Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
[wrt350n-kernel.git] / drivers / firewire / fw-ohci.c
blob7ebad3c14cb80bbd62b930551494400c901f81f0
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
33 #include <asm/page.h>
34 #include <asm/system.h>
36 #include "fw-ohci.h"
37 #include "fw-transaction.h"
39 #define DESCRIPTOR_OUTPUT_MORE 0
40 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
41 #define DESCRIPTOR_INPUT_MORE (2 << 12)
42 #define DESCRIPTOR_INPUT_LAST (3 << 12)
43 #define DESCRIPTOR_STATUS (1 << 11)
44 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
45 #define DESCRIPTOR_PING (1 << 7)
46 #define DESCRIPTOR_YY (1 << 6)
47 #define DESCRIPTOR_NO_IRQ (0 << 4)
48 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
49 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
50 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
51 #define DESCRIPTOR_WAIT (3 << 0)
53 struct descriptor {
54 __le16 req_count;
55 __le16 control;
56 __le32 data_address;
57 __le32 branch_address;
58 __le16 res_count;
59 __le16 transfer_status;
60 } __attribute__((aligned(16)));
62 struct db_descriptor {
63 __le16 first_size;
64 __le16 control;
65 __le16 second_req_count;
66 __le16 first_req_count;
67 __le32 branch_address;
68 __le16 second_res_count;
69 __le16 first_res_count;
70 __le32 reserved0;
71 __le32 first_buffer;
72 __le32 second_buffer;
73 __le32 reserved1;
74 } __attribute__((aligned(16)));
76 #define CONTROL_SET(regs) (regs)
77 #define CONTROL_CLEAR(regs) ((regs) + 4)
78 #define COMMAND_PTR(regs) ((regs) + 12)
79 #define CONTEXT_MATCH(regs) ((regs) + 16)
81 struct ar_buffer {
82 struct descriptor descriptor;
83 struct ar_buffer *next;
84 __le32 data[0];
87 struct ar_context {
88 struct fw_ohci *ohci;
89 struct ar_buffer *current_buffer;
90 struct ar_buffer *last_buffer;
91 void *pointer;
92 u32 regs;
93 struct tasklet_struct tasklet;
96 struct context;
98 typedef int (*descriptor_callback_t)(struct context *ctx,
99 struct descriptor *d,
100 struct descriptor *last);
103 * A buffer that contains a block of DMA-able coherent memory used for
104 * storing a portion of a DMA descriptor program.
106 struct descriptor_buffer {
107 struct list_head list;
108 dma_addr_t buffer_bus;
109 size_t buffer_size;
110 size_t used;
111 struct descriptor buffer[0];
114 struct context {
115 struct fw_ohci *ohci;
116 u32 regs;
117 int total_allocation;
120 * List of page-sized buffers for storing DMA descriptors.
121 * Head of list contains buffers in use and tail of list contains
122 * free buffers.
124 struct list_head buffer_list;
127 * Pointer to a buffer inside buffer_list that contains the tail
128 * end of the current DMA program.
130 struct descriptor_buffer *buffer_tail;
133 * The descriptor containing the branch address of the first
134 * descriptor that has not yet been filled by the device.
136 struct descriptor *last;
139 * The last descriptor in the DMA program. It contains the branch
140 * address that must be updated upon appending a new descriptor.
142 struct descriptor *prev;
144 descriptor_callback_t callback;
146 struct tasklet_struct tasklet;
149 #define IT_HEADER_SY(v) ((v) << 0)
150 #define IT_HEADER_TCODE(v) ((v) << 4)
151 #define IT_HEADER_CHANNEL(v) ((v) << 8)
152 #define IT_HEADER_TAG(v) ((v) << 14)
153 #define IT_HEADER_SPEED(v) ((v) << 16)
154 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
156 struct iso_context {
157 struct fw_iso_context base;
158 struct context context;
159 int excess_bytes;
160 void *header;
161 size_t header_length;
164 #define CONFIG_ROM_SIZE 1024
166 struct fw_ohci {
167 struct fw_card card;
169 u32 version;
170 __iomem char *registers;
171 dma_addr_t self_id_bus;
172 __le32 *self_id_cpu;
173 struct tasklet_struct bus_reset_tasklet;
174 int node_id;
175 int generation;
176 int request_generation;
177 u32 bus_seconds;
180 * Spinlock for accessing fw_ohci data. Never call out of
181 * this driver with this lock held.
183 spinlock_t lock;
184 u32 self_id_buffer[512];
186 /* Config rom buffers */
187 __be32 *config_rom;
188 dma_addr_t config_rom_bus;
189 __be32 *next_config_rom;
190 dma_addr_t next_config_rom_bus;
191 u32 next_header;
193 struct ar_context ar_request_ctx;
194 struct ar_context ar_response_ctx;
195 struct context at_request_ctx;
196 struct context at_response_ctx;
198 u32 it_context_mask;
199 struct iso_context *it_context_list;
200 u32 ir_context_mask;
201 struct iso_context *ir_context_list;
204 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
206 return container_of(card, struct fw_ohci, card);
209 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
210 #define IR_CONTEXT_BUFFER_FILL 0x80000000
211 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
212 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
213 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
214 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
216 #define CONTEXT_RUN 0x8000
217 #define CONTEXT_WAKE 0x1000
218 #define CONTEXT_DEAD 0x0800
219 #define CONTEXT_ACTIVE 0x0400
221 #define OHCI1394_MAX_AT_REQ_RETRIES 0x2
222 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
223 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
225 #define FW_OHCI_MAJOR 240
226 #define OHCI1394_REGISTER_SIZE 0x800
227 #define OHCI_LOOP_COUNT 500
228 #define OHCI1394_PCI_HCI_Control 0x40
229 #define SELF_ID_BUF_SIZE 0x800
230 #define OHCI_TCODE_PHY_PACKET 0x0e
231 #define OHCI_VERSION_1_1 0x010010
233 static char ohci_driver_name[] = KBUILD_MODNAME;
235 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
237 writel(data, ohci->registers + offset);
240 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
242 return readl(ohci->registers + offset);
245 static inline void flush_writes(const struct fw_ohci *ohci)
247 /* Do a dummy read to flush writes. */
248 reg_read(ohci, OHCI1394_Version);
251 static int
252 ohci_update_phy_reg(struct fw_card *card, int addr,
253 int clear_bits, int set_bits)
255 struct fw_ohci *ohci = fw_ohci(card);
256 u32 val, old;
258 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
259 flush_writes(ohci);
260 msleep(2);
261 val = reg_read(ohci, OHCI1394_PhyControl);
262 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
263 fw_error("failed to set phy reg bits.\n");
264 return -EBUSY;
267 old = OHCI1394_PhyControl_ReadData(val);
268 old = (old & ~clear_bits) | set_bits;
269 reg_write(ohci, OHCI1394_PhyControl,
270 OHCI1394_PhyControl_Write(addr, old));
272 return 0;
275 static int ar_context_add_page(struct ar_context *ctx)
277 struct device *dev = ctx->ohci->card.device;
278 struct ar_buffer *ab;
279 dma_addr_t ab_bus;
280 size_t offset;
282 ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
283 if (ab == NULL)
284 return -ENOMEM;
286 ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
287 if (dma_mapping_error(ab_bus)) {
288 free_page((unsigned long) ab);
289 return -ENOMEM;
292 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
293 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
294 DESCRIPTOR_STATUS |
295 DESCRIPTOR_BRANCH_ALWAYS);
296 offset = offsetof(struct ar_buffer, data);
297 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
298 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
299 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
300 ab->descriptor.branch_address = 0;
302 dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
304 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
305 ctx->last_buffer->next = ab;
306 ctx->last_buffer = ab;
308 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
309 flush_writes(ctx->ohci);
311 return 0;
314 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
316 struct fw_ohci *ohci = ctx->ohci;
317 struct fw_packet p;
318 u32 status, length, tcode;
320 p.header[0] = le32_to_cpu(buffer[0]);
321 p.header[1] = le32_to_cpu(buffer[1]);
322 p.header[2] = le32_to_cpu(buffer[2]);
324 tcode = (p.header[0] >> 4) & 0x0f;
325 switch (tcode) {
326 case TCODE_WRITE_QUADLET_REQUEST:
327 case TCODE_READ_QUADLET_RESPONSE:
328 p.header[3] = (__force __u32) buffer[3];
329 p.header_length = 16;
330 p.payload_length = 0;
331 break;
333 case TCODE_READ_BLOCK_REQUEST :
334 p.header[3] = le32_to_cpu(buffer[3]);
335 p.header_length = 16;
336 p.payload_length = 0;
337 break;
339 case TCODE_WRITE_BLOCK_REQUEST:
340 case TCODE_READ_BLOCK_RESPONSE:
341 case TCODE_LOCK_REQUEST:
342 case TCODE_LOCK_RESPONSE:
343 p.header[3] = le32_to_cpu(buffer[3]);
344 p.header_length = 16;
345 p.payload_length = p.header[3] >> 16;
346 break;
348 case TCODE_WRITE_RESPONSE:
349 case TCODE_READ_QUADLET_REQUEST:
350 case OHCI_TCODE_PHY_PACKET:
351 p.header_length = 12;
352 p.payload_length = 0;
353 break;
356 p.payload = (void *) buffer + p.header_length;
358 /* FIXME: What to do about evt_* errors? */
359 length = (p.header_length + p.payload_length + 3) / 4;
360 status = le32_to_cpu(buffer[length]);
362 p.ack = ((status >> 16) & 0x1f) - 16;
363 p.speed = (status >> 21) & 0x7;
364 p.timestamp = status & 0xffff;
365 p.generation = ohci->request_generation;
368 * The OHCI bus reset handler synthesizes a phy packet with
369 * the new generation number when a bus reset happens (see
370 * section 8.4.2.3). This helps us determine when a request
371 * was received and make sure we send the response in the same
372 * generation. We only need this for requests; for responses
373 * we use the unique tlabel for finding the matching
374 * request.
