CRIS: Move common Kconfig variable ETRAX_RTC to arch independet Kconfig.
[wrt350n-kernel.git] / drivers / net / wireless / wavelan.c
blob03384a43186b3470d81744e7f75ee584e4fe57ce
1 /*
2 * WaveLAN ISA driver
4 * Jean II - HPLB '96
6 * Reorganisation and extension of the driver.
7 * Original copyright follows (also see the end of this file).
8 * See wavelan.p.h for details.
12 * AT&T GIS (nee NCR) WaveLAN card:
13 * An Ethernet-like radio transceiver
14 * controlled by an Intel 82586 coprocessor.
17 #include "wavelan.p.h" /* Private header */
19 /************************* MISC SUBROUTINES **************************/
21 * Subroutines which won't fit in one of the following category
22 * (WaveLAN modem or i82586)
25 /*------------------------------------------------------------------*/
27 * Translate irq number to PSA irq parameter
29 static u8 wv_irq_to_psa(int irq)
31 if (irq < 0 || irq >= ARRAY_SIZE(irqvals))
32 return 0;
34 return irqvals[irq];
37 /*------------------------------------------------------------------*/
39 * Translate PSA irq parameter to irq number
41 static int __init wv_psa_to_irq(u8 irqval)
43 int irq;
45 for (irq = 0; irq < ARRAY_SIZE(irqvals); irq++)
46 if (irqvals[irq] == irqval)
47 return irq;
49 return -1;
52 /********************* HOST ADAPTER SUBROUTINES *********************/
54 * Useful subroutines to manage the WaveLAN ISA interface
56 * One major difference with the PCMCIA hardware (except the port mapping)
57 * is that we have to keep the state of the Host Control Register
58 * because of the interrupt enable & bus size flags.
61 /*------------------------------------------------------------------*/
63 * Read from card's Host Adaptor Status Register.
65 static inline u16 hasr_read(unsigned long ioaddr)
67 return (inw(HASR(ioaddr)));
68 } /* hasr_read */
70 /*------------------------------------------------------------------*/
72 * Write to card's Host Adapter Command Register.
74 static inline void hacr_write(unsigned long ioaddr, u16 hacr)
76 outw(hacr, HACR(ioaddr));
77 } /* hacr_write */
79 /*------------------------------------------------------------------*/
81 * Write to card's Host Adapter Command Register. Include a delay for
82 * those times when it is needed.
84 static void hacr_write_slow(unsigned long ioaddr, u16 hacr)
86 hacr_write(ioaddr, hacr);
87 /* delay might only be needed sometimes */
88 mdelay(1);
89 } /* hacr_write_slow */
91 /*------------------------------------------------------------------*/
93 * Set the channel attention bit.
95 static inline void set_chan_attn(unsigned long ioaddr, u16 hacr)
97 hacr_write(ioaddr, hacr | HACR_CA);
98 } /* set_chan_attn */
100 /*------------------------------------------------------------------*/
102 * Reset, and then set host adaptor into default mode.
104 static inline void wv_hacr_reset(unsigned long ioaddr)
106 hacr_write_slow(ioaddr, HACR_RESET);
107 hacr_write(ioaddr, HACR_DEFAULT);
108 } /* wv_hacr_reset */
110 /*------------------------------------------------------------------*/
112 * Set the I/O transfer over the ISA bus to 8-bit mode
114 static inline void wv_16_off(unsigned long ioaddr, u16 hacr)
116 hacr &= ~HACR_16BITS;
117 hacr_write(ioaddr, hacr);
118 } /* wv_16_off */
120 /*------------------------------------------------------------------*/
122 * Set the I/O transfer over the ISA bus to 8-bit mode
124 static inline void wv_16_on(unsigned long ioaddr, u16 hacr)
126 hacr |= HACR_16BITS;
127 hacr_write(ioaddr, hacr);
128 } /* wv_16_on */
130 /*------------------------------------------------------------------*/
132 * Disable interrupts on the WaveLAN hardware.
133 * (called by wv_82586_stop())
135 static inline void wv_ints_off(struct net_device * dev)
137 net_local *lp = (net_local *) dev->priv;
138 unsigned long ioaddr = dev->base_addr;
140 lp->hacr &= ~HACR_INTRON;
141 hacr_write(ioaddr, lp->hacr);
142 } /* wv_ints_off */
144 /*------------------------------------------------------------------*/
146 * Enable interrupts on the WaveLAN hardware.
147 * (called by wv_hw_reset())
149 static inline void wv_ints_on(struct net_device * dev)
151 net_local *lp = (net_local *) dev->priv;
152 unsigned long ioaddr = dev->base_addr;
154 lp->hacr |= HACR_INTRON;
155 hacr_write(ioaddr, lp->hacr);
156 } /* wv_ints_on */
158 /******************* MODEM MANAGEMENT SUBROUTINES *******************/
160 * Useful subroutines to manage the modem of the WaveLAN
163 /*------------------------------------------------------------------*/
165 * Read the Parameter Storage Area from the WaveLAN card's memory
168 * Read bytes from the PSA.
170 static void psa_read(unsigned long ioaddr, u16 hacr, int o, /* offset in PSA */
171 u8 * b, /* buffer to fill */
172 int n)
173 { /* size to read */
174 wv_16_off(ioaddr, hacr);
176 while (n-- > 0) {
177 outw(o, PIOR2(ioaddr));
178 o++;
179 *b++ = inb(PIOP2(ioaddr));
182 wv_16_on(ioaddr, hacr);
183 } /* psa_read */
185 /*------------------------------------------------------------------*/
187 * Write the Parameter Storage Area to the WaveLAN card's memory.
189 static void psa_write(unsigned long ioaddr, u16 hacr, int o, /* Offset in PSA */
190 u8 * b, /* Buffer in memory */
191 int n)
192 { /* Length of buffer */
193 int count = 0;
195 wv_16_off(ioaddr, hacr);
197 while (n-- > 0) {
198 outw(o, PIOR2(ioaddr));
199 o++;
201 outb(*b, PIOP2(ioaddr));
202 b++;
204 /* Wait for the memory to finish its write cycle */
205 count = 0;
206 while ((count++ < 100) &&
207 (hasr_read(ioaddr) & HASR_PSA_BUSY)) mdelay(1);
210 wv_16_on(ioaddr, hacr);
211 } /* psa_write */
213 #ifdef SET_PSA_CRC
214 /*------------------------------------------------------------------*/
216 * Calculate the PSA CRC
217 * Thanks to Valster, Nico <NVALSTER@wcnd.nl.lucent.com> for the code
218 * NOTE: By specifying a length including the CRC position the
219 * returned value should be zero. (i.e. a correct checksum in the PSA)
221 * The Windows drivers don't use the CRC, but the AP and the PtP tool
222 * depend on it.
224 static u16 psa_crc(u8 * psa, /* The PSA */
225 int size)
226 { /* Number of short for CRC */
227 int byte_cnt; /* Loop on the PSA */
228 u16 crc_bytes = 0; /* Data in the PSA */
229 int bit_cnt; /* Loop on the bits of the short */
231 for (byte_cnt = 0; byte_cnt < size; byte_cnt++) {
232 crc_bytes ^= psa[byte_cnt]; /* Its an xor */
234 for (bit_cnt = 1; bit_cnt < 9; bit_cnt++) {
235 if (crc_bytes & 0x0001)
236 crc_bytes = (crc_bytes >> 1) ^ 0xA001;
237 else
238 crc_bytes >>= 1;
242 return crc_bytes;
243 } /* psa_crc */
244 #endif /* SET_PSA_CRC */
246 /*------------------------------------------------------------------*/
248 * update the checksum field in the Wavelan's PSA
250 static void update_psa_checksum(struct net_device * dev, unsigned long ioaddr, u16 hacr)
252 #ifdef SET_PSA_CRC
253 psa_t psa;
254 u16 crc;
256 /* read the parameter storage area */
257 psa_read(ioaddr, hacr, 0, (unsigned char *) &psa, sizeof(psa));
259 /* update the checksum */
260 crc = psa_crc((unsigned char *) &psa,
261 sizeof(psa) - sizeof(psa.psa_crc[0]) -
262 sizeof(psa.psa_crc[1])
263 - sizeof(psa.psa_crc_status));
265 psa.psa_crc[0] = crc & 0xFF;
266 psa.psa_crc[1] = (crc & 0xFF00) >> 8;
268 /* Write it ! */
269 psa_write(ioaddr, hacr, (char *) &psa.psa_crc - (char *) &psa,
270 (unsigned char *) &psa.psa_crc, 2);
272 #ifdef DEBUG_IOCTL_INFO
273 printk(KERN_DEBUG "%s: update_psa_checksum(): crc = 0x%02x%02x\n",
274 dev->name, psa.psa_crc[0], psa.psa_crc[1]);
276 /* Check again (luxury !) */
277 crc = psa_crc((unsigned char *) &psa,
278 sizeof(psa) - sizeof(psa.psa_crc_status));
280 if (crc != 0)
281 printk(KERN_WARNING
282 "%s: update_psa_checksum(): CRC does not agree with PSA data (even after recalculating)\n",
283 dev->name);
284 #endif /* DEBUG_IOCTL_INFO */
285 #endif /* SET_PSA_CRC */
286 } /* update_psa_checksum */
288 /*------------------------------------------------------------------*/
290 * Write 1 byte to the MMC.
292 static void mmc_out(unsigned long ioaddr, u16 o, u8 d)
294 int count = 0;
296 /* Wait for MMC to go idle */
297 while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
298 udelay(10);
300 outw((u16) (((u16) d << 8) | (o << 1) | 1), MMCR(ioaddr));
303 /*------------------------------------------------------------------*/
305 * Routine to write bytes to the Modem Management Controller.
306 * We start at the end because it is the way it should be!
308 static void mmc_write(unsigned long ioaddr, u8 o, u8 * b, int n)
310 o += n;
311 b += n;
313 while (n-- > 0)
314 mmc_out(ioaddr, --o, *(--b));
315 } /* mmc_write */
317 /*------------------------------------------------------------------*/
319 * Read a byte from the MMC.
320 * Optimised version for 1 byte, avoid using memory.
322 static u8 mmc_in(unsigned long ioaddr, u16 o)
324 int count = 0;
326 while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
327 udelay(10);
328 outw(o << 1, MMCR(ioaddr));
330 while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
331 udelay(10);
332 return (u8) (inw(MMCR(ioaddr)) >> 8);
335 /*------------------------------------------------------------------*/
337 * Routine to read bytes from the Modem Management Controller.
338 * The implementation is complicated by a lack of address lines,
339 * which prevents decoding of the low-order bit.
340 * (code has just been moved in the above function)
341 * We start at the end because it is the way it should be!
343 static inline void mmc_read(unsigned long ioaddr, u8 o, u8 * b, int n)
345 o += n;
346 b += n;
348 while (n-- > 0)
349 *(--b) = mmc_in(ioaddr, --o);
350 } /* mmc_read */
352 /*------------------------------------------------------------------*/
354 * Get the type of encryption available.
356 static inline int mmc_encr(unsigned long ioaddr)
357 { /* I/O port of the card */
358 int temp;
360 temp = mmc_in(ioaddr, mmroff(0, mmr_des_avail));
361 if ((temp != MMR_DES_AVAIL_DES) && (temp != MMR_DES_AVAIL_AES))
362 return 0;
363 else
364 return temp;
367 /*------------------------------------------------------------------*/
369 * Wait for the frequency EEPROM to complete a command.
370 * I hope this one will be optimally inlined.
372 static inline void fee_wait(unsigned long ioaddr, /* I/O port of the card */
373 int delay, /* Base delay to wait for */
374 int number)
375 { /* Number of time to wait */
376 int count = 0; /* Wait only a limited time */
378 while ((count++ < number) &&
379 (mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
380 MMR_FEE_STATUS_BUSY)) udelay(delay);
383 /*------------------------------------------------------------------*/
385 * Read bytes from the Frequency EEPROM (frequency select cards).
387 static void fee_read(unsigned long ioaddr, /* I/O port of the card */
388 u16 o, /* destination offset */
389 u16 * b, /* data buffer */
390 int n)
391 { /* number of registers */
392 b += n; /* Position at the end of the area */
394 /* Write the address */
395 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
397 /* Loop on all buffer */
398 while (n-- > 0) {
399 /* Write the read command */
400 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
401 MMW_FEE_CTRL_READ);
403 /* Wait until EEPROM is ready (should be quick). */
404 fee_wait(ioaddr, 10, 100);
406 /* Read the value. */
407 *--b = ((mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)) << 8) |
408 mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
413 /*------------------------------------------------------------------*/
415 * Write bytes from the Frequency EEPROM (frequency select cards).
416 * This is a bit complicated, because the frequency EEPROM has to
417 * be unprotected and the write enabled.
418 * Jean II
420 static void fee_write(unsigned long ioaddr, /* I/O port of the card */
421 u16 o, /* destination offset */
422 u16 * b, /* data buffer */
423 int n)
424 { /* number of registers */
425 b += n; /* Position at the end of the area. */
427 #ifdef EEPROM_IS_PROTECTED /* disabled */
428 #ifdef DOESNT_SEEM_TO_WORK /* disabled */
429 /* Ask to read the protected register */
430 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRREAD);
432 fee_wait(ioaddr, 10, 100);
434 /* Read the protected register. */
435 printk("Protected 2: %02X-%02X\n",
436 mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)),
437 mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
438 #endif /* DOESNT_SEEM_TO_WORK */
440 /* Enable protected register. */
441 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
442 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PREN);
444 fee_wait(ioaddr, 10, 100);
446 /* Unprotect area. */
447 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n);
448 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
449 #ifdef DOESNT_SEEM_TO_WORK /* disabled */
450 /* or use: */
451 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRCLEAR);
452 #endif /* DOESNT_SEEM_TO_WORK */
454 fee_wait(ioaddr, 10, 100);
455 #endif /* EEPROM_IS_PROTECTED */
457 /* Write enable. */
458 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
459 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WREN);
461 fee_wait(ioaddr, 10, 100);
463 /* Write the EEPROM address. */
464 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
466 /* Loop on all buffer */
467 while (n-- > 0) {
468 /* Write the value. */
469 mmc_out(ioaddr, mmwoff(0, mmw_fee_data_h), (*--b) >> 8);
470 mmc_out(ioaddr, mmwoff(0, mmw_fee_data_l), *b & 0xFF);
472 /* Write the write command. */
473 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
474 MMW_FEE_CTRL_WRITE);
476 /* WaveLAN documentation says to wait at least 10 ms for EEBUSY = 0 */
477 mdelay(10);
478 fee_wait(ioaddr, 10, 100);
481 /* Write disable. */
482 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_DS);
483 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WDS);
485 fee_wait(ioaddr, 10, 100);
487 #ifdef EEPROM_IS_PROTECTED /* disabled */
488 /* Reprotect EEPROM. */
489 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x00);
490 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
492 fee_wait(ioaddr, 10, 100);
493 #endif /* EEPROM_IS_PROTECTED */
496 /************************ I82586 SUBROUTINES *************************/
498 * Useful subroutines to manage the Ethernet controller
501 /*------------------------------------------------------------------*/
503 * Read bytes from the on-board RAM.
504 * Why does inlining this function make it fail?
506 static /*inline */ void obram_read(unsigned long ioaddr,
507 u16 o, u8 * b, int n)
509 outw(o, PIOR1(ioaddr));
510 insw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
513 /*------------------------------------------------------------------*/
515 * Write bytes to the on-board RAM.
517 static inline void obram_write(unsigned long ioaddr, u16 o, u8 * b, int n)
519 outw(o, PIOR1(ioaddr));
520 outsw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
523 /*------------------------------------------------------------------*/
525 * Acknowledge the reading of the status issued by the i82586.
527 static void wv_ack(struct net_device * dev)
529 net_local *lp = (net_local *) dev->priv;
530 unsigned long ioaddr = dev->base_addr;
531 u16 scb_cs;
532 int i;
534 obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
535 (unsigned char *) &scb_cs, sizeof(scb_cs));
536 scb_cs &= SCB_ST_INT;
538 if (scb_cs == 0)
539 return;
541 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
542 (unsigned char *) &scb_cs, sizeof(scb_cs));
544 set_chan_attn(ioaddr, lp->hacr);
546 for (i = 1000; i > 0; i--) {
547 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
548 (unsigned char *) &scb_cs, sizeof(scb_cs));
549 if (scb_cs == 0)
550 break;
552 udelay(10);
554 udelay(100);
556 #ifdef DEBUG_CONFIG_ERROR
557 if (i <= 0)
558 printk(KERN_INFO
559 "%s: wv_ack(): board not accepting command.\n",
560 dev->name);
561 #endif
564 /*------------------------------------------------------------------*/
566 * Set channel attention bit and busy wait until command has
567 * completed, then acknowledge completion of the command.
569 static int wv_synchronous_cmd(struct net_device * dev, const char *str)
571 net_local *lp = (net_local *) dev->priv;
572 unsigned long ioaddr = dev->base_addr;
573 u16 scb_cmd;
574 ach_t cb;
575 int i;
577 scb_cmd = SCB_CMD_CUC & SCB_CMD_CUC_GO;
578 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
579 (unsigned char *) &scb_cmd, sizeof(scb_cmd));
581 set_chan_attn(ioaddr, lp->hacr);
583 for (i = 1000; i > 0; i--) {
584 obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb,
585 sizeof(cb));
586 if (cb.ac_status & AC_SFLD_C)
587 break;
589 udelay(10);
591 udelay(100);
593 if (i <= 0 || !(cb.ac_status & AC_SFLD_OK)) {
594 #ifdef DEBUG_CONFIG_ERROR
595 printk(KERN_INFO "%s: %s failed; status = 0x%x\n",
596 dev->name, str, cb.ac_status);
597 #endif
598 #ifdef DEBUG_I82586_SHOW
599 wv_scb_show(ioaddr);
600 #endif
601 return -1;
604 /* Ack the status */
605 wv_ack(dev);
607 return 0;
610 /*------------------------------------------------------------------*/
612 * Configuration commands completion interrupt.
613 * Check if done, and if OK.
615 static int
616 wv_config_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
618 unsigned short mcs_addr;
619 unsigned short status;
620 int ret;
622 #ifdef DEBUG_INTERRUPT_TRACE
623 printk(KERN_DEBUG "%s: ->wv_config_complete()\n", dev->name);
624 #endif
626 mcs_addr = lp->tx_first_in_use + sizeof(ac_tx_t) + sizeof(ac_nop_t)
627 + sizeof(tbd_t) + sizeof(ac_cfg_t) + sizeof(ac_ias_t);
629 /* Read the status of the last command (set mc list). */
630 obram_read(ioaddr, acoff(mcs_addr, ac_status),
631 (unsigned char *) &status, sizeof(status));
633 /* If not completed -> exit */
634 if ((status & AC_SFLD_C) == 0)
635 ret = 0; /* Not ready to be scrapped */
636 else {
637 #ifdef DEBUG_CONFIG_ERROR
638 unsigned short cfg_addr;
639 unsigned short ias_addr;
641 /* Check mc_config command */
642 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
643 printk(KERN_INFO
644 "%s: wv_config_complete(): set_multicast_address failed; status = 0x%x\n",
645 dev->name, status);
647 /* check ia-config command */
648 ias_addr = mcs_addr - sizeof(ac_ias_t);
649 obram_read(ioaddr, acoff(ias_addr, ac_status),
650 (unsigned char *) &status, sizeof(status));
651 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
652 printk(KERN_INFO
653 "%s: wv_config_complete(): set_MAC_address failed; status = 0x%x\n",
654 dev->name, status);
656 /* Check config command. */
657 cfg_addr = ias_addr - sizeof(ac_cfg_t);
658 obram_read(ioaddr, acoff(cfg_addr, ac_status),
659 (unsigned char *) &status, sizeof(status));
660 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
661 printk(KERN_INFO
662 "%s: wv_config_complete(): configure failed; status = 0x%x\n",
663 dev->name, status);
664 #endif /* DEBUG_CONFIG_ERROR */
666 ret = 1; /* Ready to be scrapped */
669 #ifdef DEBUG_INTERRUPT_TRACE
670 printk(KERN_DEBUG "%s: <-wv_config_complete() - %d\n", dev->name,
671 ret);
672 #endif
673 return ret;
676 /*------------------------------------------------------------------*/
678 * Command completion interrupt.
