x86: unexport io_delay_type
[wrt350n-kernel.git] / fs / xfs / xfs_mount.c
blob6409b376299594f4a90fd0e8b67b0f34656364da
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_rw.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
47 STATIC void xfs_mount_log_sbunit(xfs_mount_t *, __int64_t);
48 STATIC int xfs_uuid_mount(xfs_mount_t *);
49 STATIC void xfs_uuid_unmount(xfs_mount_t *mp);
50 STATIC void xfs_unmountfs_wait(xfs_mount_t *);
53 #ifdef HAVE_PERCPU_SB
54 STATIC void xfs_icsb_destroy_counters(xfs_mount_t *);
55 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
56 int, int);
57 STATIC void xfs_icsb_sync_counters(xfs_mount_t *);
58 STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
59 int64_t, int);
60 STATIC int xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
62 #else
64 #define xfs_icsb_destroy_counters(mp) do { } while (0)
65 #define xfs_icsb_balance_counter(mp, a, b, c) do { } while (0)
66 #define xfs_icsb_sync_counters(mp) do { } while (0)
67 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0)
69 #endif
71 static const struct {
72 short offset;
73 short type; /* 0 = integer
74 * 1 = binary / string (no translation)
76 } xfs_sb_info[] = {
77 { offsetof(xfs_sb_t, sb_magicnum), 0 },
78 { offsetof(xfs_sb_t, sb_blocksize), 0 },
79 { offsetof(xfs_sb_t, sb_dblocks), 0 },
80 { offsetof(xfs_sb_t, sb_rblocks), 0 },
81 { offsetof(xfs_sb_t, sb_rextents), 0 },
82 { offsetof(xfs_sb_t, sb_uuid), 1 },
83 { offsetof(xfs_sb_t, sb_logstart), 0 },
84 { offsetof(xfs_sb_t, sb_rootino), 0 },
85 { offsetof(xfs_sb_t, sb_rbmino), 0 },
86 { offsetof(xfs_sb_t, sb_rsumino), 0 },
87 { offsetof(xfs_sb_t, sb_rextsize), 0 },
88 { offsetof(xfs_sb_t, sb_agblocks), 0 },
89 { offsetof(xfs_sb_t, sb_agcount), 0 },
90 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
91 { offsetof(xfs_sb_t, sb_logblocks), 0 },
92 { offsetof(xfs_sb_t, sb_versionnum), 0 },
93 { offsetof(xfs_sb_t, sb_sectsize), 0 },
94 { offsetof(xfs_sb_t, sb_inodesize), 0 },
95 { offsetof(xfs_sb_t, sb_inopblock), 0 },
96 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
97 { offsetof(xfs_sb_t, sb_blocklog), 0 },
98 { offsetof(xfs_sb_t, sb_sectlog), 0 },
99 { offsetof(xfs_sb_t, sb_inodelog), 0 },
100 { offsetof(xfs_sb_t, sb_inopblog), 0 },
101 { offsetof(xfs_sb_t, sb_agblklog), 0 },
102 { offsetof(xfs_sb_t, sb_rextslog), 0 },
103 { offsetof(xfs_sb_t, sb_inprogress), 0 },
104 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
105 { offsetof(xfs_sb_t, sb_icount), 0 },
106 { offsetof(xfs_sb_t, sb_ifree), 0 },
107 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
108 { offsetof(xfs_sb_t, sb_frextents), 0 },
109 { offsetof(xfs_sb_t, sb_uquotino), 0 },
110 { offsetof(xfs_sb_t, sb_gquotino), 0 },
111 { offsetof(xfs_sb_t, sb_qflags), 0 },
112 { offsetof(xfs_sb_t, sb_flags), 0 },
113 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
114 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
115 { offsetof(xfs_sb_t, sb_unit), 0 },
116 { offsetof(xfs_sb_t, sb_width), 0 },
117 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
118 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
119 { offsetof(xfs_sb_t, sb_logsectsize),0 },
120 { offsetof(xfs_sb_t, sb_logsunit), 0 },
121 { offsetof(xfs_sb_t, sb_features2), 0 },
122 { sizeof(xfs_sb_t), 0 }
126 * Return a pointer to an initialized xfs_mount structure.
128 xfs_mount_t *
129 xfs_mount_init(void)
131 xfs_mount_t *mp;
133 mp = kmem_zalloc(sizeof(xfs_mount_t), KM_SLEEP);
135 if (xfs_icsb_init_counters(mp)) {
136 mp->m_flags |= XFS_MOUNT_NO_PERCPU_SB;
139 spin_lock_init(&mp->m_sb_lock);
140 mutex_init(&mp->m_ilock);
141 mutex_init(&mp->m_growlock);
142 atomic_set(&mp->m_active_trans, 0);
144 return mp;
148 * Free up the resources associated with a mount structure. Assume that
149 * the structure was initially zeroed, so we can tell which fields got
150 * initialized.
