Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
[wrt350n-kernel.git] / drivers / md / md.c
blobccbbf63727cc03fe06fb26bf03debcd9f8e97b6f
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/poll.h>
44 #include <linux/mutex.h>
45 #include <linux/ctype.h>
46 #include <linux/freezer.h>
48 #include <linux/init.h>
50 #include <linux/file.h>
52 #ifdef CONFIG_KMOD
53 #include <linux/kmod.h>
54 #endif
56 #include <asm/unaligned.h>
58 #define MAJOR_NR MD_MAJOR
59 #define MD_DRIVER
61 /* 63 partitions with the alternate major number (mdp) */
62 #define MdpMinorShift 6
64 #define DEBUG 0
65 #define dprintk(x...) ((void)(DEBUG && printk(x)))
68 #ifndef MODULE
69 static void autostart_arrays (int part);
70 #endif
72 static LIST_HEAD(pers_list);
73 static DEFINE_SPINLOCK(pers_lock);
75 static void md_print_devices(void);
77 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
80 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
81 * is 1000 KB/sec, so the extra system load does not show up that much.
82 * Increase it if you want to have more _guaranteed_ speed. Note that
83 * the RAID driver will use the maximum available bandwidth if the IO
84 * subsystem is idle. There is also an 'absolute maximum' reconstruction
85 * speed limit - in case reconstruction slows down your system despite
86 * idle IO detection.
88 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
89 * or /sys/block/mdX/md/sync_speed_{min,max}
92 static int sysctl_speed_limit_min = 1000;
93 static int sysctl_speed_limit_max = 200000;
94 static inline int speed_min(mddev_t *mddev)
96 return mddev->sync_speed_min ?
97 mddev->sync_speed_min : sysctl_speed_limit_min;
100 static inline int speed_max(mddev_t *mddev)
102 return mddev->sync_speed_max ?
103 mddev->sync_speed_max : sysctl_speed_limit_max;
106 static struct ctl_table_header *raid_table_header;
108 static ctl_table raid_table[] = {
110 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
111 .procname = "speed_limit_min",
112 .data = &sysctl_speed_limit_min,
113 .maxlen = sizeof(int),
114 .mode = S_IRUGO|S_IWUSR,
115 .proc_handler = &proc_dointvec,
118 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
119 .procname = "speed_limit_max",
120 .data = &sysctl_speed_limit_max,
121 .maxlen = sizeof(int),
122 .mode = S_IRUGO|S_IWUSR,
123 .proc_handler = &proc_dointvec,
125 { .ctl_name = 0 }
128 static ctl_table raid_dir_table[] = {
130 .ctl_name = DEV_RAID,
131 .procname = "raid",
132 .maxlen = 0,
133 .mode = S_IRUGO|S_IXUGO,
134 .child = raid_table,
136 { .ctl_name = 0 }
139 static ctl_table raid_root_table[] = {
141 .ctl_name = CTL_DEV,
142 .procname = "dev",
143 .maxlen = 0,
144 .mode = 0555,
145 .child = raid_dir_table,
147 { .ctl_name = 0 }
150 static struct block_device_operations md_fops;
152 static int start_readonly;
155 * We have a system wide 'event count' that is incremented
156 * on any 'interesting' event, and readers of /proc/mdstat
157 * can use 'poll' or 'select' to find out when the event
158 * count increases.
160 * Events are:
161 * start array, stop array, error, add device, remove device,
162 * start build, activate spare
164 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
165 static atomic_t md_event_count;
166 void md_new_event(mddev_t *mddev)
168 atomic_inc(&md_event_count);
169 wake_up(&md_event_waiters);
170 sysfs_notify(&mddev->kobj, NULL, "sync_action");
172 EXPORT_SYMBOL_GPL(md_new_event);
174 /* Alternate version that can be called from interrupts
175 * when calling sysfs_notify isn't needed.
177 static void md_new_event_inintr(mddev_t *mddev)
179 atomic_inc(&md_event_count);
180 wake_up(&md_event_waiters);
184 * Enables to iterate over all existing md arrays
185 * all_mddevs_lock protects this list.
187 static LIST_HEAD(all_mddevs);
188 static DEFINE_SPINLOCK(all_mddevs_lock);
192 * iterates through all used mddevs in the system.
193 * We take care to grab the all_mddevs_lock whenever navigating
194 * the list, and to always hold a refcount when unlocked.
195 * Any code which breaks out of this loop while own
196 * a reference to the current mddev and must mddev_put it.
198 #define for_each_mddev(mddev,tmp) \
200 for (({ spin_lock(&all_mddevs_lock); \
201 tmp = all_mddevs.next; \
202 mddev = NULL;}); \
203 ({ if (tmp != &all_mddevs) \
204 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
205 spin_unlock(&all_mddevs_lock); \
206 if (mddev) mddev_put(mddev); \
207 mddev = list_entry(tmp, mddev_t, all_mddevs); \
208 tmp != &all_mddevs;}); \
209 ({ spin_lock(&all_mddevs_lock); \
210 tmp = tmp->next;}) \
214 static int md_fail_request (struct request_queue *q, struct bio *bio)
216 bio_io_error(bio);
217 return 0;
220 static inline mddev_t *mddev_get(mddev_t *mddev)
222 atomic_inc(&mddev->active);
223 return mddev;
226 static void mddev_put(mddev_t *mddev)
228 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
229 return;
230 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
231 list_del(&mddev->all_mddevs);
232 spin_unlock(&all_mddevs_lock);
233 blk_cleanup_queue(mddev->queue);
234 kobject_put(&mddev->kobj);
235 } else
236 spin_unlock(&all_mddevs_lock);
239 static mddev_t * mddev_find(dev_t unit)
241 mddev_t *mddev, *new = NULL;
243 retry:
244 spin_lock(&all_mddevs_lock);
245 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
246 if (mddev->unit == unit) {
247 mddev_get(mddev);
248 spin_unlock(&all_mddevs_lock);
249 kfree(new);
250 return mddev;
253 if (new) {
254 list_add(&new->all_mddevs, &all_mddevs);
255 spin_unlock(&all_mddevs_lock);
256 return new;
258 spin_unlock(&all_mddevs_lock);
260 new = kzalloc(sizeof(*new), GFP_KERNEL);
261 if (!new)
262 return NULL;
264 new->unit = unit;
265 if (MAJOR(unit) == MD_MAJOR)
266 new->md_minor = MINOR(unit);
267 else
268 new->md_minor = MINOR(unit) >> MdpMinorShift;
270 mutex_init(&new->reconfig_mutex);
271 INIT_LIST_HEAD(&new->disks);
272 INIT_LIST_HEAD(&new->all_mddevs);
273 init_timer(&new->safemode_timer);
274 atomic_set(&new->active, 1);
275 spin_lock_init(&new->write_lock);
276 init_waitqueue_head(&new->sb_wait);
277 new->reshape_position = MaxSector;
278 new->resync_max = MaxSector;
280 new->queue = blk_alloc_queue(GFP_KERNEL);
281 if (!new->queue) {
282 kfree(new);
283 return NULL;
285 set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
287 blk_queue_make_request(new->queue, md_fail_request);
289 goto retry;
292 static inline int mddev_lock(mddev_t * mddev)
294 return mutex_lock_interruptible(&mddev->reconfig_mutex);
297 static inline int mddev_trylock(mddev_t * mddev)
299 return mutex_trylock(&mddev->reconfig_mutex);
302 static inline void mddev_unlock(mddev_t * mddev)
304 mutex_unlock(&mddev->reconfig_mutex);
306 md_wakeup_thread(mddev->thread);
309 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
311 mdk_rdev_t * rdev;
312 struct list_head *tmp;
314 rdev_for_each(rdev, tmp, mddev) {
315 if (rdev->desc_nr == nr)
316 return rdev;
318 return NULL;
321 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
323 struct list_head *tmp;
324 mdk_rdev_t *rdev;
326 rdev_for_each(rdev, tmp, mddev) {
327 if (rdev->bdev->bd_dev == dev)
328 return rdev;
330 return NULL;
333 static struct mdk_personality *find_pers(int level, char *clevel)
335 struct mdk_personality *pers;
336 list_for_each_entry(pers, &pers_list, list) {
337 if (level != LEVEL_NONE && pers->level == level)
338 return pers;
339 if (strcmp(pers->name, clevel)==0)
340 return pers;
342 return NULL;
345 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
347 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
348 return MD_NEW_SIZE_BLOCKS(size);
351 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
353 sector_t size;
355 size = rdev->sb_offset;
357 if (chunk_size)
358 size &= ~((sector_t)chunk_size/1024 - 1);
359 return size;
362 static int alloc_disk_sb(mdk_rdev_t * rdev)
364 if (rdev->sb_page)
365 MD_BUG();
367 rdev->sb_page = alloc_page(GFP_KERNEL);
368 if (!rdev->sb_page) {
369 printk(KERN_ALERT "md: out of memory.\n");
370 return -EINVAL;
373 return 0;
376 static void free_disk_sb(mdk_rdev_t * rdev)
378 if (rdev->sb_page) {
379 put_page(rdev->sb_page);
380 rdev->sb_loaded = 0;
381 rdev->sb_page = NULL;
382 rdev->sb_offset = 0;
383 rdev->size = 0;
388 static void super_written(struct bio *bio, int error)
390 mdk_rdev_t *rdev = bio->bi_private;
391 mddev_t *mddev = rdev->mddev;
393 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
394 printk("md: super_written gets error=%d, uptodate=%d\n",
395 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
396 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
397 md_error(mddev, rdev);
400 if (atomic_dec_and_test(&mddev->pending_writes))
401 wake_up(&mddev->sb_wait);
402 bio_put(bio);
405 static void super_written_barrier(struct bio *bio, int error)
407 struct bio *bio2 = bio->bi_private;
408 mdk_rdev_t *rdev = bio2->bi_private;
409 mddev_t *mddev = rdev->mddev;
411 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
412 error == -EOPNOTSUPP) {
413 unsigned long flags;
414 /* barriers don't appear to be supported :-( */
415 set_bit(BarriersNotsupp, &rdev->flags);
416 mddev->barriers_work = 0;
417 spin_lock_irqsave(&mddev->write_lock, flags);
418 bio2->bi_next = mddev->biolist;
419 mddev->biolist = bio2;
420 spin_unlock_irqrestore(&mddev->write_lock, flags);
421 wake_up(&mddev->sb_wait);
422 bio_put(bio);
423 } else {
424 bio_put(bio2);
425 bio->bi_private = rdev;
426 super_written(bio, error);
430 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
431 sector_t sector, int size, struct page *page)
433 /* write first size bytes of page to sector of rdev
434 * Increment mddev->pending_writes before returning
435 * and decrement it on completion, waking up sb_wait
436 * if zero is reached.
437 * If an error occurred, call md_error
439 * As we might need to resubmit the request if BIO_RW_BARRIER
440 * causes ENOTSUPP, we allocate a spare bio...
442 struct bio *bio = bio_alloc(GFP_NOIO, 1);
443 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
445 bio->bi_bdev = rdev->bdev;
446 bio->bi_sector = sector;
447 bio_add_page(bio, page, size, 0);
448 bio->bi_private = rdev;
449 bio->bi_end_io = super_written;
450 bio->bi_rw = rw;
452 atomic_inc(&mddev->pending_writes);
453 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
454 struct bio *rbio;
455 rw |= (1<<BIO_RW_BARRIER);
456 rbio = bio_clone(bio, GFP_NOIO);
457 rbio->bi_private = bio;
458 rbio->bi_end_io = super_written_barrier;
459 submit_bio(rw, rbio);
460 } else
461 submit_bio(rw, bio);
464 void md_super_wait(mddev_t *mddev)
466 /* wait for all superblock writes that were scheduled to complete.
467 * if any had to be retried (due to BARRIER problems), retry them
469 DEFINE_WAIT(wq);
470 for(;;) {
471 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
472 if (atomic_read(&mddev->pending_writes)==0)
473 break;
474 while (mddev->biolist) {
475 struct bio *bio;
476 spin_lock_irq(&mddev->write_lock);
477 bio = mddev->biolist;
478 mddev->biolist = bio->bi_next ;
479 bio->bi_next = NULL;
480 spin_unlock_irq(&mddev->write_lock);
481 submit_bio(bio->bi_rw, bio);
483 schedule();
485 finish_wait(&mddev->sb_wait, &wq);
488 static void bi_complete(struct bio *bio, int error)
490 complete((struct completion*)bio->bi_private);
493 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
494 struct page *page, int rw)
496 struct bio *bio = bio_alloc(GFP_NOIO, 1);
497 struct completion event;
498 int ret;
500 rw |= (1 << BIO_RW_SYNC);
502 bio->bi_bdev = bdev;
503 bio->bi_sector = sector;
504 bio_add_page(bio, page, size, 0);
505 init_completion(&event);
506 bio->bi_private = &event;
507 bio->bi_end_io = bi_complete;
508 submit_bio(rw, bio);
509 wait_for_completion(&event);
511 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
512 bio_put(bio);
513 return ret;
515 EXPORT_SYMBOL_GPL(sync_page_io);
517 static int read_disk_sb(mdk_rdev_t * rdev, int size)
519 char b[BDEVNAME_SIZE];
520 if (!rdev->sb_page) {
521 MD_BUG();
522 return -EINVAL;
524 if (rdev->sb_loaded)
525 return 0;
528 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
529 goto fail;
530 rdev->sb_loaded = 1;
531 return 0;
533 fail:
534 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
535 bdevname(rdev->bdev,b));
536 return -EINVAL;
539 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
541 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
542 (sb1->set_uuid1 == sb2->set_uuid1) &&
543 (sb1->set_uuid2 == sb2->set_uuid2) &&
544 (sb1->set_uuid3 == sb2->set_uuid3))
546 return 1;
548 return 0;
552 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
554 int ret;
555 mdp_super_t *tmp1, *tmp2;
557 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
558 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
560 if (!tmp1 || !tmp2) {
561 ret = 0;
562 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
563 goto abort;
566 *tmp1 = *sb1;
567 *tmp2 = *sb2;
570 * nr_disks is not constant
572 tmp1->nr_disks = 0;
573 tmp2->nr_disks = 0;
575 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
576 ret = 0;
577 else
578 ret = 1;
580 abort:
581 kfree(tmp1);
582 kfree(tmp2);
583 return ret;
587 static u32 md_csum_fold(u32 csum)
589 csum = (csum & 0xffff) + (csum >> 16);
590 return (csum & 0xffff) + (csum >> 16);
593 static unsigned int calc_sb_csum(mdp_super_t * sb)
595 u64 newcsum = 0;
596 u32 *sb32 = (u32*)sb;
597 int i;
598 unsigned int disk_csum, csum;
600 disk_csum = sb->sb_csum;
601 sb->sb_csum = 0;
603 for (i = 0; i < MD_SB_BYTES/4 ; i++)
604 newcsum += sb32[i];
605 csum = (newcsum & 0xffffffff) + (newcsum>>32);
608 #ifdef CONFIG_ALPHA
609 /* This used to use csum_partial, which was wrong for several
610 * reasons including that different results are returned on
611 * different architectures. It isn't critical that we get exactly
612 * the same return value as before (we always csum_fold before
613 * testing, and that removes any differences). However as we
614 * know that csum_partial always returned a 16bit value on
615 * alphas, do a fold to maximise conformity to previous behaviour.
617 sb->sb_csum = md_csum_fold(disk_csum);
618 #else
619 sb->sb_csum = disk_csum;
620 #endif
621 return csum;
626 * Handle superblock details.
627 * We want to be able to handle multiple superblock formats
628 * so we have a common interface to them all, and an array of
629 * different handlers.
630 * We rely on user-space to write the initial superblock, and support
631 * reading and updating of superblocks.
632 * Interface methods are:
633 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
634 * loads and validates a superblock on dev.
635 * if refdev != NULL, compare superblocks on both devices
636 * Return:
637 * 0 - dev has a superblock that is compatible with refdev
638 * 1 - dev has a superblock that is compatible and newer than refdev
639 * so dev should be used as the refdev in future
640 * -EINVAL superblock incompatible or invalid
641 * -othererror e.g. -EIO
643 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
644 * Verify that dev is acceptable into mddev.
645 * The first time, mddev->raid_disks will be 0, and data from
646 * dev should be merged in. Subsequent calls check that dev
647 * is new enough. Return 0 or -EINVAL
649 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
650 * Update the superblock for rdev with data in mddev
651 * This does not write to disc.
655 struct super_type {
656 char *name;
657 struct module *owner;
658 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
659 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
660 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
664 * load_super for 0.90.0
666 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
668 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
669 mdp_super_t *sb;
670 int ret;
671 sector_t sb_offset;
674 * Calculate the position of the superblock,
675 * it's at the end of the disk.
677 * It also happens to be a multiple of 4Kb.
679 sb_offset = calc_dev_sboffset(rdev->bdev);
680 rdev->sb_offset = sb_offset;
682 ret = read_disk_sb(rdev, MD_SB_BYTES);
683 if (ret) return ret;
685 ret = -EINVAL;
687 bdevname(rdev->bdev, b);
688 sb = (mdp_super_t*)page_address(rdev->sb_page);
690 if (sb->md_magic != MD_SB_MAGIC) {
691 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
693 goto abort;
696 if (sb->major_version != 0 ||
697 sb->minor_version < 90 ||
698 sb->minor_version > 91) {
699 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
700 sb->major_version, sb->minor_version,
702 goto abort;
705 if (sb->raid_disks <= 0)
706 goto abort;
708 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
709 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
711 goto abort;
714 rdev->preferred_minor = sb->md_minor;
715 rdev->data_offset = 0;
716 rdev->sb_size = MD_SB_BYTES;
718 if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
719 if (sb->level != 1 && sb->level != 4
720 && sb->level != 5 && sb->level != 6
721 && sb->level != 10) {
722 /* FIXME use a better test */
723 printk(KERN_WARNING
724 "md: bitmaps not supported for this level.\n");
725 goto abort;
729 if (sb->level == LEVEL_MULTIPATH)
730 rdev->desc_nr = -1;
731 else
732 rdev->desc_nr = sb->this_disk.number;
734 if (refdev == 0)
735 ret = 1;
736 else {
737 __u64 ev1, ev2;
738 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
739 if (!uuid_equal(refsb, sb)) {
740 printk(KERN_WARNING "md: %s has different UUID to %s\n",
741 b, bdevname(refdev->bdev,b2));
742 goto abort;
744 if (!sb_equal(refsb, sb)) {
745 printk(KERN_WARNING "md: %s has same UUID"
746 " but different superblock to %s\n",
747 b, bdevname(refdev->bdev, b2));
748 goto abort;
750 ev1 = md_event(sb);
751 ev2 = md_event(refsb);
752 if (ev1 > ev2)
753 ret = 1;
754 else
755 ret = 0;
757 rdev->size = calc_dev_size(rdev, sb->chunk_size);
759 if (rdev->size < sb->size && sb->level > 1)
760 /* "this cannot possibly happen" ... */
761 ret = -EINVAL;
763 abort:
764 return ret;
768 * validate_super for 0.90.0
770 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
772 mdp_disk_t *desc;
773 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
774 __u64 ev1 = md_event(sb);
776 rdev->raid_disk = -1;
777 clear_bit(Faulty, &rdev->flags);
778 clear_bit(In_sync, &rdev->flags);
779 clear_bit(WriteMostly, &rdev->flags);
780 clear_bit(BarriersNotsupp, &rdev->flags);
782 if (mddev->raid_disks == 0) {
783 mddev->major_version = 0;
784 mddev->minor_version = sb->minor_version;
785 mddev->patch_version = sb->patch_version;
786 mddev->external = 0;
787 mddev->chunk_size = sb->chunk_size;
788 mddev->ctime = sb->ctime;
789 mddev->utime = sb->utime;
790 mddev->level = sb->level;
791 mddev->clevel[0] = 0;
792 mddev->layout = sb->layout;
793 mddev->raid_disks = sb->raid_disks;
794 mddev->size = sb->size;
795 mddev->events = ev1;
796 mddev->bitmap_offset = 0;
797 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
799 if (mddev->minor_version >= 91) {
800 mddev->reshape_position = sb->reshape_position;
801 mddev->delta_disks = sb->delta_disks;
802 mddev->new_level = sb->new_level;
803 mddev->new_layout = sb->new_layout;
804 mddev->new_chunk = sb->new_chunk;
805 } else {
806 mddev->reshape_position = MaxSector;
807 mddev->delta_disks = 0;
808 mddev->new_level = mddev->level;
809 mddev->new_layout = mddev->layout;
810 mddev->new_chunk = mddev->chunk_size;
813 if (sb->state & (1<<MD_SB_CLEAN))
814 mddev->recovery_cp = MaxSector;
815 else {
816 if (sb->events_hi == sb->cp_events_hi &&
817 sb->events_lo == sb->cp_events_lo) {
818 mddev->recovery_cp = sb->recovery_cp;
819 } else
820 mddev->recovery_cp = 0;
823 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
824 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
825 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
826 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
828 mddev->max_disks = MD_SB_DISKS;
830 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
831 mddev->bitmap_file == NULL)
832 mddev->bitmap_offset = mddev->default_bitmap_offset;
834 } else if (mddev->pers == NULL) {
835 /* Insist on good event counter while assembling */
836 ++ev1;
837 if (ev1 < mddev->events)
838 return -EINVAL;
839 } else if (mddev->bitmap) {
840 /* if adding to array with a bitmap, then we can accept an
841 * older device ... but not too old.