679 * Reclaim as many freed tx buffers as we can.
680 * (called in wavelan_interrupt()).
681 * Note : the spinlock is already grabbed for us.
683 static int wv_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
685 int nreaped = 0;
687 #ifdef DEBUG_INTERRUPT_TRACE
688 printk(KERN_DEBUG "%s: ->wv_complete()\n", dev->name);
689 #endif
691 /* Loop on all the transmit buffers */
692 while (lp->tx_first_in_use != I82586NULL) {
693 unsigned short tx_status;
695 /* Read the first transmit buffer */
696 obram_read(ioaddr, acoff(lp->tx_first_in_use, ac_status),
697 (unsigned char *) &tx_status,
698 sizeof(tx_status));
700 /* If not completed -> exit */
701 if ((tx_status & AC_SFLD_C) == 0)
702 break;
704 /* Hack for reconfiguration */
705 if (tx_status == 0xFFFF)
706 if (!wv_config_complete(dev, ioaddr, lp))
707 break; /* Not completed */
709 /* We now remove this buffer */
710 nreaped++;
711 --lp->tx_n_in_use;
714 if (lp->tx_n_in_use > 0)
715 printk("%c", "0123456789abcdefghijk"[lp->tx_n_in_use]);
718 /* Was it the last one? */
719 if (lp->tx_n_in_use <= 0)
720 lp->tx_first_in_use = I82586NULL;
721 else {
722 /* Next one in the chain */
723 lp->tx_first_in_use += TXBLOCKZ;
724 if (lp->tx_first_in_use >=
725 OFFSET_CU +
726 NTXBLOCKS * TXBLOCKZ) lp->tx_first_in_use -=
727 NTXBLOCKS * TXBLOCKZ;
730 /* Hack for reconfiguration */
731 if (tx_status == 0xFFFF)
732 continue;
734 /* Now, check status of the finished command */
735 if (tx_status & AC_SFLD_OK) {
736 int ncollisions;
738 lp->stats.tx_packets++;
739 ncollisions = tx_status & AC_SFLD_MAXCOL;
740 lp->stats.collisions += ncollisions;
741 #ifdef DEBUG_TX_INFO
742 if (ncollisions > 0)
743 printk(KERN_DEBUG
744 "%s: wv_complete(): tx completed after %d collisions.\n",
745 dev->name, ncollisions);
746 #endif
747 } else {
748 lp->stats.tx_errors++;
749 if (tx_status & AC_SFLD_S10) {
750 lp->stats.tx_carrier_errors++;
751 #ifdef DEBUG_TX_FAIL
752 printk(KERN_DEBUG
753 "%s: wv_complete(): tx error: no CS.\n",
754 dev->name);
755 #endif
757 if (tx_status & AC_SFLD_S9) {
758 lp->stats.tx_carrier_errors++;
759 #ifdef DEBUG_TX_FAIL
760 printk(KERN_DEBUG
761 "%s: wv_complete(): tx error: lost CTS.\n",
762 dev->name);
763 #endif
765 if (tx_status & AC_SFLD_S8) {
766 lp->stats.tx_fifo_errors++;
767 #ifdef DEBUG_TX_FAIL
768 printk(KERN_DEBUG
769 "%s: wv_complete(): tx error: slow DMA.\n",
770 dev->name);
771 #endif
773 if (tx_status & AC_SFLD_S6) {
774 lp->stats.tx_heartbeat_errors++;
775 #ifdef DEBUG_TX_FAIL
776 printk(KERN_DEBUG
777 "%s: wv_complete(): tx error: heart beat.\n",
778 dev->name);
779 #endif
781 if (tx_status & AC_SFLD_S5) {
782 lp->stats.tx_aborted_errors++;
783 #ifdef DEBUG_TX_FAIL
784 printk(KERN_DEBUG
785 "%s: wv_complete(): tx error: too many collisions.\n",
786 dev->name);
787 #endif
791 #ifdef DEBUG_TX_INFO
792 printk(KERN_DEBUG
793 "%s: wv_complete(): tx completed, tx_status 0x%04x\n",
794 dev->name, tx_status);
795 #endif
798 #ifdef DEBUG_INTERRUPT_INFO
799 if (nreaped > 1)
800 printk(KERN_DEBUG "%s: wv_complete(): reaped %d\n",
801 dev->name, nreaped);
802 #endif
805 * Inform upper layers.
807 if (lp->tx_n_in_use < NTXBLOCKS - 1) {
808 netif_wake_queue(dev);
810 #ifdef DEBUG_INTERRUPT_TRACE
811 printk(KERN_DEBUG "%s: <-wv_complete()\n", dev->name);
812 #endif
813 return nreaped;
816 /*------------------------------------------------------------------*/
818 * Reconfigure the i82586, or at least ask for it.
819 * Because wv_82586_config uses a transmission buffer, we must do it
820 * when we are sure that there is one left, so we do it now
821 * or in wavelan_packet_xmit() (I can't find any better place,
822 * wavelan_interrupt is not an option), so you may experience
823 * delays sometimes.
825 static void wv_82586_reconfig(struct net_device * dev)
827 net_local *lp = (net_local *) dev->priv;
828 unsigned long flags;
830 /* Arm the flag, will be cleard in wv_82586_config() */
831 lp->reconfig_82586 = 1;
833 /* Check if we can do it now ! */
834 if((netif_running(dev)) && !(netif_queue_stopped(dev))) {
835 spin_lock_irqsave(&lp->spinlock, flags);
836 /* May fail */
837 wv_82586_config(dev);
838 spin_unlock_irqrestore(&lp->spinlock, flags);
840 else {
841 #ifdef DEBUG_CONFIG_INFO
842 printk(KERN_DEBUG
843 "%s: wv_82586_reconfig(): delayed (state = %lX)\n",
844 dev->name, dev->state);
845 #endif
849 /********************* DEBUG & INFO SUBROUTINES *********************/
851 * This routine is used in the code to show information for debugging.
852 * Most of the time, it dumps the contents of hardware structures.
855 #ifdef DEBUG_PSA_SHOW
856 /*------------------------------------------------------------------*/
858 * Print the formatted contents of the Parameter Storage Area.
860 static void wv_psa_show(psa_t * p)
862 DECLARE_MAC_BUF(mac);
864 printk(KERN_DEBUG "##### WaveLAN PSA contents: #####\n");
865 printk(KERN_DEBUG "psa_io_base_addr_1: 0x%02X %02X %02X %02X\n",
866 p->psa_io_base_addr_1,
867 p->psa_io_base_addr_2,
868 p->psa_io_base_addr_3, p->psa_io_base_addr_4);
869 printk(KERN_DEBUG "psa_rem_boot_addr_1: 0x%02X %02X %02X\n",
870 p->psa_rem_boot_addr_1,
871 p->psa_rem_boot_addr_2, p->psa_rem_boot_addr_3);
872 printk(KERN_DEBUG "psa_holi_params: 0x%02x, ", p->psa_holi_params);
873 printk("psa_int_req_no: %d\n", p->psa_int_req_no);
874 #ifdef DEBUG_SHOW_UNUSED
875 printk(KERN_DEBUG "psa_unused0[]: %s\n",
876 print_mac(mac, p->psa_unused0));
877 #endif /* DEBUG_SHOW_UNUSED */
878 printk(KERN_DEBUG "psa_univ_mac_addr[]: %s\n",
879 print_mac(mac, p->psa_univ_mac_addr));
880 printk(KERN_DEBUG "psa_local_mac_addr[]: %s\n",
881 print_mac(mac, p->psa_local_mac_addr));
882 printk(KERN_DEBUG "psa_univ_local_sel: %d, ",
883 p->psa_univ_local_sel);
884 printk("psa_comp_number: %d, ", p->psa_comp_number);
885 printk("psa_thr_pre_set: 0x%02x\n", p->psa_thr_pre_set);
886 printk(KERN_DEBUG "psa_feature_select/decay_prm: 0x%02x, ",
887 p->psa_feature_select);
888 printk("psa_subband/decay_update_prm: %d\n", p->psa_subband);
889 printk(KERN_DEBUG "psa_quality_thr: 0x%02x, ", p->psa_quality_thr);
890 printk("psa_mod_delay: 0x%02x\n", p->psa_mod_delay);
891 printk(KERN_DEBUG "psa_nwid: 0x%02x%02x, ", p->psa_nwid[0],
892 p->psa_nwid[1]);
893 printk("psa_nwid_select: %d\n", p->psa_nwid_select);
894 printk(KERN_DEBUG "psa_encryption_select: %d, ",
895 p->psa_encryption_select);
896 printk
897 ("psa_encryption_key[]: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
898 p->psa_encryption_key[0], p->psa_encryption_key[1],
899 p->psa_encryption_key[2], p->psa_encryption_key[3],
900 p->psa_encryption_key[4], p->psa_encryption_key[5],
901 p->psa_encryption_key[6], p->psa_encryption_key[7]);
902 printk(KERN_DEBUG "psa_databus_width: %d\n", p->psa_databus_width);
903 printk(KERN_DEBUG "psa_call_code/auto_squelch: 0x%02x, ",
904 p->psa_call_code[0]);
905 printk
906 ("psa_call_code[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
907 p->psa_call_code[0], p->psa_call_code[1], p->psa_call_code[2],
908 p->psa_call_code[3], p->psa_call_code[4], p->psa_call_code[5],
909 p->psa_call_code[6], p->psa_call_code[7]);
910 #ifdef DEBUG_SHOW_UNUSED
911 printk(KERN_DEBUG "psa_reserved[]: %02X:%02X:%02X:%02X\n",
912 p->psa_reserved[0],
913 p->psa_reserved[1], p->psa_reserved[2], p->psa_reserved[3]);
914 #endif /* DEBUG_SHOW_UNUSED */
915 printk(KERN_DEBUG "psa_conf_status: %d, ", p->psa_conf_status);
916 printk("psa_crc: 0x%02x%02x, ", p->psa_crc[0], p->psa_crc[1]);
917 printk("psa_crc_status: 0x%02x\n", p->psa_crc_status);
918 } /* wv_psa_show */
919 #endif /* DEBUG_PSA_SHOW */
921 #ifdef DEBUG_MMC_SHOW
922 /*------------------------------------------------------------------*/
924 * Print the formatted status of the Modem Management Controller.
925 * This function needs to be completed.
927 static void wv_mmc_show(struct net_device * dev)
929 unsigned long ioaddr = dev->base_addr;
930 net_local *lp = (net_local *) dev->priv;
931 mmr_t m;
933 /* Basic check */
934 if (hasr_read(ioaddr) & HASR_NO_CLK) {
935 printk(KERN_WARNING
936 "%s: wv_mmc_show: modem not connected\n",
937 dev->name);
938 return;
941 /* Read the mmc */
942 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
943 mmc_read(ioaddr, 0, (u8 *) & m, sizeof(m));
944 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
946 /* Don't forget to update statistics */
947 lp->wstats.discard.nwid +=
948 (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
950 printk(KERN_DEBUG "##### WaveLAN modem status registers: #####\n");
951 #ifdef DEBUG_SHOW_UNUSED
952 printk(KERN_DEBUG
953 "mmc_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
954 m.mmr_unused0[0], m.mmr_unused0[1], m.mmr_unused0[2],
955 m.mmr_unused0[3], m.mmr_unused0[4], m.mmr_unused0[5],
956 m.mmr_unused0[6], m.mmr_unused0[7]);
957 #endif /* DEBUG_SHOW_UNUSED */
958 printk(KERN_DEBUG "Encryption algorithm: %02X - Status: %02X\n",
959 m.mmr_des_avail, m.mmr_des_status);
960 #ifdef DEBUG_SHOW_UNUSED
961 printk(KERN_DEBUG "mmc_unused1[]: %02X:%02X:%02X:%02X:%02X\n",
962 m.mmr_unused1[0],
963 m.mmr_unused1[1],
964 m.mmr_unused1[2], m.mmr_unused1[3], m.mmr_unused1[4]);
965 #endif /* DEBUG_SHOW_UNUSED */
966 printk(KERN_DEBUG "dce_status: 0x%x [%s%s%s%s]\n",
967 m.mmr_dce_status,
969 mmr_dce_status & MMR_DCE_STATUS_RX_BUSY) ?
970 "energy detected," : "",
972 mmr_dce_status & MMR_DCE_STATUS_LOOPT_IND) ?
973 "loop test indicated," : "",
975 mmr_dce_status & MMR_DCE_STATUS_TX_BUSY) ?
976 "transmitter on," : "",
978 mmr_dce_status & MMR_DCE_STATUS_JBR_EXPIRED) ?
979 "jabber timer expired," : "");
980 printk(KERN_DEBUG "Dsp ID: %02X\n", m.mmr_dsp_id);
981 #ifdef DEBUG_SHOW_UNUSED
982 printk(KERN_DEBUG "mmc_unused2[]: %02X:%02X\n",
983 m.mmr_unused2[0], m.mmr_unused2[1]);
984 #endif /* DEBUG_SHOW_UNUSED */
985 printk(KERN_DEBUG "# correct_nwid: %d, # wrong_nwid: %d\n",
986 (m.mmr_correct_nwid_h << 8) | m.mmr_correct_nwid_l,
987 (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l);
988 printk(KERN_DEBUG "thr_pre_set: 0x%x [current signal %s]\n",
989 m.mmr_thr_pre_set & MMR_THR_PRE_SET,
991 mmr_thr_pre_set & MMR_THR_PRE_SET_CUR) ? "above" :
992 "below");
993 printk(KERN_DEBUG "signal_lvl: %d [%s], ",
994 m.mmr_signal_lvl & MMR_SIGNAL_LVL,
996 mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) ? "new msg" :
997 "no new msg");
998 printk("silence_lvl: %d [%s], ",
999 m.mmr_silence_lvl & MMR_SILENCE_LVL,
1001 mmr_silence_lvl & MMR_SILENCE_LVL_VALID) ? "update done" :
1002 "no new update");
1003 printk("sgnl_qual: 0x%x [%s]\n", m.mmr_sgnl_qual & MMR_SGNL_QUAL,
1005 mmr_sgnl_qual & MMR_SGNL_QUAL_ANT) ? "Antenna 1" :
1006 "Antenna 0");
1007 #ifdef DEBUG_SHOW_UNUSED
1008 printk(KERN_DEBUG "netw_id_l: %x\n", m.mmr_netw_id_l);
1009 #endif /* DEBUG_SHOW_UNUSED */
1010 } /* wv_mmc_show */
1011 #endif /* DEBUG_MMC_SHOW */
1013 #ifdef DEBUG_I82586_SHOW
1014 /*------------------------------------------------------------------*/
1016 * Print the last block of the i82586 memory.
1018 static void wv_scb_show(unsigned long ioaddr)
1020 scb_t scb;
1022 obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
1023 sizeof(scb));
1025 printk(KERN_DEBUG "##### WaveLAN system control block: #####\n");
1027 printk(KERN_DEBUG "status: ");
1028 printk("stat 0x%x[%s%s%s%s] ",
1029 (scb.
1030 scb_status & (SCB_ST_CX | SCB_ST_FR | SCB_ST_CNA |
1031 SCB_ST_RNR)) >> 12,
1032 (scb.
1033 scb_status & SCB_ST_CX) ? "command completion interrupt," :
1034 "", (scb.scb_status & SCB_ST_FR) ? "frame received," : "",
1035 (scb.
1036 scb_status & SCB_ST_CNA) ? "command unit not active," : "",
1037 (scb.
1038 scb_status & SCB_ST_RNR) ? "receiving unit not ready," :
1039 "");
1040 printk("cus 0x%x[%s%s%s] ", (scb.scb_status & SCB_ST_CUS) >> 8,
1041 ((scb.scb_status & SCB_ST_CUS) ==
1042 SCB_ST_CUS_IDLE) ? "idle" : "",
1043 ((scb.scb_status & SCB_ST_CUS) ==
1044 SCB_ST_CUS_SUSP) ? "suspended" : "",
1045 ((scb.scb_status & SCB_ST_CUS) ==
1046 SCB_ST_CUS_ACTV) ? "active" : "");
1047 printk("rus 0x%x[%s%s%s%s]\n", (scb.scb_status & SCB_ST_RUS) >> 4,
1048 ((scb.scb_status & SCB_ST_RUS) ==
1049 SCB_ST_RUS_IDLE) ? "idle" : "",
1050 ((scb.scb_status & SCB_ST_RUS) ==
1051 SCB_ST_RUS_SUSP) ? "suspended" : "",
1052 ((scb.scb_status & SCB_ST_RUS) ==
1053 SCB_ST_RUS_NRES) ? "no resources" : "",
1054 ((scb.scb_status & SCB_ST_RUS) ==
1055 SCB_ST_RUS_RDY) ? "ready" : "");
1057 printk(KERN_DEBUG "command: ");
1058 printk("ack 0x%x[%s%s%s%s] ",
1059 (scb.
1060 scb_command & (SCB_CMD_ACK_CX | SCB_CMD_ACK_FR |
1061 SCB_CMD_ACK_CNA | SCB_CMD_ACK_RNR)) >> 12,
1062 (scb.
1063 scb_command & SCB_CMD_ACK_CX) ? "ack cmd completion," : "",
1064 (scb.
1065 scb_command & SCB_CMD_ACK_FR) ? "ack frame received," : "",
1066 (scb.
1067 scb_command & SCB_CMD_ACK_CNA) ? "ack CU not active," : "",
1068 (scb.
1069 scb_command & SCB_CMD_ACK_RNR) ? "ack RU not ready," : "");
1070 printk("cuc 0x%x[%s%s%s%s%s] ",
1071 (scb.scb_command & SCB_CMD_CUC) >> 8,
1072 ((scb.scb_command & SCB_CMD_CUC) ==
1073 SCB_CMD_CUC_NOP) ? "nop" : "",
1074 ((scb.scb_command & SCB_CMD_CUC) ==
1075 SCB_CMD_CUC_GO) ? "start cbl_offset" : "",
1076 ((scb.scb_command & SCB_CMD_CUC) ==
1077 SCB_CMD_CUC_RES) ? "resume execution" : "",
1078 ((scb.scb_command & SCB_CMD_CUC) ==
1079 SCB_CMD_CUC_SUS) ? "suspend execution" : "",
1080 ((scb.scb_command & SCB_CMD_CUC) ==
1081 SCB_CMD_CUC_ABT) ? "abort execution" : "");
1082 printk("ruc 0x%x[%s%s%s%s%s]\n",
1083 (scb.scb_command & SCB_CMD_RUC) >> 4,
1084 ((scb.scb_command & SCB_CMD_RUC) ==
1085 SCB_CMD_RUC_NOP) ? "nop" : "",
1086 ((scb.scb_command & SCB_CMD_RUC) ==
1087 SCB_CMD_RUC_GO) ? "start rfa_offset" : "",
1088 ((scb.scb_command & SCB_CMD_RUC) ==
1089 SCB_CMD_RUC_RES) ? "resume reception" : "",
1090 ((scb.scb_command & SCB_CMD_RUC) ==
1091 SCB_CMD_RUC_SUS) ? "suspend reception" : "",
1092 ((scb.scb_command & SCB_CMD_RUC) ==
1093 SCB_CMD_RUC_ABT) ? "abort reception" : "");
1095 printk(KERN_DEBUG "cbl_offset 0x%x ", scb.scb_cbl_offset);
1096 printk("rfa_offset 0x%x\n", scb.scb_rfa_offset);
1098 printk(KERN_DEBUG "crcerrs %d ", scb.scb_crcerrs);
1099 printk("alnerrs %d ", scb.scb_alnerrs);
1100 printk("rscerrs %d ", scb.scb_rscerrs);
1101 printk("ovrnerrs %d\n", scb.scb_ovrnerrs);
1104 /*------------------------------------------------------------------*/
1106 * Print the formatted status of the i82586's receive unit.