152 void
153 xfs_mount_free(
154 xfs_mount_t *mp)
156 if (mp->m_perag) {
157 int agno;
159 for (agno = 0; agno < mp->m_maxagi; agno++)
160 if (mp->m_perag[agno].pagb_list)
161 kmem_free(mp->m_perag[agno].pagb_list,
162 sizeof(xfs_perag_busy_t) *
163 XFS_PAGB_NUM_SLOTS);
164 kmem_free(mp->m_perag,
165 sizeof(xfs_perag_t) * mp->m_sb.sb_agcount);
168 spinlock_destroy(&mp->m_ail_lock);
169 spinlock_destroy(&mp->m_sb_lock);
170 mutex_destroy(&mp->m_ilock);
171 mutex_destroy(&mp->m_growlock);
172 if (mp->m_quotainfo)
173 XFS_QM_DONE(mp);
175 if (mp->m_fsname != NULL)
176 kmem_free(mp->m_fsname, mp->m_fsname_len);
177 if (mp->m_rtname != NULL)
178 kmem_free(mp->m_rtname, strlen(mp->m_rtname) + 1);
179 if (mp->m_logname != NULL)
180 kmem_free(mp->m_logname, strlen(mp->m_logname) + 1);
182 xfs_icsb_destroy_counters(mp);
186 * Check size of device based on the (data/realtime) block count.
187 * Note: this check is used by the growfs code as well as mount.
190 xfs_sb_validate_fsb_count(
191 xfs_sb_t *sbp,
192 __uint64_t nblocks)
194 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
195 ASSERT(sbp->sb_blocklog >= BBSHIFT);
197 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
198 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
199 return E2BIG;
200 #else /* Limited by UINT_MAX of sectors */
201 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
202 return E2BIG;
203 #endif
204 return 0;
208 * Check the validity of the SB found.
210 STATIC int
211 xfs_mount_validate_sb(
212 xfs_mount_t *mp,
213 xfs_sb_t *sbp,
214 int flags)
217 * If the log device and data device have the
218 * same device number, the log is internal.
219 * Consequently, the sb_logstart should be non-zero. If
220 * we have a zero sb_logstart in this case, we may be trying to mount
221 * a volume filesystem in a non-volume manner.
223 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
224 xfs_fs_mount_cmn_err(flags, "bad magic number");
225 return XFS_ERROR(EWRONGFS);
228 if (!XFS_SB_GOOD_VERSION(sbp)) {
229 xfs_fs_mount_cmn_err(flags, "bad version");
230 return XFS_ERROR(EWRONGFS);
233 if (unlikely(
234 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
235 xfs_fs_mount_cmn_err(flags,
236 "filesystem is marked as having an external log; "
237 "specify logdev on the\nmount command line.");
238 return XFS_ERROR(EINVAL);
241 if (unlikely(
242 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
243 xfs_fs_mount_cmn_err(flags,
244 "filesystem is marked as having an internal log; "
245 "do not specify logdev on\nthe mount command line.");
246 return XFS_ERROR(EINVAL);
250 * More sanity checking. These were stolen directly from
251 * xfs_repair.
253 if (unlikely(
254 sbp->sb_agcount <= 0 ||
255 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
256 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
257 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
258 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
259 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
260 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
261 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
262 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
263 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
264 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
265 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
266 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
267 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
268 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
269 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
270 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
271 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
272 return XFS_ERROR(EFSCORRUPTED);
276 * Sanity check AG count, size fields against data size field
278 if (unlikely(
279 sbp->sb_dblocks == 0 ||
280 sbp->sb_dblocks >
281 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
282 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
283 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
284 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
285 return XFS_ERROR(EFSCORRUPTED);
288 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
289 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
290 xfs_fs_mount_cmn_err(flags,
291 "file system too large to be mounted on this system.");
292 return XFS_ERROR(E2BIG);
295 if (unlikely(sbp->sb_inprogress)) {
296 xfs_fs_mount_cmn_err(flags, "file system busy");
297 return XFS_ERROR(EFSCORRUPTED);
301 * Version 1 directory format has never worked on Linux.
303 if (unlikely(!XFS_SB_VERSION_HASDIRV2(sbp))) {
304 xfs_fs_mount_cmn_err(flags,
305 "file system using version 1 directory format");
306 return XFS_ERROR(ENOSYS);
310 * Until this is fixed only page-sized or smaller data blocks work.
312 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
313 xfs_fs_mount_cmn_err(flags,
314 "file system with blocksize %d bytes",
315 sbp->sb_blocksize);
316 xfs_fs_mount_cmn_err(flags,
317 "only pagesize (%ld) or less will currently work.",
318 PAGE_SIZE);
319 return XFS_ERROR(ENOSYS);
322 return 0;
325 STATIC void
326 xfs_initialize_perag_icache(
327 xfs_perag_t *pag)
329 if (!pag->pag_ici_init) {
330 rwlock_init(&pag->pag_ici_lock);
331 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
332 pag->pag_ici_init = 1;
336 xfs_agnumber_t
337 xfs_initialize_perag(
338 xfs_mount_t *mp,
339 xfs_agnumber_t agcount)
341 xfs_agnumber_t index, max_metadata;
342 xfs_perag_t *pag;
343 xfs_agino_t agino;
344 xfs_ino_t ino;
345 xfs_sb_t *sbp = &mp->m_sb;
346 xfs_ino_t max_inum = XFS_MAXINUMBER_32;
348 /* Check to see if the filesystem can overflow 32 bit inodes */
349 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
350 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
352 /* Clear the mount flag if no inode can overflow 32 bits
353 * on this filesystem, or if specifically requested..