377 if (p.ack + 16 == 0x09)
378 ohci->request_generation = (buffer[2] >> 16) & 0xff;
379 else if (ctx == &ohci->ar_request_ctx)
380 fw_core_handle_request(&ohci->card, &p);
381 else
382 fw_core_handle_response(&ohci->card, &p);
384 return buffer + length + 1;
387 static void ar_context_tasklet(unsigned long data)
389 struct ar_context *ctx = (struct ar_context *)data;
390 struct fw_ohci *ohci = ctx->ohci;
391 struct ar_buffer *ab;
392 struct descriptor *d;
393 void *buffer, *end;
395 ab = ctx->current_buffer;
396 d = &ab->descriptor;
398 if (d->res_count == 0) {
399 size_t size, rest, offset;
402 * This descriptor is finished and we may have a
403 * packet split across this and the next buffer. We
404 * reuse the page for reassembling the split packet.
407 offset = offsetof(struct ar_buffer, data);
408 dma_unmap_single(ohci->card.device,
409 le32_to_cpu(ab->descriptor.data_address) - offset,
410 PAGE_SIZE, DMA_BIDIRECTIONAL);
412 buffer = ab;
413 ab = ab->next;
414 d = &ab->descriptor;
415 size = buffer + PAGE_SIZE - ctx->pointer;
416 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
417 memmove(buffer, ctx->pointer, size);
418 memcpy(buffer + size, ab->data, rest);
419 ctx->current_buffer = ab;
420 ctx->pointer = (void *) ab->data + rest;
421 end = buffer + size + rest;
423 while (buffer < end)
424 buffer = handle_ar_packet(ctx, buffer);
426 free_page((unsigned long)buffer);
427 ar_context_add_page(ctx);
428 } else {
429 buffer = ctx->pointer;
430 ctx->pointer = end =
431 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
433 while (buffer < end)
434 buffer = handle_ar_packet(ctx, buffer);
438 static int
439 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
441 struct ar_buffer ab;
443 ctx->regs = regs;
444 ctx->ohci = ohci;
445 ctx->last_buffer = &ab;
446 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
448 ar_context_add_page(ctx);
449 ar_context_add_page(ctx);
450 ctx->current_buffer = ab.next;
451 ctx->pointer = ctx->current_buffer->data;
453 return 0;
456 static void ar_context_run(struct ar_context *ctx)
458 struct ar_buffer *ab = ctx->current_buffer;
459 dma_addr_t ab_bus;
460 size_t offset;
462 offset = offsetof(struct ar_buffer, data);
463 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
465 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
466 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
467 flush_writes(ctx->ohci);
470 static struct descriptor *
471 find_branch_descriptor(struct descriptor *d, int z)
473 int b, key;
475 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
476 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
478 /* figure out which descriptor the branch address goes in */
479 if (z == 2 && (b == 3 || key == 2))
480 return d;
481 else
482 return d + z - 1;
485 static void context_tasklet(unsigned long data)
487 struct context *ctx = (struct context *) data;
488 struct descriptor *d, *last;
489 u32 address;
490 int z;
491 struct descriptor_buffer *desc;
493 desc = list_entry(ctx->buffer_list.next,
494 struct descriptor_buffer, list);
495 last = ctx->last;
496 while (last->branch_address != 0) {
497 struct descriptor_buffer *old_desc = desc;
498 address = le32_to_cpu(last->branch_address);
499 z = address & 0xf;
500 address &= ~0xf;
502 /* If the branch address points to a buffer outside of the
503 * current buffer, advance to the next buffer. */
504 if (address < desc->buffer_bus ||
505 address >= desc->buffer_bus + desc->used)
506 desc = list_entry(desc->list.next,
507 struct descriptor_buffer, list);
508 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
509 last = find_branch_descriptor(d, z);
511 if (!ctx->callback(ctx, d, last))
512 break;
514 if (old_desc != desc) {
515 /* If we've advanced to the next buffer, move the
516 * previous buffer to the free list. */
517 unsigned long flags;
518 old_desc->used = 0;
519 spin_lock_irqsave(&ctx->ohci->lock, flags);
520 list_move_tail(&old_desc->list, &ctx->buffer_list);
521 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
523 ctx->last = last;
528 * Allocate a new buffer and add it to the list of free buffers for this
529 * context. Must be called with ohci->lock held.
531 static int
532 context_add_buffer(struct context *ctx)
534 struct descriptor_buffer *desc;
535 dma_addr_t bus_addr;
536 int offset;
539 * 16MB of descriptors should be far more than enough for any DMA
540 * program. This will catch run-away userspace or DoS attacks.
542 if (ctx->total_allocation >= 16*1024*1024)
543 return -ENOMEM;
545 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
546 &bus_addr, GFP_ATOMIC);
547 if (!desc)
548 return -ENOMEM;
550 offset = (void *)&desc->buffer - (void *)desc;
551 desc->buffer_size = PAGE_SIZE - offset;
552 desc->buffer_bus = bus_addr + offset;
553 desc->used = 0;
555 list_add_tail(&desc->list, &ctx->buffer_list);
556 ctx->total_allocation += PAGE_SIZE;
558 return 0;
561 static int
562 context_init(struct context *ctx, struct fw_ohci *ohci,
563 u32 regs, descriptor_callback_t callback)
565 ctx->ohci = ohci;
566 ctx->regs = regs;
567 ctx->total_allocation = 0;
569 INIT_LIST_HEAD(&ctx->buffer_list);
570 if (context_add_buffer(ctx) < 0)
571 return -ENOMEM;
573 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
574 struct descriptor_buffer, list);
576 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
577 ctx->callback = callback;
580 * We put a dummy descriptor in the buffer that has a NULL
581 * branch address and looks like it's been sent. That way we
582 * have a descriptor to append DMA programs to.