1108 static void wv_ru_show(struct net_device * dev)
1110 /* net_local *lp = (net_local *) dev->priv; */
1112 printk(KERN_DEBUG
1113 "##### WaveLAN i82586 receiver unit status: #####\n");
1114 printk(KERN_DEBUG "ru:");
1116 * Not implemented yet
1118 printk("\n");
1119 } /* wv_ru_show */
1121 /*------------------------------------------------------------------*/
1123 * Display info about one control block of the i82586 memory.
1125 static void wv_cu_show_one(struct net_device * dev, net_local * lp, int i, u16 p)
1127 unsigned long ioaddr;
1128 ac_tx_t actx;
1130 ioaddr = dev->base_addr;
1132 printk("%d: 0x%x:", i, p);
1134 obram_read(ioaddr, p, (unsigned char *) &actx, sizeof(actx));
1135 printk(" status=0x%x,", actx.tx_h.ac_status);
1136 printk(" command=0x%x,", actx.tx_h.ac_command);
1140 tbd_t tbd;
1142 obram_read(ioaddr, actx.tx_tbd_offset, (unsigned char *)&tbd, sizeof(tbd));
1143 printk(" tbd_status=0x%x,", tbd.tbd_status);
1147 printk("|");
1150 /*------------------------------------------------------------------*/
1152 * Print status of the command unit of the i82586.
1154 static void wv_cu_show(struct net_device * dev)
1156 net_local *lp = (net_local *) dev->priv;
1157 unsigned int i;
1158 u16 p;
1160 printk(KERN_DEBUG
1161 "##### WaveLAN i82586 command unit status: #####\n");
1163 printk(KERN_DEBUG);
1164 for (i = 0, p = lp->tx_first_in_use; i < NTXBLOCKS; i++) {
1165 wv_cu_show_one(dev, lp, i, p);
1167 p += TXBLOCKZ;
1168 if (p >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
1169 p -= NTXBLOCKS * TXBLOCKZ;
1171 printk("\n");
1173 #endif /* DEBUG_I82586_SHOW */
1175 #ifdef DEBUG_DEVICE_SHOW
1176 /*------------------------------------------------------------------*/
1178 * Print the formatted status of the WaveLAN PCMCIA device driver.
1180 static void wv_dev_show(struct net_device * dev)
1182 printk(KERN_DEBUG "dev:");
1183 printk(" state=%lX,", dev->state);
1184 printk(" trans_start=%ld,", dev->trans_start);
1185 printk(" flags=0x%x,", dev->flags);
1186 printk("\n");
1187 } /* wv_dev_show */
1189 /*------------------------------------------------------------------*/
1191 * Print the formatted status of the WaveLAN PCMCIA device driver's
1192 * private information.
1194 static void wv_local_show(struct net_device * dev)
1196 net_local *lp;
1198 lp = (net_local *) dev->priv;
1200 printk(KERN_DEBUG "local:");
1201 printk(" tx_n_in_use=%d,", lp->tx_n_in_use);
1202 printk(" hacr=0x%x,", lp->hacr);
1203 printk(" rx_head=0x%x,", lp->rx_head);
1204 printk(" rx_last=0x%x,", lp->rx_last);
1205 printk(" tx_first_free=0x%x,", lp->tx_first_free);
1206 printk(" tx_first_in_use=0x%x,", lp->tx_first_in_use);
1207 printk("\n");
1208 } /* wv_local_show */
1209 #endif /* DEBUG_DEVICE_SHOW */
1211 #if defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO)
1212 /*------------------------------------------------------------------*/
1214 * Dump packet header (and content if necessary) on the screen
1216 static inline void wv_packet_info(u8 * p, /* Packet to dump */
1217 int length, /* Length of the packet */
1218 char *msg1, /* Name of the device */
1219 char *msg2)
1220 { /* Name of the function */
1221 int i;
1222 int maxi;
1223 DECLARE_MAC_BUF(mac);
1225 printk(KERN_DEBUG
1226 "%s: %s(): dest %s, length %d\n",
1227 msg1, msg2, print_mac(mac, p), length);
1228 printk(KERN_DEBUG
1229 "%s: %s(): src %s, type 0x%02X%02X\n",
1230 msg1, msg2, print_mac(mac, &p[6]), p[12], p[13]);
1232 #ifdef DEBUG_PACKET_DUMP
1234 printk(KERN_DEBUG "data=\"");
1236 if ((maxi = length) > DEBUG_PACKET_DUMP)
1237 maxi = DEBUG_PACKET_DUMP;
1238 for (i = 14; i < maxi; i++)
1239 if (p[i] >= ' ' && p[i] <= '~')
1240 printk(" %c", p[i]);
1241 else
1242 printk("%02X", p[i]);
1243 if (maxi < length)
1244 printk("..");
1245 printk("\"\n");
1246 printk(KERN_DEBUG "\n");
1247 #endif /* DEBUG_PACKET_DUMP */
1249 #endif /* defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO) */
1251 /*------------------------------------------------------------------*/
1253 * This is the information which is displayed by the driver at startup.
1254 * There are lots of flags for configuring it to your liking.
1256 static void wv_init_info(struct net_device * dev)
1258 short ioaddr = dev->base_addr;
1259 net_local *lp = (net_local *) dev->priv;
1260 psa_t psa;
1261 #ifdef DEBUG_BASIC_SHOW
1262 DECLARE_MAC_BUF(mac);
1263 #endif
1265 /* Read the parameter storage area */
1266 psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
1268 #ifdef DEBUG_PSA_SHOW
1269 wv_psa_show(&psa);
1270 #endif
1271 #ifdef DEBUG_MMC_SHOW
1272 wv_mmc_show(dev);
1273 #endif
1274 #ifdef DEBUG_I82586_SHOW
1275 wv_cu_show(dev);
1276 #endif
1278 #ifdef DEBUG_BASIC_SHOW
1279 /* Now, let's go for the basic stuff. */
1280 printk(KERN_NOTICE "%s: WaveLAN at %#x, %s, IRQ %d",
1281 dev->name, ioaddr, print_mac(mac, dev->dev_addr), dev->irq);
1283 /* Print current network ID. */
1284 if (psa.psa_nwid_select)
1285 printk(", nwid 0x%02X-%02X", psa.psa_nwid[0],
1286 psa.psa_nwid[1]);
1287 else
1288 printk(", nwid off");
1290 /* If 2.00 card */
1291 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1292 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
1293 unsigned short freq;
1295 /* Ask the EEPROM to read the frequency from the first area. */
1296 fee_read(ioaddr, 0x00, &freq, 1);
1298 /* Print frequency */
1299 printk(", 2.00, %ld", (freq >> 6) + 2400L);
1301 /* Hack! */
1302 if (freq & 0x20)
1303 printk(".5");
1304 } else {
1305 printk(", PC");
1306 switch (psa.psa_comp_number) {
1307 case PSA_COMP_PC_AT_915:
1308 case PSA_COMP_PC_AT_2400:
1309 printk("-AT");
1310 break;
1311 case PSA_COMP_PC_MC_915:
1312 case PSA_COMP_PC_MC_2400:
1313 printk("-MC");
1314 break;
1315 case PSA_COMP_PCMCIA_915:
1316 printk("MCIA");
1317 break;
1318 default:
1319 printk("?");
1321 printk(", ");
1322 switch (psa.psa_subband) {
1323 case PSA_SUBBAND_915:
1324 printk("915");
1325 break;
1326 case PSA_SUBBAND_2425:
1327 printk("2425");
1328 break;
1329 case PSA_SUBBAND_2460:
1330 printk("2460");
1331 break;
1332 case PSA_SUBBAND_2484:
1333 printk("2484");
1334 break;
1335 case PSA_SUBBAND_2430_5:
1336 printk("2430.5");
1337 break;
1338 default:
1339 printk("?");
1343 printk(" MHz\n");
1344 #endif /* DEBUG_BASIC_SHOW */
1346 #ifdef DEBUG_VERSION_SHOW
1347 /* Print version information */
1348 printk(KERN_NOTICE "%s", version);
1349 #endif
1350 } /* wv_init_info */
1352 /********************* IOCTL, STATS & RECONFIG *********************/
1354 * We found here routines that are called by Linux on different
1355 * occasions after the configuration and not for transmitting data
1356 * These may be called when the user use ifconfig, /proc/net/dev
1357 * or wireless extensions
1360 /*------------------------------------------------------------------*/
1362 * Get the current Ethernet statistics. This may be called with the
1363 * card open or closed.
1364 * Used when the user read /proc/net/dev
1366 static en_stats *wavelan_get_stats(struct net_device * dev)
1368 #ifdef DEBUG_IOCTL_TRACE
1369 printk(KERN_DEBUG "%s: <>wavelan_get_stats()\n", dev->name);
1370 #endif
1372 return (&((net_local *) dev->priv)->stats);
1375 /*------------------------------------------------------------------*/
1377 * Set or clear the multicast filter for this adaptor.
1378 * num_addrs == -1 Promiscuous mode, receive all packets
1379 * num_addrs == 0 Normal mode, clear multicast list
1380 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1381 * and do best-effort filtering.
1383 static void wavelan_set_multicast_list(struct net_device * dev)
1385 net_local *lp = (net_local *) dev->priv;
1387 #ifdef DEBUG_IOCTL_TRACE
1388 printk(KERN_DEBUG "%s: ->wavelan_set_multicast_list()\n",
1389 dev->name);
1390 #endif
1392 #ifdef DEBUG_IOCTL_INFO
1393 printk(KERN_DEBUG
1394 "%s: wavelan_set_multicast_list(): setting Rx mode %02X to %d addresses.\n",
1395 dev->name, dev->flags, dev->mc_count);
1396 #endif
1398 /* Are we asking for promiscuous mode,
1399 * or all multicast addresses (we don't have that!)
1400 * or too many multicast addresses for the hardware filter? */
1401 if ((dev->flags & IFF_PROMISC) ||
1402 (dev->flags & IFF_ALLMULTI) ||
1403 (dev->mc_count > I82586_MAX_MULTICAST_ADDRESSES)) {
1405 * Enable promiscuous mode: receive all packets.
1407 if (!lp->promiscuous) {
1408 lp->promiscuous = 1;
1409 lp->mc_count = 0;
1411 wv_82586_reconfig(dev);
1413 /* Tell the kernel that we are doing a really bad job. */
1414 dev->flags |= IFF_PROMISC;
1416 } else
1417 /* Are there multicast addresses to send? */
1418 if (dev->mc_list != (struct dev_mc_list *) NULL) {
1420 * Disable promiscuous mode, but receive all packets
1421 * in multicast list
1423 #ifdef MULTICAST_AVOID
1424 if (lp->promiscuous || (dev->mc_count != lp->mc_count))
1425 #endif
1427 lp->promiscuous = 0;
1428 lp->mc_count = dev->mc_count;
1430 wv_82586_reconfig(dev);
1432 } else {
1434 * Switch to normal mode: disable promiscuous mode and
1435 * clear the multicast list.
1437 if (lp->promiscuous || lp->mc_count == 0) {
1438 lp->promiscuous = 0;
1439 lp->mc_count = 0;
1441 wv_82586_reconfig(dev);
1444 #ifdef DEBUG_IOCTL_TRACE
1445 printk(KERN_DEBUG "%s: <-wavelan_set_multicast_list()\n",
1446 dev->name);
1447 #endif
1450 /*------------------------------------------------------------------*/
1452 * This function doesn't exist.
1453 * (Note : it was a nice way to test the reconfigure stuff...)
1455 #ifdef SET_MAC_ADDRESS
1456 static int wavelan_set_mac_address(struct net_device * dev, void *addr)
1458 struct sockaddr *mac = addr;
1460 /* Copy the address. */
1461 memcpy(dev->dev_addr, mac->sa_data, WAVELAN_ADDR_SIZE);
1463 /* Reconfigure the beast. */
1464 wv_82586_reconfig(dev);
1466 return 0;
1468 #endif /* SET_MAC_ADDRESS */
1471 /*------------------------------------------------------------------*/
1473 * Frequency setting (for hardware capable of it)
1474 * It's a bit complicated and you don't really want to look into it.
1475 * (called in wavelan_ioctl)
1477 static int wv_set_frequency(unsigned long ioaddr, /* I/O port of the card */
1478 iw_freq * frequency)
1480 const int BAND_NUM = 10; /* Number of bands */
1481 long freq = 0L; /* offset to 2.4 GHz in .5 MHz */
1482 #ifdef DEBUG_IOCTL_INFO
1483 int i;
1484 #endif
1486 /* Setting by frequency */
1487 /* Theoretically, you may set any frequency between
1488 * the two limits with a 0.5 MHz precision. In practice,
1489 * I don't want you to have trouble with local regulations.
1491 if ((frequency->e == 1) &&
1492 (frequency->m >= (int) 2.412e8)
1493 && (frequency->m <= (int) 2.487e8)) {
1494 freq = ((frequency->m / 10000) - 24000L) / 5;
1497 /* Setting by channel (same as wfreqsel) */
1498 /* Warning: each channel is 22 MHz wide, so some of the channels
1499 * will interfere. */
1500 if ((frequency->e == 0) && (frequency->m < BAND_NUM)) {
1501 /* Get frequency offset. */
1502 freq = channel_bands[frequency->m] >> 1;
1505 /* Verify that the frequency is allowed. */
1506 if (freq != 0L) {
1507 u16 table[10]; /* Authorized frequency table */
1509 /* Read the frequency table. */
1510 fee_read(ioaddr, 0x71, table, 10);
1512 #ifdef DEBUG_IOCTL_INFO
1513 printk(KERN_DEBUG "Frequency table: ");
1514 for (i = 0; i < 10; i++) {
1515 printk(" %04X", table[i]);
1517 printk("\n");
1518 #endif
1520 /* Look in the table to see whether the frequency is allowed. */
1521 if (!(table[9 - ((freq - 24) / 16)] &
1522 (1 << ((freq - 24) % 16)))) return -EINVAL; /* not allowed */
1523 } else
1524 return -EINVAL;
1526 /* if we get a usable frequency */
1527 if (freq != 0L) {
1528 unsigned short area[16];
1529 unsigned short dac[2];
1530 unsigned short area_verify[16];
1531 unsigned short dac_verify[2];
1532 /* Corresponding gain (in the power adjust value table)
1533 * See AT&T WaveLAN Data Manual, REF 407-024689/E, page 3-8
1534 * and WCIN062D.DOC, page 6.2.9. */
1535 unsigned short power_limit[] = { 40, 80, 120, 160, 0 };
1536 int power_band = 0; /* Selected band */
1537 unsigned short power_adjust; /* Correct value */
1539 /* Search for the gain. */
1540 power_band = 0;
1541 while ((freq > power_limit[power_band]) &&
1542 (power_limit[++power_band] != 0));
1544 /* Read the first area. */
1545 fee_read(ioaddr, 0x00, area, 16);
1547 /* Read the DAC. */
1548 fee_read(ioaddr, 0x60, dac, 2);
1550 /* Read the new power adjust value. */
1551 fee_read(ioaddr, 0x6B - (power_band >> 1), &power_adjust,
1553 if (power_band & 0x1)
1554 power_adjust >>= 8;
1555 else
1556 power_adjust &= 0xFF;
1558 #ifdef DEBUG_IOCTL_INFO
1559 printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
1560 for (i = 0; i < 16; i++) {
1561 printk(" %04X", area[i]);
1563 printk("\n");
1565 printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n",
1566 dac[0], dac[1]);
1567 #endif
1569 /* Frequency offset (for info only) */
1570 area[0] = ((freq << 5) & 0xFFE0) | (area[0] & 0x1F);
1572 /* Receiver Principle main divider coefficient */
1573 area[3] = (freq >> 1) + 2400L - 352L;
1574 area[2] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
1576 /* Transmitter Main divider coefficient */
1577 area[13] = (freq >> 1) + 2400L;
1578 area[12] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
1580 /* Other parts of the area are flags, bit streams or unused. */
1582 /* Set the value in the DAC. */
1583 dac[1] = ((power_adjust >> 1) & 0x7F) | (dac[1] & 0xFF80);
1584 dac[0] = ((power_adjust & 0x1) << 4) | (dac[0] & 0xFFEF);
1586 /* Write the first area. */
1587 fee_write(ioaddr, 0x00, area, 16);
1589 /* Write the DAC. */
1590 fee_write(ioaddr, 0x60, dac, 2);
1592 /* We now should verify here that the writing of the EEPROM went OK. */
1594 /* Reread the first area. */
1595 fee_read(ioaddr, 0x00, area_verify, 16);
1597 /* Reread the DAC. */
1598 fee_read(ioaddr, 0x60, dac_verify, 2);
1600 /* Compare. */
1601 if (memcmp(area, area_verify, 16 * 2) ||
1602 memcmp(dac, dac_verify, 2 * 2)) {
1603 #ifdef DEBUG_IOCTL_ERROR
1604 printk(KERN_INFO
1605 "WaveLAN: wv_set_frequency: unable to write new frequency to EEPROM(?).\n");
1606 #endif
1607 return -EOPNOTSUPP;
1610 /* We must download the frequency parameters to the
1611 * synthesizers (from the EEPROM - area 1)
1612 * Note: as the EEPROM is automatically decremented, we set the end
1613 * if the area... */
1614 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x0F);
1615 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
1616 MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
1618 /* Wait until the download is finished. */
1619 fee_wait(ioaddr, 100, 100);
1621 /* We must now download the power adjust value (gain) to
1622 * the synthesizers (from the EEPROM - area 7 - DAC). */
1623 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x61);
1624 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
1625 MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
1627 /* Wait for the download to finish. */
1628 fee_wait(ioaddr, 100, 100);
1630 #ifdef DEBUG_IOCTL_INFO
1631 /* Verification of what we have done */
1633 printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
1634 for (i = 0; i < 16; i++) {
1635 printk(" %04X", area_verify[i]);
1637 printk("\n");
1639 printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n",
1640 dac_verify[0], dac_verify[1]);
1641 #endif
1643 return 0;
1644 } else
1645 return -EINVAL; /* Bah, never get there... */
1648 /*------------------------------------------------------------------*/
1650 * Give the list of available frequencies.
1652 static int wv_frequency_list(unsigned long ioaddr, /* I/O port of the card */
1653 iw_freq * list, /* List of frequencies to fill */
1654 int max)
1655 { /* Maximum number of frequencies */
1656 u16 table[10]; /* Authorized frequency table */
1657 long freq = 0L; /* offset to 2.4 GHz in .5 MHz + 12 MHz */
1658 int i; /* index in the table */
1659 int c = 0; /* Channel number */
1661 /* Read the frequency table. */
1662 fee_read(ioaddr, 0x71 /* frequency table */ , table, 10);
1664 /* Check all frequencies. */
1665 i = 0;
1666 for (freq = 0; freq < 150; freq++)
1667 /* Look in the table if the frequency is allowed */
1668 if (table[9 - (freq / 16)] & (1 << (freq % 16))) {
1669 /* Compute approximate channel number */
1670 while ((c < ARRAY_SIZE(channel_bands)) &&
1671 (((channel_bands[c] >> 1) - 24) < freq))
1672 c++;
1673 list[i].i = c; /* Set the list index */
1675 /* put in the list */
1676 list[i].m = (((freq + 24) * 5) + 24000L) * 10000;
1677 list[i++].e = 1;
1679 /* Check number. */
1680 if (i >= max)
1681 return (i);
1684 return (i);
1687 #ifdef IW_WIRELESS_SPY
1688 /*------------------------------------------------------------------*/
1690 * Gather wireless spy statistics: for each packet, compare the source
1691 * address with our list, and if they match, get the statistics.
1692 * Sorry, but this function really needs the wireless extensions.