843 if (ev1 < mddev->bitmap->events_cleared)
844 return 0;
845 } else {
846 if (ev1 < mddev->events)
847 /* just a hot-add of a new device, leave raid_disk at -1 */
848 return 0;
851 if (mddev->level != LEVEL_MULTIPATH) {
852 desc = sb->disks + rdev->desc_nr;
854 if (desc->state & (1<<MD_DISK_FAULTY))
855 set_bit(Faulty, &rdev->flags);
856 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
857 desc->raid_disk < mddev->raid_disks */) {
858 set_bit(In_sync, &rdev->flags);
859 rdev->raid_disk = desc->raid_disk;
861 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
862 set_bit(WriteMostly, &rdev->flags);
863 } else /* MULTIPATH are always insync */
864 set_bit(In_sync, &rdev->flags);
865 return 0;
869 * sync_super for 0.90.0
871 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
873 mdp_super_t *sb;
874 struct list_head *tmp;
875 mdk_rdev_t *rdev2;
876 int next_spare = mddev->raid_disks;
879 /* make rdev->sb match mddev data..
881 * 1/ zero out disks
882 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
883 * 3/ any empty disks < next_spare become removed
885 * disks[0] gets initialised to REMOVED because
886 * we cannot be sure from other fields if it has
887 * been initialised or not.
889 int i;
890 int active=0, working=0,failed=0,spare=0,nr_disks=0;
892 rdev->sb_size = MD_SB_BYTES;
894 sb = (mdp_super_t*)page_address(rdev->sb_page);
896 memset(sb, 0, sizeof(*sb));
898 sb->md_magic = MD_SB_MAGIC;
899 sb->major_version = mddev->major_version;
900 sb->patch_version = mddev->patch_version;
901 sb->gvalid_words = 0; /* ignored */
902 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
903 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
904 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
905 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
907 sb->ctime = mddev->ctime;
908 sb->level = mddev->level;
909 sb->size = mddev->size;
910 sb->raid_disks = mddev->raid_disks;
911 sb->md_minor = mddev->md_minor;
912 sb->not_persistent = 0;
913 sb->utime = mddev->utime;
914 sb->state = 0;
915 sb->events_hi = (mddev->events>>32);
916 sb->events_lo = (u32)mddev->events;
918 if (mddev->reshape_position == MaxSector)
919 sb->minor_version = 90;
920 else {
921 sb->minor_version = 91;
922 sb->reshape_position = mddev->reshape_position;
923 sb->new_level = mddev->new_level;
924 sb->delta_disks = mddev->delta_disks;
925 sb->new_layout = mddev->new_layout;
926 sb->new_chunk = mddev->new_chunk;
928 mddev->minor_version = sb->minor_version;
929 if (mddev->in_sync)
931 sb->recovery_cp = mddev->recovery_cp;
932 sb->cp_events_hi = (mddev->events>>32);
933 sb->cp_events_lo = (u32)mddev->events;
934 if (mddev->recovery_cp == MaxSector)
935 sb->state = (1<< MD_SB_CLEAN);
936 } else
937 sb->recovery_cp = 0;
939 sb->layout = mddev->layout;
940 sb->chunk_size = mddev->chunk_size;
942 if (mddev->bitmap && mddev->bitmap_file == NULL)
943 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
945 sb->disks[0].state = (1<<MD_DISK_REMOVED);
946 rdev_for_each(rdev2, tmp, mddev) {
947 mdp_disk_t *d;
948 int desc_nr;
949 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
950 && !test_bit(Faulty, &rdev2->flags))
951 desc_nr = rdev2->raid_disk;
952 else
953 desc_nr = next_spare++;
954 rdev2->desc_nr = desc_nr;
955 d = &sb->disks[rdev2->desc_nr];
956 nr_disks++;
957 d->number = rdev2->desc_nr;
958 d->major = MAJOR(rdev2->bdev->bd_dev);
959 d->minor = MINOR(rdev2->bdev->bd_dev);
960 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
961 && !test_bit(Faulty, &rdev2->flags))
962 d->raid_disk = rdev2->raid_disk;
963 else
964 d->raid_disk = rdev2->desc_nr; /* compatibility */
965 if (test_bit(Faulty, &rdev2->flags))
966 d->state = (1<<MD_DISK_FAULTY);
967 else if (test_bit(In_sync, &rdev2->flags)) {
968 d->state = (1<<MD_DISK_ACTIVE);
969 d->state |= (1<<MD_DISK_SYNC);
970 active++;
971 working++;
972 } else {
973 d->state = 0;
974 spare++;
975 working++;
977 if (test_bit(WriteMostly, &rdev2->flags))
978 d->state |= (1<<MD_DISK_WRITEMOSTLY);
980 /* now set the "removed" and "faulty" bits on any missing devices */
981 for (i=0 ; i < mddev->raid_disks ; i++) {
982 mdp_disk_t *d = &sb->disks[i];
983 if (d->state == 0 && d->number == 0) {
984 d->number = i;
985 d->raid_disk = i;
986 d->state = (1<<MD_DISK_REMOVED);
987 d->state |= (1<<MD_DISK_FAULTY);
988 failed++;
991 sb->nr_disks = nr_disks;
992 sb->active_disks = active;
993 sb->working_disks = working;
994 sb->failed_disks = failed;
995 sb->spare_disks = spare;
997 sb->this_disk = sb->disks[rdev->desc_nr];
998 sb->sb_csum = calc_sb_csum(sb);
1002 * version 1 superblock
1005 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1007 __le32 disk_csum;
1008 u32 csum;
1009 unsigned long long newcsum;
1010 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1011 __le32 *isuper = (__le32*)sb;
1012 int i;
1014 disk_csum = sb->sb_csum;
1015 sb->sb_csum = 0;
1016 newcsum = 0;
1017 for (i=0; size>=4; size -= 4 )
1018 newcsum += le32_to_cpu(*isuper++);
1020 if (size == 2)
1021 newcsum += le16_to_cpu(*(__le16*) isuper);
1023 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1024 sb->sb_csum = disk_csum;
1025 return cpu_to_le32(csum);
1028 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1030 struct mdp_superblock_1 *sb;
1031 int ret;
1032 sector_t sb_offset;
1033 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1034 int bmask;
1037 * Calculate the position of the superblock.
1038 * It is always aligned to a 4K boundary and
1039 * depeding on minor_version, it can be:
1040 * 0: At least 8K, but less than 12K, from end of device
1041 * 1: At start of device
1042 * 2: 4K from start of device.
1044 switch(minor_version) {
1045 case 0:
1046 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1047 sb_offset -= 8*2;
1048 sb_offset &= ~(sector_t)(4*2-1);
1049 /* convert from sectors to K */
1050 sb_offset /= 2;
1051 break;
1052 case 1:
1053 sb_offset = 0;
1054 break;
1055 case 2:
1056 sb_offset = 4;
1057 break;
1058 default:
1059 return -EINVAL;
1061 rdev->sb_offset = sb_offset;
1063 /* superblock is rarely larger than 1K, but it can be larger,
1064 * and it is safe to read 4k, so we do that
1066 ret = read_disk_sb(rdev, 4096);
1067 if (ret) return ret;
1070 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1072 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1073 sb->major_version != cpu_to_le32(1) ||
1074 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1075 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1076 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1077 return -EINVAL;
1079 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1080 printk("md: invalid superblock checksum on %s\n",
1081 bdevname(rdev->bdev,b));
1082 return -EINVAL;
1084 if (le64_to_cpu(sb->data_size) < 10) {
1085 printk("md: data_size too small on %s\n",
1086 bdevname(rdev->bdev,b));
1087 return -EINVAL;
1089 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1090 if (sb->level != cpu_to_le32(1) &&
1091 sb->level != cpu_to_le32(4) &&
1092 sb->level != cpu_to_le32(5) &&
1093 sb->level != cpu_to_le32(6) &&
1094 sb->level != cpu_to_le32(10)) {
1095 printk(KERN_WARNING
1096 "md: bitmaps not supported for this level.\n");
1097 return -EINVAL;
1101 rdev->preferred_minor = 0xffff;
1102 rdev->data_offset = le64_to_cpu(sb->data_offset);
1103 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1105 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1106 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1107 if (rdev->sb_size & bmask)
1108 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1110 if (minor_version
1111 && rdev->data_offset < sb_offset + (rdev->sb_size/512))
1112 return -EINVAL;
1114 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1115 rdev->desc_nr = -1;
1116 else
1117 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1119 if (refdev == 0)
1120 ret = 1;
1121 else {
1122 __u64 ev1, ev2;
1123 struct mdp_superblock_1 *refsb =
1124 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1126 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1127 sb->level != refsb->level ||
1128 sb->layout != refsb->layout ||
1129 sb->chunksize != refsb->chunksize) {
1130 printk(KERN_WARNING "md: %s has strangely different"
1131 " superblock to %s\n",
1132 bdevname(rdev->bdev,b),
1133 bdevname(refdev->bdev,b2));
1134 return -EINVAL;
1136 ev1 = le64_to_cpu(sb->events);
1137 ev2 = le64_to_cpu(refsb->events);
1139 if (ev1 > ev2)
1140 ret = 1;
1141 else
1142 ret = 0;
1144 if (minor_version)
1145 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1146 else
1147 rdev->size = rdev->sb_offset;
1148 if (rdev->size < le64_to_cpu(sb->data_size)/2)
1149 return -EINVAL;
1150 rdev->size = le64_to_cpu(sb->data_size)/2;
1151 if (le32_to_cpu(sb->chunksize))
1152 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1154 if (le64_to_cpu(sb->size) > rdev->size*2)
1155 return -EINVAL;
1156 return ret;
1159 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1161 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1162 __u64 ev1 = le64_to_cpu(sb->events);
1164 rdev->raid_disk = -1;
1165 clear_bit(Faulty, &rdev->flags);
1166 clear_bit(In_sync, &rdev->flags);
1167 clear_bit(WriteMostly, &rdev->flags);
1168 clear_bit(BarriersNotsupp, &rdev->flags);
1170 if (mddev->raid_disks == 0) {
1171 mddev->major_version = 1;
1172 mddev->patch_version = 0;
1173 mddev->external = 0;
1174 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1175 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1176 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1177 mddev->level = le32_to_cpu(sb->level);
1178 mddev->clevel[0] = 0;
1179 mddev->layout = le32_to_cpu(sb->layout);
1180 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1181 mddev->size = le64_to_cpu(sb->size)/2;
1182 mddev->events = ev1;
1183 mddev->bitmap_offset = 0;
1184 mddev->default_bitmap_offset = 1024 >> 9;
1186 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1187 memcpy(mddev->uuid, sb->set_uuid, 16);
1189 mddev->max_disks = (4096-256)/2;
1191 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1192 mddev->bitmap_file == NULL )
1193 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1195 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1196 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1197 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1198 mddev->new_level = le32_to_cpu(sb->new_level);
1199 mddev->new_layout = le32_to_cpu(sb->new_layout);
1200 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1201 } else {
1202 mddev->reshape_position = MaxSector;
1203 mddev->delta_disks = 0;
1204 mddev->new_level = mddev->level;
1205 mddev->new_layout = mddev->layout;
1206 mddev->new_chunk = mddev->chunk_size;
1209 } else if (mddev->pers == NULL) {
1210 /* Insist of good event counter while assembling */
1211 ++ev1;
1212 if (ev1 < mddev->events)
1213 return -EINVAL;
1214 } else if (mddev->bitmap) {
1215 /* If adding to array with a bitmap, then we can accept an
1216 * older device, but not too old.
1218 if (ev1 < mddev->bitmap->events_cleared)
1219 return 0;
1220 } else {
1221 if (ev1 < mddev->events)
1222 /* just a hot-add of a new device, leave raid_disk at -1 */
1223 return 0;
1225 if (mddev->level != LEVEL_MULTIPATH) {
1226 int role;
1227 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1228 switch(role) {
1229 case 0xffff: /* spare */
1230 break;
1231 case 0xfffe: /* faulty */
1232 set_bit(Faulty, &rdev->flags);
1233 break;
1234 default:
1235 if ((le32_to_cpu(sb->feature_map) &
1236 MD_FEATURE_RECOVERY_OFFSET))
1237 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1238 else
1239 set_bit(In_sync, &rdev->flags);
1240 rdev->raid_disk = role;
1241 break;
1243 if (sb->devflags & WriteMostly1)
1244 set_bit(WriteMostly, &rdev->flags);
1245 } else /* MULTIPATH are always insync */
1246 set_bit(In_sync, &rdev->flags);
1248 return 0;
1251 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1253 struct mdp_superblock_1 *sb;
1254 struct list_head *tmp;
1255 mdk_rdev_t *rdev2;
1256 int max_dev, i;
1257 /* make rdev->sb match mddev and rdev data. */
1259 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1261 sb->feature_map = 0;
1262 sb->pad0 = 0;
1263 sb->recovery_offset = cpu_to_le64(0);
1264 memset(sb->pad1, 0, sizeof(sb->pad1));
1265 memset(sb->pad2, 0, sizeof(sb->pad2));
1266 memset(sb->pad3, 0, sizeof(sb->pad3));
1268 sb->utime = cpu_to_le64((__u64)mddev->utime);
1269 sb->events = cpu_to_le64(mddev->events);
1270 if (mddev->in_sync)
1271 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1272 else
1273 sb->resync_offset = cpu_to_le64(0);
1275 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1277 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1278 sb->size = cpu_to_le64(mddev->size<<1);
1280 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1281 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1282 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1285 if (rdev->raid_disk >= 0 &&
1286 !test_bit(In_sync, &rdev->flags) &&
1287 rdev->recovery_offset > 0) {
1288 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1289 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1292 if (mddev->reshape_position != MaxSector) {
1293 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1294 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1295 sb->new_layout = cpu_to_le32(mddev->new_layout);
1296 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1297 sb->new_level = cpu_to_le32(mddev->new_level);
1298 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1301 max_dev = 0;
1302 rdev_for_each(rdev2, tmp, mddev)
1303 if (rdev2->desc_nr+1 > max_dev)
1304 max_dev = rdev2->desc_nr+1;
1306 if (max_dev > le32_to_cpu(sb->max_dev))
1307 sb->max_dev = cpu_to_le32(max_dev);
1308 for (i=0; i<max_dev;i++)
1309 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1311 rdev_for_each(rdev2, tmp, mddev) {
1312 i = rdev2->desc_nr;
1313 if (test_bit(Faulty, &rdev2->flags))
1314 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1315 else if (test_bit(In_sync, &rdev2->flags))
1316 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1317 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1318 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1319 else
1320 sb->dev_roles[i] = cpu_to_le16(0xffff);
1323 sb->sb_csum = calc_sb_1_csum(sb);
1327 static struct super_type super_types[] = {
1328 [0] = {
1329 .name = "0.90.0",
1330 .owner = THIS_MODULE,
1331 .load_super = super_90_load,
1332 .validate_super = super_90_validate,
1333 .sync_super = super_90_sync,
1335 [1] = {
1336 .name = "md-1",
1337 .owner = THIS_MODULE,
1338 .load_super = super_1_load,
1339 .validate_super = super_1_validate,
1340 .sync_super = super_1_sync,
1344 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1346 struct list_head *tmp, *tmp2;
1347 mdk_rdev_t *rdev, *rdev2;
1349 rdev_for_each(rdev, tmp, mddev1)
1350 rdev_for_each(rdev2, tmp2, mddev2)
1351 if (rdev->bdev->bd_contains ==
1352 rdev2->bdev->bd_contains)
1353 return 1;
1355 return 0;
1358 static LIST_HEAD(pending_raid_disks);
1360 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1362 char b[BDEVNAME_SIZE];
1363 struct kobject *ko;
1364 char *s;
1365 int err;
1367 if (rdev->mddev) {
1368 MD_BUG();
1369 return -EINVAL;
1371 /* make sure rdev->size exceeds mddev->size */
1372 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1373 if (mddev->pers) {
1374 /* Cannot change size, so fail
1375 * If mddev->level <= 0, then we don't care
1376 * about aligning sizes (e.g. linear)
1378 if (mddev->level > 0)
1379 return -ENOSPC;
1380 } else
1381 mddev->size = rdev->size;
1384 /* Verify rdev->desc_nr is unique.
1385 * If it is -1, assign a free number, else
1386 * check number is not in use
1388 if (rdev->desc_nr < 0) {
1389 int choice = 0;
1390 if (mddev->pers) choice = mddev->raid_disks;
1391 while (find_rdev_nr(mddev, choice))
1392 choice++;
1393 rdev->desc_nr = choice;
1394 } else {
1395 if (find_rdev_nr(mddev, rdev->desc_nr))
1396 return -EBUSY;
1398 bdevname(rdev->bdev,b);
1399 while ( (s=strchr(b, '/')) != NULL)
1400 *s = '!';
1402 rdev->mddev = mddev;
1403 printk(KERN_INFO "md: bind<%s>\n", b);
1405 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1406 goto fail;
1408 if (rdev->bdev->bd_part)
1409 ko = &rdev->bdev->bd_part->dev.kobj;
1410 else
1411 ko = &rdev->bdev->bd_disk->dev.kobj;
1412 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1413 kobject_del(&rdev->kobj);
1414 goto fail;
1416 list_add(&rdev->same_set, &mddev->disks);
1417 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1418 return 0;
1420 fail:
1421 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1422 b, mdname(mddev));
1423 return err;
1426 static void md_delayed_delete(struct work_struct *ws)
1428 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1429 kobject_del(&rdev->kobj);
1430 kobject_put(&rdev->kobj);
1433 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1435 char b[BDEVNAME_SIZE];
1436 if (!rdev->mddev) {
1437 MD_BUG();
1438 return;
1440 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1441 list_del_init(&rdev->same_set);
1442 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1443 rdev->mddev = NULL;
1444 sysfs_remove_link(&rdev->kobj, "block");
1446 /* We need to delay this, otherwise we can deadlock when
1447 * writing to 'remove' to "dev/state"
1449 INIT_WORK(&rdev->del_work, md_delayed_delete);
1450 kobject_get(&rdev->kobj);
1451 schedule_work(&rdev->del_work);
1455 * prevent the device from being mounted, repartitioned or
1456 * otherwise reused by a RAID array (or any other kernel
1457 * subsystem), by bd_claiming the device.
1459 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1461 int err = 0;
1462 struct block_device *bdev;
1463 char b[BDEVNAME_SIZE];
1465 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1466 if (IS_ERR(bdev)) {
1467 printk(KERN_ERR "md: could not open %s.\n",
1468 __bdevname(dev, b));
1469 return PTR_ERR(bdev);
1471 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1472 if (err) {
1473 printk(KERN_ERR "md: could not bd_claim %s.\n",
1474 bdevname(bdev, b));
1475 blkdev_put(bdev);
1476 return err;
1478 if (!shared)
1479 set_bit(AllReserved, &rdev->flags);
1480 rdev->bdev = bdev;
1481 return err;
1484 static void unlock_rdev(mdk_rdev_t *rdev)
1486 struct block_device *bdev = rdev->bdev;
1487 rdev->bdev = NULL;
1488 if (!bdev)
1489 MD_BUG();
1490 bd_release(bdev);
1491 blkdev_put(bdev);
1494 void md_autodetect_dev(dev_t dev);
1496 static void export_rdev(mdk_rdev_t * rdev)
1498 char b[BDEVNAME_SIZE];
1499 printk(KERN_INFO "md: export_rdev(%s)\n",
1500 bdevname(rdev->bdev,b));
1501 if (rdev->mddev)
1502 MD_BUG();
1503 free_disk_sb(rdev);
1504 list_del_init(&rdev->same_set);
1505 #ifndef MODULE
1506 if (test_bit(AutoDetected, &rdev->flags))
1507 md_autodetect_dev(rdev->bdev->bd_dev);
1508 #endif
1509 unlock_rdev(rdev);
1510 kobject_put(&rdev->kobj);
1513 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1515 unbind_rdev_from_array(rdev);
1516 export_rdev(rdev);
1519 static void export_array(mddev_t *mddev)
1521 struct list_head *tmp;
1522 mdk_rdev_t *rdev;
1524 rdev_for_each(rdev, tmp, mddev) {
1525 if (!rdev->mddev) {
1526 MD_BUG();
1527 continue;
1529 kick_rdev_from_array(rdev);
1531 if (!list_empty(&mddev->disks))
1532 MD_BUG();
1533 mddev->raid_disks = 0;
1534 mddev->major_version = 0;
1537 static void print_desc(mdp_disk_t *desc)
1539 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1540 desc->major,desc->minor,desc->raid_disk,desc->state);
1543 static void print_sb(mdp_super_t *sb)
1545 int i;
1547 printk(KERN_INFO
1548 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1549 sb->major_version, sb->minor_version, sb->patch_version,
1550 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1551 sb->ctime);
1552 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1553 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1554 sb->md_minor, sb->layout, sb->chunk_size);
1555 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1556 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1557 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1558 sb->failed_disks, sb->spare_disks,
1559 sb->sb_csum, (unsigned long)sb->events_lo);
1561 printk(KERN_INFO);
1562 for (i = 0; i < MD_SB_DISKS; i++) {
1563 mdp_disk_t *desc;
1565 desc = sb->disks + i;
1566 if (desc->number || desc->major || desc->minor ||
1567 desc->raid_disk || (desc->state && (desc->state != 4))) {
1568 printk(" D %2d: ", i);
1569 print_desc(desc);
1572 printk(KERN_INFO "md: THIS: ");
1573 print_desc(&sb->this_disk);
1577 static void print_rdev(mdk_rdev_t *rdev)
1579 char b[BDEVNAME_SIZE];
1580 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1581 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1582 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1583 rdev->desc_nr);
1584 if (rdev->sb_loaded) {
1585 printk(KERN_INFO "md: rdev superblock:\n");
1586 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1587 } else
1588 printk(KERN_INFO "md: no rdev superblock!\n");
1591 static void md_print_devices(void)
1593 struct list_head *tmp, *tmp2;
1594 mdk_rdev_t *rdev;
1595 mddev_t *mddev;
1596 char b[BDEVNAME_SIZE];
1598 printk("\n");
1599 printk("md: **********************************\n");
1600 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1601 printk("md: **********************************\n");
1602 for_each_mddev(mddev, tmp) {
1604 if (mddev->bitmap)
1605 bitmap_print_sb(mddev->bitmap);
1606 else
1607 printk("%s: ", mdname(mddev));
1608 rdev_for_each(rdev, tmp2, mddev)
1609 printk("<%s>", bdevname(rdev->bdev,b));
1610 printk("\n");
1612 rdev_for_each(rdev, tmp2, mddev)
1613 print_rdev(rdev);
1615 printk("md: **********************************\n");
1616 printk("\n");
1620 static void sync_sbs(mddev_t * mddev, int nospares)
1622 /* Update each superblock (in-memory image), but
1623 * if we are allowed to, skip spares which already
1624 * have the right event counter, or have one earlier
1625 * (which would mean they aren't being marked as dirty
1626 * with the rest of the array)
1628 mdk_rdev_t *rdev;
1629 struct list_head *tmp;
1631 rdev_for_each(rdev, tmp, mddev) {
1632 if (rdev->sb_events == mddev->events ||
1633 (nospares &&
1634 rdev->raid_disk < 0 &&
1635 (rdev->sb_events&1)==0 &&
1636 rdev->sb_events+1 == mddev->events)) {
1637 /* Don't update this superblock */
1638 rdev->sb_loaded = 2;
1639 } else {
1640 super_types[mddev->major_version].