355 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) {
356 mp->m_flags |= XFS_MOUNT_32BITINODES;
357 } else {
358 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
361 /* If we can overflow then setup the ag headers accordingly */
362 if (mp->m_flags & XFS_MOUNT_32BITINODES) {
363 /* Calculate how much should be reserved for inodes to
364 * meet the max inode percentage.
366 if (mp->m_maxicount) {
367 __uint64_t icount;
369 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
370 do_div(icount, 100);
371 icount += sbp->sb_agblocks - 1;
372 do_div(icount, sbp->sb_agblocks);
373 max_metadata = icount;
374 } else {
375 max_metadata = agcount;
377 for (index = 0; index < agcount; index++) {
378 ino = XFS_AGINO_TO_INO(mp, index, agino);
379 if (ino > max_inum) {
380 index++;
381 break;
384 /* This ag is preferred for inodes */
385 pag = &mp->m_perag[index];
386 pag->pagi_inodeok = 1;
387 if (index < max_metadata)
388 pag->pagf_metadata = 1;
389 xfs_initialize_perag_icache(pag);
391 } else {
392 /* Setup default behavior for smaller filesystems */
393 for (index = 0; index < agcount; index++) {
394 pag = &mp->m_perag[index];
395 pag->pagi_inodeok = 1;
396 xfs_initialize_perag_icache(pag);
399 return index;
402 void
403 xfs_sb_from_disk(
404 xfs_sb_t *to,
405 xfs_dsb_t *from)
407 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
408 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
409 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
410 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
411 to->sb_rextents = be64_to_cpu(from->sb_rextents);
412 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
413 to->sb_logstart = be64_to_cpu(from->sb_logstart);
414 to->sb_rootino = be64_to_cpu(from->sb_rootino);
415 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
416 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
417 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
418 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
419 to->sb_agcount = be32_to_cpu(from->sb_agcount);
420 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
421 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
422 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
423 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
424 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
425 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
426 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
427 to->sb_blocklog = from->sb_blocklog;
428 to->sb_sectlog = from->sb_sectlog;
429 to->sb_inodelog = from->sb_inodelog;
430 to->sb_inopblog = from->sb_inopblog;
431 to->sb_agblklog = from->sb_agblklog;
432 to->sb_rextslog = from->sb_rextslog;
433 to->sb_inprogress = from->sb_inprogress;
434 to->sb_imax_pct = from->sb_imax_pct;
435 to->sb_icount = be64_to_cpu(from->sb_icount);
436 to->sb_ifree = be64_to_cpu(from->sb_ifree);
437 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
438 to->sb_frextents = be64_to_cpu(from->sb_frextents);
439 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
440 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
441 to->sb_qflags = be16_to_cpu(from->sb_qflags);
442 to->sb_flags = from->sb_flags;
443 to->sb_shared_vn = from->sb_shared_vn;
444 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
445 to->sb_unit = be32_to_cpu(from->sb_unit);
446 to->sb_width = be32_to_cpu(from->sb_width);
447 to->sb_dirblklog = from->sb_dirblklog;
448 to->sb_logsectlog = from->sb_logsectlog;
449 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
450 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
451 to->sb_features2 = be32_to_cpu(from->sb_features2);
455 * Copy in core superblock to ondisk one.
457 * The fields argument is mask of superblock fields to copy.
459 void
460 xfs_sb_to_disk(
461 xfs_dsb_t *to,
462 xfs_sb_t *from,
463 __int64_t fields)
465 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
466 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
467 xfs_sb_field_t f;
468 int first;
469 int size;
471 ASSERT(fields);
472 if (!fields)
473 return;
475 while (fields) {
476 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
477 first = xfs_sb_info[f].offset;
478 size = xfs_sb_info[f + 1].offset - first;
480 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
482 if (size == 1 || xfs_sb_info[f].type == 1) {
483 memcpy(to_ptr + first, from_ptr + first, size);
484 } else {
485 switch (size) {
486 case 2:
487 *(__be16 *)(to_ptr + first) =
488 cpu_to_be16(*(__u16 *)(from_ptr + first));
489 break;
490 case 4:
491 *(__be32 *)(to_ptr + first) =
492 cpu_to_be32(*(__u32 *)(from_ptr + first));
493 break;
494 case 8:
495 *(__be64 *)(to_ptr + first) =
496 cpu_to_be64(*(__u64 *)(from_ptr + first));
497 break;
498 default:
499 ASSERT(0);
503 fields &= ~(1LL << f);
508 * xfs_readsb
510 * Does the initial read of the superblock.
513 xfs_readsb(xfs_mount_t *mp, int flags)
515 unsigned int sector_size;
516 unsigned int extra_flags;
517 xfs_buf_t *bp;
518 int error;
520 ASSERT(mp->m_sb_bp == NULL);
521 ASSERT(mp->m_ddev_targp != NULL);
524 * Allocate a (locked) buffer to hold the superblock.