584 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
585 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
586 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
587 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
588 ctx->last = ctx->buffer_tail->buffer;
589 ctx->prev = ctx->buffer_tail->buffer;
591 return 0;
594 static void
595 context_release(struct context *ctx)
597 struct fw_card *card = &ctx->ohci->card;
598 struct descriptor_buffer *desc, *tmp;
600 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
601 dma_free_coherent(card->device, PAGE_SIZE, desc,
602 desc->buffer_bus -
603 ((void *)&desc->buffer - (void *)desc));
606 /* Must be called with ohci->lock held */
607 static struct descriptor *
608 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
610 struct descriptor *d = NULL;
611 struct descriptor_buffer *desc = ctx->buffer_tail;
613 if (z * sizeof(*d) > desc->buffer_size)
614 return NULL;
616 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
617 /* No room for the descriptor in this buffer, so advance to the
618 * next one. */
620 if (desc->list.next == &ctx->buffer_list) {
621 /* If there is no free buffer next in the list,
622 * allocate one. */
623 if (context_add_buffer(ctx) < 0)
624 return NULL;
626 desc = list_entry(desc->list.next,
627 struct descriptor_buffer, list);
628 ctx->buffer_tail = desc;
631 d = desc->buffer + desc->used / sizeof(*d);
632 memset(d, 0, z * sizeof(*d));
633 *d_bus = desc->buffer_bus + desc->used;
635 return d;
638 static void context_run(struct context *ctx, u32 extra)
640 struct fw_ohci *ohci = ctx->ohci;
642 reg_write(ohci, COMMAND_PTR(ctx->regs),
643 le32_to_cpu(ctx->last->branch_address));
644 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
645 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
646 flush_writes(ohci);
649 static void context_append(struct context *ctx,
650 struct descriptor *d, int z, int extra)
652 dma_addr_t d_bus;
653 struct descriptor_buffer *desc = ctx->buffer_tail;
655 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
657 desc->used += (z + extra) * sizeof(*d);
658 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
659 ctx->prev = find_branch_descriptor(d, z);
661 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
662 flush_writes(ctx->ohci);
665 static void context_stop(struct context *ctx)
667 u32 reg;
668 int i;
670 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
671 flush_writes(ctx->ohci);
673 for (i = 0; i < 10; i++) {
674 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
675 if ((reg & CONTEXT_ACTIVE) == 0)
676 break;
678 fw_notify("context_stop: still active (0x%08x)\n", reg);
679 mdelay(1);
683 struct driver_data {
684 struct fw_packet *packet;
688 * This function apppends a packet to the DMA queue for transmission.
689 * Must always be called with the ochi->lock held to ensure proper
690 * generation handling and locking around packet queue manipulation.
692 static int
693 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
695 struct fw_ohci *ohci = ctx->ohci;
696 dma_addr_t d_bus, uninitialized_var(payload_bus);
697 struct driver_data *driver_data;
698 struct descriptor *d, *last;
699 __le32 *header;
700 int z, tcode;
701 u32 reg;
703 d = context_get_descriptors(ctx, 4, &d_bus);
704 if (d == NULL) {
705 packet->ack = RCODE_SEND_ERROR;
706 return -1;
709 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
710 d[0].res_count = cpu_to_le16(packet->timestamp);
713 * The DMA format for asyncronous link packets is different
714 * from the IEEE1394 layout, so shift the fields around
715 * accordingly. If header_length is 8, it's a PHY packet, to
716 * which we need to prepend an extra quadlet.
719 header = (__le32 *) &d[1];
720 if (packet->header_length > 8) {
721 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
722 (packet->speed << 16));
723 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
724 (packet->header[0] & 0xffff0000));
725 header[2] = cpu_to_le32(packet->header[2]);
727 tcode = (packet->header[0] >> 4) & 0x0f;
728 if (TCODE_IS_BLOCK_PACKET(tcode))
729 header[3] = cpu_to_le32(packet->header[3]);
730 else
731 header[3] = (__force __le32) packet->header[3];
733 d[0].req_count = cpu_to_le16(packet->header_length);
734 } else {
735 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
736 (packet->speed << 16));
737 header[1] = cpu_to_le32(packet->header[0]);
738 header[2] = cpu_to_le32(packet->header[1]);
739 d[0].req_count = cpu_to_le16(12);
742 driver_data = (struct driver_data *) &d[3];
743 driver_data->packet = packet;
744 packet->driver_data = driver_data;
746 if (packet->payload_length > 0) {
747 payload_bus =
748 dma_map_single(ohci->card.device, packet->payload,
749 packet->payload_length, DMA_TO_DEVICE);
750 if (dma_mapping_error(payload_bus)) {
751 packet->ack = RCODE_SEND_ERROR;
752 return -1;
755 d[2].req_count = cpu_to_le16(packet->payload_length);
756 d[2].data_address = cpu_to_le32(payload_bus);
757 last = &d[2];
758 z = 3;
759 } else {
760 last = &d[0];
761 z = 2;
764 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
765 DESCRIPTOR_IRQ_ALWAYS |
766 DESCRIPTOR_BRANCH_ALWAYS);
768 /* FIXME: Document how the locking works. */
769 if (ohci->generation != packet->generation) {
770 if (packet->payload_length > 0)
771 dma_unmap_single(ohci->card.device, payload_bus,
772 packet->payload_length, DMA_TO_DEVICE);
773 packet->ack = RCODE_GENERATION;
774 return -1;
777 context_append(ctx, d, z, 4 - z);
779 /* If the context isn't already running, start it up. */
780 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
781 if ((reg & CONTEXT_RUN) == 0)
782 context_run(ctx, 0);
784 return 0;
787 static int handle_at_packet(struct context *context,
788 struct descriptor *d,
789 struct descriptor *last)
791 struct driver_data *driver_data;
792 struct fw_packet *packet;
793 struct fw_ohci *ohci = context->ohci;
794 dma_addr_t payload_bus;
795 int evt;
797 if (last->transfer_status == 0)
798 /* This descriptor isn't done yet, stop iteration. */
799 return 0;
801 driver_data = (struct driver_data *) &d[3];
802 packet = driver_data->packet;
803 if (packet == NULL)
804 /* This packet was cancelled, just continue. */
805 return 1;
807 payload_bus = le32_to_cpu(last->data_address);
808 if (payload_bus != 0)
809 dma_unmap_single(ohci->card.device, payload_bus,
810 packet->payload_length, DMA_TO_DEVICE);
812 evt = le16_to_cpu(last->transfer_status) & 0x1f;
813 packet->timestamp = le16_to_cpu(last->res_count);
815 switch (evt) {
816 case OHCI1394_evt_timeout:
817 /* Async response transmit timed out. */
818 packet->ack = RCODE_CANCELLED;
819 break;
821 case OHCI1394_evt_flushed:
823 * The packet was flushed should give same error as
824 * when we try to use a stale generation count.
826 packet->ack = RCODE_GENERATION;
827 break;
829 case OHCI1394_evt_missing_ack:
831 * Using a valid (current) generation count, but the
832 * node is not on the bus or not sending acks.