1641 sync_super(mddev, rdev);
1642 rdev->sb_loaded = 1;
1647 static void md_update_sb(mddev_t * mddev, int force_change)
1649 struct list_head *tmp;
1650 mdk_rdev_t *rdev;
1651 int sync_req;
1652 int nospares = 0;
1654 repeat:
1655 spin_lock_irq(&mddev->write_lock);
1657 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1658 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1659 force_change = 1;
1660 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1661 /* just a clean<-> dirty transition, possibly leave spares alone,
1662 * though if events isn't the right even/odd, we will have to do
1663 * spares after all
1665 nospares = 1;
1666 if (force_change)
1667 nospares = 0;
1668 if (mddev->degraded)
1669 /* If the array is degraded, then skipping spares is both
1670 * dangerous and fairly pointless.
1671 * Dangerous because a device that was removed from the array
1672 * might have a event_count that still looks up-to-date,
1673 * so it can be re-added without a resync.
1674 * Pointless because if there are any spares to skip,
1675 * then a recovery will happen and soon that array won't
1676 * be degraded any more and the spare can go back to sleep then.
1678 nospares = 0;
1680 sync_req = mddev->in_sync;
1681 mddev->utime = get_seconds();
1683 /* If this is just a dirty<->clean transition, and the array is clean
1684 * and 'events' is odd, we can roll back to the previous clean state */
1685 if (nospares
1686 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1687 && (mddev->events & 1)
1688 && mddev->events != 1)
1689 mddev->events--;
1690 else {
1691 /* otherwise we have to go forward and ... */
1692 mddev->events ++;
1693 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1694 /* .. if the array isn't clean, insist on an odd 'events' */
1695 if ((mddev->events&1)==0) {
1696 mddev->events++;
1697 nospares = 0;
1699 } else {
1700 /* otherwise insist on an even 'events' (for clean states) */
1701 if ((mddev->events&1)) {
1702 mddev->events++;
1703 nospares = 0;
1708 if (!mddev->events) {
1710 * oops, this 64-bit counter should never wrap.
1711 * Either we are in around ~1 trillion A.C., assuming
1712 * 1 reboot per second, or we have a bug:
1714 MD_BUG();
1715 mddev->events --;
1719 * do not write anything to disk if using
1720 * nonpersistent superblocks
1722 if (!mddev->persistent) {
1723 if (!mddev->external)
1724 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1726 spin_unlock_irq(&mddev->write_lock);
1727 wake_up(&mddev->sb_wait);
1728 return;
1730 sync_sbs(mddev, nospares);
1731 spin_unlock_irq(&mddev->write_lock);
1733 dprintk(KERN_INFO
1734 "md: updating %s RAID superblock on device (in sync %d)\n",
1735 mdname(mddev),mddev->in_sync);
1737 bitmap_update_sb(mddev->bitmap);
1738 rdev_for_each(rdev, tmp, mddev) {
1739 char b[BDEVNAME_SIZE];
1740 dprintk(KERN_INFO "md: ");
1741 if (rdev->sb_loaded != 1)
1742 continue; /* no noise on spare devices */
1743 if (test_bit(Faulty, &rdev->flags))
1744 dprintk("(skipping faulty ");
1746 dprintk("%s ", bdevname(rdev->bdev,b));
1747 if (!test_bit(Faulty, &rdev->flags)) {
1748 md_super_write(mddev,rdev,
1749 rdev->sb_offset<<1, rdev->sb_size,
1750 rdev->sb_page);
1751 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1752 bdevname(rdev->bdev,b),
1753 (unsigned long long)rdev->sb_offset);
1754 rdev->sb_events = mddev->events;
1756 } else
1757 dprintk(")\n");
1758 if (mddev->level == LEVEL_MULTIPATH)
1759 /* only need to write one superblock... */
1760 break;
1762 md_super_wait(mddev);
1763 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1765 spin_lock_irq(&mddev->write_lock);
1766 if (mddev->in_sync != sync_req ||
1767 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1768 /* have to write it out again */
1769 spin_unlock_irq(&mddev->write_lock);
1770 goto repeat;
1772 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1773 spin_unlock_irq(&mddev->write_lock);
1774 wake_up(&mddev->sb_wait);
1778 /* words written to sysfs files may, or my not, be \n terminated.
1779 * We want to accept with case. For this we use cmd_match.
1781 static int cmd_match(const char *cmd, const char *str)
1783 /* See if cmd, written into a sysfs file, matches
1784 * str. They must either be the same, or cmd can
1785 * have a trailing newline
1787 while (*cmd && *str && *cmd == *str) {
1788 cmd++;
1789 str++;
1791 if (*cmd == '\n')
1792 cmd++;
1793 if (*str || *cmd)
1794 return 0;
1795 return 1;
1798 struct rdev_sysfs_entry {
1799 struct attribute attr;
1800 ssize_t (*show)(mdk_rdev_t *, char *);
1801 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1804 static ssize_t
1805 state_show(mdk_rdev_t *rdev, char *page)
1807 char *sep = "";
1808 size_t len = 0;
1810 if (test_bit(Faulty, &rdev->flags)) {
1811 len+= sprintf(page+len, "%sfaulty",sep);
1812 sep = ",";
1814 if (test_bit(In_sync, &rdev->flags)) {
1815 len += sprintf(page+len, "%sin_sync",sep);
1816 sep = ",";
1818 if (test_bit(WriteMostly, &rdev->flags)) {
1819 len += sprintf(page+len, "%swrite_mostly",sep);
1820 sep = ",";
1822 if (!test_bit(Faulty, &rdev->flags) &&
1823 !test_bit(In_sync, &rdev->flags)) {
1824 len += sprintf(page+len, "%sspare", sep);
1825 sep = ",";
1827 return len+sprintf(page+len, "\n");
1830 static ssize_t
1831 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1833 /* can write
1834 * faulty - simulates and error
1835 * remove - disconnects the device
1836 * writemostly - sets write_mostly
1837 * -writemostly - clears write_mostly
1839 int err = -EINVAL;
1840 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1841 md_error(rdev->mddev, rdev);
1842 err = 0;
1843 } else if (cmd_match(buf, "remove")) {
1844 if (rdev->raid_disk >= 0)
1845 err = -EBUSY;
1846 else {
1847 mddev_t *mddev = rdev->mddev;
1848 kick_rdev_from_array(rdev);
1849 if (mddev->pers)
1850 md_update_sb(mddev, 1);
1851 md_new_event(mddev);
1852 err = 0;
1854 } else if (cmd_match(buf, "writemostly")) {
1855 set_bit(WriteMostly, &rdev->flags);
1856 err = 0;
1857 } else if (cmd_match(buf, "-writemostly")) {
1858 clear_bit(WriteMostly, &rdev->flags);
1859 err = 0;
1861 return err ? err : len;
1863 static struct rdev_sysfs_entry rdev_state =
1864 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1866 static ssize_t
1867 super_show(mdk_rdev_t *rdev, char *page)
1869 if (rdev->sb_loaded && rdev->sb_size) {
1870 memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1871 return rdev->sb_size;
1872 } else
1873 return 0;
1875 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1877 static ssize_t
1878 errors_show(mdk_rdev_t *rdev, char *page)
1880 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1883 static ssize_t
1884 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1886 char *e;
1887 unsigned long n = simple_strtoul(buf, &e, 10);
1888 if (*buf && (*e == 0 || *e == '\n')) {
1889 atomic_set(&rdev->corrected_errors, n);
1890 return len;
1892 return -EINVAL;
1894 static struct rdev_sysfs_entry rdev_errors =
1895 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1897 static ssize_t
1898 slot_show(mdk_rdev_t *rdev, char *page)
1900 if (rdev->raid_disk < 0)
1901 return sprintf(page, "none\n");
1902 else
1903 return sprintf(page, "%d\n", rdev->raid_disk);
1906 static ssize_t
1907 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1909 char *e;
1910 int err;
1911 char nm[20];
1912 int slot = simple_strtoul(buf, &e, 10);
1913 if (strncmp(buf, "none", 4)==0)
1914 slot = -1;
1915 else if (e==buf || (*e && *e!= '\n'))
1916 return -EINVAL;
1917 if (rdev->mddev->pers) {
1918 /* Setting 'slot' on an active array requires also
1919 * updating the 'rd%d' link, and communicating
1920 * with the personality with ->hot_*_disk.
1921 * For now we only support removing
1922 * failed/spare devices. This normally happens automatically,
1923 * but not when the metadata is externally managed.
1925 if (slot != -1)
1926 return -EBUSY;
1927 if (rdev->raid_disk == -1)
1928 return -EEXIST;
1929 /* personality does all needed checks */
1930 if (rdev->mddev->pers->hot_add_disk == NULL)
1931 return -EINVAL;
1932 err = rdev->mddev->pers->
1933 hot_remove_disk(rdev->mddev, rdev->raid_disk);
1934 if (err)
1935 return err;
1936 sprintf(nm, "rd%d", rdev->raid_disk);
1937 sysfs_remove_link(&rdev->mddev->kobj, nm);
1938 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
1939 md_wakeup_thread(rdev->mddev->thread);
1940 } else {
1941 if (slot >= rdev->mddev->raid_disks)
1942 return -ENOSPC;
1943 rdev->raid_disk = slot;
1944 /* assume it is working */
1945 clear_bit(Faulty, &rdev->flags);
1946 clear_bit(WriteMostly, &rdev->flags);
1947 set_bit(In_sync, &rdev->flags);
1949 return len;
1953 static struct rdev_sysfs_entry rdev_slot =
1954 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
1956 static ssize_t
1957 offset_show(mdk_rdev_t *rdev, char *page)
1959 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1962 static ssize_t
1963 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1965 char *e;
1966 unsigned long long offset = simple_strtoull(buf, &e, 10);
1967 if (e==buf || (*e && *e != '\n'))
1968 return -EINVAL;
1969 if (rdev->mddev->pers)
1970 return -EBUSY;
1971 if (rdev->size && rdev->mddev->external)
1972 /* Must set offset before size, so overlap checks
1973 * can be sane */
1974 return -EBUSY;
1975 rdev->data_offset = offset;
1976 return len;
1979 static struct rdev_sysfs_entry rdev_offset =
1980 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
1982 static ssize_t
1983 rdev_size_show(mdk_rdev_t *rdev, char *page)
1985 return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1988 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
1990 /* check if two start/length pairs overlap */
1991 if (s1+l1 <= s2)
1992 return 0;
1993 if (s2+l2 <= s1)
1994 return 0;
1995 return 1;
1998 static ssize_t
1999 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2001 char *e;
2002 unsigned long long size = simple_strtoull(buf, &e, 10);
2003 unsigned long long oldsize = rdev->size;
2004 mddev_t *my_mddev = rdev->mddev;
2006 if (e==buf || (*e && *e != '\n'))
2007 return -EINVAL;
2008 if (my_mddev->pers)
2009 return -EBUSY;
2010 rdev->size = size;
2011 if (size > oldsize && rdev->mddev->external) {
2012 /* need to check that all other rdevs with the same ->bdev
2013 * do not overlap. We need to unlock the mddev to avoid
2014 * a deadlock. We have already changed rdev->size, and if
2015 * we have to change it back, we will have the lock again.
2017 mddev_t *mddev;
2018 int overlap = 0;
2019 struct list_head *tmp, *tmp2;
2021 mddev_unlock(my_mddev);
2022 for_each_mddev(mddev, tmp) {
2023 mdk_rdev_t *rdev2;
2025 mddev_lock(mddev);
2026 rdev_for_each(rdev2, tmp2, mddev)
2027 if (test_bit(AllReserved, &rdev2->flags) ||
2028 (rdev->bdev == rdev2->bdev &&
2029 rdev != rdev2 &&
2030 overlaps(rdev->data_offset, rdev->size,
2031 rdev2->data_offset, rdev2->size))) {
2032 overlap = 1;
2033 break;
2035 mddev_unlock(mddev);
2036 if (overlap) {
2037 mddev_put(mddev);
2038 break;
2041 mddev_lock(my_mddev);
2042 if (overlap) {
2043 /* Someone else could have slipped in a size
2044 * change here, but doing so is just silly.
2045 * We put oldsize back because we *know* it is
2046 * safe, and trust userspace not to race with
2047 * itself
2049 rdev->size = oldsize;
2050 return -EBUSY;
2053 if (size < my_mddev->size || my_mddev->size == 0)
2054 my_mddev->size = size;
2055 return len;
2058 static struct rdev_sysfs_entry rdev_size =
2059 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2061 static struct attribute *rdev_default_attrs[] = {
2062 &rdev_state.attr,
2063 &rdev_super.attr,
2064 &rdev_errors.attr,
2065 &rdev_slot.attr,
2066 &rdev_offset.attr,
2067 &rdev_size.attr,
2068 NULL,
2070 static ssize_t
2071 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2073 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2074 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2075 mddev_t *mddev = rdev->mddev;
2076 ssize_t rv;
2078 if (!entry->show)
2079 return -EIO;
2081 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2082 if (!rv) {
2083 if (rdev->mddev == NULL)
2084 rv = -EBUSY;
2085 else
2086 rv = entry->show(rdev, page);
2087 mddev_unlock(mddev);
2089 return rv;
2092 static ssize_t
2093 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2094 const char *page, size_t length)
2096 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2097 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2098 ssize_t rv;
2099 mddev_t *mddev = rdev->mddev;
2101 if (!entry->store)
2102 return -EIO;
2103 if (!capable(CAP_SYS_ADMIN))
2104 return -EACCES;
2105 rv = mddev ? mddev_lock(mddev): -EBUSY;
2106 if (!rv) {
2107 if (rdev->mddev == NULL)
2108 rv = -EBUSY;
2109 else
2110 rv = entry->store(rdev, page, length);
2111 mddev_unlock(rdev->mddev);
2113 return rv;
2116 static void rdev_free(struct kobject *ko)
2118 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2119 kfree(rdev);
2121 static struct sysfs_ops rdev_sysfs_ops = {
2122 .show = rdev_attr_show,
2123 .store = rdev_attr_store,
2125 static struct kobj_type rdev_ktype = {
2126 .release = rdev_free,
2127 .sysfs_ops = &rdev_sysfs_ops,
2128 .default_attrs = rdev_default_attrs,
2132 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2134 * mark the device faulty if:
2136 * - the device is nonexistent (zero size)
2137 * - the device has no valid superblock
2139 * a faulty rdev _never_ has rdev->sb set.
2141 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2143 char b[BDEVNAME_SIZE];
2144 int err;
2145 mdk_rdev_t *rdev;
2146 sector_t size;
2148 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2149 if (!rdev) {
2150 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2151 return ERR_PTR(-ENOMEM);
2154 if ((err = alloc_disk_sb(rdev)))
2155 goto abort_free;
2157 err = lock_rdev(rdev, newdev, super_format == -2);
2158 if (err)
2159 goto abort_free;
2161 kobject_init(&rdev->kobj, &rdev_ktype);
2163 rdev->desc_nr = -1;
2164 rdev->saved_raid_disk = -1;
2165 rdev->raid_disk = -1;
2166 rdev->flags = 0;
2167 rdev->data_offset = 0;
2168 rdev->sb_events = 0;
2169 atomic_set(&rdev->nr_pending, 0);
2170 atomic_set(&rdev->read_errors, 0);
2171 atomic_set(&rdev->corrected_errors, 0);
2173 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2174 if (!size) {
2175 printk(KERN_WARNING
2176 "md: %s has zero or unknown size, marking faulty!\n",
2177 bdevname(rdev->bdev,b));
2178 err = -EINVAL;
2179 goto abort_free;
2182 if (super_format >= 0) {
2183 err = super_types[super_format].
2184 load_super(rdev, NULL, super_minor);
2185 if (err == -EINVAL) {
2186 printk(KERN_WARNING
2187 "md: %s does not have a valid v%d.%d "
2188 "superblock, not importing!\n",
2189 bdevname(rdev->bdev,b),
2190 super_format, super_minor);
2191 goto abort_free;
2193 if (err < 0) {
2194 printk(KERN_WARNING
2195 "md: could not read %s's sb, not importing!\n",
2196 bdevname(rdev->bdev,b));
2197 goto abort_free;
2200 INIT_LIST_HEAD(&rdev->same_set);
2202 return rdev;
2204 abort_free:
2205 if (rdev->sb_page) {
2206 if (rdev->bdev)
2207 unlock_rdev(rdev);
2208 free_disk_sb(rdev);
2210 kfree(rdev);
2211 return ERR_PTR(err);
2215 * Check a full RAID array for plausibility
2219 static void analyze_sbs(mddev_t * mddev)
2221 int i;
2222 struct list_head *tmp;
2223 mdk_rdev_t *rdev, *freshest;
2224 char b[BDEVNAME_SIZE];
2226 freshest = NULL;
2227 rdev_for_each(rdev, tmp, mddev)
2228 switch (super_types[mddev->major_version].
2229 load_super(rdev, freshest, mddev->minor_version)) {
2230 case 1:
2231 freshest = rdev;
2232 break;
2233 case 0:
2234 break;
2235 default:
2236 printk( KERN_ERR \
2237 "md: fatal superblock inconsistency in %s"
2238 " -- removing from array\n",
2239 bdevname(rdev->bdev,b));
2240 kick_rdev_from_array(rdev);
2244 super_types[mddev->major_version].
2245 validate_super(mddev, freshest);
2247 i = 0;
2248 rdev_for_each(rdev, tmp, mddev) {
2249 if (rdev != freshest)
2250 if (super_types[mddev->major_version].