525 * This will be kept around at all times to optimize
526 * access to the superblock.
528 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
529 extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
531 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
532 BTOBB(sector_size), extra_flags);
533 if (!bp || XFS_BUF_ISERROR(bp)) {
534 xfs_fs_mount_cmn_err(flags, "SB read failed");
535 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
536 goto fail;
538 ASSERT(XFS_BUF_ISBUSY(bp));
539 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
542 * Initialize the mount structure from the superblock.
543 * But first do some basic consistency checking.
545 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
547 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
548 if (error) {
549 xfs_fs_mount_cmn_err(flags, "SB validate failed");
550 goto fail;
554 * We must be able to do sector-sized and sector-aligned IO.
556 if (sector_size > mp->m_sb.sb_sectsize) {
557 xfs_fs_mount_cmn_err(flags,
558 "device supports only %u byte sectors (not %u)",
559 sector_size, mp->m_sb.sb_sectsize);
560 error = ENOSYS;
561 goto fail;
565 * If device sector size is smaller than the superblock size,
566 * re-read the superblock so the buffer is correctly sized.
568 if (sector_size < mp->m_sb.sb_sectsize) {
569 XFS_BUF_UNMANAGE(bp);
570 xfs_buf_relse(bp);
571 sector_size = mp->m_sb.sb_sectsize;
572 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
573 BTOBB(sector_size), extra_flags);
574 if (!bp || XFS_BUF_ISERROR(bp)) {
575 xfs_fs_mount_cmn_err(flags, "SB re-read failed");
576 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
577 goto fail;
579 ASSERT(XFS_BUF_ISBUSY(bp));
580 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
583 /* Initialize per-cpu counters */
584 xfs_icsb_reinit_counters(mp);
586 mp->m_sb_bp = bp;
587 xfs_buf_relse(bp);
588 ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
589 return 0;
591 fail:
592 if (bp) {
593 XFS_BUF_UNMANAGE(bp);
594 xfs_buf_relse(bp);
596 return error;
601 * xfs_mount_common
603 * Mount initialization code establishing various mount
604 * fields from the superblock associated with the given
605 * mount structure
607 STATIC void
608 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
610 int i;
612 mp->m_agfrotor = mp->m_agirotor = 0;
613 spin_lock_init(&mp->m_agirotor_lock);
614 mp->m_maxagi = mp->m_sb.sb_agcount;
615 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
616 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
617 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
618 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
619 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
620 mp->m_litino = sbp->sb_inodesize -
621 ((uint)sizeof(xfs_dinode_core_t) + (uint)sizeof(xfs_agino_t));
622 mp->m_blockmask = sbp->sb_blocksize - 1;
623 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
624 mp->m_blockwmask = mp->m_blockwsize - 1;
625 INIT_LIST_HEAD(&mp->m_del_inodes);
628 * Setup for attributes, in case they get created.
629 * This value is for inodes getting attributes for the first time,
630 * the per-inode value is for old attribute values.
632 ASSERT(sbp->sb_inodesize >= 256 && sbp->sb_inodesize <= 2048);
633 switch (sbp->sb_inodesize) {
634 case 256:
635 mp->m_attroffset = XFS_LITINO(mp) -
636 XFS_BMDR_SPACE_CALC(MINABTPTRS);
637 break;
638 case 512:
639 case 1024:
640 case 2048:
641 mp->m_attroffset = XFS_BMDR_SPACE_CALC(6 * MINABTPTRS);
642 break;
643 default:
644 ASSERT(0);
646 ASSERT(mp->m_attroffset < XFS_LITINO(mp));
648 for (i = 0; i < 2; i++) {
649 mp->m_alloc_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
650 xfs_alloc, i == 0);
651 mp->m_alloc_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
652 xfs_alloc, i == 0);
654 for (i = 0; i < 2; i++) {
655 mp->m_bmap_dmxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
656 xfs_bmbt, i == 0);
657 mp->m_bmap_dmnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
658 xfs_bmbt, i == 0);
660 for (i = 0; i < 2; i++) {
661 mp->m_inobt_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
662 xfs_inobt, i == 0);
663 mp->m_inobt_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
664 xfs_inobt, i == 0);
667 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
668 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
669 sbp->sb_inopblock);
670 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
674 * xfs_initialize_perag_data
676 * Read in each per-ag structure so we can count up the number of
677 * allocated inodes, free inodes and used filesystem blocks as this
678 * information is no longer persistent in the superblock. Once we have
679 * this information, write it into the in-core superblock structure.
681 STATIC int
682 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
684 xfs_agnumber_t index;
685 xfs_perag_t *pag;
686 xfs_sb_t *sbp = &mp->m_sb;
687 uint64_t ifree = 0;
688 uint64_t ialloc = 0;
689 uint64_t bfree = 0;
690 uint64_t bfreelst = 0;
691 uint64_t btree = 0;
692 int error;
694 for (index = 0; index < agcount; index++) {
696 * read the agf, then the agi. This gets us
697 * all the inforamtion we need and populates the
698 * per-ag structures for us.