834 packet->ack = RCODE_NO_ACK;
835 break;
837 case ACK_COMPLETE + 0x10:
838 case ACK_PENDING + 0x10:
839 case ACK_BUSY_X + 0x10:
840 case ACK_BUSY_A + 0x10:
841 case ACK_BUSY_B + 0x10:
842 case ACK_DATA_ERROR + 0x10:
843 case ACK_TYPE_ERROR + 0x10:
844 packet->ack = evt - 0x10;
845 break;
847 default:
848 packet->ack = RCODE_SEND_ERROR;
849 break;
852 packet->callback(packet, &ohci->card, packet->ack);
854 return 1;
857 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
858 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
859 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
860 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
861 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
863 static void
864 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
866 struct fw_packet response;
867 int tcode, length, i;
869 tcode = HEADER_GET_TCODE(packet->header[0]);
870 if (TCODE_IS_BLOCK_PACKET(tcode))
871 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
872 else
873 length = 4;
875 i = csr - CSR_CONFIG_ROM;
876 if (i + length > CONFIG_ROM_SIZE) {
877 fw_fill_response(&response, packet->header,
878 RCODE_ADDRESS_ERROR, NULL, 0);
879 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
880 fw_fill_response(&response, packet->header,
881 RCODE_TYPE_ERROR, NULL, 0);
882 } else {
883 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
884 (void *) ohci->config_rom + i, length);
887 fw_core_handle_response(&ohci->card, &response);
890 static void
891 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
893 struct fw_packet response;
894 int tcode, length, ext_tcode, sel;
895 __be32 *payload, lock_old;
896 u32 lock_arg, lock_data;
898 tcode = HEADER_GET_TCODE(packet->header[0]);
899 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
900 payload = packet->payload;
901 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
903 if (tcode == TCODE_LOCK_REQUEST &&
904 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
905 lock_arg = be32_to_cpu(payload[0]);
906 lock_data = be32_to_cpu(payload[1]);
907 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
908 lock_arg = 0;
909 lock_data = 0;
910 } else {
911 fw_fill_response(&response, packet->header,
912 RCODE_TYPE_ERROR, NULL, 0);
913 goto out;
916 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
917 reg_write(ohci, OHCI1394_CSRData, lock_data);
918 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
919 reg_write(ohci, OHCI1394_CSRControl, sel);
921 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
922 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
923 else
924 fw_notify("swap not done yet\n");
926 fw_fill_response(&response, packet->header,
927 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
928 out:
929 fw_core_handle_response(&ohci->card, &response);
932 static void
933 handle_local_request(struct context *ctx, struct fw_packet *packet)
935 u64 offset;
936 u32 csr;
938 if (ctx == &ctx->ohci->at_request_ctx) {
939 packet->ack = ACK_PENDING;
940 packet->callback(packet, &ctx->ohci->card, packet->ack);
943 offset =
944 ((unsigned long long)
945 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
946 packet->header[2];
947 csr = offset - CSR_REGISTER_BASE;
949 /* Handle config rom reads. */
950 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
951 handle_local_rom(ctx->ohci, packet, csr);
952 else switch (csr) {
953 case CSR_BUS_MANAGER_ID:
954 case CSR_BANDWIDTH_AVAILABLE:
955 case CSR_CHANNELS_AVAILABLE_HI:
956 case CSR_CHANNELS_AVAILABLE_LO:
957 handle_local_lock(ctx->ohci, packet, csr);
958 break;
959 default:
960 if (ctx == &ctx->ohci->at_request_ctx)
961 fw_core_handle_request(&ctx->ohci->card, packet);
962 else
963 fw_core_handle_response(&ctx->ohci->card, packet);
964 break;
967 if (ctx == &ctx->ohci->at_response_ctx) {
968 packet->ack = ACK_COMPLETE;
969 packet->callback(packet, &ctx->ohci->card, packet->ack);
973 static void
974 at_context_transmit(struct context *ctx, struct fw_packet *packet)
976 unsigned long flags;
977 int retval;
979 spin_lock_irqsave(&ctx->ohci->lock, flags);
981 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
982 ctx->ohci->generation == packet->generation) {
983 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
984 handle_local_request(ctx, packet);
985 return;
988 retval = at_context_queue_packet(ctx, packet);
989 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
991 if (retval < 0)
992 packet->callback(packet, &ctx->ohci->card, packet->ack);
996 static void bus_reset_tasklet(unsigned long data)
998 struct fw_ohci *ohci = (struct fw_ohci *)data;
999 int self_id_count, i, j, reg;
1000 int generation, new_generation;
1001 unsigned long flags;
1002 void *free_rom = NULL;
1003 dma_addr_t free_rom_bus = 0;
1005 reg = reg_read(ohci, OHCI1394_NodeID);
1006 if (!(reg & OHCI1394_NodeID_idValid)) {
1007 fw_notify("node ID not valid, new bus reset in progress\n");
1008 return;
1010 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1011 fw_notify("malconfigured bus\n");
1012 return;
1014 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1015 OHCI1394_NodeID_nodeNumber);
1018 * The count in the SelfIDCount register is the number of
1019 * bytes in the self ID receive buffer. Since we also receive
1020 * the inverted quadlets and a header quadlet, we shift one
1021 * bit extra to get the actual number of self IDs.
1024 self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
1025 generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1026 rmb();
1028 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1029 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
1030 fw_error("inconsistent self IDs\n");
1031 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
1033 rmb();
1036 * Check the consistency of the self IDs we just read. The
1037 * problem we face is that a new bus reset can start while we
1038 * read out the self IDs from the DMA buffer. If this happens,
1039 * the DMA buffer will be overwritten with new self IDs and we
1040 * will read out inconsistent data. The OHCI specification
1041 * (section 11.2) recommends a technique similar to
1042 * linux/seqlock.h, where we remember the generation of the
1043 * self IDs in the buffer before reading them out and compare
1044 * it to the current generation after reading them out. If
1045 * the two generations match we know we have a consistent set
1046 * of self IDs.
1049 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1050 if (new_generation != generation) {
1051 fw_notify("recursive bus reset detected, "
1052 "discarding self ids\n");
1053 return;
1056 /* FIXME: Document how the locking works. */
1057 spin_lock_irqsave(&ohci->lock, flags);
1059 ohci->generation = generation;
1060 context_stop(&ohci->at_request_ctx);
1061 context_stop(&ohci->at_response_ctx);
1062 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1065 * This next bit is unrelated to the AT context stuff but we
1066 * have to do it under the spinlock also. If a new config rom
1067 * was set up before this reset, the old one is now no longer
1068 * in use and we can free it. Update the config rom pointers
1069 * to point to the current config rom and clear the
1070 * next_config_rom pointer so a new udpate can take place.
1073 if (ohci->next_config_rom != NULL) {
1074 if (ohci->next_config_rom != ohci->config_rom) {
1075 free_rom = ohci->config_rom;
1076 free_rom_bus = ohci->config_rom_bus;
1078 ohci->config_rom = ohci->next_config_rom;
1079 ohci->config_rom_bus = ohci->next_config_rom_bus;
1080 ohci->next_config_rom = NULL;
1083 * Restore config_rom image and manually update
1084 * config_rom registers. Writing the header quadlet
1085 * will indicate that the config rom is ready, so we
1086 * do that last.
1088 reg_write(ohci, OHCI1394_BusOptions,
1089 be32_to_cpu(ohci->config_rom[2]));
1090 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1091 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1094 spin_unlock_irqrestore(&ohci->lock, flags);
1096 if (free_rom)
1097 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1098 free_rom, free_rom_bus);
1100 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1101 self_id_count, ohci->self_id_buffer);
1104 static irqreturn_t irq_handler(int irq, void *data)
1106 struct fw_ohci *ohci = data;
1107 u32 event, iso_event, cycle_time;
1108 int i;
1110 event = reg_read(ohci, OHCI1394_IntEventClear);
1112 if (!event || !~event)
1113 return IRQ_NONE;
1115 reg_write(ohci, OHCI1394_IntEventClear, event);
1117 if (event & OHCI1394_selfIDComplete)
1118 tasklet_schedule(&ohci->bus_reset_tasklet);
1120 if (event & OHCI1394_RQPkt)
1121 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1123 if (event & OHCI1394_RSPkt)
1124 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1126 if (event & OHCI1394_reqTxComplete)
1127 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1129 if (event & OHCI1394_respTxComplete)
1130 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1132 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1133 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1135 while (iso_event) {
1136 i = ffs(iso_event) - 1;
1137 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1138 iso_event &= ~(1 << i);
1141 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1142 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1144 while (iso_event) {
1145 i = ffs(iso_event) - 1;
1146 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1147 iso_event &= ~(1 << i);
1150 if (unlikely(event & OHCI1394_postedWriteErr))
1151 fw_error("PCI posted write error\n");
1153 if (unlikely(event & OHCI1394_cycleTooLong)) {
1154 if (printk_ratelimit())
1155 fw_notify("isochronous cycle too long\n");
1156 reg_write(ohci, OHCI1394_LinkControlSet,
1157 OHCI1394_LinkControl_cycleMaster);
1160 if (event & OHCI1394_cycle64Seconds) {
1161 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1162 if ((cycle_time & 0x80000000) == 0)
1163 ohci->bus_seconds++;
1166 return IRQ_HANDLED;
1169 static int software_reset(struct fw_ohci *ohci)
1171 int i;
1173 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1175 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1176 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1177 OHCI1394_HCControl_softReset) == 0)
1178 return 0;
1179 msleep(1);
1182 return -EBUSY;
1185 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1187 struct fw_ohci *ohci = fw_ohci(card);
1188 struct pci_dev *dev = to_pci_dev(card->device);
1190 if (software_reset(ohci)) {
1191 fw_error("Failed to reset ohci card.\n");
1192 return -EBUSY;
1196 * Now enable LPS, which we need in order to start accessing
1197 * most of the registers. In fact, on some cards (ALI M5251),
1198 * accessing registers in the SClk domain without LPS enabled
1199 * will lock up the machine. Wait 50msec to make sure we have
1200 * full link enabled.