2251 validate_super(mddev, rdev)) {
2252 printk(KERN_WARNING "md: kicking non-fresh %s"
2253 " from array!\n",
2254 bdevname(rdev->bdev,b));
2255 kick_rdev_from_array(rdev);
2256 continue;
2258 if (mddev->level == LEVEL_MULTIPATH) {
2259 rdev->desc_nr = i++;
2260 rdev->raid_disk = rdev->desc_nr;
2261 set_bit(In_sync, &rdev->flags);
2262 } else if (rdev->raid_disk >= mddev->raid_disks) {
2263 rdev->raid_disk = -1;
2264 clear_bit(In_sync, &rdev->flags);
2270 if (mddev->recovery_cp != MaxSector &&
2271 mddev->level >= 1)
2272 printk(KERN_ERR "md: %s: raid array is not clean"
2273 " -- starting background reconstruction\n",
2274 mdname(mddev));
2278 static ssize_t
2279 safe_delay_show(mddev_t *mddev, char *page)
2281 int msec = (mddev->safemode_delay*1000)/HZ;
2282 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2284 static ssize_t
2285 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2287 int scale=1;
2288 int dot=0;
2289 int i;
2290 unsigned long msec;
2291 char buf[30];
2292 char *e;
2293 /* remove a period, and count digits after it */
2294 if (len >= sizeof(buf))
2295 return -EINVAL;
2296 strlcpy(buf, cbuf, len);
2297 buf[len] = 0;
2298 for (i=0; i<len; i++) {
2299 if (dot) {
2300 if (isdigit(buf[i])) {
2301 buf[i-1] = buf[i];
2302 scale *= 10;
2304 buf[i] = 0;
2305 } else if (buf[i] == '.') {
2306 dot=1;
2307 buf[i] = 0;
2310 msec = simple_strtoul(buf, &e, 10);
2311 if (e == buf || (*e && *e != '\n'))
2312 return -EINVAL;
2313 msec = (msec * 1000) / scale;
2314 if (msec == 0)
2315 mddev->safemode_delay = 0;
2316 else {
2317 mddev->safemode_delay = (msec*HZ)/1000;
2318 if (mddev->safemode_delay == 0)
2319 mddev->safemode_delay = 1;
2321 return len;
2323 static struct md_sysfs_entry md_safe_delay =
2324 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2326 static ssize_t
2327 level_show(mddev_t *mddev, char *page)
2329 struct mdk_personality *p = mddev->pers;
2330 if (p)
2331 return sprintf(page, "%s\n", p->name);
2332 else if (mddev->clevel[0])
2333 return sprintf(page, "%s\n", mddev->clevel);
2334 else if (mddev->level != LEVEL_NONE)
2335 return sprintf(page, "%d\n", mddev->level);
2336 else
2337 return 0;
2340 static ssize_t
2341 level_store(mddev_t *mddev, const char *buf, size_t len)
2343 ssize_t rv = len;
2344 if (mddev->pers)
2345 return -EBUSY;
2346 if (len == 0)
2347 return 0;
2348 if (len >= sizeof(mddev->clevel))
2349 return -ENOSPC;
2350 strncpy(mddev->clevel, buf, len);
2351 if (mddev->clevel[len-1] == '\n')
2352 len--;
2353 mddev->clevel[len] = 0;
2354 mddev->level = LEVEL_NONE;
2355 return rv;
2358 static struct md_sysfs_entry md_level =
2359 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2362 static ssize_t
2363 layout_show(mddev_t *mddev, char *page)
2365 /* just a number, not meaningful for all levels */
2366 if (mddev->reshape_position != MaxSector &&
2367 mddev->layout != mddev->new_layout)
2368 return sprintf(page, "%d (%d)\n",
2369 mddev->new_layout, mddev->layout);
2370 return sprintf(page, "%d\n", mddev->layout);
2373 static ssize_t
2374 layout_store(mddev_t *mddev, const char *buf, size_t len)
2376 char *e;
2377 unsigned long n = simple_strtoul(buf, &e, 10);
2379 if (!*buf || (*e && *e != '\n'))
2380 return -EINVAL;
2382 if (mddev->pers)
2383 return -EBUSY;
2384 if (mddev->reshape_position != MaxSector)
2385 mddev->new_layout = n;
2386 else
2387 mddev->layout = n;
2388 return len;
2390 static struct md_sysfs_entry md_layout =
2391 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2394 static ssize_t
2395 raid_disks_show(mddev_t *mddev, char *page)
2397 if (mddev->raid_disks == 0)
2398 return 0;
2399 if (mddev->reshape_position != MaxSector &&
2400 mddev->delta_disks != 0)
2401 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2402 mddev->raid_disks - mddev->delta_disks);
2403 return sprintf(page, "%d\n", mddev->raid_disks);
2406 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2408 static ssize_t
2409 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2411 char *e;
2412 int rv = 0;
2413 unsigned long n = simple_strtoul(buf, &e, 10);
2415 if (!*buf || (*e && *e != '\n'))
2416 return -EINVAL;
2418 if (mddev->pers)
2419 rv = update_raid_disks(mddev, n);
2420 else if (mddev->reshape_position != MaxSector) {
2421 int olddisks = mddev->raid_disks - mddev->delta_disks;
2422 mddev->delta_disks = n - olddisks;
2423 mddev->raid_disks = n;
2424 } else
2425 mddev->raid_disks = n;
2426 return rv ? rv : len;
2428 static struct md_sysfs_entry md_raid_disks =
2429 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2431 static ssize_t
2432 chunk_size_show(mddev_t *mddev, char *page)
2434 if (mddev->reshape_position != MaxSector &&
2435 mddev->chunk_size != mddev->new_chunk)
2436 return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2437 mddev->chunk_size);
2438 return sprintf(page, "%d\n", mddev->chunk_size);
2441 static ssize_t
2442 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2444 /* can only set chunk_size if array is not yet active */
2445 char *e;
2446 unsigned long n = simple_strtoul(buf, &e, 10);
2448 if (!*buf || (*e && *e != '\n'))
2449 return -EINVAL;
2451 if (mddev->pers)
2452 return -EBUSY;
2453 else if (mddev->reshape_position != MaxSector)
2454 mddev->new_chunk = n;
2455 else
2456 mddev->chunk_size = n;
2457 return len;
2459 static struct md_sysfs_entry md_chunk_size =
2460 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2462 static ssize_t
2463 resync_start_show(mddev_t *mddev, char *page)
2465 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2468 static ssize_t
2469 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2471 /* can only set chunk_size if array is not yet active */
2472 char *e;
2473 unsigned long long n = simple_strtoull(buf, &e, 10);
2475 if (mddev->pers)
2476 return -EBUSY;
2477 if (!*buf || (*e && *e != '\n'))
2478 return -EINVAL;
2480 mddev->recovery_cp = n;
2481 return len;
2483 static struct md_sysfs_entry md_resync_start =
2484 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2487 * The array state can be:
2489 * clear
2490 * No devices, no size, no level
2491 * Equivalent to STOP_ARRAY ioctl
2492 * inactive
2493 * May have some settings, but array is not active
2494 * all IO results in error
2495 * When written, doesn't tear down array, but just stops it
2496 * suspended (not supported yet)
2497 * All IO requests will block. The array can be reconfigured.
2498 * Writing this, if accepted, will block until array is quiessent
2499 * readonly
2500 * no resync can happen. no superblocks get written.
2501 * write requests fail
2502 * read-auto
2503 * like readonly, but behaves like 'clean' on a write request.
2505 * clean - no pending writes, but otherwise active.
2506 * When written to inactive array, starts without resync
2507 * If a write request arrives then
2508 * if metadata is known, mark 'dirty' and switch to 'active'.
2509 * if not known, block and switch to write-pending
2510 * If written to an active array that has pending writes, then fails.
2511 * active
2512 * fully active: IO and resync can be happening.
2513 * When written to inactive array, starts with resync
2515 * write-pending
2516 * clean, but writes are blocked waiting for 'active' to be written.
2518 * active-idle
2519 * like active, but no writes have been seen for a while (100msec).
2522 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2523 write_pending, active_idle, bad_word};
2524 static char *array_states[] = {
2525 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2526 "write-pending", "active-idle", NULL };
2528 static int match_word(const char *word, char **list)
2530 int n;
2531 for (n=0; list[n]; n++)
2532 if (cmd_match(word, list[n]))
2533 break;
2534 return n;
2537 static ssize_t
2538 array_state_show(mddev_t *mddev, char *page)
2540 enum array_state st = inactive;
2542 if (mddev->pers)
2543 switch(mddev->ro) {
2544 case 1:
2545 st = readonly;
2546 break;
2547 case 2:
2548 st = read_auto;
2549 break;
2550 case 0:
2551 if (mddev->in_sync)
2552 st = clean;
2553 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
2554 st = write_pending;
2555 else if (mddev->safemode)
2556 st = active_idle;
2557 else
2558 st = active;
2560 else {
2561 if (list_empty(&mddev->disks) &&
2562 mddev->raid_disks == 0 &&
2563 mddev->size == 0)
2564 st = clear;
2565 else
2566 st = inactive;
2568 return sprintf(page, "%s\n", array_states[st]);
2571 static int do_md_stop(mddev_t * mddev, int ro);
2572 static int do_md_run(mddev_t * mddev);
2573 static int restart_array(mddev_t *mddev);
2575 static ssize_t
2576 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2578 int err = -EINVAL;
2579 enum array_state st = match_word(buf, array_states);
2580 switch(st) {
2581 case bad_word:
2582 break;
2583 case clear:
2584 /* stopping an active array */
2585 if (atomic_read(&mddev->active) > 1)
2586 return -EBUSY;
2587 err = do_md_stop(mddev, 0);
2588 break;
2589 case inactive:
2590 /* stopping an active array */
2591 if (mddev->pers) {
2592 if (atomic_read(&mddev->active) > 1)
2593 return -EBUSY;
2594 err = do_md_stop(mddev, 2);
2595 } else
2596 err = 0; /* already inactive */
2597 break;
2598 case suspended:
2599 break; /* not supported yet */
2600 case readonly:
2601 if (mddev->pers)
2602 err = do_md_stop(mddev, 1);
2603 else {
2604 mddev->ro = 1;
2605 err = do_md_run(mddev);
2607 break;
2608 case read_auto:
2609 /* stopping an active array */
2610 if (mddev->pers) {
2611 err = do_md_stop(mddev, 1);
2612 if (err == 0)
2613 mddev->ro = 2; /* FIXME mark devices writable */
2614 } else {
2615 mddev->ro = 2;
2616 err = do_md_run(mddev);
2618 break;
2619 case clean:
2620 if (mddev->pers) {
2621 restart_array(mddev);
2622 spin_lock_irq(&mddev->write_lock);
2623 if (atomic_read(&mddev->writes_pending) == 0) {
2624 if (mddev->in_sync == 0) {
2625 mddev->in_sync = 1;
2626 if (mddev->persistent)
2627 set_bit(MD_CHANGE_CLEAN,
2628 &mddev->flags);
2630 err = 0;
2631 } else
2632 err = -EBUSY;
2633 spin_unlock_irq(&mddev->write_lock);
2634 } else {
2635 mddev->ro = 0;
2636 mddev->recovery_cp = MaxSector;
2637 err = do_md_run(mddev);
2639 break;
2640 case active:
2641 if (mddev->pers) {
2642 restart_array(mddev);
2643 if (mddev->external)
2644 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2645 wake_up(&mddev->sb_wait);
2646 err = 0;
2647 } else {
2648 mddev->ro = 0;
2649 err = do_md_run(mddev);
2651 break;
2652 case write_pending:
2653 case active_idle:
2654 /* these cannot be set */
2655 break;
2657 if (err)
2658 return err;
2659 else
2660 return len;
2662 static struct md_sysfs_entry md_array_state =
2663 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2665 static ssize_t
2666 null_show(mddev_t *mddev, char *page)
2668 return -EINVAL;
2671 static ssize_t
2672 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2674 /* buf must be %d:%d\n? giving major and minor numbers */
2675 /* The new device is added to the array.
2676 * If the array has a persistent superblock, we read the
2677 * superblock to initialise info and check validity.
2678 * Otherwise, only checking done is that in bind_rdev_to_array,
2679 * which mainly checks size.
2681 char *e;
2682 int major = simple_strtoul(buf, &e, 10);
2683 int minor;
2684 dev_t dev;
2685 mdk_rdev_t *rdev;
2686 int err;
2688 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2689 return -EINVAL;
2690 minor = simple_strtoul(e+1, &e, 10);
2691 if (*e && *e != '\n')
2692 return -EINVAL;
2693 dev = MKDEV(major, minor);
2694 if (major != MAJOR(dev) ||
2695 minor != MINOR(dev))
2696 return -EOVERFLOW;
2699 if (mddev->persistent) {
2700 rdev = md_import_device(dev, mddev->major_version,
2701 mddev->minor_version);
2702 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2703 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2704 mdk_rdev_t, same_set);
2705 err = super_types[mddev->major_version]
2706 .load_super(rdev, rdev0, mddev->minor_version);
2707 if (err < 0)
2708 goto out;
2710 } else if (mddev->external)
2711 rdev = md_import_device(dev, -2, -1);
2712 else
2713 rdev = md_import_device(dev, -1, -1);
2715 if (IS_ERR(rdev))
2716 return PTR_ERR(rdev);
2717 err = bind_rdev_to_array(rdev, mddev);
2718 out:
2719 if (err)
2720 export_rdev(rdev);
2721 return err ? err : len;
2724 static struct md_sysfs_entry md_new_device =
2725 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2727 static ssize_t
2728 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2730 char *end;
2731 unsigned long chunk, end_chunk;
2733 if (!mddev->bitmap)
2734 goto out;
2735 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2736 while (*buf) {
2737 chunk = end_chunk = simple_strtoul(buf, &end, 0);
2738 if (buf == end) break;
2739 if (*end == '-') { /* range */
2740 buf = end + 1;
2741 end_chunk = simple_strtoul(buf, &end, 0);
2742 if (buf == end) break;
2744 if (*end && !isspace(*end)) break;
2745 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2746 buf = end;
2747 while (isspace(*buf)) buf++;
2749 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2750 out:
2751 return len;
2754 static struct md_sysfs_entry md_bitmap =
2755 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2757 static ssize_t
2758 size_show(mddev_t *mddev, char *page)
2760 return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2763 static int update_size(mddev_t *mddev, unsigned long size);
2765 static ssize_t
2766 size_store(mddev_t *mddev, const char *buf, size_t len)
2768 /* If array is inactive, we can reduce the component size, but
2769 * not increase it (except from 0).
2770 * If array is active, we can try an on-line resize
2772 char *e;
2773 int err = 0;
2774 unsigned long long size = simple_strtoull(buf, &e, 10);
2775 if (!*buf || *buf == '\n' ||
2776 (*e && *e != '\n'))
2777 return -EINVAL;
2779 if (mddev->pers) {
2780 err = update_size(mddev, size);
2781 md_update_sb(mddev, 1);
2782 } else {
2783 if (mddev->size == 0 ||
2784 mddev->size > size)
2785 mddev->size = size;
2786 else
2787 err = -ENOSPC;
2789 return err ? err : len;
2792 static struct md_sysfs_entry md_size =
2793 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2796 /* Metdata version.
2797 * This is one of
2798 * 'none' for arrays with no metadata (good luck...)
2799 * 'external' for arrays with externally managed metadata,
2800 * or N.M for internally known formats
2802 static ssize_t
2803 metadata_show(mddev_t *mddev, char *page)
2805 if (mddev->persistent)
2806 return sprintf(page, "%d.%d\n",
2807 mddev->major_version, mddev->minor_version);
2808 else if (mddev->external)
2809 return sprintf(page, "external:%s\n", mddev->metadata_type);
2810 else
2811 return sprintf(page, "none\n");
2814 static ssize_t
2815 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2817 int major, minor;
2818 char *e;
2819 if (!list_empty(&mddev->disks))
2820 return -EBUSY;
2822 if (cmd_match(buf, "none")) {
2823 mddev->persistent = 0;
2824 mddev->external = 0;
2825 mddev->major_version = 0;
2826 mddev->minor_version = 90;
2827 return len;
2829 if (strncmp(buf, "external:", 9) == 0) {
2830 size_t namelen = len-9;
2831 if (namelen >= sizeof(mddev->metadata_type))
2832 namelen = sizeof(mddev->metadata_type)-1;
2833 strncpy(mddev->metadata_type, buf+9, namelen);
2834 mddev->metadata_type[namelen] = 0;
2835 if (namelen && mddev->metadata_type[namelen-1] == '\n')
2836 mddev->metadata_type[--namelen] = 0;
2837 mddev->persistent = 0;
2838 mddev->external = 1;
2839 mddev->major_version = 0;
2840 mddev->minor_version = 90;
2841 return len;
2843 major = simple_strtoul(buf, &e, 10);
2844 if (e==buf || *e != '.')
2845 return -EINVAL;
2846 buf = e+1;
2847 minor = simple_strtoul(buf, &e, 10);
2848 if (e==buf || (*e && *e != '\n') )
2849 return -EINVAL;
2850 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
2851 return -ENOENT;
2852 mddev->major_version = major;
2853 mddev->minor_version = minor;
2854 mddev->persistent = 1;
2855 mddev->external = 0;
2856 return len;
2859 static struct md_sysfs_entry md_metadata =
2860 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2862 static ssize_t
2863 action_show(mddev_t *mddev, char *page)
2865 char *type = "idle";
2866 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2867 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
2868 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2869 type = "reshape";
2870 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2871 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2872 type = "resync";
2873 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2874 type = "check";
2875 else
2876 type = "repair";
2877 } else
2878 type = "recover";
2880 return sprintf(page, "%s\n", type);
2883 static ssize_t
2884 action_store(mddev_t *mddev, const char *page, size_t len)
2886 if (!mddev->pers || !mddev->pers->sync_request)
2887 return -EINVAL;
2889 if (cmd_match(page, "idle")) {
2890 if (mddev->sync_thread) {
2891 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2892 md_unregister_thread(mddev->sync_thread);
2893 mddev->sync_thread = NULL;
2894 mddev->recovery = 0;
2896 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2897 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2898 return -EBUSY;
2899 else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2900 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2901 else if (cmd_match(page, "reshape")) {
2902 int err;
2903 if (mddev->pers->start_reshape == NULL)
2904 return -EINVAL;
2905 err = mddev->pers->start_reshape(mddev);
2906 if (err)
2907 return err;
2908 } else {
2909 if (cmd_match(page, "check"))
2910 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2911 else if (!cmd_match(page, "repair"))
2912 return -EINVAL;
2913 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2914 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2916 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2917 md_wakeup_thread(mddev->thread);
2918 return len;
2921 static ssize_t
2922 mismatch_cnt_show(mddev_t *mddev, char *page)
2924 return sprintf(page, "%llu\n",
2925 (unsigned long long) mddev->resync_mismatches);
2928 static struct md_sysfs_entry md_scan_mode =
2929 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2932 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
2934 static ssize_t
2935 sync_min_show(mddev_t *mddev, char *page)
2937 return sprintf(page, "%d (%s)\n", speed_min(mddev),
2938 mddev->sync_speed_min ? "local": "system");
2941 static ssize_t
2942 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2944 int min;
2945 char *e;
2946 if (strncmp(buf, "system", 6)==0) {
2947 mddev->sync_speed_min = 0;
2948 return len;
2950 min = simple_strtoul(buf, &e, 10);
2951 if (buf == e || (*e && *e != '\n') || min <= 0)
2952 return -EINVAL;
2953 mddev->sync_speed_min = min;
2954 return len;
2957 static struct md_sysfs_entry md_sync_min =
2958 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2960 static ssize_t
2961 sync_max_show(mddev_t *mddev, char *page)
2963 return sprintf(page, "%d (%s)\n", speed_max(mddev),
2964 mddev->sync_speed_max ? "local": "system");
2967 static ssize_t
2968 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2970 int max;
2971 char *e;
2972 if (strncmp(buf, "system", 6)==0) {
2973 mddev->sync_speed_max = 0;
2974 return len;
2976 max = simple_strtoul(buf, &e, 10);
2977 if (buf == e || (*e && *e != '\n') || max <= 0)
2978 return -EINVAL;
2979 mddev->sync_speed_max = max;
2980 return len;
2983 static struct md_sysfs_entry md_sync_max =
2984 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2986 static ssize_t
2987 degraded_show(mddev_t *mddev, char *page)
2989 return sprintf(page, "%d\n", mddev->degraded);
2991 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
2993 static ssize_t
2994 sync_speed_show(mddev_t *mddev, char *page)
2996 unsigned long resync, dt, db;
2997 resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
2998 dt = ((jiffies - mddev->resync_mark) / HZ);
2999 if (!dt) dt++;
3000 db = resync - (mddev->resync_mark_cnt);
3001 return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
3004 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3006 static ssize_t
3007 sync_completed_show(mddev_t *mddev, char *page)
3009 unsigned long max_blocks, resync;
3011 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3012 max_blocks = mddev->resync_max_sectors;
3013 else
3014 max_blocks = mddev->size << 1;
3016 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
3017 return sprintf(page, "%lu / %lu\n", resync, max_blocks);
3020 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3022 static ssize_t
3023 max_sync_show(mddev_t *mddev, char *page)
3025 if (mddev->resync_max == MaxSector)
3026 return sprintf(page, "max\n");
3027 else
3028 return sprintf(page, "%llu\n",
3029 (unsigned long long)mddev->resync_max);
3031 static ssize_t
3032 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3034 if (strncmp(buf, "max", 3) == 0)
3035 mddev->resync_max = MaxSector;
3036 else {
3037 char *ep;
3038 unsigned long long max = simple_strtoull(buf, &ep, 10);