1694 static inline void wl_spy_gather(struct net_device * dev,
1695 u8 * mac, /* MAC address */
1696 u8 * stats) /* Statistics to gather */
1698 struct iw_quality wstats;
1700 wstats.qual = stats[2] & MMR_SGNL_QUAL;
1701 wstats.level = stats[0] & MMR_SIGNAL_LVL;
1702 wstats.noise = stats[1] & MMR_SILENCE_LVL;
1703 wstats.updated = 0x7;
1705 /* Update spy records */
1706 wireless_spy_update(dev, mac, &wstats);
1708 #endif /* IW_WIRELESS_SPY */
1710 #ifdef HISTOGRAM
1711 /*------------------------------------------------------------------*/
1713 * This function calculates a histogram of the signal level.
1714 * As the noise is quite constant, it's like doing it on the SNR.
1715 * We have defined a set of interval (lp->his_range), and each time
1716 * the level goes in that interval, we increment the count (lp->his_sum).
1717 * With this histogram you may detect if one WaveLAN is really weak,
1718 * or you may also calculate the mean and standard deviation of the level.
1720 static inline void wl_his_gather(struct net_device * dev, u8 * stats)
1721 { /* Statistics to gather */
1722 net_local *lp = (net_local *) dev->priv;
1723 u8 level = stats[0] & MMR_SIGNAL_LVL;
1724 int i;
1726 /* Find the correct interval. */
1727 i = 0;
1728 while ((i < (lp->his_number - 1))
1729 && (level >= lp->his_range[i++]));
1731 /* Increment interval counter. */
1732 (lp->his_sum[i])++;
1734 #endif /* HISTOGRAM */
1736 /*------------------------------------------------------------------*/
1738 * Wireless Handler : get protocol name
1740 static int wavelan_get_name(struct net_device *dev,
1741 struct iw_request_info *info,
1742 union iwreq_data *wrqu,
1743 char *extra)
1745 strcpy(wrqu->name, "WaveLAN");
1746 return 0;
1749 /*------------------------------------------------------------------*/
1751 * Wireless Handler : set NWID
1753 static int wavelan_set_nwid(struct net_device *dev,
1754 struct iw_request_info *info,
1755 union iwreq_data *wrqu,
1756 char *extra)
1758 unsigned long ioaddr = dev->base_addr;
1759 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
1760 psa_t psa;
1761 mm_t m;
1762 unsigned long flags;
1763 int ret = 0;
1765 /* Disable interrupts and save flags. */
1766 spin_lock_irqsave(&lp->spinlock, flags);
1768 /* Set NWID in WaveLAN. */
1769 if (!wrqu->nwid.disabled) {
1770 /* Set NWID in psa */
1771 psa.psa_nwid[0] = (wrqu->nwid.value & 0xFF00) >> 8;
1772 psa.psa_nwid[1] = wrqu->nwid.value & 0xFF;
1773 psa.psa_nwid_select = 0x01;
1774 psa_write(ioaddr, lp->hacr,
1775 (char *) psa.psa_nwid - (char *) &psa,
1776 (unsigned char *) psa.psa_nwid, 3);
1778 /* Set NWID in mmc. */
1779 m.w.mmw_netw_id_l = psa.psa_nwid[1];
1780 m.w.mmw_netw_id_h = psa.psa_nwid[0];
1781 mmc_write(ioaddr,
1782 (char *) &m.w.mmw_netw_id_l -
1783 (char *) &m,
1784 (unsigned char *) &m.w.mmw_netw_id_l, 2);
1785 mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel), 0x00);
1786 } else {
1787 /* Disable NWID in the psa. */
1788 psa.psa_nwid_select = 0x00;
1789 psa_write(ioaddr, lp->hacr,
1790 (char *) &psa.psa_nwid_select -
1791 (char *) &psa,
1792 (unsigned char *) &psa.psa_nwid_select,
1795 /* Disable NWID in the mmc (no filtering). */
1796 mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel),
1797 MMW_LOOPT_SEL_DIS_NWID);
1799 /* update the Wavelan checksum */
1800 update_psa_checksum(dev, ioaddr, lp->hacr);
1802 /* Enable interrupts and restore flags. */
1803 spin_unlock_irqrestore(&lp->spinlock, flags);
1805 return ret;
1808 /*------------------------------------------------------------------*/
1810 * Wireless Handler : get NWID
1812 static int wavelan_get_nwid(struct net_device *dev,
1813 struct iw_request_info *info,
1814 union iwreq_data *wrqu,
1815 char *extra)
1817 unsigned long ioaddr = dev->base_addr;
1818 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
1819 psa_t psa;
1820 unsigned long flags;
1821 int ret = 0;
1823 /* Disable interrupts and save flags. */
1824 spin_lock_irqsave(&lp->spinlock, flags);
1826 /* Read the NWID. */
1827 psa_read(ioaddr, lp->hacr,
1828 (char *) psa.psa_nwid - (char *) &psa,
1829 (unsigned char *) psa.psa_nwid, 3);
1830 wrqu->nwid.value = (psa.psa_nwid[0] << 8) + psa.psa_nwid[1];
1831 wrqu->nwid.disabled = !(psa.psa_nwid_select);
1832 wrqu->nwid.fixed = 1; /* Superfluous */
1834 /* Enable interrupts and restore flags. */
1835 spin_unlock_irqrestore(&lp->spinlock, flags);
1837 return ret;
1840 /*------------------------------------------------------------------*/
1842 * Wireless Handler : set frequency
1844 static int wavelan_set_freq(struct net_device *dev,
1845 struct iw_request_info *info,
1846 union iwreq_data *wrqu,
1847 char *extra)
1849 unsigned long ioaddr = dev->base_addr;
1850 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
1851 unsigned long flags;
1852 int ret;
1854 /* Disable interrupts and save flags. */
1855 spin_lock_irqsave(&lp->spinlock, flags);
1857 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
1858 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1859 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY)))
1860 ret = wv_set_frequency(ioaddr, &(wrqu->freq));
1861 else
1862 ret = -EOPNOTSUPP;
1864 /* Enable interrupts and restore flags. */
1865 spin_unlock_irqrestore(&lp->spinlock, flags);
1867 return ret;
1870 /*------------------------------------------------------------------*/
1872 * Wireless Handler : get frequency
1874 static int wavelan_get_freq(struct net_device *dev,
1875 struct iw_request_info *info,
1876 union iwreq_data *wrqu,
1877 char *extra)
1879 unsigned long ioaddr = dev->base_addr;
1880 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
1881 psa_t psa;
1882 unsigned long flags;
1883 int ret = 0;
1885 /* Disable interrupts and save flags. */
1886 spin_lock_irqsave(&lp->spinlock, flags);
1888 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable).
1889 * Does it work for everybody, especially old cards? */
1890 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1891 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
1892 unsigned short freq;
1894 /* Ask the EEPROM to read the frequency from the first area. */
1895 fee_read(ioaddr, 0x00, &freq, 1);
1896 wrqu->freq.m = ((freq >> 5) * 5 + 24000L) * 10000;
1897 wrqu->freq.e = 1;
1898 } else {
1899 psa_read(ioaddr, lp->hacr,
1900 (char *) &psa.psa_subband - (char *) &psa,
1901 (unsigned char *) &psa.psa_subband, 1);
1903 if (psa.psa_subband <= 4) {
1904 wrqu->freq.m = fixed_bands[psa.psa_subband];
1905 wrqu->freq.e = (psa.psa_subband != 0);
1906 } else
1907 ret = -EOPNOTSUPP;
1910 /* Enable interrupts and restore flags. */
1911 spin_unlock_irqrestore(&lp->spinlock, flags);
1913 return ret;
1916 /*------------------------------------------------------------------*/
1918 * Wireless Handler : set level threshold
1920 static int wavelan_set_sens(struct net_device *dev,
1921 struct iw_request_info *info,
1922 union iwreq_data *wrqu,
1923 char *extra)
1925 unsigned long ioaddr = dev->base_addr;
1926 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
1927 psa_t psa;
1928 unsigned long flags;
1929 int ret = 0;
1931 /* Disable interrupts and save flags. */
1932 spin_lock_irqsave(&lp->spinlock, flags);
1934 /* Set the level threshold. */
1935 /* We should complain loudly if wrqu->sens.fixed = 0, because we
1936 * can't set auto mode... */
1937 psa.psa_thr_pre_set = wrqu->sens.value & 0x3F;
1938 psa_write(ioaddr, lp->hacr,
1939 (char *) &psa.psa_thr_pre_set - (char *) &psa,
1940 (unsigned char *) &psa.psa_thr_pre_set, 1);
1941 /* update the Wavelan checksum */
1942 update_psa_checksum(dev, ioaddr, lp->hacr);
1943 mmc_out(ioaddr, mmwoff(0, mmw_thr_pre_set),
1944 psa.psa_thr_pre_set);
1946 /* Enable interrupts and restore flags. */
1947 spin_unlock_irqrestore(&lp->spinlock, flags);
1949 return ret;
1952 /*------------------------------------------------------------------*/
1954 * Wireless Handler : get level threshold
1956 static int wavelan_get_sens(struct net_device *dev,
1957 struct iw_request_info *info,
1958 union iwreq_data *wrqu,
1959 char *extra)
1961 unsigned long ioaddr = dev->base_addr;
1962 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
1963 psa_t psa;
1964 unsigned long flags;
1965 int ret = 0;
1967 /* Disable interrupts and save flags. */
1968 spin_lock_irqsave(&lp->spinlock, flags);
1970 /* Read the level threshold. */
1971 psa_read(ioaddr, lp->hacr,
1972 (char *) &psa.psa_thr_pre_set - (char *) &psa,
1973 (unsigned char *) &psa.psa_thr_pre_set, 1);
1974 wrqu->sens.value = psa.psa_thr_pre_set & 0x3F;
1975 wrqu->sens.fixed = 1;
1977 /* Enable interrupts and restore flags. */
1978 spin_unlock_irqrestore(&lp->spinlock, flags);
1980 return ret;
1983 /*------------------------------------------------------------------*/
1985 * Wireless Handler : set encryption key
1987 static int wavelan_set_encode(struct net_device *dev,
1988 struct iw_request_info *info,
1989 union iwreq_data *wrqu,
1990 char *extra)
1992 unsigned long ioaddr = dev->base_addr;
1993 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
1994 unsigned long flags;
1995 psa_t psa;
1996 int ret = 0;
1998 /* Disable interrupts and save flags. */
1999 spin_lock_irqsave(&lp->spinlock, flags);
2001 /* Check if capable of encryption */
2002 if (!mmc_encr(ioaddr)) {
2003 ret = -EOPNOTSUPP;
2006 /* Check the size of the key */
2007 if((wrqu->encoding.length != 8) && (wrqu->encoding.length != 0)) {
2008 ret = -EINVAL;
2011 if(!ret) {
2012 /* Basic checking... */
2013 if (wrqu->encoding.length == 8) {
2014 /* Copy the key in the driver */
2015 memcpy(psa.psa_encryption_key, extra,
2016 wrqu->encoding.length);
2017 psa.psa_encryption_select = 1;
2019 psa_write(ioaddr, lp->hacr,
2020 (char *) &psa.psa_encryption_select -
2021 (char *) &psa,
2022 (unsigned char *) &psa.
2023 psa_encryption_select, 8 + 1);
2025 mmc_out(ioaddr, mmwoff(0, mmw_encr_enable),
2026 MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE);
2027 mmc_write(ioaddr, mmwoff(0, mmw_encr_key),
2028 (unsigned char *) &psa.
2029 psa_encryption_key, 8);
2032 /* disable encryption */
2033 if (wrqu->encoding.flags & IW_ENCODE_DISABLED) {
2034 psa.psa_encryption_select = 0;
2035 psa_write(ioaddr, lp->hacr,
2036 (char *) &psa.psa_encryption_select -
2037 (char *) &psa,
2038 (unsigned char *) &psa.
2039 psa_encryption_select, 1);
2041 mmc_out(ioaddr, mmwoff(0, mmw_encr_enable), 0);
2043 /* update the Wavelan checksum */
2044 update_psa_checksum(dev, ioaddr, lp->hacr);
2047 /* Enable interrupts and restore flags. */
2048 spin_unlock_irqrestore(&lp->spinlock, flags);
2050 return ret;
2053 /*------------------------------------------------------------------*/
2055 * Wireless Handler : get encryption key
2057 static int wavelan_get_encode(struct net_device *dev,
2058 struct iw_request_info *info,
2059 union iwreq_data *wrqu,
2060 char *extra)
2062 unsigned long ioaddr = dev->base_addr;
2063 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
2064 psa_t psa;
2065 unsigned long flags;
2066 int ret = 0;
2068 /* Disable interrupts and save flags. */
2069 spin_lock_irqsave(&lp->spinlock, flags);
2071 /* Check if encryption is available */
2072 if (!mmc_encr(ioaddr)) {
2073 ret = -EOPNOTSUPP;
2074 } else {
2075 /* Read the encryption key */
2076 psa_read(ioaddr, lp->hacr,
2077 (char *) &psa.psa_encryption_select -
2078 (char *) &psa,
2079 (unsigned char *) &psa.
2080 psa_encryption_select, 1 + 8);
2082 /* encryption is enabled ? */
2083 if (psa.psa_encryption_select)
2084 wrqu->encoding.flags = IW_ENCODE_ENABLED;
2085 else
2086 wrqu->encoding.flags = IW_ENCODE_DISABLED;
2087 wrqu->encoding.flags |= mmc_encr(ioaddr);
2089 /* Copy the key to the user buffer */
2090 wrqu->encoding.length = 8;
2091 memcpy(extra, psa.psa_encryption_key, wrqu->encoding.length);
2094 /* Enable interrupts and restore flags. */
2095 spin_unlock_irqrestore(&lp->spinlock, flags);
2097 return ret;
2100 /*------------------------------------------------------------------*/
2102 * Wireless Handler : get range info
2104 static int wavelan_get_range(struct net_device *dev,
2105 struct iw_request_info *info,
2106 union iwreq_data *wrqu,
2107 char *extra)
2109 unsigned long ioaddr = dev->base_addr;
2110 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
2111 struct iw_range *range = (struct iw_range *) extra;
2112 unsigned long flags;
2113 int ret = 0;
2115 /* Set the length (very important for backward compatibility) */
2116 wrqu->data.length = sizeof(struct iw_range);
2118 /* Set all the info we don't care or don't know about to zero */
2119 memset(range, 0, sizeof(struct iw_range));
2121 /* Set the Wireless Extension versions */
2122 range->we_version_compiled = WIRELESS_EXT;
2123 range->we_version_source = 9;
2125 /* Set information in the range struct. */
2126 range->throughput = 1.6 * 1000 * 1000; /* don't argue on this ! */
2127 range->min_nwid = 0x0000;
2128 range->max_nwid = 0xFFFF;
2130 range->sensitivity = 0x3F;
2131 range->max_qual.qual = MMR_SGNL_QUAL;
2132 range->max_qual.level = MMR_SIGNAL_LVL;
2133 range->max_qual.noise = MMR_SILENCE_LVL;
2134 range->avg_qual.qual = MMR_SGNL_QUAL; /* Always max */
2135 /* Need to get better values for those two */
2136 range->avg_qual.level = 30;
2137 range->avg_qual.noise = 8;
2139 range->num_bitrates = 1;
2140 range->bitrate[0] = 2000000; /* 2 Mb/s */
2142 /* Event capability (kernel + driver) */
2143 range->event_capa[0] = (IW_EVENT_CAPA_MASK(0x8B02) |
2144 IW_EVENT_CAPA_MASK(0x8B04));
2145 range->event_capa[1] = IW_EVENT_CAPA_K_1;
2147 /* Disable interrupts and save flags. */
2148 spin_lock_irqsave(&lp->spinlock, flags);
2150 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
2151 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
2152 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
2153 range->num_channels = 10;
2154 range->num_frequency = wv_frequency_list(ioaddr, range->freq,
2155 IW_MAX_FREQUENCIES);
2156 } else
2157 range->num_channels = range->num_frequency = 0;
2159 /* Encryption supported ? */
2160 if (mmc_encr(ioaddr)) {
2161 range->encoding_size[0] = 8; /* DES = 64 bits key */
2162 range->num_encoding_sizes = 1;
2163 range->max_encoding_tokens = 1; /* Only one key possible */
2164 } else {
2165 range->num_encoding_sizes = 0;
2166 range->max_encoding_tokens = 0;
2169 /* Enable interrupts and restore flags. */
2170 spin_unlock_irqrestore(&lp->spinlock, flags);
2172 return ret;
2175 /*------------------------------------------------------------------*/
2177 * Wireless Private Handler : set quality threshold
2179 static int wavelan_set_qthr(struct net_device *dev,
2180 struct iw_request_info *info,
2181 union iwreq_data *wrqu,
2182 char *extra)
2184 unsigned long ioaddr = dev->base_addr;
2185 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
2186 psa_t psa;
2187 unsigned long flags;
2189 /* Disable interrupts and save flags. */
2190 spin_lock_irqsave(&lp->spinlock, flags);
2192 psa.psa_quality_thr = *(extra) & 0x0F;
2193 psa_write(ioaddr, lp->hacr,
2194 (char *) &psa.psa_quality_thr - (char *) &psa,
2195 (unsigned char *) &psa.psa_quality_thr, 1);
2196 /* update the Wavelan checksum */
2197 update_psa_checksum(dev, ioaddr, lp->hacr);
2198 mmc_out(ioaddr, mmwoff(0, mmw_quality_thr),
2199 psa.psa_quality_thr);
2201 /* Enable interrupts and restore flags. */
2202 spin_unlock_irqrestore(&lp->spinlock, flags);
2204 return 0;
2207 /*------------------------------------------------------------------*/
2209 * Wireless Private Handler : get quality threshold
2211 static int wavelan_get_qthr(struct net_device *dev,
2212 struct iw_request_info *info,
2213 union iwreq_data *wrqu,
2214 char *extra)
2216 unsigned long ioaddr = dev->base_addr;
2217 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
2218 psa_t psa;
2219 unsigned long flags;
2221 /* Disable interrupts and save flags. */
2222 spin_lock_irqsave(&lp->spinlock, flags);
2224 psa_read(ioaddr, lp->hacr,
2225 (char *) &psa.psa_quality_thr - (char *) &psa,
2226 (unsigned char *) &psa.psa_quality_thr, 1);
2227 *(extra) = psa.psa_quality_thr & 0x0F;
2229 /* Enable interrupts and restore flags. */
2230 spin_unlock_irqrestore(&lp->spinlock, flags);
2232 return 0;
2235 #ifdef HISTOGRAM
2236 /*------------------------------------------------------------------*/
2238 * Wireless Private Handler : set histogram
2240 static int wavelan_set_histo(struct net_device *dev,
2241 struct iw_request_info *info,
2242 union iwreq_data *wrqu,
2243 char *extra)
2245 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
2247 /* Check the number of intervals. */
2248 if (wrqu->data.length > 16) {
2249 return(-E2BIG);
2252 /* Disable histo while we copy the addresses.