1202 reg_write(ohci, OHCI1394_HCControlSet,
1203 OHCI1394_HCControl_LPS |
1204 OHCI1394_HCControl_postedWriteEnable);
1205 flush_writes(ohci);
1206 msleep(50);
1208 reg_write(ohci, OHCI1394_HCControlClear,
1209 OHCI1394_HCControl_noByteSwapData);
1211 reg_write(ohci, OHCI1394_LinkControlSet,
1212 OHCI1394_LinkControl_rcvSelfID |
1213 OHCI1394_LinkControl_cycleTimerEnable |
1214 OHCI1394_LinkControl_cycleMaster);
1216 reg_write(ohci, OHCI1394_ATRetries,
1217 OHCI1394_MAX_AT_REQ_RETRIES |
1218 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1219 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1221 ar_context_run(&ohci->ar_request_ctx);
1222 ar_context_run(&ohci->ar_response_ctx);
1224 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1225 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1226 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1227 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1228 reg_write(ohci, OHCI1394_IntMaskSet,
1229 OHCI1394_selfIDComplete |
1230 OHCI1394_RQPkt | OHCI1394_RSPkt |
1231 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1232 OHCI1394_isochRx | OHCI1394_isochTx |
1233 OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1234 OHCI1394_cycle64Seconds | OHCI1394_masterIntEnable);
1236 /* Activate link_on bit and contender bit in our self ID packets.*/
1237 if (ohci_update_phy_reg(card, 4, 0,
1238 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1239 return -EIO;
1242 * When the link is not yet enabled, the atomic config rom
1243 * update mechanism described below in ohci_set_config_rom()
1244 * is not active. We have to update ConfigRomHeader and
1245 * BusOptions manually, and the write to ConfigROMmap takes
1246 * effect immediately. We tie this to the enabling of the
1247 * link, so we have a valid config rom before enabling - the
1248 * OHCI requires that ConfigROMhdr and BusOptions have valid
1249 * values before enabling.
1251 * However, when the ConfigROMmap is written, some controllers
1252 * always read back quadlets 0 and 2 from the config rom to
1253 * the ConfigRomHeader and BusOptions registers on bus reset.
1254 * They shouldn't do that in this initial case where the link
1255 * isn't enabled. This means we have to use the same
1256 * workaround here, setting the bus header to 0 and then write
1257 * the right values in the bus reset tasklet.
1260 if (config_rom) {
1261 ohci->next_config_rom =
1262 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1263 &ohci->next_config_rom_bus,
1264 GFP_KERNEL);
1265 if (ohci->next_config_rom == NULL)
1266 return -ENOMEM;
1268 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1269 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1270 } else {
1272 * In the suspend case, config_rom is NULL, which
1273 * means that we just reuse the old config rom.
1275 ohci->next_config_rom = ohci->config_rom;
1276 ohci->next_config_rom_bus = ohci->config_rom_bus;
1279 ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1280 ohci->next_config_rom[0] = 0;
1281 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1282 reg_write(ohci, OHCI1394_BusOptions,
1283 be32_to_cpu(ohci->next_config_rom[2]));
1284 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1286 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1288 if (request_irq(dev->irq, irq_handler,
1289 IRQF_SHARED, ohci_driver_name, ohci)) {
1290 fw_error("Failed to allocate shared interrupt %d.\n",
1291 dev->irq);
1292 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1293 ohci->config_rom, ohci->config_rom_bus);
1294 return -EIO;
1297 reg_write(ohci, OHCI1394_HCControlSet,
1298 OHCI1394_HCControl_linkEnable |
1299 OHCI1394_HCControl_BIBimageValid);
1300 flush_writes(ohci);
1303 * We are ready to go, initiate bus reset to finish the
1304 * initialization.
1307 fw_core_initiate_bus_reset(&ohci->card, 1);
1309 return 0;
1312 static int
1313 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1315 struct fw_ohci *ohci;
1316 unsigned long flags;
1317 int retval = -EBUSY;
1318 __be32 *next_config_rom;
1319 dma_addr_t next_config_rom_bus;
1321 ohci = fw_ohci(card);
1324 * When the OHCI controller is enabled, the config rom update
1325 * mechanism is a bit tricky, but easy enough to use. See
1326 * section 5.5.6 in the OHCI specification.
1328 * The OHCI controller caches the new config rom address in a
1329 * shadow register (ConfigROMmapNext) and needs a bus reset
1330 * for the changes to take place. When the bus reset is
1331 * detected, the controller loads the new values for the
1332 * ConfigRomHeader and BusOptions registers from the specified
1333 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1334 * shadow register. All automatically and atomically.
1336 * Now, there's a twist to this story. The automatic load of
1337 * ConfigRomHeader and BusOptions doesn't honor the
1338 * noByteSwapData bit, so with a be32 config rom, the
1339 * controller will load be32 values in to these registers
1340 * during the atomic update, even on litte endian
1341 * architectures. The workaround we use is to put a 0 in the
1342 * header quadlet; 0 is endian agnostic and means that the
1343 * config rom isn't ready yet. In the bus reset tasklet we
1344 * then set up the real values for the two registers.
1346 * We use ohci->lock to avoid racing with the code that sets
1347 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1350 next_config_rom =
1351 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1352 &next_config_rom_bus, GFP_KERNEL);
1353 if (next_config_rom == NULL)
1354 return -ENOMEM;
1356 spin_lock_irqsave(&ohci->lock, flags);
1358 if (ohci->next_config_rom == NULL) {
1359 ohci->next_config_rom = next_config_rom;
1360 ohci->next_config_rom_bus = next_config_rom_bus;
1362 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1363 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1364 length * 4);
1366 ohci->next_header = config_rom[0];
1367 ohci->next_config_rom[0] = 0;
1369 reg_write(ohci, OHCI1394_ConfigROMmap,
1370 ohci->next_config_rom_bus);
1371 retval = 0;
1374 spin_unlock_irqrestore(&ohci->lock, flags);
1377 * Now initiate a bus reset to have the changes take
1378 * effect. We clean up the old config rom memory and DMA
1379 * mappings in the bus reset tasklet, since the OHCI
1380 * controller could need to access it before the bus reset
1381 * takes effect.
1383 if (retval == 0)
1384 fw_core_initiate_bus_reset(&ohci->card, 1);
1385 else
1386 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1387 next_config_rom, next_config_rom_bus);
1389 return retval;
1392 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1394 struct fw_ohci *ohci = fw_ohci(card);
1396 at_context_transmit(&ohci->at_request_ctx, packet);
1399 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1401 struct fw_ohci *ohci = fw_ohci(card);
1403 at_context_transmit(&ohci->at_response_ctx, packet);
1406 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1408 struct fw_ohci *ohci = fw_ohci(card);
1409 struct context *ctx = &ohci->at_request_ctx;
1410 struct driver_data *driver_data = packet->driver_data;
1411 int retval = -ENOENT;
1413 tasklet_disable(&ctx->tasklet);
1415 if (packet->ack != 0)
1416 goto out;
1418 driver_data->packet = NULL;
1419 packet->ack = RCODE_CANCELLED;
1420 packet->callback(packet, &ohci->card, packet->ack);
1421 retval = 0;
1423 out:
1424 tasklet_enable(&ctx->tasklet);
1426 return retval;
1429 static int
1430 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1432 struct fw_ohci *ohci = fw_ohci(card);
1433 unsigned long flags;
1434 int n, retval = 0;
1437 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1438 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1441 spin_lock_irqsave(&ohci->lock, flags);
1443 if (ohci->generation != generation) {
1444 retval = -ESTALE;
1445 goto out;
1449 * Note, if the node ID contains a non-local bus ID, physical DMA is
1450 * enabled for _all_ nodes on remote buses.