3039 if (ep == buf || (*ep != 0 && *ep != '\n'))
3040 return -EINVAL;
3041 if (max < mddev->resync_max &&
3042 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3043 return -EBUSY;
3045 /* Must be a multiple of chunk_size */
3046 if (mddev->chunk_size) {
3047 if (max & (sector_t)((mddev->chunk_size>>9)-1))
3048 return -EINVAL;
3050 mddev->resync_max = max;
3052 wake_up(&mddev->recovery_wait);
3053 return len;
3056 static struct md_sysfs_entry md_max_sync =
3057 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3059 static ssize_t
3060 suspend_lo_show(mddev_t *mddev, char *page)
3062 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3065 static ssize_t
3066 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3068 char *e;
3069 unsigned long long new = simple_strtoull(buf, &e, 10);
3071 if (mddev->pers->quiesce == NULL)
3072 return -EINVAL;
3073 if (buf == e || (*e && *e != '\n'))
3074 return -EINVAL;
3075 if (new >= mddev->suspend_hi ||
3076 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3077 mddev->suspend_lo = new;
3078 mddev->pers->quiesce(mddev, 2);
3079 return len;
3080 } else
3081 return -EINVAL;
3083 static struct md_sysfs_entry md_suspend_lo =
3084 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3087 static ssize_t
3088 suspend_hi_show(mddev_t *mddev, char *page)
3090 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3093 static ssize_t
3094 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3096 char *e;
3097 unsigned long long new = simple_strtoull(buf, &e, 10);
3099 if (mddev->pers->quiesce == NULL)
3100 return -EINVAL;
3101 if (buf == e || (*e && *e != '\n'))
3102 return -EINVAL;
3103 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3104 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3105 mddev->suspend_hi = new;
3106 mddev->pers->quiesce(mddev, 1);
3107 mddev->pers->quiesce(mddev, 0);
3108 return len;
3109 } else
3110 return -EINVAL;
3112 static struct md_sysfs_entry md_suspend_hi =
3113 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3115 static ssize_t
3116 reshape_position_show(mddev_t *mddev, char *page)
3118 if (mddev->reshape_position != MaxSector)
3119 return sprintf(page, "%llu\n",
3120 (unsigned long long)mddev->reshape_position);
3121 strcpy(page, "none\n");
3122 return 5;
3125 static ssize_t
3126 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
3128 char *e;
3129 unsigned long long new = simple_strtoull(buf, &e, 10);
3130 if (mddev->pers)
3131 return -EBUSY;
3132 if (buf == e || (*e && *e != '\n'))
3133 return -EINVAL;
3134 mddev->reshape_position = new;
3135 mddev->delta_disks = 0;
3136 mddev->new_level = mddev->level;
3137 mddev->new_layout = mddev->layout;
3138 mddev->new_chunk = mddev->chunk_size;
3139 return len;
3142 static struct md_sysfs_entry md_reshape_position =
3143 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
3144 reshape_position_store);
3147 static struct attribute *md_default_attrs[] = {
3148 &md_level.attr,
3149 &md_layout.attr,
3150 &md_raid_disks.attr,
3151 &md_chunk_size.attr,
3152 &md_size.attr,
3153 &md_resync_start.attr,
3154 &md_metadata.attr,
3155 &md_new_device.attr,
3156 &md_safe_delay.attr,
3157 &md_array_state.attr,
3158 &md_reshape_position.attr,
3159 NULL,
3162 static struct attribute *md_redundancy_attrs[] = {
3163 &md_scan_mode.attr,
3164 &md_mismatches.attr,
3165 &md_sync_min.attr,
3166 &md_sync_max.attr,
3167 &md_sync_speed.attr,
3168 &md_sync_completed.attr,
3169 &md_max_sync.attr,
3170 &md_suspend_lo.attr,
3171 &md_suspend_hi.attr,
3172 &md_bitmap.attr,
3173 &md_degraded.attr,
3174 NULL,
3176 static struct attribute_group md_redundancy_group = {
3177 .name = NULL,
3178 .attrs = md_redundancy_attrs,
3182 static ssize_t
3183 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3185 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3186 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3187 ssize_t rv;
3189 if (!entry->show)
3190 return -EIO;
3191 rv = mddev_lock(mddev);
3192 if (!rv) {
3193 rv = entry->show(mddev, page);
3194 mddev_unlock(mddev);
3196 return rv;
3199 static ssize_t
3200 md_attr_store(struct kobject *kobj, struct attribute *attr,
3201 const char *page, size_t length)
3203 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3204 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3205 ssize_t rv;
3207 if (!entry->store)
3208 return -EIO;
3209 if (!capable(CAP_SYS_ADMIN))
3210 return -EACCES;
3211 rv = mddev_lock(mddev);
3212 if (!rv) {
3213 rv = entry->store(mddev, page, length);
3214 mddev_unlock(mddev);
3216 return rv;
3219 static void md_free(struct kobject *ko)
3221 mddev_t *mddev = container_of(ko, mddev_t, kobj);
3222 kfree(mddev);
3225 static struct sysfs_ops md_sysfs_ops = {
3226 .show = md_attr_show,
3227 .store = md_attr_store,
3229 static struct kobj_type md_ktype = {
3230 .release = md_free,
3231 .sysfs_ops = &md_sysfs_ops,
3232 .default_attrs = md_default_attrs,
3235 int mdp_major = 0;
3237 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3239 static DEFINE_MUTEX(disks_mutex);
3240 mddev_t *mddev = mddev_find(dev);
3241 struct gendisk *disk;
3242 int partitioned = (MAJOR(dev) != MD_MAJOR);
3243 int shift = partitioned ? MdpMinorShift : 0;
3244 int unit = MINOR(dev) >> shift;
3245 int error;
3247 if (!mddev)
3248 return NULL;
3250 mutex_lock(&disks_mutex);
3251 if (mddev->gendisk) {
3252 mutex_unlock(&disks_mutex);
3253 mddev_put(mddev);
3254 return NULL;
3256 disk = alloc_disk(1 << shift);
3257 if (!disk) {
3258 mutex_unlock(&disks_mutex);
3259 mddev_put(mddev);
3260 return NULL;
3262 disk->major = MAJOR(dev);
3263 disk->first_minor = unit << shift;
3264 if (partitioned)
3265 sprintf(disk->disk_name, "md_d%d", unit);
3266 else
3267 sprintf(disk->disk_name, "md%d", unit);
3268 disk->fops = &md_fops;
3269 disk->private_data = mddev;
3270 disk->queue = mddev->queue;
3271 add_disk(disk);
3272 mddev->gendisk = disk;
3273 mutex_unlock(&disks_mutex);
3274 error = kobject_init_and_add(&mddev->kobj, &md_ktype, &disk->dev.kobj,
3275 "%s", "md");
3276 if (error)
3277 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3278 disk->disk_name);
3279 else
3280 kobject_uevent(&mddev->kobj, KOBJ_ADD);
3281 return NULL;
3284 static void md_safemode_timeout(unsigned long data)
3286 mddev_t *mddev = (mddev_t *) data;
3288 mddev->safemode = 1;
3289 md_wakeup_thread(mddev->thread);
3292 static int start_dirty_degraded;
3294 static int do_md_run(mddev_t * mddev)
3296 int err;
3297 int chunk_size;
3298 struct list_head *tmp;
3299 mdk_rdev_t *rdev;
3300 struct gendisk *disk;
3301 struct mdk_personality *pers;
3302 char b[BDEVNAME_SIZE];
3304 if (list_empty(&mddev->disks))
3305 /* cannot run an array with no devices.. */
3306 return -EINVAL;
3308 if (mddev->pers)
3309 return -EBUSY;
3312 * Analyze all RAID superblock(s)
3314 if (!mddev->raid_disks) {
3315 if (!mddev->persistent)
3316 return -EINVAL;
3317 analyze_sbs(mddev);
3320 chunk_size = mddev->chunk_size;
3322 if (chunk_size) {
3323 if (chunk_size > MAX_CHUNK_SIZE) {
3324 printk(KERN_ERR "too big chunk_size: %d > %d\n",
3325 chunk_size, MAX_CHUNK_SIZE);
3326 return -EINVAL;
3329 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
3331 if ( (1 << ffz(~chunk_size)) != chunk_size) {
3332 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3333 return -EINVAL;
3335 if (chunk_size < PAGE_SIZE) {
3336 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
3337 chunk_size, PAGE_SIZE);
3338 return -EINVAL;
3341 /* devices must have minimum size of one chunk */
3342 rdev_for_each(rdev, tmp, mddev) {
3343 if (test_bit(Faulty, &rdev->flags))
3344 continue;
3345 if (rdev->size < chunk_size / 1024) {
3346 printk(KERN_WARNING
3347 "md: Dev %s smaller than chunk_size:"
3348 " %lluk < %dk\n",
3349 bdevname(rdev->bdev,b),
3350 (unsigned long long)rdev->size,
3351 chunk_size / 1024);
3352 return -EINVAL;
3357 #ifdef CONFIG_KMOD
3358 if (mddev->level != LEVEL_NONE)
3359 request_module("md-level-%d", mddev->level);
3360 else if (mddev->clevel[0])
3361 request_module("md-%s", mddev->clevel);
3362 #endif
3365 * Drop all container device buffers, from now on
3366 * the only valid external interface is through the md
3367 * device.
3369 rdev_for_each(rdev, tmp, mddev) {
3370 if (test_bit(Faulty, &rdev->flags))
3371 continue;
3372 sync_blockdev(rdev->bdev);
3373 invalidate_bdev(rdev->bdev);
3375 /* perform some consistency tests on the device.
3376 * We don't want the data to overlap the metadata,
3377 * Internal Bitmap issues has handled elsewhere.
3379 if (rdev->data_offset < rdev->sb_offset) {
3380 if (mddev->size &&
3381 rdev->data_offset + mddev->size*2
3382 > rdev->sb_offset*2) {
3383 printk("md: %s: data overlaps metadata\n",
3384 mdname(mddev));
3385 return -EINVAL;
3387 } else {
3388 if (rdev->sb_offset*2 + rdev->sb_size/512
3389 > rdev->data_offset) {
3390 printk("md: %s: metadata overlaps data\n",
3391 mdname(mddev));
3392 return -EINVAL;
3397 md_probe(mddev->unit, NULL, NULL);
3398 disk = mddev->gendisk;
3399 if (!disk)
3400 return -ENOMEM;
3402 spin_lock(&pers_lock);
3403 pers = find_pers(mddev->level, mddev->clevel);
3404 if (!pers || !try_module_get(pers->owner)) {
3405 spin_unlock(&pers_lock);
3406 if (mddev->level != LEVEL_NONE)
3407 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3408 mddev->level);
3409 else
3410 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3411 mddev->clevel);
3412 return -EINVAL;
3414 mddev->pers = pers;
3415 spin_unlock(&pers_lock);
3416 mddev->level = pers->level;
3417 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3419 if (mddev->reshape_position != MaxSector &&
3420 pers->start_reshape == NULL) {
3421 /* This personality cannot handle reshaping... */
3422 mddev->pers = NULL;
3423 module_put(pers->owner);
3424 return -EINVAL;
3427 if (pers->sync_request) {
3428 /* Warn if this is a potentially silly
3429 * configuration.
3431 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3432 mdk_rdev_t *rdev2;
3433 struct list_head *tmp2;
3434 int warned = 0;
3435 rdev_for_each(rdev, tmp, mddev) {
3436 rdev_for_each(rdev2, tmp2, mddev) {
3437 if (rdev < rdev2 &&
3438 rdev->bdev->bd_contains ==
3439 rdev2->bdev->bd_contains) {
3440 printk(KERN_WARNING
3441 "%s: WARNING: %s appears to be"
3442 " on the same physical disk as"
3443 " %s.\n",
3444 mdname(mddev),
3445 bdevname(rdev->bdev,b),
3446 bdevname(rdev2->bdev,b2));
3447 warned = 1;
3451 if (warned)
3452 printk(KERN_WARNING
3453 "True protection against single-disk"
3454 " failure might be compromised.\n");
3457 mddev->recovery = 0;
3458 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3459 mddev->barriers_work = 1;
3460 mddev->ok_start_degraded = start_dirty_degraded;
3462 if (start_readonly)
3463 mddev->ro = 2; /* read-only, but switch on first write */
3465 err = mddev->pers->run(mddev);
3466 if (!err && mddev->pers->sync_request) {
3467 err = bitmap_create(mddev);
3468 if (err) {
3469 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3470 mdname(mddev), err);
3471 mddev->pers->stop(mddev);
3474 if (err) {
3475 printk(KERN_ERR "md: pers->run() failed ...\n");
3476 module_put(mddev->pers->owner);
3477 mddev->pers = NULL;
3478 bitmap_destroy(mddev);
3479 return err;
3481 if (mddev->pers->sync_request) {
3482 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3483 printk(KERN_WARNING
3484 "md: cannot register extra attributes for %s\n",
3485 mdname(mddev));
3486 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
3487 mddev->ro = 0;
3489 atomic_set(&mddev->writes_pending,0);
3490 mddev->safemode = 0;
3491 mddev->safemode_timer.function = md_safemode_timeout;
3492 mddev->safemode_timer.data = (unsigned long) mddev;
3493 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3494 mddev->in_sync = 1;
3496 rdev_for_each(rdev, tmp, mddev)
3497 if (rdev->raid_disk >= 0) {
3498 char nm[20];
3499 sprintf(nm, "rd%d", rdev->raid_disk);
3500 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3501 printk("md: cannot register %s for %s\n",
3502 nm, mdname(mddev));
3505 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3507 if (mddev->flags)
3508 md_update_sb(mddev, 0);
3510 set_capacity(disk, mddev->array_size<<1);
3512 /* If we call blk_queue_make_request here, it will
3513 * re-initialise max_sectors etc which may have been
3514 * refined inside -> run. So just set the bits we need to set.
3515 * Most initialisation happended when we called
3516 * blk_queue_make_request(..., md_fail_request)
3517 * earlier.
3519 mddev->queue->queuedata = mddev;
3520 mddev->queue->make_request_fn = mddev->pers->make_request;
3522 /* If there is a partially-recovered drive we need to
3523 * start recovery here. If we leave it to md_check_recovery,
3524 * it will remove the drives and not do the right thing
3526 if (mddev->degraded && !mddev->sync_thread) {
3527 struct list_head *rtmp;
3528 int spares = 0;
3529 rdev_for_each(rdev, rtmp, mddev)
3530 if (rdev->raid_disk >= 0 &&
3531 !test_bit(In_sync, &rdev->flags) &&
3532 !test_bit(Faulty, &rdev->flags))
3533 /* complete an interrupted recovery */
3534 spares++;
3535 if (spares && mddev->pers->sync_request) {
3536 mddev->recovery = 0;
3537 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3538 mddev->sync_thread = md_register_thread(md_do_sync,
3539 mddev,
3540 "%s_resync");
3541 if (!mddev->sync_thread) {
3542 printk(KERN_ERR "%s: could not start resync"
3543 " thread...\n",
3544 mdname(mddev));
3545 /* leave the spares where they are, it shouldn't hurt */
3546 mddev->recovery = 0;
3550 md_wakeup_thread(mddev->thread);
3551 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3553 mddev->changed = 1;
3554 md_new_event(mddev);
3555 kobject_uevent(&mddev->gendisk->dev.kobj, KOBJ_CHANGE);
3556 return 0;
3559 static int restart_array(mddev_t *mddev)
3561 struct gendisk *disk = mddev->gendisk;
3562 int err;
3565 * Complain if it has no devices
3567 err = -ENXIO;
3568 if (list_empty(&mddev->disks))
3569 goto out;
3571 if (mddev->pers) {
3572 err = -EBUSY;
3573 if (!mddev->ro)
3574 goto out;
3576 mddev->safemode = 0;
3577 mddev->ro = 0;
3578 set_disk_ro(disk, 0);
3580 printk(KERN_INFO "md: %s switched to read-write mode.\n",
3581 mdname(mddev));
3583 * Kick recovery or resync if necessary
3585 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3586 md_wakeup_thread(mddev->thread);
3587 md_wakeup_thread(mddev->sync_thread);
3588 err = 0;
3589 } else
3590 err = -EINVAL;
3592 out:
3593 return err;
3596 /* similar to deny_write_access, but accounts for our holding a reference
3597 * to the file ourselves */
3598 static int deny_bitmap_write_access(struct file * file)
3600 struct inode *inode = file->f_mapping->host;
3602 spin_lock(&inode->i_lock);
3603 if (atomic_read(&inode->i_writecount) > 1) {
3604 spin_unlock(&inode->i_lock);
3605 return -ETXTBSY;
3607 atomic_set(&inode->i_writecount, -1);
3608 spin_unlock(&inode->i_lock);
3610 return 0;
3613 static void restore_bitmap_write_access(struct file *file)
3615 struct inode *inode = file->f_mapping->host;
3617 spin_lock(&inode->i_lock);
3618 atomic_set(&inode->i_writecount, 1);
3619 spin_unlock(&inode->i_lock);
3622 /* mode:
3623 * 0 - completely stop and dis-assemble array
3624 * 1 - switch to readonly
3625 * 2 - stop but do not disassemble array
3627 static int do_md_stop(mddev_t * mddev, int mode)
3629 int err = 0;
3630 struct gendisk *disk = mddev->gendisk;
3632 if (mddev->pers) {
3633 if (atomic_read(&mddev->active)>2) {
3634 printk("md: %s still in use.\n",mdname(mddev));
3635 return -EBUSY;
3638 if (mddev->sync_thread) {
3639 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3640 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3641 md_unregister_thread(mddev->sync_thread);
3642 mddev->sync_thread = NULL;
3645 del_timer_sync(&mddev->safemode_timer);
3647 invalidate_partition(disk, 0);
3649 switch(mode) {
3650 case 1: /* readonly */
3651 err = -ENXIO;
3652 if (mddev->ro==1)
3653 goto out;
3654 mddev->ro = 1;
3655 break;
3656 case 0: /* disassemble */
3657 case 2: /* stop */
3658 bitmap_flush(mddev);
3659 md_super_wait(mddev);
3660 if (mddev->ro)
3661 set_disk_ro(disk, 0);
3662 blk_queue_make_request(mddev->queue, md_fail_request);
3663 mddev->pers->stop(mddev);
3664 mddev->queue->merge_bvec_fn = NULL;
3665 mddev->queue->unplug_fn = NULL;
3666 mddev->queue->backing_dev_info.congested_fn = NULL;
3667 if (mddev->pers->sync_request)
3668 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3670 module_put(mddev->pers->owner);
3671 mddev->pers = NULL;
3673 set_capacity(disk, 0);
3674 mddev->changed = 1;
3676 if (mddev->ro)
3677 mddev->ro = 0;
3679 if (!mddev->in_sync || mddev->flags) {
3680 /* mark array as shutdown cleanly */
3681 mddev->in_sync = 1;
3682 md_update_sb(mddev, 1);
3684 if (mode == 1)
3685 set_disk_ro(disk, 1);
3686 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3690 * Free resources if final stop
3692 if (mode == 0) {
3693 mdk_rdev_t *rdev;
3694 struct list_head *tmp;
3696 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3698 bitmap_destroy(mddev);
3699 if (mddev->bitmap_file) {
3700 restore_bitmap_write_access(mddev->bitmap_file);
3701 fput(mddev->bitmap_file);
3702 mddev->bitmap_file = NULL;
3704 mddev->bitmap_offset = 0;
3706 rdev_for_each(rdev, tmp, mddev)
3707 if (rdev->raid_disk >= 0) {
3708 char nm[20];
3709 sprintf(nm, "rd%d", rdev->raid_disk);
3710 sysfs_remove_link(&mddev->kobj, nm);
3713 /* make sure all md_delayed_delete calls have finished */
3714 flush_scheduled_work();
3716 export_array(mddev);
3718 mddev->array_size = 0;
3719 mddev->size = 0;
3720 mddev->raid_disks = 0;
3721 mddev->recovery_cp = 0;
3722 mddev->resync_max = MaxSector;
3723 mddev->reshape_position = MaxSector;
3724 mddev->external = 0;
3725 mddev->persistent = 0;
3727 } else if (mddev->pers)
3728 printk(KERN_INFO "md: %s switched to read-only mode.\n",
3729 mdname(mddev));
3730 err = 0;
3731 md_new_event(mddev);
3732 out:
3733 return err;
3736 #ifndef MODULE
3737 static void autorun_array(mddev_t *mddev)
3739 mdk_rdev_t *rdev;
3740 struct list_head *tmp;
3741 int err;
3743 if (list_empty(&mddev->disks))
3744 return;
3746 printk(KERN_INFO "md: running: ");
3748 rdev_for_each(rdev, tmp, mddev) {
3749 char b[BDEVNAME_SIZE];
3750 printk("<%s>", bdevname(rdev->bdev,b));
3752 printk("\n");
3754 err = do_md_run (mddev);
3755 if (err) {
3756 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3757 do_md_stop (mddev, 0);
3762 * lets try to run arrays based on all disks that have arrived
3763 * until now. (those are in pending_raid_disks)
3765 * the method: pick the first pending disk, collect all disks with
3766 * the same UUID, remove all from the pending list and put them into
3767 * the 'same_array' list. Then order this list based on superblock
3768 * update time (freshest comes first), kick out 'old' disks and
3769 * compare superblocks. If everything's fine then run it.
3771 * If "unit" is allocated, then bump its reference count
3773 static void autorun_devices(int part)
3775 struct list_head *tmp;
3776 mdk_rdev_t *rdev0, *rdev;
3777 mddev_t *mddev;
3778 char b[BDEVNAME_SIZE];
3780 printk(KERN_INFO "md: autorun ...\n");
3781 while (!list_empty(&pending_raid_disks)) {
3782 int unit;
3783 dev_t dev;
3784 LIST_HEAD(candidates);
3785 rdev0 = list_entry(pending_raid_disks.next,
3786 mdk_rdev_t, same_set);
3788 printk(KERN_INFO "md: considering %s ...\n",
3789 bdevname(rdev0->bdev,b));
3790 INIT_LIST_HEAD(&candidates);
3791 rdev_for_each_list(rdev, tmp, pending_raid_disks)
3792 if (super_90_load(rdev, rdev0, 0) >= 0) {
3793 printk(KERN_INFO "md: adding %s ...\n",
3794 bdevname(rdev->bdev,b));
3795 list_move(&rdev->same_set, &candidates);
3798 * now we have a set of devices, with all of them having
3799 * mostly sane superblocks. It's time to allocate the
3800 * mddev.
3802 if (part) {
3803 dev = MKDEV(mdp_major,
3804 rdev0->preferred_minor << MdpMinorShift);
3805 unit = MINOR(dev) >> MdpMinorShift;
3806 } else {
3807 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3808 unit = MINOR(dev);
3810 if (rdev0->preferred_minor != unit) {
3811 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3812 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3813 break;
3816 md_probe(dev, NULL, NULL);
3817 mddev = mddev_find(dev);
3818 if (!mddev) {
3819 printk(KERN_ERR
3820 "md: cannot allocate memory for md drive.\n");
3821 break;
3823 if (mddev_lock(mddev))
3824 printk(KERN_WARNING "md: %s locked, cannot run\n",
3825 mdname(mddev));
3826 else if (mddev->raid_disks || mddev->major_version
3827 || !list_empty(&mddev->disks)) {
3828 printk(KERN_WARNING
3829 "md: %s already running, cannot run %s\n",
3830 mdname(mddev), bdevname(rdev0->bdev,b));
3831 mddev_unlock(mddev);
3832 } else {
3833 printk(KERN_INFO "md: created %s\n", mdname(mddev));
3834 mddev->persistent = 1;
3835 rdev_for_each_list(rdev, tmp, candidates) {
3836 list_del_init(&rdev->same_set);
3837 if (bind_rdev_to_array(rdev, mddev))
3838 export_rdev(rdev);
3840 autorun_array(mddev);
3841 mddev_unlock(mddev);
3843 /* on success, candidates will be empty, on error
3844 * it won't...
