mm/slab.c: proper prototypes
[wrt350n-kernel.git] / drivers / media / dvb / frontends / mt2060.c
blob450fad8d9b65099ced8ca7f99a789fce9e3636ad
1 /*
2 * Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
4 * Copyright (c) 2006 Olivier DANET <odanet@caramail.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
22 /* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/delay.h>
27 #include <linux/dvb/frontend.h>
28 #include <linux/i2c.h>
30 #include "dvb_frontend.h"
32 #include "mt2060.h"
33 #include "mt2060_priv.h"
35 static int debug;
36 module_param(debug, int, 0644);
37 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
39 #define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2060: " args); printk("\n"); }} while (0)
41 // Reads a single register
42 static int mt2060_readreg(struct mt2060_priv *priv, u8 reg, u8 *val)
44 struct i2c_msg msg[2] = {
45 { .addr = priv->cfg->i2c_address, .flags = 0, .buf = &reg, .len = 1 },
46 { .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .buf = val, .len = 1 },
49 if (i2c_transfer(priv->i2c, msg, 2) != 2) {
50 printk(KERN_WARNING "mt2060 I2C read failed\n");
51 return -EREMOTEIO;
53 return 0;
56 // Writes a single register
57 static int mt2060_writereg(struct mt2060_priv *priv, u8 reg, u8 val)
59 u8 buf[2] = { reg, val };
60 struct i2c_msg msg = {
61 .addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = 2
64 if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
65 printk(KERN_WARNING "mt2060 I2C write failed\n");
66 return -EREMOTEIO;
68 return 0;
71 // Writes a set of consecutive registers
72 static int mt2060_writeregs(struct mt2060_priv *priv,u8 *buf, u8 len)
74 struct i2c_msg msg = {
75 .addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = len
77 if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
78 printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n",(int)len);
79 return -EREMOTEIO;
81 return 0;
84 // Initialisation sequences
85 // LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49
86 static u8 mt2060_config1[] = {
87 REG_LO1C1,
88 0x3F, 0x74, 0x00, 0x08, 0x93
91 // FMCG=2, GP2=0, GP1=0
92 static u8 mt2060_config2[] = {
93 REG_MISC_CTRL,
94 0x20, 0x1E, 0x30, 0xff, 0x80, 0xff, 0x00, 0x2c, 0x42
97 // VGAG=3, V1CSE=1
99 #ifdef MT2060_SPURCHECK
100 /* The function below calculates the frequency offset between the output frequency if2
101 and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */
102 static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)
104 int I,J;
105 int dia,diamin,diff;
106 diamin=1000000;
107 for (I = 1; I < 10; I++) {
108 J = ((2*I*lo1)/lo2+1)/2;
109 diff = I*(int)lo1-J*(int)lo2;
110 if (diff < 0) diff=-diff;
111 dia = (diff-(int)if2);
112 if (dia < 0) dia=-dia;
113 if (diamin > dia) diamin=dia;
115 return diamin;
118 #define BANDWIDTH 4000 // kHz
120 /* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */
121 static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
123 u32 Spur,Sp1,Sp2;
124 int I,J;
125 I=0;
126 J=1000;
128 Spur=mt2060_spurcalc(lo1,lo2,if2);
129 if (Spur < BANDWIDTH) {
130 /* Potential spurs detected */
131 dprintk("Spurs before : f_lo1: %d f_lo2: %d (kHz)",
132 (int)lo1,(int)lo2);
133 I=1000;
134 Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);
135 Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);
137 if (Sp1 < Sp2) {
138 J=-J; I=-I; Spur=Sp2;
139 } else
140 Spur=Sp1;
142 while (Spur < BANDWIDTH) {
143 I += J;
144 Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);
146 dprintk("Spurs after : f_lo1: %d f_lo2: %d (kHz)",
147 (int)(lo1+I),(int)(lo2+I));
149 return I;
151 #endif
153 #define IF2 36150 // IF2 frequency = 36.150 MHz
154 #define FREF 16000 // Quartz oscillator 16 MHz
156 static int mt2060_set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *params)
158 struct mt2060_priv *priv;
159 int ret=0;
160 int i=0;
161 u32 freq;
162 u8 lnaband;
163 u32 f_lo1,f_lo2;
164 u32 div1,num1,div2,num2;
165 u8 b[8];
166 u32 if1;
168 priv = fe->tuner_priv;
170 if1 = priv->if1_freq;
171 b[0] = REG_LO1B1;
172 b[1] = 0xFF;
174 mt2060_writeregs(priv,b,2);
176 freq = params->frequency / 1000; // Hz -> kHz
177 priv->bandwidth = (fe->ops.info.type == FE_OFDM) ? params->u.ofdm.bandwidth : 0;
179 f_lo1 = freq + if1 * 1000;
180 f_lo1 = (f_lo1 / 250) * 250;
181 f_lo2 = f_lo1 - freq - IF2;
182 // From the Comtech datasheet, the step used is 50kHz. The tuner chip could be more precise
183 f_lo2 = ((f_lo2 + 25) / 50) * 50;
184 priv->frequency = (f_lo1 - f_lo2 - IF2) * 1000,
186 #ifdef MT2060_SPURCHECK
187 // LO-related spurs detection and correction
188 num1 = mt2060_spurcheck(f_lo1,f_lo2,IF2);
189 f_lo1 += num1;
190 f_lo2 += num1;