1453 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1454 if (n < 32)
1455 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1456 else
1457 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1459 flush_writes(ohci);
1460 out:
1461 spin_unlock_irqrestore(&ohci->lock, flags);
1462 return retval;
1465 static u64
1466 ohci_get_bus_time(struct fw_card *card)
1468 struct fw_ohci *ohci = fw_ohci(card);
1469 u32 cycle_time;
1470 u64 bus_time;
1472 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1473 bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1475 return bus_time;
1478 static int handle_ir_dualbuffer_packet(struct context *context,
1479 struct descriptor *d,
1480 struct descriptor *last)
1482 struct iso_context *ctx =
1483 container_of(context, struct iso_context, context);
1484 struct db_descriptor *db = (struct db_descriptor *) d;
1485 __le32 *ir_header;
1486 size_t header_length;
1487 void *p, *end;
1488 int i;
1490 if (db->first_res_count > 0 && db->second_res_count > 0) {
1491 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1492 /* This descriptor isn't done yet, stop iteration. */
1493 return 0;
1495 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1498 header_length = le16_to_cpu(db->first_req_count) -
1499 le16_to_cpu(db->first_res_count);
1501 i = ctx->header_length;
1502 p = db + 1;
1503 end = p + header_length;
1504 while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1506 * The iso header is byteswapped to little endian by
1507 * the controller, but the remaining header quadlets
1508 * are big endian. We want to present all the headers
1509 * as big endian, so we have to swap the first
1510 * quadlet.
1512 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1513 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1514 i += ctx->base.header_size;
1515 ctx->excess_bytes +=
1516 (le32_to_cpu(*(u32 *)(p + 4)) >> 16) & 0xffff;
1517 p += ctx->base.header_size + 4;
1519 ctx->header_length = i;
1521 ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1522 le16_to_cpu(db->second_res_count);
1524 if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1525 ir_header = (__le32 *) (db + 1);
1526 ctx->base.callback(&ctx->base,
1527 le32_to_cpu(ir_header[0]) & 0xffff,
1528 ctx->header_length, ctx->header,
1529 ctx->base.callback_data);
1530 ctx->header_length = 0;
1533 return 1;
1536 static int handle_ir_packet_per_buffer(struct context *context,
1537 struct descriptor *d,
1538 struct descriptor *last)
1540 struct iso_context *ctx =
1541 container_of(context, struct iso_context, context);
1542 struct descriptor *pd;
1543 __le32 *ir_header;
1544 void *p;
1545 int i;
1547 for (pd = d; pd <= last; pd++) {
1548 if (pd->transfer_status)
1549 break;
1551 if (pd > last)
1552 /* Descriptor(s) not done yet, stop iteration */
1553 return 0;
1555 i = ctx->header_length;
1556 p = last + 1;
1558 if (ctx->base.header_size > 0 &&
1559 i + ctx->base.header_size <= PAGE_SIZE) {
1561 * The iso header is byteswapped to little endian by
1562 * the controller, but the remaining header quadlets
1563 * are big endian. We want to present all the headers
1564 * as big endian, so we have to swap the first quadlet.
1566 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1567 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1568 ctx->header_length += ctx->base.header_size;
1571 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1572 ir_header = (__le32 *) p;
1573 ctx->base.callback(&ctx->base,
1574 le32_to_cpu(ir_header[0]) & 0xffff,
1575 ctx->header_length, ctx->header,
1576 ctx->base.callback_data);
1577 ctx->header_length = 0;
1580 return 1;
1583 static int handle_it_packet(struct context *context,
1584 struct descriptor *d,
1585 struct descriptor *last)
1587 struct iso_context *ctx =
1588 container_of(context, struct iso_context, context);
1590 if (last->transfer_status == 0)
1591 /* This descriptor isn't done yet, stop iteration. */
1592 return 0;
1594 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1595 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1596 0, NULL, ctx->base.callback_data);
1598 return 1;
1601 static struct fw_iso_context *
1602 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1604 struct fw_ohci *ohci = fw_ohci(card);
1605 struct iso_context *ctx, *list;
1606 descriptor_callback_t callback;
1607 u32 *mask, regs;
1608 unsigned long flags;
1609 int index, retval = -ENOMEM;
1611 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1612 mask = &ohci->it_context_mask;
1613 list = ohci->it_context_list;
1614 callback = handle_it_packet;
1615 } else {
1616 mask = &ohci->ir_context_mask;
1617 list = ohci->ir_context_list;
1618 if (ohci->version >= OHCI_VERSION_1_1)
1619 callback = handle_ir_dualbuffer_packet;
1620 else
1621 callback = handle_ir_packet_per_buffer;
1624 spin_lock_irqsave(&ohci->lock, flags);
1625 index = ffs(*mask) - 1;
1626 if (index >= 0)
1627 *mask &= ~(1 << index);
1628 spin_unlock_irqrestore(&ohci->lock, flags);
1630 if (index < 0)
1631 return ERR_PTR(-EBUSY);
1633 if (type == FW_ISO_CONTEXT_TRANSMIT)
1634 regs = OHCI1394_IsoXmitContextBase(index);
1635 else
1636 regs = OHCI1394_IsoRcvContextBase(index);
1638 ctx = &list[index];
1639 memset(ctx, 0, sizeof(*ctx));
1640 ctx->header_length = 0;
1641 ctx->header = (void *) __get_free_page(GFP_KERNEL);
1642 if (ctx->header == NULL)
1643 goto out;
1645 retval = context_init(&ctx->context, ohci, regs, callback);
1646 if (retval < 0)
1647 goto out_with_header;
1649 return &ctx->base;
1651 out_with_header:
1652 free_page((unsigned long)ctx->header);
1653 out:
1654 spin_lock_irqsave(&ohci->lock, flags);
1655 *mask |= 1 << index;
1656 spin_unlock_irqrestore(&ohci->lock, flags);
1658 return ERR_PTR(retval);
1661 static int ohci_start_iso(struct fw_iso_context *base,
1662 s32 cycle, u32 sync, u32 tags)
1664 struct iso_context *ctx = container_of(base, struct iso_context, base);
1665 struct fw_ohci *ohci = ctx->context.ohci;
1666 u32 control, match;
1667 int index;
1669 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1670 index = ctx - ohci->it_context_list;
1671 match = 0;
1672 if (cycle >= 0)
1673 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1674 (cycle & 0x7fff) << 16;
1676 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1677 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1678 context_run(&ctx->context, match);
1679 } else {
1680 index = ctx - ohci->ir_context_list;
1681 control = IR_CONTEXT_ISOCH_HEADER;
1682 if (ohci->version >= OHCI_VERSION_1_1)
1683 control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1684 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1685 if (cycle >= 0) {
1686 match |= (cycle & 0x07fff) << 12;
1687 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1690 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1691 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1692 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1693 context_run(&ctx->context, control);
1696 return 0;
1699 static int ohci_stop_iso(struct fw_iso_context *base)
1701 struct fw_ohci *ohci = fw_ohci(base->card);
1702 struct iso_context *ctx = container_of(base, struct iso_context, base);
1703 int index;
1705 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1706 index = ctx - ohci->it_context_list;
1707 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1708 } else {
1709 index = ctx - ohci->ir_context_list;
1710 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1712 flush_writes(ohci);
1713 context_stop(&ctx->context);
1715 return 0;
1718 static void ohci_free_iso_context(struct fw_iso_context *base)
1720 struct fw_ohci *ohci = fw_ohci(base->card);
1721 struct iso_context *ctx = container_of(base, struct iso_context, base);
1722 unsigned long flags;
1723 int index;
1725 ohci_stop_iso(base);
1726 context_release(&ctx->context);
1727 free_page((unsigned long)ctx->header);
1729 spin_lock_irqsave(&ohci->lock, flags);
1731 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1732 index = ctx - ohci->it_context_list;
1733 ohci->it_context_mask |= 1 << index;
1734 } else {
1735 index = ctx - ohci->ir_context_list;
1736 ohci->ir_context_mask |= 1 << index;
1739 spin_unlock_irqrestore(&ohci->lock, flags);
1742 static int
1743 ohci_queue_iso_transmit(struct fw_iso_context *base,
1744 struct fw_iso_packet *packet,
1745 struct fw_iso_buffer *buffer,
1746 unsigned long payload)
1748 struct iso_context *ctx = container_of(base, struct iso_context, base);
1749 struct descriptor *d, *last, *pd;
1750 struct fw_iso_packet *p;
1751 __le32 *header;
1752 dma_addr_t d_bus, page_bus;
1753 u32 z, header_z, payload_z, irq;
1754 u32 payload_index, payload_end_index, next_page_index;
1755 int page, end_page, i, length, offset;
1758 * FIXME: Cycle lost behavior should be configurable: lose
1759 * packet, retransmit or terminate..