2253 * As we don't disable interrupts, we need to do this */
2254 lp->his_number = 0;
2256 /* Are there ranges to copy? */
2257 if (wrqu->data.length > 0) {
2258 /* Copy interval ranges to the driver */
2259 memcpy(lp->his_range, extra, wrqu->data.length);
2262 int i;
2263 printk(KERN_DEBUG "Histo :");
2264 for(i = 0; i < wrqu->data.length; i++)
2265 printk(" %d", lp->his_range[i]);
2266 printk("\n");
2269 /* Reset result structure. */
2270 memset(lp->his_sum, 0x00, sizeof(long) * 16);
2273 /* Now we can set the number of ranges */
2274 lp->his_number = wrqu->data.length;
2276 return(0);
2279 /*------------------------------------------------------------------*/
2281 * Wireless Private Handler : get histogram
2283 static int wavelan_get_histo(struct net_device *dev,
2284 struct iw_request_info *info,
2285 union iwreq_data *wrqu,
2286 char *extra)
2288 net_local *lp = (net_local *) dev->priv; /* lp is not unused */
2290 /* Set the number of intervals. */
2291 wrqu->data.length = lp->his_number;
2293 /* Give back the distribution statistics */
2294 if(lp->his_number > 0)
2295 memcpy(extra, lp->his_sum, sizeof(long) * lp->his_number);
2297 return(0);
2299 #endif /* HISTOGRAM */
2301 /*------------------------------------------------------------------*/
2303 * Structures to export the Wireless Handlers
2306 static const iw_handler wavelan_handler[] =
2308 NULL, /* SIOCSIWNAME */
2309 wavelan_get_name, /* SIOCGIWNAME */
2310 wavelan_set_nwid, /* SIOCSIWNWID */
2311 wavelan_get_nwid, /* SIOCGIWNWID */
2312 wavelan_set_freq, /* SIOCSIWFREQ */
2313 wavelan_get_freq, /* SIOCGIWFREQ */
2314 NULL, /* SIOCSIWMODE */
2315 NULL, /* SIOCGIWMODE */
2316 wavelan_set_sens, /* SIOCSIWSENS */
2317 wavelan_get_sens, /* SIOCGIWSENS */
2318 NULL, /* SIOCSIWRANGE */
2319 wavelan_get_range, /* SIOCGIWRANGE */
2320 NULL, /* SIOCSIWPRIV */
2321 NULL, /* SIOCGIWPRIV */
2322 NULL, /* SIOCSIWSTATS */
2323 NULL, /* SIOCGIWSTATS */
2324 iw_handler_set_spy, /* SIOCSIWSPY */
2325 iw_handler_get_spy, /* SIOCGIWSPY */
2326 iw_handler_set_thrspy, /* SIOCSIWTHRSPY */
2327 iw_handler_get_thrspy, /* SIOCGIWTHRSPY */
2328 NULL, /* SIOCSIWAP */
2329 NULL, /* SIOCGIWAP */
2330 NULL, /* -- hole -- */
2331 NULL, /* SIOCGIWAPLIST */
2332 NULL, /* -- hole -- */
2333 NULL, /* -- hole -- */
2334 NULL, /* SIOCSIWESSID */
2335 NULL, /* SIOCGIWESSID */
2336 NULL, /* SIOCSIWNICKN */
2337 NULL, /* SIOCGIWNICKN */
2338 NULL, /* -- hole -- */
2339 NULL, /* -- hole -- */
2340 NULL, /* SIOCSIWRATE */
2341 NULL, /* SIOCGIWRATE */
2342 NULL, /* SIOCSIWRTS */
2343 NULL, /* SIOCGIWRTS */
2344 NULL, /* SIOCSIWFRAG */
2345 NULL, /* SIOCGIWFRAG */
2346 NULL, /* SIOCSIWTXPOW */
2347 NULL, /* SIOCGIWTXPOW */
2348 NULL, /* SIOCSIWRETRY */
2349 NULL, /* SIOCGIWRETRY */
2350 /* Bummer ! Why those are only at the end ??? */
2351 wavelan_set_encode, /* SIOCSIWENCODE */
2352 wavelan_get_encode, /* SIOCGIWENCODE */
2355 static const iw_handler wavelan_private_handler[] =
2357 wavelan_set_qthr, /* SIOCIWFIRSTPRIV */
2358 wavelan_get_qthr, /* SIOCIWFIRSTPRIV + 1 */
2359 #ifdef HISTOGRAM
2360 wavelan_set_histo, /* SIOCIWFIRSTPRIV + 2 */
2361 wavelan_get_histo, /* SIOCIWFIRSTPRIV + 3 */
2362 #endif /* HISTOGRAM */
2365 static const struct iw_priv_args wavelan_private_args[] = {
2366 /*{ cmd, set_args, get_args, name } */
2367 { SIOCSIPQTHR, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, 0, "setqualthr" },
2368 { SIOCGIPQTHR, 0, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, "getqualthr" },
2369 { SIOCSIPHISTO, IW_PRIV_TYPE_BYTE | 16, 0, "sethisto" },
2370 { SIOCGIPHISTO, 0, IW_PRIV_TYPE_INT | 16, "gethisto" },
2373 static const struct iw_handler_def wavelan_handler_def =
2375 .num_standard = ARRAY_SIZE(wavelan_handler),
2376 .num_private = ARRAY_SIZE(wavelan_private_handler),
2377 .num_private_args = ARRAY_SIZE(wavelan_private_args),
2378 .standard = wavelan_handler,
2379 .private = wavelan_private_handler,
2380 .private_args = wavelan_private_args,
2381 .get_wireless_stats = wavelan_get_wireless_stats,
2384 /*------------------------------------------------------------------*/
2386 * Get wireless statistics.
2387 * Called by /proc/net/wireless
2389 static iw_stats *wavelan_get_wireless_stats(struct net_device * dev)
2391 unsigned long ioaddr = dev->base_addr;
2392 net_local *lp = (net_local *) dev->priv;
2393 mmr_t m;
2394 iw_stats *wstats;
2395 unsigned long flags;
2397 #ifdef DEBUG_IOCTL_TRACE
2398 printk(KERN_DEBUG "%s: ->wavelan_get_wireless_stats()\n",
2399 dev->name);
2400 #endif
2402 /* Check */
2403 if (lp == (net_local *) NULL)
2404 return (iw_stats *) NULL;
2406 /* Disable interrupts and save flags. */
2407 spin_lock_irqsave(&lp->spinlock, flags);
2409 wstats = &lp->wstats;
2411 /* Get data from the mmc. */
2412 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
2414 mmc_read(ioaddr, mmroff(0, mmr_dce_status), &m.mmr_dce_status, 1);
2415 mmc_read(ioaddr, mmroff(0, mmr_wrong_nwid_l), &m.mmr_wrong_nwid_l,
2417 mmc_read(ioaddr, mmroff(0, mmr_thr_pre_set), &m.mmr_thr_pre_set,
2420 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
2422 /* Copy data to wireless stuff. */
2423 wstats->status = m.mmr_dce_status & MMR_DCE_STATUS;
2424 wstats->qual.qual = m.mmr_sgnl_qual & MMR_SGNL_QUAL;
2425 wstats->qual.level = m.mmr_signal_lvl & MMR_SIGNAL_LVL;
2426 wstats->qual.noise = m.mmr_silence_lvl & MMR_SILENCE_LVL;
2427 wstats->qual.updated = (((m. mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 7)
2428 | ((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 6)
2429 | ((m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) >> 5));
2430 wstats->discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
2431 wstats->discard.code = 0L;
2432 wstats->discard.misc = 0L;
2434 /* Enable interrupts and restore flags. */
2435 spin_unlock_irqrestore(&lp->spinlock, flags);
2437 #ifdef DEBUG_IOCTL_TRACE
2438 printk(KERN_DEBUG "%s: <-wavelan_get_wireless_stats()\n",
2439 dev->name);
2440 #endif
2441 return &lp->wstats;
2444 /************************* PACKET RECEPTION *************************/
2446 * This part deals with receiving the packets.
2447 * The interrupt handler gets an interrupt when a packet has been
2448 * successfully received and calls this part.
2451 /*------------------------------------------------------------------*/
2453 * This routine does the actual copying of data (including the Ethernet
2454 * header structure) from the WaveLAN card to an sk_buff chain that
2455 * will be passed up to the network interface layer. NOTE: we
2456 * currently don't handle trailer protocols (neither does the rest of
2457 * the network interface), so if that is needed, it will (at least in
2458 * part) be added here. The contents of the receive ring buffer are
2459 * copied to a message chain that is then passed to the kernel.
2461 * Note: if any errors occur, the packet is "dropped on the floor".
2462 * (called by wv_packet_rcv())
2464 static void
2465 wv_packet_read(struct net_device * dev, u16 buf_off, int sksize)
2467 net_local *lp = (net_local *) dev->priv;
2468 unsigned long ioaddr = dev->base_addr;
2469 struct sk_buff *skb;
2471 #ifdef DEBUG_RX_TRACE
2472 printk(KERN_DEBUG "%s: ->wv_packet_read(0x%X, %d)\n",
2473 dev->name, buf_off, sksize);
2474 #endif
2476 /* Allocate buffer for the data */
2477 if ((skb = dev_alloc_skb(sksize)) == (struct sk_buff *) NULL) {
2478 #ifdef DEBUG_RX_ERROR
2479 printk(KERN_INFO
2480 "%s: wv_packet_read(): could not alloc_skb(%d, GFP_ATOMIC).\n",
2481 dev->name, sksize);
2482 #endif
2483 lp->stats.rx_dropped++;
2484 return;
2487 /* Copy the packet to the buffer. */
2488 obram_read(ioaddr, buf_off, skb_put(skb, sksize), sksize);
2489 skb->protocol = eth_type_trans(skb, dev);
2491 #ifdef DEBUG_RX_INFO
2492 wv_packet_info(skb_mac_header(skb), sksize, dev->name,
2493 "wv_packet_read");
2494 #endif /* DEBUG_RX_INFO */
2496 /* Statistics-gathering and associated stuff.
2497 * It seem a bit messy with all the define, but it's really
2498 * simple... */
2499 if (
2500 #ifdef IW_WIRELESS_SPY /* defined in iw_handler.h */
2501 (lp->spy_data.spy_number > 0) ||
2502 #endif /* IW_WIRELESS_SPY */
2503 #ifdef HISTOGRAM
2504 (lp->his_number > 0) ||
2505 #endif /* HISTOGRAM */
2506 0) {
2507 u8 stats[3]; /* signal level, noise level, signal quality */
2509 /* Read signal level, silence level and signal quality bytes */
2510 /* Note: in the PCMCIA hardware, these are part of the frame.
2511 * It seems that for the ISA hardware, it's nowhere to be
2512 * found in the frame, so I'm obliged to do this (it has a
2513 * side effect on /proc/net/wireless).
2514 * Any ideas?
2516 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
2517 mmc_read(ioaddr, mmroff(0, mmr_signal_lvl), stats, 3);
2518 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
2520 #ifdef DEBUG_RX_INFO
2521 printk(KERN_DEBUG
2522 "%s: wv_packet_read(): Signal level %d/63, Silence level %d/63, signal quality %d/16\n",
2523 dev->name, stats[0] & 0x3F, stats[1] & 0x3F,
2524 stats[2] & 0x0F);
2525 #endif
2527 /* Spying stuff */
2528 #ifdef IW_WIRELESS_SPY
2529 wl_spy_gather(dev, skb_mac_header(skb) + WAVELAN_ADDR_SIZE,
2530 stats);
2531 #endif /* IW_WIRELESS_SPY */
2532 #ifdef HISTOGRAM
2533 wl_his_gather(dev, stats);
2534 #endif /* HISTOGRAM */
2538 * Hand the packet to the network module.
2540 netif_rx(skb);
2542 /* Keep statistics up to date */
2543 dev->last_rx = jiffies;
2544 lp->stats.rx_packets++;
2545 lp->stats.rx_bytes += sksize;
2547 #ifdef DEBUG_RX_TRACE
2548 printk(KERN_DEBUG "%s: <-wv_packet_read()\n", dev->name);
2549 #endif
2552 /*------------------------------------------------------------------*/
2554 * Transfer as many packets as we can
2555 * from the device RAM.
2556 * (called in wavelan_interrupt()).
2557 * Note : the spinlock is already grabbed for us.
2559 static void wv_receive(struct net_device * dev)
2561 unsigned long ioaddr = dev->base_addr;
2562 net_local *lp = (net_local *) dev->priv;
2563 fd_t fd;
2564 rbd_t rbd;
2565 int nreaped = 0;
2567 #ifdef DEBUG_RX_TRACE
2568 printk(KERN_DEBUG "%s: ->wv_receive()\n", dev->name);
2569 #endif
2571 /* Loop on each received packet. */
2572 for (;;) {
2573 obram_read(ioaddr, lp->rx_head, (unsigned char *) &fd,
2574 sizeof(fd));
2576 /* Note about the status :
2577 * It start up to be 0 (the value we set). Then, when the RU
2578 * grab the buffer to prepare for reception, it sets the
2579 * FD_STATUS_B flag. When the RU has finished receiving the
2580 * frame, it clears FD_STATUS_B, set FD_STATUS_C to indicate
2581 * completion and set the other flags to indicate the eventual
2582 * errors. FD_STATUS_OK indicates that the reception was OK.
2585 /* If the current frame is not complete, we have reached the end. */
2586 if ((fd.fd_status & FD_STATUS_C) != FD_STATUS_C)
2587 break; /* This is how we exit the loop. */
2589 nreaped++;
2591 /* Check whether frame was correctly received. */
2592 if ((fd.fd_status & FD_STATUS_OK) == FD_STATUS_OK) {
2593 /* Does the frame contain a pointer to the data? Let's check. */
2594 if (fd.fd_rbd_offset != I82586NULL) {
2595 /* Read the receive buffer descriptor */
2596 obram_read(ioaddr, fd.fd_rbd_offset,
2597 (unsigned char *) &rbd,
2598 sizeof(rbd));
2600 #ifdef DEBUG_RX_ERROR
2601 if ((rbd.rbd_status & RBD_STATUS_EOF) !=
2602 RBD_STATUS_EOF) printk(KERN_INFO
2603 "%s: wv_receive(): missing EOF flag.\n",
2604 dev->name);
2606 if ((rbd.rbd_status & RBD_STATUS_F) !=
2607 RBD_STATUS_F) printk(KERN_INFO
2608 "%s: wv_receive(): missing F flag.\n",
2609 dev->name);
2610 #endif /* DEBUG_RX_ERROR */
2612 /* Read the packet and transmit to Linux */
2613 wv_packet_read(dev, rbd.rbd_bufl,
2614 rbd.
2615 rbd_status &
2616 RBD_STATUS_ACNT);
2618 #ifdef DEBUG_RX_ERROR
2619 else /* if frame has no data */
2620 printk(KERN_INFO
2621 "%s: wv_receive(): frame has no data.\n",
2622 dev->name);
2623 #endif
2624 } else { /* If reception was no successful */
2626 lp->stats.rx_errors++;
2628 #ifdef DEBUG_RX_INFO
2629 printk(KERN_DEBUG
2630 "%s: wv_receive(): frame not received successfully (%X).\n",
2631 dev->name, fd.fd_status);
2632 #endif
2634 #ifdef DEBUG_RX_ERROR
2635 if ((fd.fd_status & FD_STATUS_S6) != 0)
2636 printk(KERN_INFO
2637 "%s: wv_receive(): no EOF flag.\n",
2638 dev->name);
2639 #endif
2641 if ((fd.fd_status & FD_STATUS_S7) != 0) {
2642 lp->stats.rx_length_errors++;
2643 #ifdef DEBUG_RX_FAIL
2644 printk(KERN_DEBUG
2645 "%s: wv_receive(): frame too short.\n",
2646 dev->name);
2647 #endif
2650 if ((fd.fd_status & FD_STATUS_S8) != 0) {
2651 lp->stats.rx_over_errors++;
2652 #ifdef DEBUG_RX_FAIL
2653 printk(KERN_DEBUG
2654 "%s: wv_receive(): rx DMA overrun.\n",
2655 dev->name);
2656 #endif
2659 if ((fd.fd_status & FD_STATUS_S9) != 0) {
2660 lp->stats.rx_fifo_errors++;
2661 #ifdef DEBUG_RX_FAIL
2662 printk(KERN_DEBUG
2663 "%s: wv_receive(): ran out of resources.\n",
2664 dev->name);
2665 #endif
2668 if ((fd.fd_status & FD_STATUS_S10) != 0) {
2669 lp->stats.rx_frame_errors++;
2670 #ifdef DEBUG_RX_FAIL
2671 printk(KERN_DEBUG
2672 "%s: wv_receive(): alignment error.\n",
2673 dev->name);
2674 #endif
2677 if ((fd.fd_status & FD_STATUS_S11) != 0) {
2678 lp->stats.rx_crc_errors++;
2679 #ifdef DEBUG_RX_FAIL
2680 printk(KERN_DEBUG
2681 "%s: wv_receive(): CRC error.\n",
2682 dev->name);
2683 #endif
2687 fd.fd_status = 0;
2688 obram_write(ioaddr, fdoff(lp->rx_head, fd_status),
2689 (unsigned char *) &fd.fd_status,
2690 sizeof(fd.fd_status));
2692 fd.fd_command = FD_COMMAND_EL;
2693 obram_write(ioaddr, fdoff(lp->rx_head, fd_command),
2694 (unsigned char *) &fd.fd_command,
2695 sizeof(fd.fd_command));
2697 fd.fd_command = 0;
2698 obram_write(ioaddr, fdoff(lp->rx_last, fd_command),
2699 (unsigned char *) &fd.fd_command,
2700 sizeof(fd.fd_command));
2702 lp->rx_last = lp->rx_head;
2703 lp->rx_head = fd.fd_link_offset;
2704 } /* for(;;) -> loop on all frames */
2706 #ifdef DEBUG_RX_INFO
2707 if (nreaped > 1)
2708 printk(KERN_DEBUG "%s: wv_receive(): reaped %d\n",
2709 dev->name, nreaped);
2710 #endif
2711 #ifdef DEBUG_RX_TRACE
2712 printk(KERN_DEBUG "%s: <-wv_receive()\n", dev->name);
2713 #endif
2716 /*********************** PACKET TRANSMISSION ***********************/
2718 * This part deals with sending packets through the WaveLAN.
2722 /*------------------------------------------------------------------*/
2724 * This routine fills in the appropriate registers and memory
2725 * locations on the WaveLAN card and starts the card off on
2726 * the transmit.
2728 * The principle:
2729 * Each block contains a transmit command, a NOP command,
2730 * a transmit block descriptor and a buffer.
2731 * The CU read the transmit block which point to the tbd,
2732 * read the tbd and the content of the buffer.
2733 * When it has finish with it, it goes to the next command
2734 * which in our case is the NOP. The NOP points on itself,
2735 * so the CU stop here.
2736 * When we add the next block, we modify the previous nop
2737 * to make it point on the new tx command.
2738 * Simple, isn't it ?
2740 * (called in wavelan_packet_xmit())
2742 static int wv_packet_write(struct net_device * dev, void *buf, short length)
2744 net_local *lp = (net_local *) dev->priv;
2745 unsigned long ioaddr = dev->base_addr;
2746 unsigned short txblock;
2747 unsigned short txpred;
2748 unsigned short tx_addr;
2749 unsigned short nop_addr;
2750 unsigned short tbd_addr;
2751 unsigned short buf_addr;
2752 ac_tx_t tx;
2753 ac_nop_t nop;
2754 tbd_t tbd;
2755 int clen = length;
2756 unsigned long flags;
2758 #ifdef DEBUG_TX_TRACE
2759 printk(KERN_DEBUG "%s: ->wv_packet_write(%d)\n", dev->name,
2760 length);
2761 #endif
2763 spin_lock_irqsave(&lp->spinlock, flags);
2765 /* Check nothing bad has happened */
2766 if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
2767 #ifdef DEBUG_TX_ERROR
2768 printk(KERN_INFO "%s: wv_packet_write(): Tx queue full.\n",
2769 dev->name);
2770 #endif
2771 spin_unlock_irqrestore(&lp->spinlock, flags);
2772 return 1;
2775 /* Calculate addresses of next block and previous block. */
2776 txblock = lp->tx_first_free;
2777 txpred = txblock - TXBLOCKZ;
2778 if (txpred < OFFSET_CU)
2779 txpred += NTXBLOCKS * TXBLOCKZ;
2780 lp->tx_first_free += TXBLOCKZ;
2781 if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
2782 lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
2784 lp->tx_n_in_use++;
2786 /* Calculate addresses of the different parts of the block. */
2787 tx_addr = txblock;
2788 nop_addr = tx_addr + sizeof(tx);
2789 tbd_addr = nop_addr + sizeof(nop);
2790 buf_addr = tbd_addr + sizeof(tbd);
2793 * Transmit command
2795 tx.tx_h.ac_status = 0;
2796 obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
2797 (unsigned char *) &tx.tx_h.ac_status,
2798 sizeof(tx.tx_h.ac_status));
2801 * NOP command
2803 nop.nop_h.ac_status = 0;
2804 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
2805 (unsigned char *) &nop.nop_h.ac_status,
2806 sizeof(nop.nop_h.ac_status));
2807 nop.nop_h.ac_link = nop_addr;
2808 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
2809 (unsigned char *) &nop.nop_h.ac_link,
2810 sizeof(nop.nop_h.ac_link));
2813 * Transmit buffer descriptor
2815 tbd.tbd_status = TBD_STATUS_EOF | (TBD_STATUS_ACNT & clen);
2816 tbd.tbd_next_bd_offset = I82586NULL;
2817 tbd.tbd_bufl = buf_addr;
2818 tbd.tbd_bufh = 0;
2819 obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd, sizeof(tbd));
2822 * Data
2824 obram_write(ioaddr, buf_addr, buf, length);
2827 * Overwrite the predecessor NOP link
2828 * so that it points to this txblock.