700 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
701 if (error)
702 return error;
704 error = xfs_ialloc_pagi_init(mp, NULL, index);
705 if (error)
706 return error;
707 pag = &mp->m_perag[index];
708 ifree += pag->pagi_freecount;
709 ialloc += pag->pagi_count;
710 bfree += pag->pagf_freeblks;
711 bfreelst += pag->pagf_flcount;
712 btree += pag->pagf_btreeblks;
715 * Overwrite incore superblock counters with just-read data
717 spin_lock(&mp->m_sb_lock);
718 sbp->sb_ifree = ifree;
719 sbp->sb_icount = ialloc;
720 sbp->sb_fdblocks = bfree + bfreelst + btree;
721 spin_unlock(&mp->m_sb_lock);
723 /* Fixup the per-cpu counters as well. */
724 xfs_icsb_reinit_counters(mp);
726 return 0;
730 * Update alignment values based on mount options and sb values
732 STATIC int
733 xfs_update_alignment(xfs_mount_t *mp, int mfsi_flags, __uint64_t *update_flags)
735 xfs_sb_t *sbp = &(mp->m_sb);
737 if (mp->m_dalign && !(mfsi_flags & XFS_MFSI_SECOND)) {
739 * If stripe unit and stripe width are not multiples
740 * of the fs blocksize turn off alignment.
742 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
743 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
744 if (mp->m_flags & XFS_MOUNT_RETERR) {
745 cmn_err(CE_WARN,
746 "XFS: alignment check 1 failed");
747 return XFS_ERROR(EINVAL);
749 mp->m_dalign = mp->m_swidth = 0;
750 } else {
752 * Convert the stripe unit and width to FSBs.
754 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
755 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
756 if (mp->m_flags & XFS_MOUNT_RETERR) {
757 return XFS_ERROR(EINVAL);
759 xfs_fs_cmn_err(CE_WARN, mp,
760 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
761 mp->m_dalign, mp->m_swidth,
762 sbp->sb_agblocks);
764 mp->m_dalign = 0;
765 mp->m_swidth = 0;
766 } else if (mp->m_dalign) {
767 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
768 } else {
769 if (mp->m_flags & XFS_MOUNT_RETERR) {
770 xfs_fs_cmn_err(CE_WARN, mp,
771 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
772 mp->m_dalign,
773 mp->m_blockmask +1);
774 return XFS_ERROR(EINVAL);
776 mp->m_swidth = 0;
781 * Update superblock with new values
782 * and log changes
784 if (XFS_SB_VERSION_HASDALIGN(sbp)) {
785 if (sbp->sb_unit != mp->m_dalign) {
786 sbp->sb_unit = mp->m_dalign;
787 *update_flags |= XFS_SB_UNIT;
789 if (sbp->sb_width != mp->m_swidth) {
790 sbp->sb_width = mp->m_swidth;
791 *update_flags |= XFS_SB_WIDTH;
794 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
795 XFS_SB_VERSION_HASDALIGN(&mp->m_sb)) {
796 mp->m_dalign = sbp->sb_unit;
797 mp->m_swidth = sbp->sb_width;
800 return 0;
804 * Set the maximum inode count for this filesystem
806 STATIC void
807 xfs_set_maxicount(xfs_mount_t *mp)
809 xfs_sb_t *sbp = &(mp->m_sb);
810 __uint64_t icount;
812 if (sbp->sb_imax_pct) {
814 * Make sure the maximum inode count is a multiple
815 * of the units we allocate inodes in.
817 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
818 do_div(icount, 100);
819 do_div(icount, mp->m_ialloc_blks);
820 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
821 sbp->sb_inopblog;
822 } else {
823 mp->m_maxicount = 0;
828 * Set the default minimum read and write sizes unless
829 * already specified in a mount option.
830 * We use smaller I/O sizes when the file system
831 * is being used for NFS service (wsync mount option).
833 STATIC void
834 xfs_set_rw_sizes(xfs_mount_t *mp)
836 xfs_sb_t *sbp = &(mp->m_sb);
837 int readio_log, writeio_log;
839 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
840 if (mp->m_flags & XFS_MOUNT_WSYNC) {
841 readio_log = XFS_WSYNC_READIO_LOG;
842 writeio_log = XFS_WSYNC_WRITEIO_LOG;
843 } else {
844 readio_log = XFS_READIO_LOG_LARGE;
845 writeio_log = XFS_WRITEIO_LOG_LARGE;
847 } else {
848 readio_log = mp->m_readio_log;
849 writeio_log = mp->m_writeio_log;
852 if (sbp->sb_blocklog > readio_log) {
853 mp->m_readio_log = sbp->sb_blocklog;
854 } else {
855 mp->m_readio_log = readio_log;
857 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
858 if (sbp->sb_blocklog > writeio_log) {
859 mp->m_writeio_log = sbp->sb_blocklog;
860 } else {
861 mp->m_writeio_log = writeio_log;
863 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
867 * Set whether we're using inode alignment.