3846 rdev_for_each_list(rdev, tmp, candidates)
3847 export_rdev(rdev);
3848 mddev_put(mddev);
3850 printk(KERN_INFO "md: ... autorun DONE.\n");
3852 #endif /* !MODULE */
3854 static int get_version(void __user * arg)
3856 mdu_version_t ver;
3858 ver.major = MD_MAJOR_VERSION;
3859 ver.minor = MD_MINOR_VERSION;
3860 ver.patchlevel = MD_PATCHLEVEL_VERSION;
3862 if (copy_to_user(arg, &ver, sizeof(ver)))
3863 return -EFAULT;
3865 return 0;
3868 static int get_array_info(mddev_t * mddev, void __user * arg)
3870 mdu_array_info_t info;
3871 int nr,working,active,failed,spare;
3872 mdk_rdev_t *rdev;
3873 struct list_head *tmp;
3875 nr=working=active=failed=spare=0;
3876 rdev_for_each(rdev, tmp, mddev) {
3877 nr++;
3878 if (test_bit(Faulty, &rdev->flags))
3879 failed++;
3880 else {
3881 working++;
3882 if (test_bit(In_sync, &rdev->flags))
3883 active++;
3884 else
3885 spare++;
3889 info.major_version = mddev->major_version;
3890 info.minor_version = mddev->minor_version;
3891 info.patch_version = MD_PATCHLEVEL_VERSION;
3892 info.ctime = mddev->ctime;
3893 info.level = mddev->level;
3894 info.size = mddev->size;
3895 if (info.size != mddev->size) /* overflow */
3896 info.size = -1;
3897 info.nr_disks = nr;
3898 info.raid_disks = mddev->raid_disks;
3899 info.md_minor = mddev->md_minor;
3900 info.not_persistent= !mddev->persistent;
3902 info.utime = mddev->utime;
3903 info.state = 0;
3904 if (mddev->in_sync)
3905 info.state = (1<<MD_SB_CLEAN);
3906 if (mddev->bitmap && mddev->bitmap_offset)
3907 info.state = (1<<MD_SB_BITMAP_PRESENT);
3908 info.active_disks = active;
3909 info.working_disks = working;
3910 info.failed_disks = failed;
3911 info.spare_disks = spare;
3913 info.layout = mddev->layout;
3914 info.chunk_size = mddev->chunk_size;
3916 if (copy_to_user(arg, &info, sizeof(info)))
3917 return -EFAULT;
3919 return 0;
3922 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3924 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3925 char *ptr, *buf = NULL;
3926 int err = -ENOMEM;
3928 md_allow_write(mddev);
3930 file = kmalloc(sizeof(*file), GFP_KERNEL);
3931 if (!file)
3932 goto out;
3934 /* bitmap disabled, zero the first byte and copy out */
3935 if (!mddev->bitmap || !mddev->bitmap->file) {
3936 file->pathname[0] = '\0';
3937 goto copy_out;
3940 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3941 if (!buf)
3942 goto out;
3944 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3945 if (!ptr)
3946 goto out;
3948 strcpy(file->pathname, ptr);
3950 copy_out:
3951 err = 0;
3952 if (copy_to_user(arg, file, sizeof(*file)))
3953 err = -EFAULT;
3954 out:
3955 kfree(buf);
3956 kfree(file);
3957 return err;
3960 static int get_disk_info(mddev_t * mddev, void __user * arg)
3962 mdu_disk_info_t info;
3963 unsigned int nr;
3964 mdk_rdev_t *rdev;
3966 if (copy_from_user(&info, arg, sizeof(info)))
3967 return -EFAULT;
3969 nr = info.number;
3971 rdev = find_rdev_nr(mddev, nr);
3972 if (rdev) {
3973 info.major = MAJOR(rdev->bdev->bd_dev);
3974 info.minor = MINOR(rdev->bdev->bd_dev);
3975 info.raid_disk = rdev->raid_disk;
3976 info.state = 0;
3977 if (test_bit(Faulty, &rdev->flags))
3978 info.state |= (1<<MD_DISK_FAULTY);
3979 else if (test_bit(In_sync, &rdev->flags)) {
3980 info.state |= (1<<MD_DISK_ACTIVE);
3981 info.state |= (1<<MD_DISK_SYNC);
3983 if (test_bit(WriteMostly, &rdev->flags))
3984 info.state |= (1<<MD_DISK_WRITEMOSTLY);
3985 } else {
3986 info.major = info.minor = 0;
3987 info.raid_disk = -1;
3988 info.state = (1<<MD_DISK_REMOVED);
3991 if (copy_to_user(arg, &info, sizeof(info)))
3992 return -EFAULT;
3994 return 0;
3997 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3999 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4000 mdk_rdev_t *rdev;
4001 dev_t dev = MKDEV(info->major,info->minor);
4003 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
4004 return -EOVERFLOW;
4006 if (!mddev->raid_disks) {
4007 int err;
4008 /* expecting a device which has a superblock */
4009 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
4010 if (IS_ERR(rdev)) {
4011 printk(KERN_WARNING
4012 "md: md_import_device returned %ld\n",
4013 PTR_ERR(rdev));
4014 return PTR_ERR(rdev);
4016 if (!list_empty(&mddev->disks)) {
4017 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
4018 mdk_rdev_t, same_set);
4019 int err = super_types[mddev->major_version]
4020 .load_super(rdev, rdev0, mddev->minor_version);
4021 if (err < 0) {
4022 printk(KERN_WARNING
4023 "md: %s has different UUID to %s\n",
4024 bdevname(rdev->bdev,b),
4025 bdevname(rdev0->bdev,b2));
4026 export_rdev(rdev);
4027 return -EINVAL;
4030 err = bind_rdev_to_array(rdev, mddev);
4031 if (err)
4032 export_rdev(rdev);
4033 return err;
4037 * add_new_disk can be used once the array is assembled
4038 * to add "hot spares". They must already have a superblock
4039 * written
4041 if (mddev->pers) {
4042 int err;
4043 if (!mddev->pers->hot_add_disk) {
4044 printk(KERN_WARNING
4045 "%s: personality does not support diskops!\n",
4046 mdname(mddev));
4047 return -EINVAL;
4049 if (mddev->persistent)
4050 rdev = md_import_device(dev, mddev->major_version,
4051 mddev->minor_version);
4052 else
4053 rdev = md_import_device(dev, -1, -1);
4054 if (IS_ERR(rdev)) {
4055 printk(KERN_WARNING
4056 "md: md_import_device returned %ld\n",
4057 PTR_ERR(rdev));
4058 return PTR_ERR(rdev);
4060 /* set save_raid_disk if appropriate */
4061 if (!mddev->persistent) {
4062 if (info->state & (1<<MD_DISK_SYNC) &&
4063 info->raid_disk < mddev->raid_disks)
4064 rdev->raid_disk = info->raid_disk;
4065 else
4066 rdev->raid_disk = -1;
4067 } else
4068 super_types[mddev->major_version].
4069 validate_super(mddev, rdev);
4070 rdev->saved_raid_disk = rdev->raid_disk;
4072 clear_bit(In_sync, &rdev->flags); /* just to be sure */
4073 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4074 set_bit(WriteMostly, &rdev->flags);
4076 rdev->raid_disk = -1;
4077 err = bind_rdev_to_array(rdev, mddev);
4078 if (!err && !mddev->pers->hot_remove_disk) {
4079 /* If there is hot_add_disk but no hot_remove_disk
4080 * then added disks for geometry changes,
4081 * and should be added immediately.
4083 super_types[mddev->major_version].
4084 validate_super(mddev, rdev);
4085 err = mddev->pers->hot_add_disk(mddev, rdev);
4086 if (err)
4087 unbind_rdev_from_array(rdev);
4089 if (err)
4090 export_rdev(rdev);
4092 md_update_sb(mddev, 1);
4093 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4094 md_wakeup_thread(mddev->thread);
4095 return err;
4098 /* otherwise, add_new_disk is only allowed
4099 * for major_version==0 superblocks
4101 if (mddev->major_version != 0) {
4102 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
4103 mdname(mddev));
4104 return -EINVAL;
4107 if (!(info->state & (1<<MD_DISK_FAULTY))) {
4108 int err;
4109 rdev = md_import_device (dev, -1, 0);
4110 if (IS_ERR(rdev)) {
4111 printk(KERN_WARNING
4112 "md: error, md_import_device() returned %ld\n",
4113 PTR_ERR(rdev));
4114 return PTR_ERR(rdev);
4116 rdev->desc_nr = info->number;
4117 if (info->raid_disk < mddev->raid_disks)
4118 rdev->raid_disk = info->raid_disk;
4119 else
4120 rdev->raid_disk = -1;
4122 if (rdev->raid_disk < mddev->raid_disks)
4123 if (info->state & (1<<MD_DISK_SYNC))
4124 set_bit(In_sync, &rdev->flags);
4126 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4127 set_bit(WriteMostly, &rdev->flags);
4129 if (!mddev->persistent) {
4130 printk(KERN_INFO "md: nonpersistent superblock ...\n");
4131 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
4132 } else
4133 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
4134 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
4136 err = bind_rdev_to_array(rdev, mddev);
4137 if (err) {
4138 export_rdev(rdev);
4139 return err;
4143 return 0;
4146 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
4148 char b[BDEVNAME_SIZE];
4149 mdk_rdev_t *rdev;
4151 if (!mddev->pers)
4152 return -ENODEV;
4154 rdev = find_rdev(mddev, dev);
4155 if (!rdev)
4156 return -ENXIO;
4158 if (rdev->raid_disk >= 0)
4159 goto busy;
4161 kick_rdev_from_array(rdev);
4162 md_update_sb(mddev, 1);
4163 md_new_event(mddev);
4165 return 0;
4166 busy:
4167 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
4168 bdevname(rdev->bdev,b), mdname(mddev));
4169 return -EBUSY;
4172 static int hot_add_disk(mddev_t * mddev, dev_t dev)
4174 char b[BDEVNAME_SIZE];
4175 int err;
4176 unsigned int size;
4177 mdk_rdev_t *rdev;
4179 if (!mddev->pers)
4180 return -ENODEV;
4182 if (mddev->major_version != 0) {
4183 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
4184 " version-0 superblocks.\n",
4185 mdname(mddev));
4186 return -EINVAL;
4188 if (!mddev->pers->hot_add_disk) {
4189 printk(KERN_WARNING
4190 "%s: personality does not support diskops!\n",
4191 mdname(mddev));
4192 return -EINVAL;
4195 rdev = md_import_device (dev, -1, 0);
4196 if (IS_ERR(rdev)) {
4197 printk(KERN_WARNING
4198 "md: error, md_import_device() returned %ld\n",
4199 PTR_ERR(rdev));
4200 return -EINVAL;
4203 if (mddev->persistent)
4204 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
4205 else
4206 rdev->sb_offset =
4207 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
4209 size = calc_dev_size(rdev, mddev->chunk_size);
4210 rdev->size = size;
4212 if (test_bit(Faulty, &rdev->flags)) {
4213 printk(KERN_WARNING
4214 "md: can not hot-add faulty %s disk to %s!\n",
4215 bdevname(rdev->bdev,b), mdname(mddev));
4216 err = -EINVAL;
4217 goto abort_export;
4219 clear_bit(In_sync, &rdev->flags);
4220 rdev->desc_nr = -1;
4221 rdev->saved_raid_disk = -1;
4222 err = bind_rdev_to_array(rdev, mddev);
4223 if (err)
4224 goto abort_export;
4227 * The rest should better be atomic, we can have disk failures
4228 * noticed in interrupt contexts ...
4231 if (rdev->desc_nr == mddev->max_disks) {
4232 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
4233 mdname(mddev));
4234 err = -EBUSY;
4235 goto abort_unbind_export;
4238 rdev->raid_disk = -1;
4240 md_update_sb(mddev, 1);
4243 * Kick recovery, maybe this spare has to be added to the
4244 * array immediately.
4246 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4247 md_wakeup_thread(mddev->thread);
4248 md_new_event(mddev);
4249 return 0;
4251 abort_unbind_export:
4252 unbind_rdev_from_array(rdev);
4254 abort_export:
4255 export_rdev(rdev);
4256 return err;
4259 static int set_bitmap_file(mddev_t *mddev, int fd)
4261 int err;
4263 if (mddev->pers) {
4264 if (!mddev->pers->quiesce)
4265 return -EBUSY;
4266 if (mddev->recovery || mddev->sync_thread)
4267 return -EBUSY;
4268 /* we should be able to change the bitmap.. */
4272 if (fd >= 0) {
4273 if (mddev->bitmap)
4274 return -EEXIST; /* cannot add when bitmap is present */
4275 mddev->bitmap_file = fget(fd);
4277 if (mddev->bitmap_file == NULL) {
4278 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4279 mdname(mddev));
4280 return -EBADF;
4283 err = deny_bitmap_write_access(mddev->bitmap_file);
4284 if (err) {
4285 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4286 mdname(mddev));
4287 fput(mddev->bitmap_file);
4288 mddev->bitmap_file = NULL;
4289 return err;
4291 mddev->bitmap_offset = 0; /* file overrides offset */
4292 } else if (mddev->bitmap == NULL)
4293 return -ENOENT; /* cannot remove what isn't there */
4294 err = 0;
4295 if (mddev->pers) {
4296 mddev->pers->quiesce(mddev, 1);
4297 if (fd >= 0)
4298 err = bitmap_create(mddev);
4299 if (fd < 0 || err) {
4300 bitmap_destroy(mddev);
4301 fd = -1; /* make sure to put the file */
4303 mddev->pers->quiesce(mddev, 0);
4305 if (fd < 0) {
4306 if (mddev->bitmap_file) {
4307 restore_bitmap_write_access(mddev->bitmap_file);
4308 fput(mddev->bitmap_file);
4310 mddev->bitmap_file = NULL;
4313 return err;
4317 * set_array_info is used two different ways
4318 * The original usage is when creating a new array.
4319 * In this usage, raid_disks is > 0 and it together with
4320 * level, size, not_persistent,layout,chunksize determine the
4321 * shape of the array.
4322 * This will always create an array with a type-0.90.0 superblock.
4323 * The newer usage is when assembling an array.
4324 * In this case raid_disks will be 0, and the major_version field is
4325 * use to determine which style super-blocks are to be found on the devices.
4326 * The minor and patch _version numbers are also kept incase the
4327 * super_block handler wishes to interpret them.
4329 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
4332 if (info->raid_disks == 0) {
4333 /* just setting version number for superblock loading */
4334 if (info->major_version < 0 ||
4335 info->major_version >= ARRAY_SIZE(super_types) ||
4336 super_types[info->major_version].name == NULL) {
4337 /* maybe try to auto-load a module? */
4338 printk(KERN_INFO
4339 "md: superblock version %d not known\n",
4340 info->major_version);
4341 return -EINVAL;
4343 mddev->major_version = info->major_version;
4344 mddev->minor_version = info->minor_version;
4345 mddev->patch_version = info->patch_version;
4346 mddev->persistent = !info->not_persistent;
4347 return 0;
4349 mddev->major_version = MD_MAJOR_VERSION;
4350 mddev->minor_version = MD_MINOR_VERSION;
4351 mddev->patch_version = MD_PATCHLEVEL_VERSION;
4352 mddev->ctime = get_seconds();
4354 mddev->level = info->level;
4355 mddev->clevel[0] = 0;
4356 mddev->size = info->size;
4357 mddev->raid_disks = info->raid_disks;
4358 /* don't set md_minor, it is determined by which /dev/md* was
4359 * openned
4361 if (info->state & (1<<MD_SB_CLEAN))
4362 mddev->recovery_cp = MaxSector;
4363 else
4364 mddev->recovery_cp = 0;
4365 mddev->persistent = ! info->not_persistent;
4366 mddev->external = 0;
4368 mddev->layout = info->layout;
4369 mddev->chunk_size = info->chunk_size;
4371 mddev->max_disks = MD_SB_DISKS;
4373 if (mddev->persistent)
4374 mddev->flags = 0;
4375 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4377 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4378 mddev->bitmap_offset = 0;
4380 mddev->reshape_position = MaxSector;
4383 * Generate a 128 bit UUID
4385 get_random_bytes(mddev->uuid, 16);
4387 mddev->new_level = mddev->level;
4388 mddev->new_chunk = mddev->chunk_size;
4389 mddev->new_layout = mddev->layout;
4390 mddev->delta_disks = 0;
4392 return 0;
4395 static int update_size(mddev_t *mddev, unsigned long size)
4397 mdk_rdev_t * rdev;
4398 int rv;
4399 struct list_head *tmp;
4400 int fit = (size == 0);
4402 if (mddev->pers->resize == NULL)
4403 return -EINVAL;
4404 /* The "size" is the amount of each device that is used.
4405 * This can only make sense for arrays with redundancy.
4406 * linear and raid0 always use whatever space is available
4407 * We can only consider changing the size if no resync
4408 * or reconstruction is happening, and if the new size
4409 * is acceptable. It must fit before the sb_offset or,
4410 * if that is <data_offset, it must fit before the
4411 * size of each device.
4412 * If size is zero, we find the largest size that fits.
4414 if (mddev->sync_thread)
4415 return -EBUSY;
4416 rdev_for_each(rdev, tmp, mddev) {
4417 sector_t avail;
4418 avail = rdev->size * 2;
4420 if (fit && (size == 0 || size > avail/2))
4421 size = avail/2;
4422 if (avail < ((sector_t)size << 1))
4423 return -ENOSPC;
4425 rv = mddev->pers->resize(mddev, (sector_t)size *2);
4426 if (!rv) {
4427 struct block_device *bdev;
4429 bdev = bdget_disk(mddev->gendisk, 0);
4430 if (bdev) {
4431 mutex_lock(&bdev->bd_inode->i_mutex);
4432 i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4433 mutex_unlock(&bdev->bd_inode->i_mutex);
4434 bdput(bdev);
4437 return rv;
4440 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4442 int rv;
4443 /* change the number of raid disks */
4444 if (mddev->pers->check_reshape == NULL)
4445 return -EINVAL;
4446 if (raid_disks <= 0 ||
4447 raid_disks >= mddev->max_disks)
4448 return -EINVAL;
4449 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4450 return -EBUSY;
4451 mddev->delta_disks = raid_disks - mddev->raid_disks;
4453 rv = mddev->pers->check_reshape(mddev);
4454 return rv;
4459 * update_array_info is used to change the configuration of an
4460 * on-line array.
4461 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4462 * fields in the info are checked against the array.
4463 * Any differences that cannot be handled will cause an error.
4464 * Normally, only one change can be managed at a time.
4466 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4468 int rv = 0;
4469 int cnt = 0;
4470 int state = 0;
4472 /* calculate expected state,ignoring low bits */
4473 if (mddev->bitmap && mddev->bitmap_offset)
4474 state |= (1 << MD_SB_BITMAP_PRESENT);
4476 if (mddev->major_version != info->major_version ||
4477 mddev->minor_version != info->minor_version ||
4478 /* mddev->patch_version != info->patch_version || */
4479 mddev->ctime != info->ctime ||
4480 mddev->level != info->level ||
4481 /* mddev->layout != info->layout || */
4482 !mddev->persistent != info->not_persistent||
4483 mddev->chunk_size != info->chunk_size ||
4484 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4485 ((state^info->state) & 0xfffffe00)
4487 return -EINVAL;
4488 /* Check there is only one change */
4489 if (info->size >= 0 && mddev->size != info->size) cnt++;
4490 if (mddev->raid_disks != info->raid_disks) cnt++;
4491 if (mddev->layout != info->layout) cnt++;
4492 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4493 if (cnt == 0) return 0;
4494 if (cnt > 1) return -EINVAL;
4496 if (mddev->layout != info->layout) {
4497 /* Change layout
4498 * we don't need to do anything at the md level, the
4499 * personality will take care of it all.