191 #endif
192 //Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
193 num1 = f_lo1 / (FREF / 64);
194 div1 = num1 / 64;
195 num1 &= 0x3f;
197 // Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
198 num2 = f_lo2 * 64 / (FREF / 128);
199 div2 = num2 / 8192;
200 num2 &= 0x1fff;
202 if (freq <= 95000) lnaband = 0xB0; else
203 if (freq <= 180000) lnaband = 0xA0; else
204 if (freq <= 260000) lnaband = 0x90; else
205 if (freq <= 335000) lnaband = 0x80; else
206 if (freq <= 425000) lnaband = 0x70; else
207 if (freq <= 480000) lnaband = 0x60; else
208 if (freq <= 570000) lnaband = 0x50; else
209 if (freq <= 645000) lnaband = 0x40; else
210 if (freq <= 730000) lnaband = 0x30; else
211 if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;
213 b[0] = REG_LO1C1;
214 b[1] = lnaband | ((num1 >>2) & 0x0F);
215 b[2] = div1;
216 b[3] = (num2 & 0x0F) | ((num1 & 3) << 4);
217 b[4] = num2 >> 4;
218 b[5] = ((num2 >>12) & 1) | (div2 << 1);
220 dprintk("IF1: %dMHz",(int)if1);
221 dprintk("PLL freq=%dkHz f_lo1=%dkHz f_lo2=%dkHz",(int)freq,(int)f_lo1,(int)f_lo2);
222 dprintk("PLL div1=%d num1=%d div2=%d num2=%d",(int)div1,(int)num1,(int)div2,(int)num2);
223 dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);
225 mt2060_writeregs(priv,b,6);
227 //Waits for pll lock or timeout
228 i = 0;
229 do {
230 mt2060_readreg(priv,REG_LO_STATUS,b);
231 if ((b[0] & 0x88)==0x88)
232 break;
233 msleep(4);
234 i++;
235 } while (i<10);
237 return ret;
240 static void mt2060_calibrate(struct mt2060_priv *priv)
242 u8 b = 0;
243 int i = 0;
245 if (mt2060_writeregs(priv,mt2060_config1,sizeof(mt2060_config1)))
246 return;
247 if (mt2060_writeregs(priv,mt2060_config2,sizeof(mt2060_config2)))
248 return;
250 /* initialize the clock output */
251 mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x30);
253 do {
254 b |= (1 << 6); // FM1SS;
255 mt2060_writereg(priv, REG_LO2C1,b);
256 msleep(20);
258 if (i == 0) {
259 b |= (1 << 7); // FM1CA;
260 mt2060_writereg(priv, REG_LO2C1,b);
261 b &= ~(1 << 7); // FM1CA;
262 msleep(20);
265 b &= ~(1 << 6); // FM1SS
266 mt2060_writereg(priv, REG_LO2C1,b);
268 msleep(20);
269 i++;
270 } while (i < 9);
272 i = 0;
273 while (i++ < 10 && mt2060_readreg(priv, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
274 msleep(20);
276 if (i < 10) {
277 mt2060_readreg(priv, REG_FM_FREQ, &priv->fmfreq); // now find out, what is fmreq used for :)
278 dprintk("calibration was successful: %d", (int)priv->fmfreq);
279 } else
280 dprintk("FMCAL timed out");
283 static int mt2060_get_frequency(struct dvb_frontend *fe, u32 *frequency)
285 struct mt2060_priv *priv = fe->tuner_priv;
286 *frequency = priv->frequency;
287 return 0;
290 static int mt2060_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
292 struct mt2060_priv *priv = fe->tuner_priv;
293 *bandwidth = priv->bandwidth;
294 return 0;
297 static int mt2060_init(struct dvb_frontend *fe)
299 struct mt2060_priv *priv = fe->tuner_priv;
300 return mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x33);
303 static int mt2060_sleep(struct dvb_frontend *fe)
305 struct mt2060_priv *priv = fe->tuner_priv;
306 return mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x30);
309 static int mt2060_release(struct dvb_frontend *fe)
311 kfree(fe->tuner_priv);
312 fe->tuner_priv = NULL;
313 return 0;
316 static const struct dvb_tuner_ops mt2060_tuner_ops = {
317 .info = {
318 .name = "Microtune MT2060",
319 .frequency_min = 48000000,
320 .frequency_max = 860000000,
321 .frequency_step = 50000,
324 .release = mt2060_release,
326 .init = mt2060_init,
327 .sleep = mt2060_sleep,
329 .set_params = mt2060_set_params,
330 .get_frequency = mt2060_get_frequency,
331 .get_bandwidth = mt2060_get_bandwidth
334 /* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
335 struct dvb_frontend * mt2060_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2060_config *cfg, u16 if1)
337 struct mt2060_priv *priv = NULL;
338 u8 id = 0;
340 priv = kzalloc(sizeof(struct mt2060_priv), GFP_KERNEL);
341 if (priv == NULL)
342 return NULL;
344 priv->cfg = cfg;
345 priv->i2c = i2c;
346 priv->if1_freq = if1;
348 if (mt2060_readreg(priv,REG_PART_REV,&id) != 0) {
349 kfree(priv);
350 return NULL;
353 if (id != PART_REV) {
354 kfree(priv);
355 return NULL;
357 printk(KERN_INFO "MT2060: successfully identified (IF1 = %d)\n", if1);
358 memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(struct dvb_tuner_ops));
360 fe->tuner_priv = priv;
362 mt2060_calibrate(priv);
364 return fe;
366 EXPORT_SYMBOL(mt2060_attach);
368 MODULE_AUTHOR("Olivier DANET");
369 MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");
370 MODULE_LICENSE("GPL");