869 STATIC void
870 xfs_set_inoalignment(xfs_mount_t *mp)
872 if (XFS_SB_VERSION_HASALIGN(&mp->m_sb) &&
873 mp->m_sb.sb_inoalignmt >=
874 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
875 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
876 else
877 mp->m_inoalign_mask = 0;
879 * If we are using stripe alignment, check whether
880 * the stripe unit is a multiple of the inode alignment
882 if (mp->m_dalign && mp->m_inoalign_mask &&
883 !(mp->m_dalign & mp->m_inoalign_mask))
884 mp->m_sinoalign = mp->m_dalign;
885 else
886 mp->m_sinoalign = 0;
890 * Check that the data (and log if separate) are an ok size.
892 STATIC int
893 xfs_check_sizes(xfs_mount_t *mp, int mfsi_flags)
895 xfs_buf_t *bp;
896 xfs_daddr_t d;
897 int error;
899 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
900 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
901 cmn_err(CE_WARN, "XFS: size check 1 failed");
902 return XFS_ERROR(E2BIG);
904 error = xfs_read_buf(mp, mp->m_ddev_targp,
905 d - XFS_FSS_TO_BB(mp, 1),
906 XFS_FSS_TO_BB(mp, 1), 0, &bp);
907 if (!error) {
908 xfs_buf_relse(bp);
909 } else {
910 cmn_err(CE_WARN, "XFS: size check 2 failed");
911 if (error == ENOSPC)
912 error = XFS_ERROR(E2BIG);
913 return error;
916 if (((mfsi_flags & XFS_MFSI_CLIENT) == 0) &&
917 mp->m_logdev_targp != mp->m_ddev_targp) {
918 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
919 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
920 cmn_err(CE_WARN, "XFS: size check 3 failed");
921 return XFS_ERROR(E2BIG);
923 error = xfs_read_buf(mp, mp->m_logdev_targp,
924 d - XFS_FSB_TO_BB(mp, 1),
925 XFS_FSB_TO_BB(mp, 1), 0, &bp);
926 if (!error) {
927 xfs_buf_relse(bp);
928 } else {
929 cmn_err(CE_WARN, "XFS: size check 3 failed");
930 if (error == ENOSPC)
931 error = XFS_ERROR(E2BIG);
932 return error;
935 return 0;
939 * xfs_mountfs
941 * This function does the following on an initial mount of a file system:
942 * - reads the superblock from disk and init the mount struct
943 * - if we're a 32-bit kernel, do a size check on the superblock
944 * so we don't mount terabyte filesystems
945 * - init mount struct realtime fields
946 * - allocate inode hash table for fs
947 * - init directory manager
948 * - perform recovery and init the log manager
951 xfs_mountfs(
952 xfs_mount_t *mp,
953 int mfsi_flags)
955 xfs_sb_t *sbp = &(mp->m_sb);
956 xfs_inode_t *rip;
957 bhv_vnode_t *rvp = NULL;
958 __uint64_t resblks;
959 __int64_t update_flags = 0LL;
960 uint quotamount, quotaflags;
961 int agno;
962 int uuid_mounted = 0;
963 int error = 0;
965 if (mp->m_sb_bp == NULL) {
966 error = xfs_readsb(mp, mfsi_flags);
967 if (error)
968 return error;
970 xfs_mount_common(mp, sbp);
973 * Check if sb_agblocks is aligned at stripe boundary
974 * If sb_agblocks is NOT aligned turn off m_dalign since
975 * allocator alignment is within an ag, therefore ag has
976 * to be aligned at stripe boundary.
978 error = xfs_update_alignment(mp, mfsi_flags, &update_flags);
979 if (error)
980 goto error1;
982 xfs_alloc_compute_maxlevels(mp);
983 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
984 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
985 xfs_ialloc_compute_maxlevels(mp);
987 xfs_set_maxicount(mp);
989 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
992 * XFS uses the uuid from the superblock as the unique
993 * identifier for fsid. We can not use the uuid from the volume
994 * since a single partition filesystem is identical to a single
995 * partition volume/filesystem.
997 if ((mfsi_flags & XFS_MFSI_SECOND) == 0 &&
998 (mp->m_flags & XFS_MOUNT_NOUUID) == 0) {
999 if (xfs_uuid_mount(mp)) {
1000 error = XFS_ERROR(EINVAL);
1001 goto error1;
1003 uuid_mounted=1;
1007 * Set the minimum read and write sizes
1009 xfs_set_rw_sizes(mp);
1012 * Set the inode cluster size.
1013 * This may still be overridden by the file system
1014 * block size if it is larger than the chosen cluster size.
1016 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1019 * Set inode alignment fields
1021 xfs_set_inoalignment(mp);
1024 * Check that the data (and log if separate) are an ok size.
1026 error = xfs_check_sizes(mp, mfsi_flags);
1027 if (error)
1028 goto error1;
1031 * Initialize realtime fields in the mount structure
1033 error = xfs_rtmount_init(mp);
1034 if (error) {
1035 cmn_err(CE_WARN, "XFS: RT mount failed");
1036 goto error1;
1040 * For client case we are done now
1042 if (mfsi_flags & XFS_MFSI_CLIENT) {
1043 return 0;
1047 * Copies the low order bits of the timestamp and the randomly
1048 * set "sequence" number out of a UUID.