1762 p = packet;
1763 payload_index = payload;
1765 if (p->skip)
1766 z = 1;
1767 else
1768 z = 2;
1769 if (p->header_length > 0)
1770 z++;
1772 /* Determine the first page the payload isn't contained in. */
1773 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1774 if (p->payload_length > 0)
1775 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1776 else
1777 payload_z = 0;
1779 z += payload_z;
1781 /* Get header size in number of descriptors. */
1782 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1784 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1785 if (d == NULL)
1786 return -ENOMEM;
1788 if (!p->skip) {
1789 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1790 d[0].req_count = cpu_to_le16(8);
1792 header = (__le32 *) &d[1];
1793 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
1794 IT_HEADER_TAG(p->tag) |
1795 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
1796 IT_HEADER_CHANNEL(ctx->base.channel) |
1797 IT_HEADER_SPEED(ctx->base.speed));
1798 header[1] =
1799 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1800 p->payload_length));
1803 if (p->header_length > 0) {
1804 d[2].req_count = cpu_to_le16(p->header_length);
1805 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1806 memcpy(&d[z], p->header, p->header_length);
1809 pd = d + z - payload_z;
1810 payload_end_index = payload_index + p->payload_length;
1811 for (i = 0; i < payload_z; i++) {
1812 page = payload_index >> PAGE_SHIFT;
1813 offset = payload_index & ~PAGE_MASK;
1814 next_page_index = (page + 1) << PAGE_SHIFT;
1815 length =
1816 min(next_page_index, payload_end_index) - payload_index;
1817 pd[i].req_count = cpu_to_le16(length);
1819 page_bus = page_private(buffer->pages[page]);
1820 pd[i].data_address = cpu_to_le32(page_bus + offset);
1822 payload_index += length;
1825 if (p->interrupt)
1826 irq = DESCRIPTOR_IRQ_ALWAYS;
1827 else
1828 irq = DESCRIPTOR_NO_IRQ;
1830 last = z == 2 ? d : d + z - 1;
1831 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1832 DESCRIPTOR_STATUS |
1833 DESCRIPTOR_BRANCH_ALWAYS |
1834 irq);
1836 context_append(&ctx->context, d, z, header_z);
1838 return 0;
1841 static int
1842 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
1843 struct fw_iso_packet *packet,
1844 struct fw_iso_buffer *buffer,
1845 unsigned long payload)
1847 struct iso_context *ctx = container_of(base, struct iso_context, base);
1848 struct db_descriptor *db = NULL;
1849 struct descriptor *d;
1850 struct fw_iso_packet *p;
1851 dma_addr_t d_bus, page_bus;
1852 u32 z, header_z, length, rest;
1853 int page, offset, packet_count, header_size;
1856 * FIXME: Cycle lost behavior should be configurable: lose
1857 * packet, retransmit or terminate..
1860 p = packet;
1861 z = 2;
1864 * The OHCI controller puts the status word in the header
1865 * buffer too, so we need 4 extra bytes per packet.
1867 packet_count = p->header_length / ctx->base.header_size;
1868 header_size = packet_count * (ctx->base.header_size + 4);
1870 /* Get header size in number of descriptors. */
1871 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1872 page = payload >> PAGE_SHIFT;
1873 offset = payload & ~PAGE_MASK;
1874 rest = p->payload_length;
1876 /* FIXME: make packet-per-buffer/dual-buffer a context option */
1877 while (rest > 0) {
1878 d = context_get_descriptors(&ctx->context,
1879 z + header_z, &d_bus);
1880 if (d == NULL)
1881 return -ENOMEM;
1883 db = (struct db_descriptor *) d;
1884 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1885 DESCRIPTOR_BRANCH_ALWAYS);
1886 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1887 if (p->skip && rest == p->payload_length) {
1888 db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
1889 db->first_req_count = db->first_size;
1890 } else {
1891 db->first_req_count = cpu_to_le16(header_size);
1893 db->first_res_count = db->first_req_count;
1894 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
1896 if (p->skip && rest == p->payload_length)
1897 length = 4;
1898 else if (offset + rest < PAGE_SIZE)
1899 length = rest;
1900 else
1901 length = PAGE_SIZE - offset;
1903 db->second_req_count = cpu_to_le16(length);
1904 db->second_res_count = db->second_req_count;
1905 page_bus = page_private(buffer->pages[page]);
1906 db->second_buffer = cpu_to_le32(page_bus + offset);
1908 if (p->interrupt && length == rest)
1909 db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1911 context_append(&ctx->context, d, z, header_z);
1912 offset = (offset + length) & ~PAGE_MASK;
1913 rest -= length;
1914 if (offset == 0)
1915 page++;
1918 return 0;
1921 static int
1922 ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
1923 struct fw_iso_packet *packet,
1924 struct fw_iso_buffer *buffer,
1925 unsigned long payload)
1927 struct iso_context *ctx = container_of(base, struct iso_context, base);
1928 struct descriptor *d = NULL, *pd = NULL;
1929 struct fw_iso_packet *p = packet;
1930 dma_addr_t d_bus, page_bus;
1931 u32 z, header_z, rest;
1932 int i, j, length;
1933 int page, offset, packet_count, header_size, payload_per_buffer;
1936 * The OHCI controller puts the status word in the
1937 * buffer too, so we need 4 extra bytes per packet.
