inode
*inode
= mapping
->host
;
2487 BUG_ON(iocb
->ki_pos
!= pos
);
2489 ret
= __generic_file_aio_write_nolock(iocb
, iov
, nr_segs
,
2492 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2495 err
= sync_page_range_nolock(inode
, mapping
, pos
, ret
);
2501 EXPORT_SYMBOL(generic_file_aio_write_nolock
);
2503 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2504 unsigned long nr_segs
, loff_t pos
)
2506 struct file
*file
= iocb
->ki_filp
;
2507 struct address_space
*mapping
= file
->f_mapping
;
2508 struct inode
*inode
= mapping
->host
;
2511 BUG_ON(iocb
->ki_pos
!= pos
);
2513 mutex_lock(&inode
->i_mutex
);
2514 ret
= __generic_file_aio_write_nolock(iocb
, iov
, nr_segs
,
2516 mutex_unlock(&inode
->i_mutex
);
2518 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2521 err
= sync_page_range(inode
, mapping
, pos
, ret
);
2527 EXPORT_SYMBOL(generic_file_aio_write
);
2530 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2531 * went wrong during pagecache shootdown.
2534 generic_file_direct_IO(int rw
, struct kiocb
*iocb
, const struct iovec
*iov
,
2535 loff_t offset
, unsigned long nr_segs
)
2537 struct file
*file
= iocb
->ki_filp
;
2538 struct address_space
*mapping
= file
->f_mapping
;
2541 pgoff_t end
= 0; /* silence gcc */
2544 * If it's a write, unmap all mmappings of the file up-front. This
2545 * will cause any pte dirty bits to be propagated into the pageframes
2546 * for the subsequent filemap_write_and_wait().
2549 write_len
= iov_length(iov
, nr_segs
);
2550 end
= (offset
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2551 if (mapping_mapped(mapping
))
2552 unmap_mapping_range(mapping
, offset
, write_len
, 0);
2555 retval
= filemap_write_and_wait(mapping
);
2560 * After a write we want buffered reads to be sure to go to disk to get
2561 * the new data. We invalidate clean cached page from the region we're
2562 * about to write. We do this *before* the write so that we can return
2563 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2565 if (rw
== WRITE
&& mapping
->nrpages
) {
2566 retval
= invalidate_inode_pages2_range(mapping
,
2567 offset
>> PAGE_CACHE_SHIFT
, end
);
2572 retval
= mapping
->a_ops
->direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
2575 * Finally, try again to invalidate clean pages which might have been
2576 * cached by non-direct readahead, or faulted in by get_user_pages()
2577 * if the source of the write was an mmap'ed region of the file
2578 * we're writing. Either one is a pretty crazy thing to do,
2579 * so we don't support it 100%. If this invalidation
2580 * fails, tough, the write still worked...
2582 if (rw
== WRITE
&& mapping
->nrpages
) {
2583 invalidate_inode_pages2_range(mapping
, offset
>> PAGE_CACHE_SHIFT
, end
);
2590 * try_to_release_page() - release old fs-specific metadata on a page
2592 * @page: the page which the kernel is trying to free
2593 * @gfp_mask: memory allocation flags (and I/O mode)
2595 * The address_space is to try to release any data against the page
2596 * (presumably at page->private). If the release was successful, return `1'.
2597 * Otherwise return zero.
2599 * The @gfp_mask argument specifies whether I/O may be performed to release
2600 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2602 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2604 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2606 struct address_space
* const mapping
= page
->mapping
;
2608 BUG_ON(!PageLocked(page
));
2609 if (PageWriteback(page
))
2612 if (mapping
&& mapping
->a_ops
->releasepage
)
2613 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2614 return try_to_free_buffers(page
);
2617 EXPORT_SYMBOL(try_to_release_page
);