1050 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1052 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1054 xfs_dir_mount(mp);
1057 * Initialize the attribute manager's entries.
1059 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1062 * Initialize the precomputed transaction reservations values.
1064 xfs_trans_init(mp);
1067 * Allocate and initialize the per-ag data.
1069 init_rwsem(&mp->m_peraglock);
1070 mp->m_perag =
1071 kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), KM_SLEEP);
1073 mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount);
1076 * log's mount-time initialization. Perform 1st part recovery if needed
1078 if (likely(sbp->sb_logblocks > 0)) { /* check for volume case */
1079 error = xfs_log_mount(mp, mp->m_logdev_targp,
1080 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1081 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1082 if (error) {
1083 cmn_err(CE_WARN, "XFS: log mount failed");
1084 goto error2;
1086 } else { /* No log has been defined */
1087 cmn_err(CE_WARN, "XFS: no log defined");
1088 XFS_ERROR_REPORT("xfs_mountfs_int(1)", XFS_ERRLEVEL_LOW, mp);
1089 error = XFS_ERROR(EFSCORRUPTED);
1090 goto error2;
1094 * Now the log is mounted, we know if it was an unclean shutdown or
1095 * not. If it was, with the first phase of recovery has completed, we
1096 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1097 * but they are recovered transactionally in the second recovery phase
1098 * later.
1100 * Hence we can safely re-initialise incore superblock counters from
1101 * the per-ag data. These may not be correct if the filesystem was not
1102 * cleanly unmounted, so we need to wait for recovery to finish before
1103 * doing this.
1105 * If the filesystem was cleanly unmounted, then we can trust the
1106 * values in the superblock to be correct and we don't need to do
1107 * anything here.
1109 * If we are currently making the filesystem, the initialisation will
1110 * fail as the perag data is in an undefined state.
1113 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1114 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1115 !mp->m_sb.sb_inprogress) {
1116 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1117 if (error) {
1118 goto error2;
1122 * Get and sanity-check the root inode.
1123 * Save the pointer to it in the mount structure.
1125 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1126 if (error) {
1127 cmn_err(CE_WARN, "XFS: failed to read root inode");
1128 goto error3;
1131 ASSERT(rip != NULL);
1132 rvp = XFS_ITOV(rip);
1134 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1135 cmn_err(CE_WARN, "XFS: corrupted root inode");
1136 cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1137 XFS_BUFTARG_NAME(mp->m_ddev_targp),
1138 (unsigned long long)rip->i_ino);
1139 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1140 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1141 mp);
1142 error = XFS_ERROR(EFSCORRUPTED);
1143 goto error4;
1145 mp->m_rootip = rip; /* save it */
1147 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1150 * Initialize realtime inode pointers in the mount structure
1152 error = xfs_rtmount_inodes(mp);
1153 if (error) {
1155 * Free up the root inode.
1157 cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1158 goto error4;
1162 * If fs is not mounted readonly, then update the superblock
1163 * unit and width changes.
1165 if (update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY))
1166 xfs_mount_log_sbunit(mp, update_flags);
1169 * Initialise the XFS quota management subsystem for this mount
1171 error = XFS_QM_INIT(mp, &quotamount, &quotaflags);
1172 if (error)
1173 goto error4;
1176 * Finish recovering the file system. This part needed to be
1177 * delayed until after the root and real-time bitmap inodes
1178 * were consistently read in.
1180 error = xfs_log_mount_finish(mp, mfsi_flags);
1181 if (error) {
1182 cmn_err(CE_WARN, "XFS: log mount finish failed");
1183 goto error4;
1187 * Complete the quota initialisation, post-log-replay component.
1189 error = XFS_QM_MOUNT(mp, quotamount, quotaflags, mfsi_flags);
1190 if (error)
1191 goto error4;
1194 * Now we are mounted, reserve a small amount of unused space for
1195 * privileged transactions. This is needed so that transaction
1196 * space required for critical operations can dip into this pool
1197 * when at ENOSPC. This is needed for operations like create with
1198 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1199 * are not allowed to use this reserved space.
1201 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1202 * This may drive us straight to ENOSPC on mount, but that implies
1203 * we were already there on the last unmount.
1205 resblks = mp->m_sb.sb_dblocks;
1206 do_div(resblks, 20);
1207 resblks = min_t(__uint64_t, resblks, 1024);
1208 xfs_reserve_blocks(mp, &resblks, NULL);
1210 return 0;
1212 error4:
1214 * Free up the root inode.
1216 VN_RELE(rvp);
1217 error3:
1218 xfs_log_unmount_dealloc(mp);
1219 error2:
1220 for (agno = 0; agno < sbp->sb_agcount; agno++)
1221 if (mp->m_perag[agno].pagb_list)
1222 kmem_free(mp->m_perag[agno].pagb_list,
1223 sizeof(xfs_perag_busy_t) * XFS_PAGB_NUM_SLOTS);
1224 kmem_free(mp->m_perag, sbp->sb_agcount * sizeof(xfs_perag_t));
1225 mp->m_perag = NULL;
1226 /* FALLTHROUGH */
1227 error1:
1228 if (uuid_mounted)
1229 xfs_uuid_unmount(mp);
1230 xfs_freesb(mp);
1231 return error;
1235 * xfs_unmountfs
1237 * This flushes out the inodes,dquots and the superblock, unmounts the
1238 * log and makes sure that incore structures are freed.