2830 nop_addr = txpred + sizeof(tx);
2831 nop.nop_h.ac_status = 0;
2832 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
2833 (unsigned char *) &nop.nop_h.ac_status,
2834 sizeof(nop.nop_h.ac_status));
2835 nop.nop_h.ac_link = txblock;
2836 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
2837 (unsigned char *) &nop.nop_h.ac_link,
2838 sizeof(nop.nop_h.ac_link));
2840 /* Make sure the watchdog will keep quiet for a while */
2841 dev->trans_start = jiffies;
2843 /* Keep stats up to date. */
2844 lp->stats.tx_bytes += length;
2846 if (lp->tx_first_in_use == I82586NULL)
2847 lp->tx_first_in_use = txblock;
2849 if (lp->tx_n_in_use < NTXBLOCKS - 1)
2850 netif_wake_queue(dev);
2852 spin_unlock_irqrestore(&lp->spinlock, flags);
2854 #ifdef DEBUG_TX_INFO
2855 wv_packet_info((u8 *) buf, length, dev->name,
2856 "wv_packet_write");
2857 #endif /* DEBUG_TX_INFO */
2859 #ifdef DEBUG_TX_TRACE
2860 printk(KERN_DEBUG "%s: <-wv_packet_write()\n", dev->name);
2861 #endif
2863 return 0;
2866 /*------------------------------------------------------------------*/
2868 * This routine is called when we want to send a packet (NET3 callback)
2869 * In this routine, we check if the harware is ready to accept
2870 * the packet. We also prevent reentrance. Then we call the function
2871 * to send the packet.
2873 static int wavelan_packet_xmit(struct sk_buff *skb, struct net_device * dev)
2875 net_local *lp = (net_local *) dev->priv;
2876 unsigned long flags;
2877 char data[ETH_ZLEN];
2879 #ifdef DEBUG_TX_TRACE
2880 printk(KERN_DEBUG "%s: ->wavelan_packet_xmit(0x%X)\n", dev->name,
2881 (unsigned) skb);
2882 #endif
2885 * Block a timer-based transmit from overlapping.
2886 * In other words, prevent reentering this routine.
2888 netif_stop_queue(dev);
2890 /* If somebody has asked to reconfigure the controller,
2891 * we can do it now.
2893 if (lp->reconfig_82586) {
2894 spin_lock_irqsave(&lp->spinlock, flags);
2895 wv_82586_config(dev);
2896 spin_unlock_irqrestore(&lp->spinlock, flags);
2897 /* Check that we can continue */
2898 if (lp->tx_n_in_use == (NTXBLOCKS - 1))
2899 return 1;
2901 #ifdef DEBUG_TX_ERROR
2902 if (skb->next)
2903 printk(KERN_INFO "skb has next\n");
2904 #endif
2906 /* Do we need some padding? */
2907 /* Note : on wireless the propagation time is in the order of 1us,
2908 * and we don't have the Ethernet specific requirement of beeing
2909 * able to detect collisions, therefore in theory we don't really
2910 * need to pad. Jean II */
2911 if (skb->len < ETH_ZLEN) {
2912 memset(data, 0, ETH_ZLEN);
2913 skb_copy_from_linear_data(skb, data, skb->len);
2914 /* Write packet on the card */
2915 if(wv_packet_write(dev, data, ETH_ZLEN))
2916 return 1; /* We failed */
2918 else if(wv_packet_write(dev, skb->data, skb->len))
2919 return 1; /* We failed */
2922 dev_kfree_skb(skb);
2924 #ifdef DEBUG_TX_TRACE
2925 printk(KERN_DEBUG "%s: <-wavelan_packet_xmit()\n", dev->name);
2926 #endif
2927 return 0;
2930 /*********************** HARDWARE CONFIGURATION ***********************/
2932 * This part does the real job of starting and configuring the hardware.
2935 /*--------------------------------------------------------------------*/
2937 * Routine to initialize the Modem Management Controller.
2938 * (called by wv_hw_reset())
2940 static int wv_mmc_init(struct net_device * dev)
2942 unsigned long ioaddr = dev->base_addr;
2943 net_local *lp = (net_local *) dev->priv;
2944 psa_t psa;
2945 mmw_t m;
2946 int configured;
2948 #ifdef DEBUG_CONFIG_TRACE
2949 printk(KERN_DEBUG "%s: ->wv_mmc_init()\n", dev->name);
2950 #endif
2952 /* Read the parameter storage area. */
2953 psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
2955 #ifdef USE_PSA_CONFIG
2956 configured = psa.psa_conf_status & 1;
2957 #else
2958 configured = 0;
2959 #endif
2961 /* Is the PSA is not configured */
2962 if (!configured) {
2963 /* User will be able to configure NWID later (with iwconfig). */
2964 psa.psa_nwid[0] = 0;
2965 psa.psa_nwid[1] = 0;
2967 /* no NWID checking since NWID is not set */
2968 psa.psa_nwid_select = 0;
2970 /* Disable encryption */
2971 psa.psa_encryption_select = 0;
2973 /* Set to standard values:
2974 * 0x04 for AT,
2975 * 0x01 for MCA,
2976 * 0x04 for PCMCIA and 2.00 card (AT&T 407-024689/E document)
2978 if (psa.psa_comp_number & 1)
2979 psa.psa_thr_pre_set = 0x01;
2980 else
2981 psa.psa_thr_pre_set = 0x04;
2982 psa.psa_quality_thr = 0x03;
2984 /* It is configured */
2985 psa.psa_conf_status |= 1;
2987 #ifdef USE_PSA_CONFIG
2988 /* Write the psa. */
2989 psa_write(ioaddr, lp->hacr,
2990 (char *) psa.psa_nwid - (char *) &psa,
2991 (unsigned char *) psa.psa_nwid, 4);
2992 psa_write(ioaddr, lp->hacr,
2993 (char *) &psa.psa_thr_pre_set - (char *) &psa,
2994 (unsigned char *) &psa.psa_thr_pre_set, 1);
2995 psa_write(ioaddr, lp->hacr,
2996 (char *) &psa.psa_quality_thr - (char *) &psa,
2997 (unsigned char *) &psa.psa_quality_thr, 1);
2998 psa_write(ioaddr, lp->hacr,
2999 (char *) &psa.psa_conf_status - (char *) &psa,
3000 (unsigned char *) &psa.psa_conf_status, 1);
3001 /* update the Wavelan checksum */
3002 update_psa_checksum(dev, ioaddr, lp->hacr);
3003 #endif
3006 /* Zero the mmc structure. */
3007 memset(&m, 0x00, sizeof(m));
3009 /* Copy PSA info to the mmc. */
3010 m.mmw_netw_id_l = psa.psa_nwid[1];
3011 m.mmw_netw_id_h = psa.psa_nwid[0];
3013 if (psa.psa_nwid_select & 1)
3014 m.mmw_loopt_sel = 0x00;
3015 else
3016 m.mmw_loopt_sel = MMW_LOOPT_SEL_DIS_NWID;
3018 memcpy(&m.mmw_encr_key, &psa.psa_encryption_key,
3019 sizeof(m.mmw_encr_key));
3021 if (psa.psa_encryption_select)
3022 m.mmw_encr_enable =
3023 MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE;
3024 else
3025 m.mmw_encr_enable = 0;
3027 m.mmw_thr_pre_set = psa.psa_thr_pre_set & 0x3F;
3028 m.mmw_quality_thr = psa.psa_quality_thr & 0x0F;
3031 * Set default modem control parameters.
3032 * See NCR document 407-0024326 Rev. A.
3034 m.mmw_jabber_enable = 0x01;
3035 m.mmw_freeze = 0;
3036 m.mmw_anten_sel = MMW_ANTEN_SEL_ALG_EN;
3037 m.mmw_ifs = 0x20;
3038 m.mmw_mod_delay = 0x04;
3039 m.mmw_jam_time = 0x38;
3041 m.mmw_des_io_invert = 0;
3042 m.mmw_decay_prm = 0;
3043 m.mmw_decay_updat_prm = 0;
3045 /* Write all info to MMC. */
3046 mmc_write(ioaddr, 0, (u8 *) & m, sizeof(m));
3048 /* The following code starts the modem of the 2.00 frequency
3049 * selectable cards at power on. It's not strictly needed for the
3050 * following boots.
3051 * The original patch was by Joe Finney for the PCMCIA driver, but
3052 * I've cleaned it up a bit and added documentation.
3053 * Thanks to Loeke Brederveld from Lucent for the info.
3056 /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable)
3057 * Does it work for everybody, especially old cards? */
3058 /* Note: WFREQSEL verifies that it is able to read a sensible
3059 * frequency from EEPROM (address 0x00) and that MMR_FEE_STATUS_ID
3060 * is 0xA (Xilinx version) or 0xB (Ariadne version).
3061 * My test is more crude but does work. */
3062 if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
3063 (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
3064 /* We must download the frequency parameters to the
3065 * synthesizers (from the EEPROM - area 1)
3066 * Note: as the EEPROM is automatically decremented, we set the end
3067 * if the area... */
3068 m.mmw_fee_addr = 0x0F;
3069 m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
3070 mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
3071 (unsigned char *) &m.mmw_fee_ctrl, 2);
3073 /* Wait until the download is finished. */
3074 fee_wait(ioaddr, 100, 100);
3076 #ifdef DEBUG_CONFIG_INFO
3077 /* The frequency was in the last word downloaded. */
3078 mmc_read(ioaddr, (char *) &m.mmw_fee_data_l - (char *) &m,
3079 (unsigned char *) &m.mmw_fee_data_l, 2);
3081 /* Print some info for the user. */
3082 printk(KERN_DEBUG
3083 "%s: WaveLAN 2.00 recognised (frequency select). Current frequency = %ld\n",
3084 dev->name,
3085 ((m.
3086 mmw_fee_data_h << 4) | (m.mmw_fee_data_l >> 4)) *
3087 5 / 2 + 24000L);
3088 #endif
3090 /* We must now download the power adjust value (gain) to
3091 * the synthesizers (from the EEPROM - area 7 - DAC). */
3092 m.mmw_fee_addr = 0x61;
3093 m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
3094 mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
3095 (unsigned char *) &m.mmw_fee_ctrl, 2);
3097 /* Wait until the download is finished. */
3099 /* if 2.00 card */
3100 #ifdef DEBUG_CONFIG_TRACE
3101 printk(KERN_DEBUG "%s: <-wv_mmc_init()\n", dev->name);
3102 #endif
3103 return 0;
3106 /*------------------------------------------------------------------*/
3108 * Construct the fd and rbd structures.
3109 * Start the receive unit.
3110 * (called by wv_hw_reset())
3112 static int wv_ru_start(struct net_device * dev)
3114 net_local *lp = (net_local *) dev->priv;
3115 unsigned long ioaddr = dev->base_addr;
3116 u16 scb_cs;
3117 fd_t fd;
3118 rbd_t rbd;
3119 u16 rx;
3120 u16 rx_next;
3121 int i;
3123 #ifdef DEBUG_CONFIG_TRACE
3124 printk(KERN_DEBUG "%s: ->wv_ru_start()\n", dev->name);
3125 #endif
3127 obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
3128 (unsigned char *) &scb_cs, sizeof(scb_cs));
3129 if ((scb_cs & SCB_ST_RUS) == SCB_ST_RUS_RDY)
3130 return 0;
3132 lp->rx_head = OFFSET_RU;
3134 for (i = 0, rx = lp->rx_head; i < NRXBLOCKS; i++, rx = rx_next) {
3135 rx_next =
3136 (i == NRXBLOCKS - 1) ? lp->rx_head : rx + RXBLOCKZ;
3138 fd.fd_status = 0;
3139 fd.fd_command = (i == NRXBLOCKS - 1) ? FD_COMMAND_EL : 0;
3140 fd.fd_link_offset = rx_next;
3141 fd.fd_rbd_offset = rx + sizeof(fd);
3142 obram_write(ioaddr, rx, (unsigned char *) &fd, sizeof(fd));
3144 rbd.rbd_status = 0;
3145 rbd.rbd_next_rbd_offset = I82586NULL;
3146 rbd.rbd_bufl = rx + sizeof(fd) + sizeof(rbd);
3147 rbd.rbd_bufh = 0;
3148 rbd.rbd_el_size = RBD_EL | (RBD_SIZE & MAXDATAZ);
3149 obram_write(ioaddr, rx + sizeof(fd),
3150 (unsigned char *) &rbd, sizeof(rbd));
3152 lp->rx_last = rx;
3155 obram_write(ioaddr, scboff(OFFSET_SCB, scb_rfa_offset),
3156 (unsigned char *) &lp->rx_head, sizeof(lp->rx_head));
3158 scb_cs = SCB_CMD_RUC_GO;
3159 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3160 (unsigned char *) &scb_cs, sizeof(scb_cs));
3162 set_chan_attn(ioaddr, lp->hacr);
3164 for (i = 1000; i > 0; i--) {
3165 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
3166 (unsigned char *) &scb_cs, sizeof(scb_cs));
3167 if (scb_cs == 0)
3168 break;
3170 udelay(10);
3173 if (i <= 0) {
3174 #ifdef DEBUG_CONFIG_ERROR
3175 printk(KERN_INFO
3176 "%s: wavelan_ru_start(): board not accepting command.\n",
3177 dev->name);
3178 #endif
3179 return -1;
3181 #ifdef DEBUG_CONFIG_TRACE
3182 printk(KERN_DEBUG "%s: <-wv_ru_start()\n", dev->name);
3183 #endif
3184 return 0;
3187 /*------------------------------------------------------------------*/
3189 * Initialise the transmit blocks.
3190 * Start the command unit executing the NOP
3191 * self-loop of the first transmit block.
3193 * Here we create the list of send buffers used to transmit packets
3194 * between the PC and the command unit. For each buffer, we create a
3195 * buffer descriptor (pointing on the buffer), a transmit command
3196 * (pointing to the buffer descriptor) and a NOP command.
3197 * The transmit command is linked to the NOP, and the NOP to itself.
3198 * When we will have finished executing the transmit command, we will
3199 * then loop on the NOP. By releasing the NOP link to a new command,
3200 * we may send another buffer.
3202 * (called by wv_hw_reset())
3204 static int wv_cu_start(struct net_device * dev)
3206 net_local *lp = (net_local *) dev->priv;
3207 unsigned long ioaddr = dev->base_addr;
3208 int i;
3209 u16 txblock;
3210 u16 first_nop;
3211 u16 scb_cs;
3213 #ifdef DEBUG_CONFIG_TRACE
3214 printk(KERN_DEBUG "%s: ->wv_cu_start()\n", dev->name);
3215 #endif
3217 lp->tx_first_free = OFFSET_CU;
3218 lp->tx_first_in_use = I82586NULL;
3220 for (i = 0, txblock = OFFSET_CU;
3221 i < NTXBLOCKS; i++, txblock += TXBLOCKZ) {
3222 ac_tx_t tx;
3223 ac_nop_t nop;
3224 tbd_t tbd;
3225 unsigned short tx_addr;
3226 unsigned short nop_addr;
3227 unsigned short tbd_addr;
3228 unsigned short buf_addr;
3230 tx_addr = txblock;
3231 nop_addr = tx_addr + sizeof(tx);
3232 tbd_addr = nop_addr + sizeof(nop);
3233 buf_addr = tbd_addr + sizeof(tbd);
3235 tx.tx_h.ac_status = 0;
3236 tx.tx_h.ac_command = acmd_transmit | AC_CFLD_I;
3237 tx.tx_h.ac_link = nop_addr;
3238 tx.tx_tbd_offset = tbd_addr;
3239 obram_write(ioaddr, tx_addr, (unsigned char *) &tx,
3240 sizeof(tx));
3242 nop.nop_h.ac_status = 0;
3243 nop.nop_h.ac_command = acmd_nop;
3244 nop.nop_h.ac_link = nop_addr;
3245 obram_write(ioaddr, nop_addr, (unsigned char *) &nop,
3246 sizeof(nop));
3248 tbd.tbd_status = TBD_STATUS_EOF;
3249 tbd.tbd_next_bd_offset = I82586NULL;
3250 tbd.tbd_bufl = buf_addr;
3251 tbd.tbd_bufh = 0;
3252 obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd,
3253 sizeof(tbd));
3256 first_nop =
3257 OFFSET_CU + (NTXBLOCKS - 1) * TXBLOCKZ + sizeof(ac_tx_t);
3258 obram_write(ioaddr, scboff(OFFSET_SCB, scb_cbl_offset),
3259 (unsigned char *) &first_nop, sizeof(first_nop));
3261 scb_cs = SCB_CMD_CUC_GO;
3262 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3263 (unsigned char *) &scb_cs, sizeof(scb_cs));
3265 set_chan_attn(ioaddr, lp->hacr);
3267 for (i = 1000; i > 0; i--) {
3268 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
3269 (unsigned char *) &scb_cs, sizeof(scb_cs));
3270 if (scb_cs == 0)
3271 break;
3273 udelay(10);
3276 if (i <= 0) {
3277 #ifdef DEBUG_CONFIG_ERROR
3278 printk(KERN_INFO
3279 "%s: wavelan_cu_start(): board not accepting command.\n",
3280 dev->name);
3281 #endif
3282 return -1;
3285 lp->tx_n_in_use = 0;
3286 netif_start_queue(dev);
3287 #ifdef DEBUG_CONFIG_TRACE
3288 printk(KERN_DEBUG "%s: <-wv_cu_start()\n", dev->name);
3289 #endif
3290 return 0;
3293 /*------------------------------------------------------------------*/
3295 * This routine does a standard configuration of the WaveLAN
3296 * controller (i82586).
3298 * It initialises the scp, iscp and scb structure
3299 * The first two are just pointers to the next.
3300 * The last one is used for basic configuration and for basic
3301 * communication (interrupt status).
3303 * (called by wv_hw_reset())
3305 static int wv_82586_start(struct net_device * dev)
3307 net_local *lp = (net_local *) dev->priv;
3308 unsigned long ioaddr = dev->base_addr;
3309 scp_t scp; /* system configuration pointer */
3310 iscp_t iscp; /* intermediate scp */
3311 scb_t scb; /* system control block */
3312 ach_t cb; /* Action command header */
3313 u8 zeroes[512];
3314 int i;
3316 #ifdef DEBUG_CONFIG_TRACE
3317 printk(KERN_DEBUG "%s: ->wv_82586_start()\n", dev->name);
3318 #endif
3321 * Clear the onboard RAM.
3323 memset(&zeroes[0], 0x00, sizeof(zeroes));
3324 for (i = 0; i < I82586_MEMZ; i += sizeof(zeroes))
3325 obram_write(ioaddr, i, &zeroes[0], sizeof(zeroes));
3328 * Construct the command unit structures:
3329 * scp, iscp, scb, cb.