4501 if (mddev->pers->reconfig == NULL)
4502 return -EINVAL;
4503 else
4504 return mddev->pers->reconfig(mddev, info->layout, -1);
4506 if (info->size >= 0 && mddev->size != info->size)
4507 rv = update_size(mddev, info->size);
4509 if (mddev->raid_disks != info->raid_disks)
4510 rv = update_raid_disks(mddev, info->raid_disks);
4512 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4513 if (mddev->pers->quiesce == NULL)
4514 return -EINVAL;
4515 if (mddev->recovery || mddev->sync_thread)
4516 return -EBUSY;
4517 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4518 /* add the bitmap */
4519 if (mddev->bitmap)
4520 return -EEXIST;
4521 if (mddev->default_bitmap_offset == 0)
4522 return -EINVAL;
4523 mddev->bitmap_offset = mddev->default_bitmap_offset;
4524 mddev->pers->quiesce(mddev, 1);
4525 rv = bitmap_create(mddev);
4526 if (rv)
4527 bitmap_destroy(mddev);
4528 mddev->pers->quiesce(mddev, 0);
4529 } else {
4530 /* remove the bitmap */
4531 if (!mddev->bitmap)
4532 return -ENOENT;
4533 if (mddev->bitmap->file)
4534 return -EINVAL;
4535 mddev->pers->quiesce(mddev, 1);
4536 bitmap_destroy(mddev);
4537 mddev->pers->quiesce(mddev, 0);
4538 mddev->bitmap_offset = 0;
4541 md_update_sb(mddev, 1);
4542 return rv;
4545 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4547 mdk_rdev_t *rdev;
4549 if (mddev->pers == NULL)
4550 return -ENODEV;
4552 rdev = find_rdev(mddev, dev);
4553 if (!rdev)
4554 return -ENODEV;
4556 md_error(mddev, rdev);
4557 return 0;
4560 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4562 mddev_t *mddev = bdev->bd_disk->private_data;
4564 geo->heads = 2;
4565 geo->sectors = 4;
4566 geo->cylinders = get_capacity(mddev->gendisk) / 8;
4567 return 0;
4570 static int md_ioctl(struct inode *inode, struct file *file,
4571 unsigned int cmd, unsigned long arg)
4573 int err = 0;
4574 void __user *argp = (void __user *)arg;
4575 mddev_t *mddev = NULL;
4577 if (!capable(CAP_SYS_ADMIN))
4578 return -EACCES;
4581 * Commands dealing with the RAID driver but not any
4582 * particular array:
4584 switch (cmd)
4586 case RAID_VERSION:
4587 err = get_version(argp);
4588 goto done;
4590 case PRINT_RAID_DEBUG:
4591 err = 0;
4592 md_print_devices();
4593 goto done;
4595 #ifndef MODULE
4596 case RAID_AUTORUN:
4597 err = 0;
4598 autostart_arrays(arg);
4599 goto done;
4600 #endif
4601 default:;
4605 * Commands creating/starting a new array:
4608 mddev = inode->i_bdev->bd_disk->private_data;
4610 if (!mddev) {
4611 BUG();
4612 goto abort;
4615 err = mddev_lock(mddev);
4616 if (err) {
4617 printk(KERN_INFO
4618 "md: ioctl lock interrupted, reason %d, cmd %d\n",
4619 err, cmd);
4620 goto abort;
4623 switch (cmd)
4625 case SET_ARRAY_INFO:
4627 mdu_array_info_t info;
4628 if (!arg)
4629 memset(&info, 0, sizeof(info));
4630 else if (copy_from_user(&info, argp, sizeof(info))) {
4631 err = -EFAULT;
4632 goto abort_unlock;
4634 if (mddev->pers) {
4635 err = update_array_info(mddev, &info);
4636 if (err) {
4637 printk(KERN_WARNING "md: couldn't update"
4638 " array info. %d\n", err);
4639 goto abort_unlock;
4641 goto done_unlock;
4643 if (!list_empty(&mddev->disks)) {
4644 printk(KERN_WARNING
4645 "md: array %s already has disks!\n",
4646 mdname(mddev));
4647 err = -EBUSY;
4648 goto abort_unlock;
4650 if (mddev->raid_disks) {
4651 printk(KERN_WARNING
4652 "md: array %s already initialised!\n",
4653 mdname(mddev));
4654 err = -EBUSY;
4655 goto abort_unlock;
4657 err = set_array_info(mddev, &info);
4658 if (err) {
4659 printk(KERN_WARNING "md: couldn't set"
4660 " array info. %d\n", err);
4661 goto abort_unlock;
4664 goto done_unlock;
4666 default:;
4670 * Commands querying/configuring an existing array:
4672 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4673 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
4674 if ((!mddev->raid_disks && !mddev->external)
4675 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4676 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
4677 && cmd != GET_BITMAP_FILE) {
4678 err = -ENODEV;
4679 goto abort_unlock;
4683 * Commands even a read-only array can execute:
4685 switch (cmd)
4687 case GET_ARRAY_INFO:
4688 err = get_array_info(mddev, argp);
4689 goto done_unlock;
4691 case GET_BITMAP_FILE:
4692 err = get_bitmap_file(mddev, argp);
4693 goto done_unlock;
4695 case GET_DISK_INFO:
4696 err = get_disk_info(mddev, argp);
4697 goto done_unlock;
4699 case RESTART_ARRAY_RW:
4700 err = restart_array(mddev);
4701 goto done_unlock;
4703 case STOP_ARRAY:
4704 err = do_md_stop (mddev, 0);
4705 goto done_unlock;
4707 case STOP_ARRAY_RO:
4708 err = do_md_stop (mddev, 1);
4709 goto done_unlock;
4712 * We have a problem here : there is no easy way to give a CHS
4713 * virtual geometry. We currently pretend that we have a 2 heads
4714 * 4 sectors (with a BIG number of cylinders...). This drives
4715 * dosfs just mad... ;-)
4720 * The remaining ioctls are changing the state of the
4721 * superblock, so we do not allow them on read-only arrays.
4722 * However non-MD ioctls (e.g. get-size) will still come through
4723 * here and hit the 'default' below, so only disallow
4724 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4726 if (_IOC_TYPE(cmd) == MD_MAJOR &&
4727 mddev->ro && mddev->pers) {
4728 if (mddev->ro == 2) {
4729 mddev->ro = 0;
4730 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4731 md_wakeup_thread(mddev->thread);
4733 } else {
4734 err = -EROFS;
4735 goto abort_unlock;
4739 switch (cmd)
4741 case ADD_NEW_DISK:
4743 mdu_disk_info_t info;
4744 if (copy_from_user(&info, argp, sizeof(info)))
4745 err = -EFAULT;
4746 else
4747 err = add_new_disk(mddev, &info);
4748 goto done_unlock;
4751 case HOT_REMOVE_DISK:
4752 err = hot_remove_disk(mddev, new_decode_dev(arg));
4753 goto done_unlock;
4755 case HOT_ADD_DISK:
4756 err = hot_add_disk(mddev, new_decode_dev(arg));
4757 goto done_unlock;
4759 case SET_DISK_FAULTY:
4760 err = set_disk_faulty(mddev, new_decode_dev(arg));
4761 goto done_unlock;
4763 case RUN_ARRAY:
4764 err = do_md_run (mddev);
4765 goto done_unlock;
4767 case SET_BITMAP_FILE:
4768 err = set_bitmap_file(mddev, (int)arg);
4769 goto done_unlock;
4771 default:
4772 err = -EINVAL;
4773 goto abort_unlock;
4776 done_unlock:
4777 abort_unlock:
4778 mddev_unlock(mddev);
4780 return err;
4781 done:
4782 if (err)
4783 MD_BUG();
4784 abort:
4785 return err;
4788 static int md_open(struct inode *inode, struct file *file)
4791 * Succeed if we can lock the mddev, which confirms that
4792 * it isn't being stopped right now.
4794 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4795 int err;
4797 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
4798 goto out;
4800 err = 0;
4801 mddev_get(mddev);
4802 mddev_unlock(mddev);
4804 check_disk_change(inode->i_bdev);
4805 out:
4806 return err;
4809 static int md_release(struct inode *inode, struct file * file)
4811 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4813 BUG_ON(!mddev);
4814 mddev_put(mddev);
4816 return 0;
4819 static int md_media_changed(struct gendisk *disk)
4821 mddev_t *mddev = disk->private_data;
4823 return mddev->changed;
4826 static int md_revalidate(struct gendisk *disk)
4828 mddev_t *mddev = disk->private_data;
4830 mddev->changed = 0;
4831 return 0;
4833 static struct block_device_operations md_fops =
4835 .owner = THIS_MODULE,
4836 .open = md_open,
4837 .release = md_release,
4838 .ioctl = md_ioctl,
4839 .getgeo = md_getgeo,
4840 .media_changed = md_media_changed,
4841 .revalidate_disk= md_revalidate,
4844 static int md_thread(void * arg)
4846 mdk_thread_t *thread = arg;
4849 * md_thread is a 'system-thread', it's priority should be very
4850 * high. We avoid resource deadlocks individually in each
4851 * raid personality. (RAID5 does preallocation) We also use RR and
4852 * the very same RT priority as kswapd, thus we will never get
4853 * into a priority inversion deadlock.
4855 * we definitely have to have equal or higher priority than
4856 * bdflush, otherwise bdflush will deadlock if there are too
4857 * many dirty RAID5 blocks.
4860 allow_signal(SIGKILL);
4861 while (!kthread_should_stop()) {
4863 /* We need to wait INTERRUPTIBLE so that
4864 * we don't add to the load-average.
4865 * That means we need to be sure no signals are
4866 * pending
4868 if (signal_pending(current))
4869 flush_signals(current);
4871 wait_event_interruptible_timeout
4872 (thread->wqueue,
4873 test_bit(THREAD_WAKEUP, &thread->flags)
4874 || kthread_should_stop(),
4875 thread->timeout);
4877 clear_bit(THREAD_WAKEUP, &thread->flags);
4879 thread->run(thread->mddev);
4882 return 0;
4885 void md_wakeup_thread(mdk_thread_t *thread)
4887 if (thread) {
4888 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4889 set_bit(THREAD_WAKEUP, &thread->flags);
4890 wake_up(&thread->wqueue);
4894 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4895 const char *name)
4897 mdk_thread_t *thread;
4899 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4900 if (!thread)
4901 return NULL;
4903 init_waitqueue_head(&thread->wqueue);
4905 thread->run = run;
4906 thread->mddev = mddev;
4907 thread->timeout = MAX_SCHEDULE_TIMEOUT;
4908 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4909 if (IS_ERR(thread->tsk)) {
4910 kfree(thread);
4911 return NULL;
4913 return thread;
4916 void md_unregister_thread(mdk_thread_t *thread)
4918 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
4920 kthread_stop(thread->tsk);
4921 kfree(thread);
4924 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4926 if (!mddev) {
4927 MD_BUG();
4928 return;
4931 if (!rdev || test_bit(Faulty, &rdev->flags))
4932 return;
4934 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4935 mdname(mddev),
4936 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4937 __builtin_return_address(0),__builtin_return_address(1),
4938 __builtin_return_address(2),__builtin_return_address(3));
4940 if (!mddev->pers)
4941 return;
4942 if (!mddev->pers->error_handler)
4943 return;
4944 mddev->pers->error_handler(mddev,rdev);
4945 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4946 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4947 md_wakeup_thread(mddev->thread);
4948 md_new_event_inintr(mddev);
4951 /* seq_file implementation /proc/mdstat */
4953 static void status_unused(struct seq_file *seq)
4955 int i = 0;
4956 mdk_rdev_t *rdev;
4957 struct list_head *tmp;
4959 seq_printf(seq, "unused devices: ");
4961 rdev_for_each_list(rdev, tmp, pending_raid_disks) {
4962 char b[BDEVNAME_SIZE];
4963 i++;
4964 seq_printf(seq, "%s ",
4965 bdevname(rdev->bdev,b));
4967 if (!i)
4968 seq_printf(seq, "<none>");
4970 seq_printf(seq, "\n");
4974 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4976 sector_t max_blocks, resync, res;
4977 unsigned long dt, db, rt;
4978 int scale;
4979 unsigned int per_milli;
4981 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4983 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4984 max_blocks = mddev->resync_max_sectors >> 1;
4985 else
4986 max_blocks = mddev->size;
4989 * Should not happen.
4991 if (!max_blocks) {
4992 MD_BUG();
4993 return;
4995 /* Pick 'scale' such that (resync>>scale)*1000 will fit
4996 * in a sector_t, and (max_blocks>>scale) will fit in a
4997 * u32, as those are the requirements for sector_div.
4998 * Thus 'scale' must be at least 10
5000 scale = 10;
5001 if (sizeof(sector_t) > sizeof(unsigned long)) {
5002 while ( max_blocks/2 > (1ULL<<(scale+32)))
5003 scale++;
5005 res = (resync>>scale)*1000;
5006 sector_div(res, (u32)((max_blocks>>scale)+1));
5008 per_milli = res;
5010 int i, x = per_milli/50, y = 20-x;
5011 seq_printf(seq, "[");
5012 for (i = 0; i < x; i++)
5013 seq_printf(seq, "=");
5014 seq_printf(seq, ">");
5015 for (i = 0; i < y; i++)
5016 seq_printf(seq, ".");
5017 seq_printf(seq, "] ");
5019 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
5020 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
5021 "reshape" :
5022 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
5023 "check" :
5024 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
5025 "resync" : "recovery"))),
5026 per_milli/10, per_milli % 10,
5027 (unsigned long long) resync,
5028 (unsigned long long) max_blocks);
5031 * We do not want to overflow, so the order of operands and
5032 * the * 100 / 100 trick are important. We do a +1 to be
5033 * safe against division by zero. We only estimate anyway.
5035 * dt: time from mark until now
5036 * db: blocks written from mark until now
5037 * rt: remaining time
5039 dt = ((jiffies - mddev->resync_mark) / HZ);
5040 if (!dt) dt++;
5041 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
5042 - mddev->resync_mark_cnt;
5043 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
5045 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
5047 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
5050 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
5052 struct list_head *tmp;
5053 loff_t l = *pos;
5054 mddev_t *mddev;
5056 if (l >= 0x10000)
5057 return NULL;
5058 if (!l--)
5059 /* header */
5060 return (void*)1;
5062 spin_lock(&all_mddevs_lock);
5063 list_for_each(tmp,&all_mddevs)
5064 if (!l--) {
5065 mddev = list_entry(tmp, mddev_t, all_mddevs);
5066 mddev_get(mddev);
5067 spin_unlock(&all_mddevs_lock);
5068 return mddev;
5070 spin_unlock(&all_mddevs_lock);
5071 if (!l--)
5072 return (void*)2;/* tail */
5073 return NULL;
5076 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
5078 struct list_head *tmp;
5079 mddev_t *next_mddev, *mddev = v;
5081 ++*pos;
5082 if (v == (void*)2)
5083 return NULL;
5085 spin_lock(&all_mddevs_lock);
5086 if (v == (void*)1)
5087 tmp = all_mddevs.next;
5088 else
5089 tmp = mddev->all_mddevs.next;
5090 if (tmp != &all_mddevs)
5091 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
5092 else {
5093 next_mddev = (void*)2;
5094 *pos = 0x10000;
5096 spin_unlock(&all_mddevs_lock);
5098 if (v != (void*)1)
5099 mddev_put(mddev);
5100 return next_mddev;
5104 static void md_seq_stop(struct seq_file *seq, void *v)
5106 mddev_t *mddev = v;
5108 if (mddev && v != (void*)1 && v != (void*)2)
5109 mddev_put(mddev);
5112 struct mdstat_info {
5113 int event;
5116 static int md_seq_show(struct seq_file *seq, void *v)
5118 mddev_t *mddev = v;
5119 sector_t size;
5120 struct list_head *tmp2;
5121 mdk_rdev_t *rdev;
5122 struct mdstat_info *mi = seq->private;
5123 struct bitmap *bitmap;
5125 if (v == (void*)1) {
5126 struct mdk_personality *pers;
5127 seq_printf(seq, "Personalities : ");
5128 spin_lock(&pers_lock);
5129 list_for_each_entry(pers, &pers_list, list)
5130 seq_printf(seq, "[%s] ", pers->name);
5132 spin_unlock(&pers_lock);
5133 seq_printf(seq, "\n");
5134 mi->event = atomic_read(&md_event_count);
5135 return 0;
5137 if (v == (void*)2) {
5138 status_unused(seq);
5139 return 0;
5142 if (mddev_lock(mddev) < 0)
5143 return -EINTR;
5145 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
5146 seq_printf(seq, "%s : %sactive", mdname(mddev),
5147 mddev->pers ? "" : "in");
5148 if (mddev->pers) {
5149 if (mddev->ro==1)
5150 seq_printf(seq, " (read-only)");
5151 if (mddev->ro==2)
5152 seq_printf(seq, " (auto-read-only)");
5153 seq_printf(seq, " %s", mddev->pers->name);
5156 size = 0;
5157 rdev_for_each(rdev, tmp2, mddev) {
5158 char b[BDEVNAME_SIZE];
5159 seq_printf(seq, " %s[%d]",
5160 bdevname(rdev->bdev,b), rdev->desc_nr);
5161 if (test_bit(WriteMostly, &rdev->flags))
5162 seq_printf(seq, "(W)");
5163 if (test_bit(Faulty, &rdev->flags)) {
5164 seq_printf(seq, "(F)");
5165 continue;
5166 } else if (rdev->raid_disk < 0)
5167 seq_printf(seq, "(S)"); /* spare */
5168 size += rdev->size;
5171 if (!list_empty(&mddev->disks)) {
5172 if (mddev->pers)
5173 seq_printf(seq, "\n %llu blocks",
5174 (unsigned long long)mddev->array_size);
5175 else
5176 seq_printf(seq, "\n %llu blocks",
5177 (unsigned long long)size);
5179 if (mddev->persistent) {
5180 if (mddev->major_version != 0 ||
5181 mddev->minor_version != 90) {
5182 seq_printf(seq," super %d.%d",
5183 mddev->major_version,
5184 mddev->minor_version);
5186 } else if (mddev->external)
5187 seq_printf(seq, " super external:%s",
5188 mddev->metadata_type);
5189 else
5190 seq_printf(seq, " super non-persistent");
5192 if (mddev->pers) {
5193 mddev->pers->status (seq, mddev);
5194 seq_printf(seq, "\n ");
5195 if (mddev->pers->sync_request) {
5196 if (mddev->curr_resync > 2) {
5197 status_resync (seq, mddev);
5198 seq_printf(seq, "\n ");
5199 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
5200 seq_printf(seq, "\tresync=DELAYED\n ");
5201 else if (mddev->recovery_cp < MaxSector)
5202 seq_printf(seq, "\tresync=PENDING\n ");
5204 } else
5205 seq_printf(seq, "\n ");
5207 if ((bitmap = mddev->bitmap)) {
5208 unsigned long chunk_kb;
5209 unsigned long flags;
5210 spin_lock_irqsave(&bitmap->lock, flags);
5211 chunk_kb = bitmap->chunksize >> 10;
5212 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5213 "%lu%s chunk",
5214 bitmap->pages - bitmap->missing_pages,
5215 bitmap->pages,
5216 (bitmap->pages - bitmap->missing_pages)
5217 << (PAGE_SHIFT - 10),
5218 chunk_kb ? chunk_kb : bitmap->chunksize,
5219 chunk_kb ? "KB" : "B");
5220 if (bitmap->file) {
5221 seq_printf(seq, ", file: ");
5222 seq_path(seq, &bitmap->file->f_path, " \t\n");
5225 seq_printf(seq, "\n");
5226 spin_unlock_irqrestore(&bitmap->lock, flags);
5229 seq_printf(seq, "\n");
5231 mddev_unlock(mddev);
5233 return 0;
5236 static struct seq_operations md_seq_ops = {
5237 .start = md_seq_start,
5238 .next = md_seq_next,
5239 .stop = md_seq_stop,
5240 .show = md_seq_show,
5243 static int md_seq_open(struct inode *inode, struct file *file)
5245 int error;
5246 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5247 if (mi == NULL)
5248 return -ENOMEM;
5250 error = seq_open(file, &md_seq_ops);
5251 if (error)
5252 kfree(mi);
5253 else {
5254 struct seq_file *p = file->private_data;
5255 p->private = mi;
5256 mi->event = atomic_read(&md_event_count);
5258 return error;
5261 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
5263 struct seq_file *m = filp->private_data;
5264 struct mdstat_info *mi = m->private;
5265 int mask;
5267 poll_wait(filp, &md_event_waiters, wait);
5269 /* always allow read */
5270 mask = POLLIN | POLLRDNORM;
5272 if (mi->event != atomic_read(&md_event_count))
5273 mask |= POLLERR | POLLPRI;
5274 return mask;
5277 static const struct file_operations md_seq_fops = {
5278 .owner = THIS_MODULE,
5279 .open = md_seq_open,
5280 .read = seq_read,
5281 .llseek = seq_lseek,
5282 .release = seq_release_private,
5283 .poll = mdstat_poll,
5286 int register_md_personality(struct mdk_personality *p)
5288 spin_lock(&pers_lock);
5289 list_add_tail(&p->list, &pers_list);
5290 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
5291 spin_unlock(&pers_lock);
5292 return 0;
5295 int unregister_md_personality(struct mdk_personality *p)
5297 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
5298 spin_lock(&pers_lock);
5299 list_del_init(&p->list);
5300 spin_unlock(&pers_lock);
5301 return 0;
5304 static int is_mddev_idle(mddev_t *mddev)
5306 mdk_rdev_t * rdev;
5307 struct list_head *tmp;
5308 int idle;
5309 long curr_events;
5311 idle = 1;
5312 rdev_for_each(rdev, tmp, mddev) {
5313 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
5314 curr_events = disk_stat_read(disk, sectors[0]) +
5315 disk_stat_read(disk, sectors[1]) -
5316 atomic_read(&disk->sync_io);
5317 /* sync IO will cause sync_io to increase before the disk_stats
5318 * as sync_io is counted when a request starts, and
5319 * disk_stats is counted when it completes.
5320 * So resync activity will cause curr_events to be smaller than
5321 * when there was no such activity.
5322 * non-sync IO will cause disk_stat to increase without
5323 * increasing sync_io so curr_events will (eventually)
5324 * be larger than it was before. Once it becomes
5325 * substantially larger, the test below will cause
5326 * the array to appear non-idle, and resync will slow
5327 * down.
5328 * If there is a lot of outstanding resync activity when
5329 * we set last_event to curr_events, then all that activity
5330 * completing might cause the array to appear non-idle
5331 * and resync will be slowed down even though there might
5332 * not have been non-resync activity. This will only
5333 * happen once though. 'last_events' will soon reflect
5334 * the state where there is little or no outstanding
5335 * resync requests, and further resync activity will
5336 * always make curr_events less than last_events.
5339 if (curr_events - rdev->last_events > 4096) {
5340 rdev->last_events = curr_events;
5341 idle = 0;
5344 return idle;
5347 void md_done_sync(mddev_t *mddev, int blocks, int ok)
5349 /* another "blocks" (512byte) blocks have been synced */
5350 atomic_sub(blocks, &mddev->recovery_active);
5351 wake_up(&mddev->recovery_wait);
5352 if (!ok) {
5353 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5354 md_wakeup_thread(mddev->thread);
5355 // stop recovery, signal do_sync ....
5360 /* md_write_start(mddev, bi)
5361 * If we need to update some array metadata (e.g. 'active' flag
5362 * in superblock) before writing, schedule a superblock update
5363 * and wait for it to complete.