1939 packet_count = p->header_length / ctx->base.header_size;
1940 header_size = ctx->base.header_size + 4;
1942 /* Get header size in number of descriptors. */
1943 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1944 page = payload >> PAGE_SHIFT;
1945 offset = payload & ~PAGE_MASK;
1946 payload_per_buffer = p->payload_length / packet_count;
1948 for (i = 0; i < packet_count; i++) {
1949 /* d points to the header descriptor */
1950 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
1951 d = context_get_descriptors(&ctx->context,
1952 z + header_z, &d_bus);
1953 if (d == NULL)
1954 return -ENOMEM;
1956 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
1957 DESCRIPTOR_INPUT_MORE);
1958 if (p->skip && i == 0)
1959 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
1960 d->req_count = cpu_to_le16(header_size);
1961 d->res_count = d->req_count;
1962 d->transfer_status = 0;
1963 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
1965 rest = payload_per_buffer;
1966 for (j = 1; j < z; j++) {
1967 pd = d + j;
1968 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
1969 DESCRIPTOR_INPUT_MORE);
1971 if (offset + rest < PAGE_SIZE)
1972 length = rest;
1973 else
1974 length = PAGE_SIZE - offset;
1975 pd->req_count = cpu_to_le16(length);
1976 pd->res_count = pd->req_count;
1977 pd->transfer_status = 0;
1979 page_bus = page_private(buffer->pages[page]);
1980 pd->data_address = cpu_to_le32(page_bus + offset);
1982 offset = (offset + length) & ~PAGE_MASK;
1983 rest -= length;
1984 if (offset == 0)
1985 page++;
1987 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
1988 DESCRIPTOR_INPUT_LAST |
1989 DESCRIPTOR_BRANCH_ALWAYS);
1990 if (p->interrupt && i == packet_count - 1)
1991 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1993 context_append(&ctx->context, d, z, header_z);
1996 return 0;
1999 static int
2000 ohci_queue_iso(struct fw_iso_context *base,
2001 struct fw_iso_packet *packet,
2002 struct fw_iso_buffer *buffer,
2003 unsigned long payload)
2005 struct iso_context *ctx = container_of(base, struct iso_context, base);
2006 unsigned long flags;
2007 int retval;
2009 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2010 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2011 retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
2012 else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
2013 retval = ohci_queue_iso_receive_dualbuffer(base, packet,
2014 buffer, payload);
2015 else
2016 retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2017 buffer,
2018 payload);
2019 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2021 return retval;
2024 static const struct fw_card_driver ohci_driver = {
2025 .name = ohci_driver_name,
2026 .enable = ohci_enable,
2027 .update_phy_reg = ohci_update_phy_reg,
2028 .set_config_rom = ohci_set_config_rom,
2029 .send_request = ohci_send_request,
2030 .send_response = ohci_send_response,
2031 .cancel_packet = ohci_cancel_packet,
2032 .enable_phys_dma = ohci_enable_phys_dma,
2033 .get_bus_time = ohci_get_bus_time,
2035 .allocate_iso_context = ohci_allocate_iso_context,
2036 .free_iso_context = ohci_free_iso_context,
2037 .queue_iso = ohci_queue_iso,
2038 .start_iso = ohci_start_iso,
2039 .stop_iso = ohci_stop_iso,
2042 static int __devinit
2043 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
2045 struct fw_ohci *ohci;
2046 u32 bus_options, max_receive, link_speed;
2047 u64 guid;
2048 int err;
2049 size_t size;
2051 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2052 if (ohci == NULL) {
2053 fw_error("Could not malloc fw_ohci data.\n");
2054 return -ENOMEM;
2057 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2059 err = pci_enable_device(dev);
2060 if (err) {
2061 fw_error("Failed to enable OHCI hardware.\n");
2062 goto fail_put_card;
2065 pci_set_master(dev);
2066 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2067 pci_set_drvdata(dev, ohci);
2069 spin_lock_init(&ohci->lock);
2071 tasklet_init(&ohci->bus_reset_tasklet,
2072 bus_reset_tasklet, (unsigned long)ohci);
2074 err = pci_request_region(dev, 0, ohci_driver_name);
2075 if (err) {
2076 fw_error("MMIO resource unavailable\n");
2077 goto fail_disable;
2080 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2081 if (ohci->registers == NULL) {
2082 fw_error("Failed to remap registers\n");
2083 err = -ENXIO;
2084 goto fail_iomem;
2087 ar_context_init(&ohci->ar_request_ctx, ohci,
2088 OHCI1394_AsReqRcvContextControlSet);
2090 ar_context_init(&ohci->ar_response_ctx, ohci,
2091 OHCI1394_AsRspRcvContextControlSet);
2093 context_init(&ohci->at_request_ctx, ohci,
2094 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2096 context_init(&ohci->at_response_ctx, ohci,
2097 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2099 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2100 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2101 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2102 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2103 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2105 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2106 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2107 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2108 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2109 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2111 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2112 fw_error("Out of memory for it/ir contexts.\n");
2113 err = -ENOMEM;
2114 goto fail_registers;
2117 /* self-id dma buffer allocation */
2118 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2119 SELF_ID_BUF_SIZE,
2120 &ohci->self_id_bus,
2121 GFP_KERNEL);
2122 if (ohci->self_id_cpu == NULL) {
2123 fw_error("Out of memory for self ID buffer.\n");
2124 err = -ENOMEM;
2125 goto fail_registers;
2128 bus_options = reg_read(ohci, OHCI1394_BusOptions);
2129 max_receive = (bus_options >> 12) & 0xf;
2130 link_speed = bus_options & 0x7;
2131 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2132 reg_read(ohci, OHCI1394_GUIDLo);
2134 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2135 if (err < 0)
2136 goto fail_self_id;
2138 ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2139 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2140 dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
2141 return 0;
2143 fail_self_id:
2144 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2145 ohci->self_id_cpu, ohci->self_id_bus);
2146 fail_registers:
2147 kfree(ohci->it_context_list);
2148 kfree(ohci->ir_context_list);
2149 pci_iounmap(dev, ohci->registers);
2150 fail_iomem:
2151 pci_release_region(dev, 0);
2152 fail_disable:
2153 pci_disable_device(dev);
2154 fail_put_card:
2155 fw_card_put(&ohci->card);
2157 return err;
2160 static void pci_remove(struct pci_dev *dev)
2162 struct fw_ohci *ohci;
2164 ohci = pci_get_drvdata(dev);
2165 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2166 flush_writes(ohci);
2167 fw_core_remove_card(&ohci->card);
2170 * FIXME: Fail all pending packets here, now that the upper
2171 * layers can't queue any more.
2174 software_reset(ohci);
2175 free_irq(dev->irq, ohci);
2176 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2177 ohci->self_id_cpu, ohci->self_id_bus);
2178 kfree(ohci->it_context_list);
2179 kfree(ohci->ir_context_list);
2180 pci_iounmap(dev, ohci->registers);
2181 pci_release_region(dev, 0);
2182 pci_disable_device(dev);
2183 fw_card_put(&ohci->card);
2185 fw_notify("Removed fw-ohci device.\n");
2188 #ifdef CONFIG_PM
2189 static int pci_suspend(struct pci_dev *pdev, pm_message_t state)
2191 struct fw_ohci *ohci = pci_get_drvdata(pdev);
2192 int err;
2194 software_reset(ohci);
2195 free_irq(pdev->irq, ohci);
2196 err = pci_save_state(pdev);
2197 if (err) {
2198 fw_error("pci_save_state failed\n");
2199 return err;
2201 err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
2202 if (err)
2203 fw_error("pci_set_power_state failed with %d\n", err);
2205 return 0;
2208 static int pci_resume(struct pci_dev *pdev)
2210 struct fw_ohci *ohci = pci_get_drvdata(pdev);
2211 int err;
2213 pci_set_power_state(pdev, PCI_D0);
2214 pci_restore_state(pdev);
2215 err = pci_enable_device(pdev);
2216 if (err) {
2217 fw_error("pci_enable_device failed\n");
2218 return err;
2221 return ohci_enable(&ohci->card, NULL, 0);
2223 #endif
2225 static struct pci_device_id pci_table[] = {
2226 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2230 MODULE_DEVICE_TABLE(pci, pci_table);
2232 static struct pci_driver fw_ohci_pci_driver = {
2233 .name = ohci_driver_name,
2234 .id_table = pci_table,
2235 .probe = pci_probe,
2236 .remove = pci_remove,
2237 #ifdef CONFIG_PM
2238 .resume = pci_resume,
2239 .suspend = pci_suspend,
2240 #endif
2243 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2244 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2245 MODULE_LICENSE("GPL");
2247 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2248 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2249 MODULE_ALIAS("ohci1394");
2250 #endif
2252 static int __init fw_ohci_init(void)
2254 return pci_register_driver(&fw_ohci_pci_driver);
2257 static void __exit fw_ohci_cleanup(void)
2259 pci_unregister_driver(&fw_ohci_pci_driver);
2262 module_init(fw_ohci_init);
2263 module_exit(fw_ohci_cleanup);