3331 memset(&scp, 0x00, sizeof(scp));
3332 scp.scp_sysbus = SCP_SY_16BBUS;
3333 scp.scp_iscpl = OFFSET_ISCP;
3334 obram_write(ioaddr, OFFSET_SCP, (unsigned char *) &scp,
3335 sizeof(scp));
3337 memset(&iscp, 0x00, sizeof(iscp));
3338 iscp.iscp_busy = 1;
3339 iscp.iscp_offset = OFFSET_SCB;
3340 obram_write(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
3341 sizeof(iscp));
3343 /* Our first command is to reset the i82586. */
3344 memset(&scb, 0x00, sizeof(scb));
3345 scb.scb_command = SCB_CMD_RESET;
3346 scb.scb_cbl_offset = OFFSET_CU;
3347 scb.scb_rfa_offset = OFFSET_RU;
3348 obram_write(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
3349 sizeof(scb));
3351 set_chan_attn(ioaddr, lp->hacr);
3353 /* Wait for command to finish. */
3354 for (i = 1000; i > 0; i--) {
3355 obram_read(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
3356 sizeof(iscp));
3358 if (iscp.iscp_busy == (unsigned short) 0)
3359 break;
3361 udelay(10);
3364 if (i <= 0) {
3365 #ifdef DEBUG_CONFIG_ERROR
3366 printk(KERN_INFO
3367 "%s: wv_82586_start(): iscp_busy timeout.\n",
3368 dev->name);
3369 #endif
3370 return -1;
3373 /* Check command completion. */
3374 for (i = 15; i > 0; i--) {
3375 obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
3376 sizeof(scb));
3378 if (scb.scb_status == (SCB_ST_CX | SCB_ST_CNA))
3379 break;
3381 udelay(10);
3384 if (i <= 0) {
3385 #ifdef DEBUG_CONFIG_ERROR
3386 printk(KERN_INFO
3387 "%s: wv_82586_start(): status: expected 0x%02x, got 0x%02x.\n",
3388 dev->name, SCB_ST_CX | SCB_ST_CNA, scb.scb_status);
3389 #endif
3390 return -1;
3393 wv_ack(dev);
3395 /* Set the action command header. */
3396 memset(&cb, 0x00, sizeof(cb));
3397 cb.ac_command = AC_CFLD_EL | (AC_CFLD_CMD & acmd_diagnose);
3398 cb.ac_link = OFFSET_CU;
3399 obram_write(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
3401 if (wv_synchronous_cmd(dev, "diag()") == -1)
3402 return -1;
3404 obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
3405 if (cb.ac_status & AC_SFLD_FAIL) {
3406 #ifdef DEBUG_CONFIG_ERROR
3407 printk(KERN_INFO
3408 "%s: wv_82586_start(): i82586 Self Test failed.\n",
3409 dev->name);
3410 #endif
3411 return -1;
3413 #ifdef DEBUG_I82586_SHOW
3414 wv_scb_show(ioaddr);
3415 #endif
3417 #ifdef DEBUG_CONFIG_TRACE
3418 printk(KERN_DEBUG "%s: <-wv_82586_start()\n", dev->name);
3419 #endif
3420 return 0;
3423 /*------------------------------------------------------------------*/
3425 * This routine does a standard configuration of the WaveLAN
3426 * controller (i82586).
3428 * This routine is a violent hack. We use the first free transmit block
3429 * to make our configuration. In the buffer area, we create the three
3430 * configuration commands (linked). We make the previous NOP point to
3431 * the beginning of the buffer instead of the tx command. After, we go
3432 * as usual to the NOP command.
3433 * Note that only the last command (mc_set) will generate an interrupt.
3435 * (called by wv_hw_reset(), wv_82586_reconfig(), wavelan_packet_xmit())
3437 static void wv_82586_config(struct net_device * dev)
3439 net_local *lp = (net_local *) dev->priv;
3440 unsigned long ioaddr = dev->base_addr;
3441 unsigned short txblock;
3442 unsigned short txpred;
3443 unsigned short tx_addr;
3444 unsigned short nop_addr;
3445 unsigned short tbd_addr;
3446 unsigned short cfg_addr;
3447 unsigned short ias_addr;
3448 unsigned short mcs_addr;
3449 ac_tx_t tx;
3450 ac_nop_t nop;
3451 ac_cfg_t cfg; /* Configure action */
3452 ac_ias_t ias; /* IA-setup action */
3453 ac_mcs_t mcs; /* Multicast setup */
3454 struct dev_mc_list *dmi;
3456 #ifdef DEBUG_CONFIG_TRACE
3457 printk(KERN_DEBUG "%s: ->wv_82586_config()\n", dev->name);
3458 #endif
3460 /* Check nothing bad has happened */
3461 if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
3462 #ifdef DEBUG_CONFIG_ERROR
3463 printk(KERN_INFO "%s: wv_82586_config(): Tx queue full.\n",
3464 dev->name);
3465 #endif
3466 return;
3469 /* Calculate addresses of next block and previous block. */
3470 txblock = lp->tx_first_free;
3471 txpred = txblock - TXBLOCKZ;
3472 if (txpred < OFFSET_CU)
3473 txpred += NTXBLOCKS * TXBLOCKZ;
3474 lp->tx_first_free += TXBLOCKZ;
3475 if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
3476 lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
3478 lp->tx_n_in_use++;
3480 /* Calculate addresses of the different parts of the block. */
3481 tx_addr = txblock;
3482 nop_addr = tx_addr + sizeof(tx);
3483 tbd_addr = nop_addr + sizeof(nop);
3484 cfg_addr = tbd_addr + sizeof(tbd_t); /* beginning of the buffer */
3485 ias_addr = cfg_addr + sizeof(cfg);
3486 mcs_addr = ias_addr + sizeof(ias);
3489 * Transmit command
3491 tx.tx_h.ac_status = 0xFFFF; /* Fake completion value */
3492 obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
3493 (unsigned char *) &tx.tx_h.ac_status,
3494 sizeof(tx.tx_h.ac_status));
3497 * NOP command
3499 nop.nop_h.ac_status = 0;
3500 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
3501 (unsigned char *) &nop.nop_h.ac_status,
3502 sizeof(nop.nop_h.ac_status));
3503 nop.nop_h.ac_link = nop_addr;
3504 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
3505 (unsigned char *) &nop.nop_h.ac_link,
3506 sizeof(nop.nop_h.ac_link));
3508 /* Create a configure action. */
3509 memset(&cfg, 0x00, sizeof(cfg));
3512 * For Linux we invert AC_CFG_ALOC() so as to conform
3513 * to the way that net packets reach us from above.
3514 * (See also ac_tx_t.)
3516 * Updated from Wavelan Manual WCIN085B
3518 cfg.cfg_byte_cnt =
3519 AC_CFG_BYTE_CNT(sizeof(ac_cfg_t) - sizeof(ach_t));
3520 cfg.cfg_fifolim = AC_CFG_FIFOLIM(4);
3521 cfg.cfg_byte8 = AC_CFG_SAV_BF(1) | AC_CFG_SRDY(0);
3522 cfg.cfg_byte9 = AC_CFG_ELPBCK(0) |
3523 AC_CFG_ILPBCK(0) |
3524 AC_CFG_PRELEN(AC_CFG_PLEN_2) |
3525 AC_CFG_ALOC(1) | AC_CFG_ADDRLEN(WAVELAN_ADDR_SIZE);
3526 cfg.cfg_byte10 = AC_CFG_BOFMET(1) |
3527 AC_CFG_ACR(6) | AC_CFG_LINPRIO(0);
3528 cfg.cfg_ifs = 0x20;
3529 cfg.cfg_slotl = 0x0C;
3530 cfg.cfg_byte13 = AC_CFG_RETRYNUM(15) | AC_CFG_SLTTMHI(0);
3531 cfg.cfg_byte14 = AC_CFG_FLGPAD(0) |
3532 AC_CFG_BTSTF(0) |
3533 AC_CFG_CRC16(0) |
3534 AC_CFG_NCRC(0) |
3535 AC_CFG_TNCRS(1) |
3536 AC_CFG_MANCH(0) |
3537 AC_CFG_BCDIS(0) | AC_CFG_PRM(lp->promiscuous);
3538 cfg.cfg_byte15 = AC_CFG_ICDS(0) |
3539 AC_CFG_CDTF(0) | AC_CFG_ICSS(0) | AC_CFG_CSTF(0);
3541 cfg.cfg_min_frm_len = AC_CFG_MNFRM(64);
3543 cfg.cfg_min_frm_len = AC_CFG_MNFRM(8);
3545 cfg.cfg_h.ac_command = (AC_CFLD_CMD & acmd_configure);
3546 cfg.cfg_h.ac_link = ias_addr;
3547 obram_write(ioaddr, cfg_addr, (unsigned char *) &cfg, sizeof(cfg));
3549 /* Set up the MAC address */
3550 memset(&ias, 0x00, sizeof(ias));
3551 ias.ias_h.ac_command = (AC_CFLD_CMD & acmd_ia_setup);
3552 ias.ias_h.ac_link = mcs_addr;
3553 memcpy(&ias.ias_addr[0], (unsigned char *) &dev->dev_addr[0],
3554 sizeof(ias.ias_addr));
3555 obram_write(ioaddr, ias_addr, (unsigned char *) &ias, sizeof(ias));
3557 /* Initialize adapter's Ethernet multicast addresses */
3558 memset(&mcs, 0x00, sizeof(mcs));
3559 mcs.mcs_h.ac_command = AC_CFLD_I | (AC_CFLD_CMD & acmd_mc_setup);
3560 mcs.mcs_h.ac_link = nop_addr;
3561 mcs.mcs_cnt = WAVELAN_ADDR_SIZE * lp->mc_count;
3562 obram_write(ioaddr, mcs_addr, (unsigned char *) &mcs, sizeof(mcs));
3564 /* Any address to set? */
3565 if (lp->mc_count) {
3566 for (dmi = dev->mc_list; dmi; dmi = dmi->next)
3567 outsw(PIOP1(ioaddr), (u16 *) dmi->dmi_addr,
3568 WAVELAN_ADDR_SIZE >> 1);
3570 #ifdef DEBUG_CONFIG_INFO
3572 DECLARE_MAC_BUF(mac);
3573 printk(KERN_DEBUG
3574 "%s: wv_82586_config(): set %d multicast addresses:\n",
3575 dev->name, lp->mc_count);
3576 for (dmi = dev->mc_list; dmi; dmi = dmi->next)
3577 printk(KERN_DEBUG " %s\n",
3578 print_mac(mac, dmi->dmi_addr));
3580 #endif
3584 * Overwrite the predecessor NOP link
3585 * so that it points to the configure action.
3587 nop_addr = txpred + sizeof(tx);
3588 nop.nop_h.ac_status = 0;
3589 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
3590 (unsigned char *) &nop.nop_h.ac_status,
3591 sizeof(nop.nop_h.ac_status));
3592 nop.nop_h.ac_link = cfg_addr;
3593 obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
3594 (unsigned char *) &nop.nop_h.ac_link,
3595 sizeof(nop.nop_h.ac_link));
3597 /* Job done, clear the flag */
3598 lp->reconfig_82586 = 0;
3600 if (lp->tx_first_in_use == I82586NULL)
3601 lp->tx_first_in_use = txblock;
3603 if (lp->tx_n_in_use == (NTXBLOCKS - 1))
3604 netif_stop_queue(dev);
3606 #ifdef DEBUG_CONFIG_TRACE
3607 printk(KERN_DEBUG "%s: <-wv_82586_config()\n", dev->name);
3608 #endif
3611 /*------------------------------------------------------------------*/
3613 * This routine, called by wavelan_close(), gracefully stops the
3614 * WaveLAN controller (i82586).
3615 * (called by wavelan_close())
3617 static void wv_82586_stop(struct net_device * dev)
3619 net_local *lp = (net_local *) dev->priv;
3620 unsigned long ioaddr = dev->base_addr;
3621 u16 scb_cmd;
3623 #ifdef DEBUG_CONFIG_TRACE
3624 printk(KERN_DEBUG "%s: ->wv_82586_stop()\n", dev->name);
3625 #endif
3627 /* Suspend both command unit and receive unit. */
3628 scb_cmd =
3629 (SCB_CMD_CUC & SCB_CMD_CUC_SUS) | (SCB_CMD_RUC &
3630 SCB_CMD_RUC_SUS);
3631 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3632 (unsigned char *) &scb_cmd, sizeof(scb_cmd));
3633 set_chan_attn(ioaddr, lp->hacr);
3635 /* No more interrupts */
3636 wv_ints_off(dev);
3638 #ifdef DEBUG_CONFIG_TRACE
3639 printk(KERN_DEBUG "%s: <-wv_82586_stop()\n", dev->name);
3640 #endif
3643 /*------------------------------------------------------------------*/
3645 * Totally reset the WaveLAN and restart it.
3646 * Performs the following actions:
3647 * 1. A power reset (reset DMA)
3648 * 2. Initialize the radio modem (using wv_mmc_init)
3649 * 3. Reset & Configure LAN controller (using wv_82586_start)
3650 * 4. Start the LAN controller's command unit
3651 * 5. Start the LAN controller's receive unit
3652 * (called by wavelan_interrupt(), wavelan_watchdog() & wavelan_open())
3654 static int wv_hw_reset(struct net_device * dev)
3656 net_local *lp = (net_local *) dev->priv;
3657 unsigned long ioaddr = dev->base_addr;
3659 #ifdef DEBUG_CONFIG_TRACE
3660 printk(KERN_DEBUG "%s: ->wv_hw_reset(dev=0x%x)\n", dev->name,
3661 (unsigned int) dev);
3662 #endif
3664 /* Increase the number of resets done. */
3665 lp->nresets++;
3667 wv_hacr_reset(ioaddr);
3668 lp->hacr = HACR_DEFAULT;
3670 if ((wv_mmc_init(dev) < 0) || (wv_82586_start(dev) < 0))
3671 return -1;
3673 /* Enable the card to send interrupts. */
3674 wv_ints_on(dev);
3676 /* Start card functions */
3677 if (wv_cu_start(dev) < 0)
3678 return -1;
3680 /* Setup the controller and parameters */
3681 wv_82586_config(dev);
3683 /* Finish configuration with the receive unit */
3684 if (wv_ru_start(dev) < 0)
3685 return -1;
3687 #ifdef DEBUG_CONFIG_TRACE
3688 printk(KERN_DEBUG "%s: <-wv_hw_reset()\n", dev->name);
3689 #endif
3690 return 0;
3693 /*------------------------------------------------------------------*/
3695 * Check if there is a WaveLAN at the specific base address.
3696 * As a side effect, this reads the MAC address.
3697 * (called in wavelan_probe() and init_module())
3699 static int wv_check_ioaddr(unsigned long ioaddr, u8 * mac)
3701 int i; /* Loop counter */
3703 /* Check if the base address if available. */
3704 if (!request_region(ioaddr, sizeof(ha_t), "wavelan probe"))
3705 return -EBUSY; /* ioaddr already used */
3707 /* Reset host interface */
3708 wv_hacr_reset(ioaddr);
3710 /* Read the MAC address from the parameter storage area. */
3711 psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_univ_mac_addr),
3712 mac, 6);
3714 release_region(ioaddr, sizeof(ha_t));
3717 * Check the first three octets of the address for the manufacturer's code.
3718 * Note: if this can't find your WaveLAN card, you've got a
3719 * non-NCR/AT&T/Lucent ISA card. See wavelan.p.h for detail on
3720 * how to configure your card.
3722 for (i = 0; i < ARRAY_SIZE(MAC_ADDRESSES); i++)
3723 if ((mac[0] == MAC_ADDRESSES[i][0]) &&
3724 (mac[1] == MAC_ADDRESSES[i][1]) &&
3725 (mac[2] == MAC_ADDRESSES[i][2]))
3726 return 0;
3728 #ifdef DEBUG_CONFIG_INFO
3729 printk(KERN_WARNING
3730 "WaveLAN (0x%3X): your MAC address might be %02X:%02X:%02X.\n",
3731 ioaddr, mac[0], mac[1], mac[2]);
3732 #endif
3733 return -ENODEV;
3736 /************************ INTERRUPT HANDLING ************************/
3739 * This function is the interrupt handler for the WaveLAN card. This
3740 * routine will be called whenever:
3742 static irqreturn_t wavelan_interrupt(int irq, void *dev_id)
3744 struct net_device *dev;
3745 unsigned long ioaddr;
3746 net_local *lp;
3747 u16 hasr;
3748 u16 status;
3749 u16 ack_cmd;
3751 dev = dev_id;
3753 #ifdef DEBUG_INTERRUPT_TRACE
3754 printk(KERN_DEBUG "%s: ->wavelan_interrupt()\n", dev->name);
3755 #endif
3757 lp = (net_local *) dev->priv;
3758 ioaddr = dev->base_addr;
3760 #ifdef DEBUG_INTERRUPT_INFO
3761 /* Check state of our spinlock */
3762 if(spin_is_locked(&lp->spinlock))
3763 printk(KERN_DEBUG
3764 "%s: wavelan_interrupt(): spinlock is already locked !!!\n",
3765 dev->name);
3766 #endif
3768 /* Prevent reentrancy. We need to do that because we may have
3769 * multiple interrupt handler running concurrently.
3770 * It is safe because interrupts are disabled before acquiring
3771 * the spinlock. */
3772 spin_lock(&lp->spinlock);
3774 /* We always had spurious interrupts at startup, but lately I
3775 * saw them comming *between* the request_irq() and the
3776 * spin_lock_irqsave() in wavelan_open(), so the spinlock
3777 * protection is no enough.
3778 * So, we also check lp->hacr that will tell us is we enabled
3779 * irqs or not (see wv_ints_on()).
3780 * We can't use netif_running(dev) because we depend on the
3781 * proper processing of the irq generated during the config. */
3783 /* Which interrupt it is ? */
3784 hasr = hasr_read(ioaddr);
3786 #ifdef DEBUG_INTERRUPT_INFO
3787 printk(KERN_INFO
3788 "%s: wavelan_interrupt(): hasr 0x%04x; hacr 0x%04x.\n",
3789 dev->name, hasr, lp->hacr);
3790 #endif
3792 /* Check modem interrupt */
3793 if ((hasr & HASR_MMC_INTR) && (lp->hacr & HACR_MMC_INT_ENABLE)) {
3794 u8 dce_status;
3797 * Interrupt from the modem management controller.
3798 * This will clear it -- ignored for now.
3800 mmc_read(ioaddr, mmroff(0, mmr_dce_status), &dce_status,
3801 sizeof(dce_status));
3803 #ifdef DEBUG_INTERRUPT_ERROR
3804 printk(KERN_INFO
3805 "%s: wavelan_interrupt(): unexpected mmc interrupt: status 0x%04x.\n",
3806 dev->name, dce_status);
3807 #endif
3810 /* Check if not controller interrupt */
3811 if (((hasr & HASR_82586_INTR) == 0) ||
3812 ((lp->hacr & HACR_82586_INT_ENABLE) == 0)) {
3813 #ifdef DEBUG_INTERRUPT_ERROR
3814 printk(KERN_INFO
3815 "%s: wavelan_interrupt(): interrupt not coming from i82586 - hasr 0x%04x.\n",
3816 dev->name, hasr);
3817 #endif
3818 spin_unlock (&lp->spinlock);
3819 return IRQ_NONE;
3822 /* Read interrupt data. */
3823 obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
3824 (unsigned char *) &status, sizeof(status));
3827 * Acknowledge the interrupt(s).