5365 void md_write_start(mddev_t *mddev, struct bio *bi)
5367 if (bio_data_dir(bi) != WRITE)
5368 return;
5370 BUG_ON(mddev->ro == 1);
5371 if (mddev->ro == 2) {
5372 /* need to switch to read/write */
5373 mddev->ro = 0;
5374 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5375 md_wakeup_thread(mddev->thread);
5376 md_wakeup_thread(mddev->sync_thread);
5378 atomic_inc(&mddev->writes_pending);
5379 if (mddev->in_sync) {
5380 spin_lock_irq(&mddev->write_lock);
5381 if (mddev->in_sync) {
5382 mddev->in_sync = 0;
5383 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5384 md_wakeup_thread(mddev->thread);
5386 spin_unlock_irq(&mddev->write_lock);
5388 wait_event(mddev->sb_wait, mddev->flags==0);
5391 void md_write_end(mddev_t *mddev)
5393 if (atomic_dec_and_test(&mddev->writes_pending)) {
5394 if (mddev->safemode == 2)
5395 md_wakeup_thread(mddev->thread);
5396 else if (mddev->safemode_delay)
5397 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5401 /* md_allow_write(mddev)
5402 * Calling this ensures that the array is marked 'active' so that writes
5403 * may proceed without blocking. It is important to call this before
5404 * attempting a GFP_KERNEL allocation while holding the mddev lock.
5405 * Must be called with mddev_lock held.
5407 void md_allow_write(mddev_t *mddev)
5409 if (!mddev->pers)
5410 return;
5411 if (mddev->ro)
5412 return;
5414 spin_lock_irq(&mddev->write_lock);
5415 if (mddev->in_sync) {
5416 mddev->in_sync = 0;
5417 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5418 if (mddev->safemode_delay &&
5419 mddev->safemode == 0)
5420 mddev->safemode = 1;
5421 spin_unlock_irq(&mddev->write_lock);
5422 md_update_sb(mddev, 0);
5423 } else
5424 spin_unlock_irq(&mddev->write_lock);
5426 EXPORT_SYMBOL_GPL(md_allow_write);
5428 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
5430 #define SYNC_MARKS 10
5431 #define SYNC_MARK_STEP (3*HZ)
5432 void md_do_sync(mddev_t *mddev)
5434 mddev_t *mddev2;
5435 unsigned int currspeed = 0,
5436 window;
5437 sector_t max_sectors,j, io_sectors;
5438 unsigned long mark[SYNC_MARKS];
5439 sector_t mark_cnt[SYNC_MARKS];
5440 int last_mark,m;
5441 struct list_head *tmp;
5442 sector_t last_check;
5443 int skipped = 0;
5444 struct list_head *rtmp;
5445 mdk_rdev_t *rdev;
5446 char *desc;
5448 /* just incase thread restarts... */
5449 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5450 return;
5451 if (mddev->ro) /* never try to sync a read-only array */
5452 return;
5454 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5455 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5456 desc = "data-check";
5457 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5458 desc = "requested-resync";
5459 else
5460 desc = "resync";
5461 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5462 desc = "reshape";
5463 else
5464 desc = "recovery";
5466 /* we overload curr_resync somewhat here.
5467 * 0 == not engaged in resync at all
5468 * 2 == checking that there is no conflict with another sync
5469 * 1 == like 2, but have yielded to allow conflicting resync to
5470 * commense
5471 * other == active in resync - this many blocks
5473 * Before starting a resync we must have set curr_resync to
5474 * 2, and then checked that every "conflicting" array has curr_resync
5475 * less than ours. When we find one that is the same or higher
5476 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
5477 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5478 * This will mean we have to start checking from the beginning again.
5482 do {
5483 mddev->curr_resync = 2;
5485 try_again:
5486 if (kthread_should_stop()) {
5487 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5488 goto skip;
5490 for_each_mddev(mddev2, tmp) {
5491 if (mddev2 == mddev)
5492 continue;
5493 if (mddev2->curr_resync &&
5494 match_mddev_units(mddev,mddev2)) {
5495 DEFINE_WAIT(wq);
5496 if (mddev < mddev2 && mddev->curr_resync == 2) {
5497 /* arbitrarily yield */
5498 mddev->curr_resync = 1;
5499 wake_up(&resync_wait);
5501 if (mddev > mddev2 && mddev->curr_resync == 1)
5502 /* no need to wait here, we can wait the next
5503 * time 'round when curr_resync == 2
5505 continue;
5506 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5507 if (!kthread_should_stop() &&
5508 mddev2->curr_resync >= mddev->curr_resync) {
5509 printk(KERN_INFO "md: delaying %s of %s"
5510 " until %s has finished (they"
5511 " share one or more physical units)\n",
5512 desc, mdname(mddev), mdname(mddev2));
5513 mddev_put(mddev2);
5514 schedule();
5515 finish_wait(&resync_wait, &wq);
5516 goto try_again;
5518 finish_wait(&resync_wait, &wq);
5521 } while (mddev->curr_resync < 2);
5523 j = 0;
5524 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5525 /* resync follows the size requested by the personality,
5526 * which defaults to physical size, but can be virtual size
5528 max_sectors = mddev->resync_max_sectors;
5529 mddev->resync_mismatches = 0;
5530 /* we don't use the checkpoint if there's a bitmap */
5531 if (!mddev->bitmap &&
5532 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5533 j = mddev->recovery_cp;
5534 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5535 max_sectors = mddev->size << 1;
5536 else {
5537 /* recovery follows the physical size of devices */
5538 max_sectors = mddev->size << 1;
5539 j = MaxSector;
5540 rdev_for_each(rdev, rtmp, mddev)
5541 if (rdev->raid_disk >= 0 &&
5542 !test_bit(Faulty, &rdev->flags) &&
5543 !test_bit(In_sync, &rdev->flags) &&
5544 rdev->recovery_offset < j)
5545 j = rdev->recovery_offset;
5548 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5549 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
5550 " %d KB/sec/disk.\n", speed_min(mddev));
5551 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5552 "(but not more than %d KB/sec) for %s.\n",
5553 speed_max(mddev), desc);
5555 is_mddev_idle(mddev); /* this also initializes IO event counters */
5557 io_sectors = 0;
5558 for (m = 0; m < SYNC_MARKS; m++) {
5559 mark[m] = jiffies;
5560 mark_cnt[m] = io_sectors;
5562 last_mark = 0;
5563 mddev->resync_mark = mark[last_mark];
5564 mddev->resync_mark_cnt = mark_cnt[last_mark];
5567 * Tune reconstruction:
5569 window = 32*(PAGE_SIZE/512);
5570 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5571 window/2,(unsigned long long) max_sectors/2);
5573 atomic_set(&mddev->recovery_active, 0);
5574 init_waitqueue_head(&mddev->recovery_wait);
5575 last_check = 0;
5577 if (j>2) {
5578 printk(KERN_INFO
5579 "md: resuming %s of %s from checkpoint.\n",
5580 desc, mdname(mddev));
5581 mddev->curr_resync = j;
5584 while (j < max_sectors) {
5585 sector_t sectors;
5587 skipped = 0;
5588 if (j >= mddev->resync_max) {
5589 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5590 wait_event(mddev->recovery_wait,
5591 mddev->resync_max > j
5592 || kthread_should_stop());
5594 if (kthread_should_stop())
5595 goto interrupted;
5596 sectors = mddev->pers->sync_request(mddev, j, &skipped,
5597 currspeed < speed_min(mddev));
5598 if (sectors == 0) {
5599 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5600 goto out;
5603 if (!skipped) { /* actual IO requested */
5604 io_sectors += sectors;
5605 atomic_add(sectors, &mddev->recovery_active);
5608 j += sectors;
5609 if (j>1) mddev->curr_resync = j;
5610 mddev->curr_mark_cnt = io_sectors;
5611 if (last_check == 0)
5612 /* this is the earliers that rebuilt will be
5613 * visible in /proc/mdstat
5615 md_new_event(mddev);
5617 if (last_check + window > io_sectors || j == max_sectors)
5618 continue;
5620 last_check = io_sectors;
5622 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
5623 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
5624 break;
5626 repeat:
5627 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5628 /* step marks */
5629 int next = (last_mark+1) % SYNC_MARKS;
5631 mddev->resync_mark = mark[next];
5632 mddev->resync_mark_cnt = mark_cnt[next];
5633 mark[next] = jiffies;
5634 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5635 last_mark = next;
5639 if (kthread_should_stop())
5640 goto interrupted;
5644 * this loop exits only if either when we are slower than
5645 * the 'hard' speed limit, or the system was IO-idle for
5646 * a jiffy.
5647 * the system might be non-idle CPU-wise, but we only care
5648 * about not overloading the IO subsystem. (things like an
5649 * e2fsck being done on the RAID array should execute fast)
5651 blk_unplug(mddev->queue);
5652 cond_resched();
5654 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5655 /((jiffies-mddev->resync_mark)/HZ +1) +1;
5657 if (currspeed > speed_min(mddev)) {
5658 if ((currspeed > speed_max(mddev)) ||
5659 !is_mddev_idle(mddev)) {
5660 msleep(500);
5661 goto repeat;
5665 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
5667 * this also signals 'finished resyncing' to md_stop
5669 out:
5670 blk_unplug(mddev->queue);
5672 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5674 /* tell personality that we are finished */
5675 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5677 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5678 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5679 mddev->curr_resync > 2) {
5680 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5681 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5682 if (mddev->curr_resync >= mddev->recovery_cp) {
5683 printk(KERN_INFO
5684 "md: checkpointing %s of %s.\n",
5685 desc, mdname(mddev));
5686 mddev->recovery_cp = mddev->curr_resync;
5688 } else
5689 mddev->recovery_cp = MaxSector;
5690 } else {
5691 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5692 mddev->curr_resync = MaxSector;
5693 rdev_for_each(rdev, rtmp, mddev)
5694 if (rdev->raid_disk >= 0 &&
5695 !test_bit(Faulty, &rdev->flags) &&
5696 !test_bit(In_sync, &rdev->flags) &&
5697 rdev->recovery_offset < mddev->curr_resync)
5698 rdev->recovery_offset = mddev->curr_resync;
5701 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5703 skip:
5704 mddev->curr_resync = 0;
5705 mddev->resync_max = MaxSector;
5706 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5707 wake_up(&resync_wait);
5708 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5709 md_wakeup_thread(mddev->thread);
5710 return;
5712 interrupted:
5714 * got a signal, exit.
5716 printk(KERN_INFO
5717 "md: md_do_sync() got signal ... exiting\n");
5718 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5719 goto out;
5722 EXPORT_SYMBOL_GPL(md_do_sync);
5725 static int remove_and_add_spares(mddev_t *mddev)
5727 mdk_rdev_t *rdev;
5728 struct list_head *rtmp;
5729 int spares = 0;
5731 rdev_for_each(rdev, rtmp, mddev)
5732 if (rdev->raid_disk >= 0 &&
5733 !mddev->external &&
5734 (test_bit(Faulty, &rdev->flags) ||
5735 ! test_bit(In_sync, &rdev->flags)) &&
5736 atomic_read(&rdev->nr_pending)==0) {
5737 if (mddev->pers->hot_remove_disk(
5738 mddev, rdev->raid_disk)==0) {
5739 char nm[20];
5740 sprintf(nm,"rd%d", rdev->raid_disk);
5741 sysfs_remove_link(&mddev->kobj, nm);
5742 rdev->raid_disk = -1;
5746 if (mddev->degraded) {
5747 rdev_for_each(rdev, rtmp, mddev)
5748 if (rdev->raid_disk < 0
5749 && !test_bit(Faulty, &rdev->flags)) {
5750 rdev->recovery_offset = 0;
5751 if (mddev->pers->hot_add_disk(mddev,rdev)) {
5752 char nm[20];
5753 sprintf(nm, "rd%d", rdev->raid_disk);
5754 if (sysfs_create_link(&mddev->kobj,
5755 &rdev->kobj, nm))
5756 printk(KERN_WARNING
5757 "md: cannot register "
5758 "%s for %s\n",
5759 nm, mdname(mddev));
5760 spares++;
5761 md_new_event(mddev);
5762 } else
5763 break;
5766 return spares;
5769 * This routine is regularly called by all per-raid-array threads to
5770 * deal with generic issues like resync and super-block update.
5771 * Raid personalities that don't have a thread (linear/raid0) do not
5772 * need this as they never do any recovery or update the superblock.
5774 * It does not do any resync itself, but rather "forks" off other threads
5775 * to do that as needed.
5776 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5777 * "->recovery" and create a thread at ->sync_thread.
5778 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
5779 * and wakeups up this thread which will reap the thread and finish up.
5780 * This thread also removes any faulty devices (with nr_pending == 0).
5782 * The overall approach is:
5783 * 1/ if the superblock needs updating, update it.
5784 * 2/ If a recovery thread is running, don't do anything else.
5785 * 3/ If recovery has finished, clean up, possibly marking spares active.
5786 * 4/ If there are any faulty devices, remove them.
5787 * 5/ If array is degraded, try to add spares devices
5788 * 6/ If array has spares or is not in-sync, start a resync thread.
5790 void md_check_recovery(mddev_t *mddev)
5792 mdk_rdev_t *rdev;
5793 struct list_head *rtmp;
5796 if (mddev->bitmap)
5797 bitmap_daemon_work(mddev->bitmap);
5799 if (mddev->ro)
5800 return;
5802 if (signal_pending(current)) {
5803 if (mddev->pers->sync_request) {
5804 printk(KERN_INFO "md: %s in immediate safe mode\n",
5805 mdname(mddev));
5806 mddev->safemode = 2;
5808 flush_signals(current);
5811 if ( ! (
5812 (mddev->flags && !mddev->external) ||
5813 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
5814 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
5815 (mddev->safemode == 1) ||
5816 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
5817 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
5819 return;
5821 if (mddev_trylock(mddev)) {
5822 int spares = 0;
5824 spin_lock_irq(&mddev->write_lock);
5825 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
5826 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
5827 mddev->in_sync = 1;
5828 if (mddev->persistent)
5829 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5831 if (mddev->safemode == 1)
5832 mddev->safemode = 0;
5833 spin_unlock_irq(&mddev->write_lock);
5835 if (mddev->flags)
5836 md_update_sb(mddev, 0);
5839 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5840 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
5841 /* resync/recovery still happening */
5842 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5843 goto unlock;
5845 if (mddev->sync_thread) {
5846 /* resync has finished, collect result */
5847 md_unregister_thread(mddev->sync_thread);
5848 mddev->sync_thread = NULL;
5849 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5850 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5851 /* success...*/
5852 /* activate any spares */
5853 mddev->pers->spare_active(mddev);
5855 md_update_sb(mddev, 1);
5857 /* if array is no-longer degraded, then any saved_raid_disk
5858 * information must be scrapped
5860 if (!mddev->degraded)
5861 rdev_for_each(rdev, rtmp, mddev)
5862 rdev->saved_raid_disk = -1;
5864 mddev->recovery = 0;
5865 /* flag recovery needed just to double check */
5866 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5867 md_new_event(mddev);
5868 goto unlock;
5870 /* Clear some bits that don't mean anything, but
5871 * might be left set
5873 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5874 clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
5875 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5876 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5878 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
5879 goto unlock;
5880 /* no recovery is running.
5881 * remove any failed drives, then
5882 * add spares if possible.
5883 * Spare are also removed and re-added, to allow
5884 * the personality to fail the re-add.
5887 if (mddev->reshape_position != MaxSector) {
5888 if (mddev->pers->check_reshape(mddev) != 0)
5889 /* Cannot proceed */
5890 goto unlock;
5891 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5892 } else if ((spares = remove_and_add_spares(mddev))) {
5893 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5894 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5895 } else if (mddev->recovery_cp < MaxSector) {
5896 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5897 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5898 /* nothing to be done ... */
5899 goto unlock;
5901 if (mddev->pers->sync_request) {
5902 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5903 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5904 /* We are adding a device or devices to an array
5905 * which has the bitmap stored on all devices.
5906 * So make sure all bitmap pages get written
5908 bitmap_write_all(mddev->bitmap);
5910 mddev->sync_thread = md_register_thread(md_do_sync,
5911 mddev,
5912 "%s_resync");
5913 if (!mddev->sync_thread) {
5914 printk(KERN_ERR "%s: could not start resync"
5915 " thread...\n",
5916 mdname(mddev));
5917 /* leave the spares where they are, it shouldn't hurt */
5918 mddev->recovery = 0;
5919 } else
5920 md_wakeup_thread(mddev->sync_thread);
5921 md_new_event(mddev);
5923 unlock:
5924 mddev_unlock(mddev);
5928 static int md_notify_reboot(struct notifier_block *this,
5929 unsigned long code, void *x)
5931 struct list_head *tmp;
5932 mddev_t *mddev;
5934 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5936 printk(KERN_INFO "md: stopping all md devices.\n");
5938 for_each_mddev(mddev, tmp)
5939 if (mddev_trylock(mddev)) {
5940 do_md_stop (mddev, 1);
5941 mddev_unlock(mddev);
5944 * certain more exotic SCSI devices are known to be
5945 * volatile wrt too early system reboots. While the
5946 * right place to handle this issue is the given
5947 * driver, we do want to have a safe RAID driver ...
5949 mdelay(1000*1);
5951 return NOTIFY_DONE;
5954 static struct notifier_block md_notifier = {
5955 .notifier_call = md_notify_reboot,
5956 .next = NULL,
5957 .priority = INT_MAX, /* before any real devices */
5960 static void md_geninit(void)
5962 struct proc_dir_entry *p;
5964 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5966 p = create_proc_entry("mdstat", S_IRUGO, NULL);
5967 if (p)
5968 p->proc_fops = &md_seq_fops;
5971 static int __init md_init(void)
5973 if (register_blkdev(MAJOR_NR, "md"))
5974 return -1;
5975 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5976 unregister_blkdev(MAJOR_NR, "md");
5977 return -1;
5979 blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
5980 md_probe, NULL, NULL);
5981 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
5982 md_probe, NULL, NULL);
5984 register_reboot_notifier(&md_notifier);
5985 raid_table_header = register_sysctl_table(raid_root_table);
5987 md_geninit();
5988 return (0);
5992 #ifndef MODULE
5995 * Searches all registered partitions for autorun RAID arrays
5996 * at boot time.
5999 static LIST_HEAD(all_detected_devices);
6000 struct detected_devices_node {
6001 struct list_head list;
6002 dev_t dev;
6005 void md_autodetect_dev(dev_t dev)
6007 struct detected_devices_node *node_detected_dev;
6009 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
6010 if (node_detected_dev) {
6011 node_detected_dev->dev = dev;
6012 list_add_tail(&node_detected_dev->list, &all_detected_devices);
6013 } else {
6014 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
6015 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
6020 static void autostart_arrays(int part)
6022 mdk_rdev_t *rdev;
6023 struct detected_devices_node *node_detected_dev;
6024 dev_t dev;
6025 int i_scanned, i_passed;
6027 i_scanned = 0;
6028 i_passed = 0;
6030 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
6032 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
6033 i_scanned++;
6034 node_detected_dev = list_entry(all_detected_devices.next,
6035 struct detected_devices_node, list);
6036 list_del(&node_detected_dev->list);
6037 dev = node_detected_dev->dev;
6038 kfree(node_detected_dev);
6039 rdev = md_import_device(dev,0, 90);
6040 if (IS_ERR(rdev))
6041 continue;
6043 if (test_bit(Faulty, &rdev->flags)) {
6044 MD_BUG();
6045 continue;
6047 set_bit(AutoDetected, &rdev->flags);
6048 list_add(&rdev->same_set, &pending_raid_disks);
6049 i_passed++;
6052 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
6053 i_scanned, i_passed);
6055 autorun_devices(part);
6058 #endif /* !MODULE */
6060 static __exit void md_exit(void)
6062 mddev_t *mddev;
6063 struct list_head *tmp;
6065 blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
6066 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
6068 unregister_blkdev(MAJOR_NR,"md");
6069 unregister_blkdev(mdp_major, "mdp");
6070 unregister_reboot_notifier(&md_notifier);
6071 unregister_sysctl_table(raid_table_header);
6072 remove_proc_entry("mdstat", NULL);
6073 for_each_mddev(mddev, tmp) {
6074 struct gendisk *disk = mddev->gendisk;
6075 if (!disk)
6076 continue;
6077 export_array(mddev);
6078 del_gendisk(disk);
6079 put_disk(disk);
6080 mddev->gendisk = NULL;
6081 mddev_put(mddev);
6085 subsys_initcall(md_init);
6086 module_exit(md_exit)
6088 static int get_ro(char *buffer, struct kernel_param *kp)
6090 return sprintf(buffer, "%d", start_readonly);
6092 static int set_ro(const char *val, struct kernel_param *kp)
6094 char *e;
6095 int num = simple_strtoul(val, &e, 10);
6096 if (*val && (*e == '\0' || *e == '\n')) {
6097 start_readonly = num;
6098 return 0;
6100 return -EINVAL;
6103 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
6104 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
6107 EXPORT_SYMBOL(register_md_personality);
6108 EXPORT_SYMBOL(unregister_md_personality);
6109 EXPORT_SYMBOL(md_error);
6110 EXPORT_SYMBOL(md_done_sync);
6111 EXPORT_SYMBOL(md_write_start);
6112 EXPORT_SYMBOL(md_write_end);
6113 EXPORT_SYMBOL(md_register_thread);
6114 EXPORT_SYMBOL(md_unregister_thread);
6115 EXPORT_SYMBOL(md_wakeup_thread);
6116 EXPORT_SYMBOL(md_check_recovery);
6117 MODULE_LICENSE("GPL");
6118 MODULE_ALIAS("md");
6119 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);