3829 ack_cmd = status & SCB_ST_INT;
3830 obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3831 (unsigned char *) &ack_cmd, sizeof(ack_cmd));
3832 set_chan_attn(ioaddr, lp->hacr);
3834 #ifdef DEBUG_INTERRUPT_INFO
3835 printk(KERN_DEBUG "%s: wavelan_interrupt(): status 0x%04x.\n",
3836 dev->name, status);
3837 #endif
3839 /* Command completed. */
3840 if ((status & SCB_ST_CX) == SCB_ST_CX) {
3841 #ifdef DEBUG_INTERRUPT_INFO
3842 printk(KERN_DEBUG
3843 "%s: wavelan_interrupt(): command completed.\n",
3844 dev->name);
3845 #endif
3846 wv_complete(dev, ioaddr, lp);
3849 /* Frame received. */
3850 if ((status & SCB_ST_FR) == SCB_ST_FR) {
3851 #ifdef DEBUG_INTERRUPT_INFO
3852 printk(KERN_DEBUG
3853 "%s: wavelan_interrupt(): received packet.\n",
3854 dev->name);
3855 #endif
3856 wv_receive(dev);
3859 /* Check the state of the command unit. */
3860 if (((status & SCB_ST_CNA) == SCB_ST_CNA) ||
3861 (((status & SCB_ST_CUS) != SCB_ST_CUS_ACTV) &&
3862 (netif_running(dev)))) {
3863 #ifdef DEBUG_INTERRUPT_ERROR
3864 printk(KERN_INFO
3865 "%s: wavelan_interrupt(): CU inactive -- restarting\n",
3866 dev->name);
3867 #endif
3868 wv_hw_reset(dev);
3871 /* Check the state of the command unit. */
3872 if (((status & SCB_ST_RNR) == SCB_ST_RNR) ||
3873 (((status & SCB_ST_RUS) != SCB_ST_RUS_RDY) &&
3874 (netif_running(dev)))) {
3875 #ifdef DEBUG_INTERRUPT_ERROR
3876 printk(KERN_INFO
3877 "%s: wavelan_interrupt(): RU not ready -- restarting\n",
3878 dev->name);
3879 #endif
3880 wv_hw_reset(dev);
3883 /* Release spinlock */
3884 spin_unlock (&lp->spinlock);
3886 #ifdef DEBUG_INTERRUPT_TRACE
3887 printk(KERN_DEBUG "%s: <-wavelan_interrupt()\n", dev->name);
3888 #endif
3889 return IRQ_HANDLED;
3892 /*------------------------------------------------------------------*/
3894 * Watchdog: when we start a transmission, a timer is set for us in the
3895 * kernel. If the transmission completes, this timer is disabled. If
3896 * the timer expires, we are called and we try to unlock the hardware.
3898 static void wavelan_watchdog(struct net_device * dev)
3900 net_local * lp = (net_local *)dev->priv;
3901 u_long ioaddr = dev->base_addr;
3902 unsigned long flags;
3903 unsigned int nreaped;
3905 #ifdef DEBUG_INTERRUPT_TRACE
3906 printk(KERN_DEBUG "%s: ->wavelan_watchdog()\n", dev->name);
3907 #endif
3909 #ifdef DEBUG_INTERRUPT_ERROR
3910 printk(KERN_INFO "%s: wavelan_watchdog: watchdog timer expired\n",
3911 dev->name);
3912 #endif
3914 /* Check that we came here for something */
3915 if (lp->tx_n_in_use <= 0) {
3916 return;
3919 spin_lock_irqsave(&lp->spinlock, flags);
3921 /* Try to see if some buffers are not free (in case we missed
3922 * an interrupt */
3923 nreaped = wv_complete(dev, ioaddr, lp);
3925 #ifdef DEBUG_INTERRUPT_INFO
3926 printk(KERN_DEBUG
3927 "%s: wavelan_watchdog(): %d reaped, %d remain.\n",
3928 dev->name, nreaped, lp->tx_n_in_use);
3929 #endif
3931 #ifdef DEBUG_PSA_SHOW
3933 psa_t psa;
3934 psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
3935 wv_psa_show(&psa);
3937 #endif
3938 #ifdef DEBUG_MMC_SHOW
3939 wv_mmc_show(dev);
3940 #endif
3941 #ifdef DEBUG_I82586_SHOW
3942 wv_cu_show(dev);
3943 #endif
3945 /* If no buffer has been freed */
3946 if (nreaped == 0) {
3947 #ifdef DEBUG_INTERRUPT_ERROR
3948 printk(KERN_INFO
3949 "%s: wavelan_watchdog(): cleanup failed, trying reset\n",
3950 dev->name);
3951 #endif
3952 wv_hw_reset(dev);
3955 /* At this point, we should have some free Tx buffer ;-) */
3956 if (lp->tx_n_in_use < NTXBLOCKS - 1)
3957 netif_wake_queue(dev);
3959 spin_unlock_irqrestore(&lp->spinlock, flags);
3961 #ifdef DEBUG_INTERRUPT_TRACE
3962 printk(KERN_DEBUG "%s: <-wavelan_watchdog()\n", dev->name);
3963 #endif
3966 /********************* CONFIGURATION CALLBACKS *********************/
3968 * Here are the functions called by the Linux networking code (NET3)
3969 * for initialization, configuration and deinstallations of the
3970 * WaveLAN ISA hardware.
3973 /*------------------------------------------------------------------*/
3975 * Configure and start up the WaveLAN PCMCIA adaptor.
3976 * Called by NET3 when it "opens" the device.
3978 static int wavelan_open(struct net_device * dev)
3980 net_local * lp = (net_local *)dev->priv;
3981 unsigned long flags;
3983 #ifdef DEBUG_CALLBACK_TRACE
3984 printk(KERN_DEBUG "%s: ->wavelan_open(dev=0x%x)\n", dev->name,
3985 (unsigned int) dev);
3986 #endif
3988 /* Check irq */
3989 if (dev->irq == 0) {
3990 #ifdef DEBUG_CONFIG_ERROR
3991 printk(KERN_WARNING "%s: wavelan_open(): no IRQ\n",
3992 dev->name);
3993 #endif
3994 return -ENXIO;
3997 if (request_irq(dev->irq, &wavelan_interrupt, 0, "WaveLAN", dev) != 0)
3999 #ifdef DEBUG_CONFIG_ERROR
4000 printk(KERN_WARNING "%s: wavelan_open(): invalid IRQ\n",
4001 dev->name);
4002 #endif
4003 return -EAGAIN;
4006 spin_lock_irqsave(&lp->spinlock, flags);
4008 if (wv_hw_reset(dev) != -1) {
4009 netif_start_queue(dev);
4010 } else {
4011 free_irq(dev->irq, dev);
4012 #ifdef DEBUG_CONFIG_ERROR
4013 printk(KERN_INFO
4014 "%s: wavelan_open(): impossible to start the card\n",
4015 dev->name);
4016 #endif
4017 spin_unlock_irqrestore(&lp->spinlock, flags);
4018 return -EAGAIN;
4020 spin_unlock_irqrestore(&lp->spinlock, flags);
4022 #ifdef DEBUG_CALLBACK_TRACE
4023 printk(KERN_DEBUG "%s: <-wavelan_open()\n", dev->name);
4024 #endif
4025 return 0;
4028 /*------------------------------------------------------------------*/
4030 * Shut down the WaveLAN ISA card.
4031 * Called by NET3 when it "closes" the device.
4033 static int wavelan_close(struct net_device * dev)
4035 net_local *lp = (net_local *) dev->priv;
4036 unsigned long flags;
4038 #ifdef DEBUG_CALLBACK_TRACE
4039 printk(KERN_DEBUG "%s: ->wavelan_close(dev=0x%x)\n", dev->name,
4040 (unsigned int) dev);
4041 #endif
4043 netif_stop_queue(dev);
4046 * Flush the Tx and disable Rx.
4048 spin_lock_irqsave(&lp->spinlock, flags);
4049 wv_82586_stop(dev);
4050 spin_unlock_irqrestore(&lp->spinlock, flags);
4052 free_irq(dev->irq, dev);
4054 #ifdef DEBUG_CALLBACK_TRACE
4055 printk(KERN_DEBUG "%s: <-wavelan_close()\n", dev->name);
4056 #endif
4057 return 0;
4060 /*------------------------------------------------------------------*/
4062 * Probe an I/O address, and if the WaveLAN is there configure the
4063 * device structure
4064 * (called by wavelan_probe() and via init_module()).
4066 static int __init wavelan_config(struct net_device *dev, unsigned short ioaddr)
4068 u8 irq_mask;
4069 int irq;
4070 net_local *lp;
4071 mac_addr mac;
4072 int err;
4074 if (!request_region(ioaddr, sizeof(ha_t), "wavelan"))
4075 return -EADDRINUSE;
4077 err = wv_check_ioaddr(ioaddr, mac);
4078 if (err)
4079 goto out;
4081 memcpy(dev->dev_addr, mac, 6);
4083 dev->base_addr = ioaddr;
4085 #ifdef DEBUG_CALLBACK_TRACE
4086 printk(KERN_DEBUG "%s: ->wavelan_config(dev=0x%x, ioaddr=0x%lx)\n",
4087 dev->name, (unsigned int) dev, ioaddr);
4088 #endif
4090 /* Check IRQ argument on command line. */
4091 if (dev->irq != 0) {
4092 irq_mask = wv_irq_to_psa(dev->irq);
4094 if (irq_mask == 0) {
4095 #ifdef DEBUG_CONFIG_ERROR
4096 printk(KERN_WARNING
4097 "%s: wavelan_config(): invalid IRQ %d ignored.\n",
4098 dev->name, dev->irq);
4099 #endif
4100 dev->irq = 0;
4101 } else {
4102 #ifdef DEBUG_CONFIG_INFO
4103 printk(KERN_DEBUG
4104 "%s: wavelan_config(): changing IRQ to %d\n",
4105 dev->name, dev->irq);
4106 #endif
4107 psa_write(ioaddr, HACR_DEFAULT,
4108 psaoff(0, psa_int_req_no), &irq_mask, 1);
4109 /* update the Wavelan checksum */
4110 update_psa_checksum(dev, ioaddr, HACR_DEFAULT);
4111 wv_hacr_reset(ioaddr);
4115 psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_int_req_no),
4116 &irq_mask, 1);
4117 if ((irq = wv_psa_to_irq(irq_mask)) == -1) {
4118 #ifdef DEBUG_CONFIG_ERROR
4119 printk(KERN_INFO
4120 "%s: wavelan_config(): could not wavelan_map_irq(%d).\n",
4121 dev->name, irq_mask);
4122 #endif
4123 err = -EAGAIN;
4124 goto out;
4127 dev->irq = irq;
4129 dev->mem_start = 0x0000;
4130 dev->mem_end = 0x0000;
4131 dev->if_port = 0;
4133 /* Initialize device structures */
4134 memset(dev->priv, 0, sizeof(net_local));
4135 lp = (net_local *) dev->priv;
4137 /* Back link to the device structure. */
4138 lp->dev = dev;
4139 /* Add the device at the beginning of the linked list. */
4140 lp->next = wavelan_list;
4141 wavelan_list = lp;
4143 lp->hacr = HACR_DEFAULT;
4145 /* Multicast stuff */
4146 lp->promiscuous = 0;
4147 lp->mc_count = 0;
4149 /* Init spinlock */
4150 spin_lock_init(&lp->spinlock);
4152 dev->open = wavelan_open;
4153 dev->stop = wavelan_close;
4154 dev->hard_start_xmit = wavelan_packet_xmit;
4155 dev->get_stats = wavelan_get_stats;
4156 dev->set_multicast_list = &wavelan_set_multicast_list;
4157 dev->tx_timeout = &wavelan_watchdog;
4158 dev->watchdog_timeo = WATCHDOG_JIFFIES;
4159 #ifdef SET_MAC_ADDRESS
4160 dev->set_mac_address = &wavelan_set_mac_address;
4161 #endif /* SET_MAC_ADDRESS */
4163 dev->wireless_handlers = &wavelan_handler_def;
4164 lp->wireless_data.spy_data = &lp->spy_data;
4165 dev->wireless_data = &lp->wireless_data;
4167 dev->mtu = WAVELAN_MTU;
4169 /* Display nice information. */
4170 wv_init_info(dev);
4172 #ifdef DEBUG_CALLBACK_TRACE
4173 printk(KERN_DEBUG "%s: <-wavelan_config()\n", dev->name);
4174 #endif
4175 return 0;
4176 out:
4177 release_region(ioaddr, sizeof(ha_t));
4178 return err;
4181 /*------------------------------------------------------------------*/
4183 * Check for a network adaptor of this type. Return '0' iff one
4184 * exists. There seem to be different interpretations of
4185 * the initial value of dev->base_addr.
4186 * We follow the example in drivers/net/ne.c.
4187 * (called in "Space.c")
4189 struct net_device * __init wavelan_probe(int unit)
4191 struct net_device *dev;
4192 short base_addr;
4193 int def_irq;
4194 int i;
4195 int r = 0;
4197 /* compile-time check the sizes of structures */
4198 BUILD_BUG_ON(sizeof(psa_t) != PSA_SIZE);
4199 BUILD_BUG_ON(sizeof(mmw_t) != MMW_SIZE);
4200 BUILD_BUG_ON(sizeof(mmr_t) != MMR_SIZE);
4201 BUILD_BUG_ON(sizeof(ha_t) != HA_SIZE);
4203 dev = alloc_etherdev(sizeof(net_local));
4204 if (!dev)
4205 return ERR_PTR(-ENOMEM);
4207 sprintf(dev->name, "eth%d", unit);
4208 netdev_boot_setup_check(dev);
4209 base_addr = dev->base_addr;
4210 def_irq = dev->irq;
4212 #ifdef DEBUG_CALLBACK_TRACE
4213 printk(KERN_DEBUG
4214 "%s: ->wavelan_probe(dev=%p (base_addr=0x%x))\n",
4215 dev->name, dev, (unsigned int) dev->base_addr);
4216 #endif
4218 /* Don't probe at all. */
4219 if (base_addr < 0) {
4220 #ifdef DEBUG_CONFIG_ERROR
4221 printk(KERN_WARNING
4222 "%s: wavelan_probe(): invalid base address\n",
4223 dev->name);
4224 #endif
4225 r = -ENXIO;
4226 } else if (base_addr > 0x100) { /* Check a single specified location. */
4227 r = wavelan_config(dev, base_addr);
4228 #ifdef DEBUG_CONFIG_INFO
4229 if (r != 0)
4230 printk(KERN_DEBUG
4231 "%s: wavelan_probe(): no device at specified base address (0x%X) or address already in use\n",
4232 dev->name, base_addr);
4233 #endif
4235 #ifdef DEBUG_CALLBACK_TRACE
4236 printk(KERN_DEBUG "%s: <-wavelan_probe()\n", dev->name);
4237 #endif
4238 } else { /* Scan all possible addresses of the WaveLAN hardware. */
4239 for (i = 0; i < ARRAY_SIZE(iobase); i++) {
4240 dev->irq = def_irq;
4241 if (wavelan_config(dev, iobase[i]) == 0) {
4242 #ifdef DEBUG_CALLBACK_TRACE
4243 printk(KERN_DEBUG
4244 "%s: <-wavelan_probe()\n",
4245 dev->name);
4246 #endif
4247 break;
4250 if (i == ARRAY_SIZE(iobase))
4251 r = -ENODEV;
4253 if (r)
4254 goto out;
4255 r = register_netdev(dev);
4256 if (r)
4257 goto out1;
4258 return dev;
4259 out1:
4260 release_region(dev->base_addr, sizeof(ha_t));
4261 wavelan_list = wavelan_list->next;
4262 out:
4263 free_netdev(dev);
4264 return ERR_PTR(r);
4267 /****************************** MODULE ******************************/
4269 * Module entry point: insertion and removal
4272 #ifdef MODULE
4273 /*------------------------------------------------------------------*/
4275 * Insertion of the module
4276 * I'm now quite proud of the multi-device support.
4278 int __init init_module(void)
4280 int ret = -EIO; /* Return error if no cards found */
4281 int i;
4283 #ifdef DEBUG_MODULE_TRACE
4284 printk(KERN_DEBUG "-> init_module()\n");
4285 #endif
4287 /* If probing is asked */
4288 if (io[0] == 0) {
4289 #ifdef DEBUG_CONFIG_ERROR
4290 printk(KERN_WARNING
4291 "WaveLAN init_module(): doing device probing (bad !)\n");
4292 printk(KERN_WARNING
4293 "Specify base addresses while loading module to correct the problem\n");
4294 #endif
4296 /* Copy the basic set of address to be probed. */
4297 for (i = 0; i < ARRAY_SIZE(iobase); i++)
4298 io[i] = iobase[i];
4302 /* Loop on all possible base addresses. */
4303 i = -1;
4304 while ((io[++i] != 0) && (i < ARRAY_SIZE(io))) {
4305 struct net_device *dev = alloc_etherdev(sizeof(net_local));
4306 if (!dev)
4307 break;
4308 if (name[i])
4309 strcpy(dev->name, name[i]); /* Copy name */
4310 dev->base_addr = io[i];
4311 dev->irq = irq[i];
4313 /* Check if there is something at this base address. */
4314 if (wavelan_config(dev, io[i]) == 0) {
4315 if (register_netdev(dev) != 0) {
4316 release_region(dev->base_addr, sizeof(ha_t));
4317 wavelan_list = wavelan_list->next;
4318 } else {
4319 ret = 0;
4320 continue;
4323 free_netdev(dev);
4326 #ifdef DEBUG_CONFIG_ERROR
4327 if (!wavelan_list)
4328 printk(KERN_WARNING
4329 "WaveLAN init_module(): no device found\n");
4330 #endif
4332 #ifdef DEBUG_MODULE_TRACE
4333 printk(KERN_DEBUG "<- init_module()\n");
4334 #endif
4335 return ret;
4338 /*------------------------------------------------------------------*/
4340 * Removal of the module
4342 void cleanup_module(void)
4344 #ifdef DEBUG_MODULE_TRACE
4345 printk(KERN_DEBUG "-> cleanup_module()\n");
4346 #endif
4348 /* Loop on all devices and release them. */
4349 while (wavelan_list) {
4350 struct net_device *dev = wavelan_list->dev;
4352 #ifdef DEBUG_CONFIG_INFO
4353 printk(KERN_DEBUG
4354 "%s: cleanup_module(): removing device at 0x%x\n",
4355 dev->name, (unsigned int) dev);
4356 #endif
4357 unregister_netdev(dev);
4359 release_region(dev->base_addr, sizeof(ha_t));
4360 wavelan_list = wavelan_list->next;
4362 free_netdev(dev);
4365 #ifdef DEBUG_MODULE_TRACE
4366 printk(KERN_DEBUG "<- cleanup_module()\n");
4367 #endif
4369 #endif /* MODULE */
4370 MODULE_LICENSE("GPL");
4373 * This software may only be used and distributed
4374 * according to the terms of the GNU General Public License.
4376 * This software was developed as a component of the
4377 * Linux operating system.
4378 * It is based on other device drivers and information
4379 * either written or supplied by:
4380 * Ajay Bakre (bakre@paul.rutgers.edu),
4381 * Donald Becker (becker@scyld.com),
4382 * Loeke Brederveld (Loeke.Brederveld@Utrecht.NCR.com),
4383 * Anders Klemets (klemets@it.kth.se),
4384 * Vladimir V. Kolpakov (w@stier.koenig.ru),
4385 * Marc Meertens (Marc.Meertens@Utrecht.NCR.com),
4386 * Pauline Middelink (middelin@polyware.iaf.nl),
4387 * Robert Morris (rtm@das.harvard.edu),
4388 * Jean Tourrilhes (jt@hplb.hpl.hp.com),
4389 * Girish Welling (welling@paul.rutgers.edu),
4391 * Thanks go also to:
4392 * James Ashton (jaa101@syseng.anu.edu.au),
4393 * Alan Cox (alan@redhat.com),
4394 * Allan Creighton (allanc@cs.usyd.edu.au),
4395 * Matthew Geier (matthew@cs.usyd.edu.au),
4396 * Remo di Giovanni (remo@cs.usyd.edu.au),
4397 * Eckhard Grah (grah@wrcs1.urz.uni-wuppertal.de),
4398 * Vipul Gupta (vgupta@cs.binghamton.edu),
4399 * Mark Hagan (mhagan@wtcpost.daytonoh.NCR.COM),
4400 * Tim Nicholson (tim@cs.usyd.edu.au),
4401 * Ian Parkin (ian@cs.usyd.edu.au),
4402 * John Rosenberg (johnr@cs.usyd.edu.au),
4403 * George Rossi (george@phm.gov.au),
4404 * Arthur Scott (arthur@cs.usyd.edu.au),
4405 * Peter Storey,
4406 * for their assistance and advice.
4408 * Please send bug reports, updates, comments to:
4410 * Bruce Janson Email: bruce@cs.usyd.edu.au
4411 * Basser Department of Computer Science Phone: +61-2-9351-3423
4412 * University of Sydney, N.S.W., 2006, AUSTRALIA Fax: +61-2-9351-3838