1241 xfs_unmountfs(xfs_mount_t *mp, struct cred *cr)
1243 __uint64_t resblks;
1246 * We can potentially deadlock here if we have an inode cluster
1247 * that has been freed has it's buffer still pinned in memory because
1248 * the transaction is still sitting in a iclog. The stale inodes
1249 * on that buffer will have their flush locks held until the
1250 * transaction hits the disk and the callbacks run. the inode
1251 * flush takes the flush lock unconditionally and with nothing to
1252 * push out the iclog we will never get that unlocked. hence we
1253 * need to force the log first.
1255 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1256 xfs_iflush_all(mp);
1258 XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING);
1261 * Flush out the log synchronously so that we know for sure
1262 * that nothing is pinned. This is important because bflush()
1263 * will skip pinned buffers.
1265 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1267 xfs_binval(mp->m_ddev_targp);
1268 if (mp->m_rtdev_targp) {
1269 xfs_binval(mp->m_rtdev_targp);
1273 * Unreserve any blocks we have so that when we unmount we don't account
1274 * the reserved free space as used. This is really only necessary for
1275 * lazy superblock counting because it trusts the incore superblock
1276 * counters to be aboslutely correct on clean unmount.
1278 * We don't bother correcting this elsewhere for lazy superblock
1279 * counting because on mount of an unclean filesystem we reconstruct the
1280 * correct counter value and this is irrelevant.
1282 * For non-lazy counter filesystems, this doesn't matter at all because
1283 * we only every apply deltas to the superblock and hence the incore
1284 * value does not matter....
1286 resblks = 0;
1287 xfs_reserve_blocks(mp, &resblks, NULL);
1289 xfs_log_sbcount(mp, 1);
1290 xfs_unmountfs_writesb(mp);
1291 xfs_unmountfs_wait(mp); /* wait for async bufs */
1292 xfs_log_unmount(mp); /* Done! No more fs ops. */
1294 xfs_freesb(mp);
1297 * All inodes from this mount point should be freed.
1299 ASSERT(mp->m_inodes == NULL);
1301 xfs_unmountfs_close(mp, cr);
1302 if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0)
1303 xfs_uuid_unmount(mp);
1305 #if defined(DEBUG) || defined(INDUCE_IO_ERROR)
1306 xfs_errortag_clearall(mp, 0);
1307 #endif
1308 xfs_mount_free(mp);
1309 return 0;
1312 void
1313 xfs_unmountfs_close(xfs_mount_t *mp, struct cred *cr)
1315 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1316 xfs_free_buftarg(mp->m_logdev_targp, 1);
1317 if (mp->m_rtdev_targp)
1318 xfs_free_buftarg(mp->m_rtdev_targp, 1);
1319 xfs_free_buftarg(mp->m_ddev_targp, 0);
1322 STATIC void
1323 xfs_unmountfs_wait(xfs_mount_t *mp)
1325 if (mp->m_logdev_targp != mp->m_ddev_targp)
1326 xfs_wait_buftarg(mp->m_logdev_targp);
1327 if (mp->m_rtdev_targp)
1328 xfs_wait_buftarg(mp->m_rtdev_targp);
1329 xfs_wait_buftarg(mp->m_ddev_targp);
1333 xfs_fs_writable(xfs_mount_t *mp)
1335 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1336 (mp->m_flags & XFS_MOUNT_RDONLY));
1340 * xfs_log_sbcount
1342 * Called either periodically to keep the on disk superblock values
1343 * roughly up to date or from unmount to make sure the values are
1344 * correct on a clean unmount.
1346 * Note this code can be called during the process of freezing, so
1347 * we may need to use the transaction allocator which does not not
1348 * block when the transaction subsystem is in its frozen state.
1351 xfs_log_sbcount(
1352 xfs_mount_t *mp,
1353 uint sync)
1355 xfs_trans_t *tp;
1356 int error;
1358 if (!xfs_fs_writable(mp))
1359 return 0;
1361 xfs_icsb_sync_counters(mp);
1364 * we don't need to do this if we are updating the superblock
1365 * counters on every modification.
1367 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1368 return 0;
1370 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT);
1371 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1372 XFS_DEFAULT_LOG_COUNT);
1373 if (error) {
1374 xfs_trans_cancel(tp, 0);
1375 return error;
1378 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1379 if (sync)
1380 xfs_trans_set_sync(tp);
1381 xfs_trans_commit(tp, 0);
1383 return 0;
1386 STATIC void
1387 xfs_mark_shared_ro(
1388 xfs_mount_t *mp,
1389 xfs_buf_t *bp)
1391 xfs_dsb_t *sb = XFS_BUF_TO_SBP(bp);
1392 __uint16_t version;
1394 if (!(sb->sb_flags & XFS_SBF_READONLY))
1395 sb->sb_flags |= XFS_SBF_READONLY;
1397 version = be16_to_cpu(sb->sb_versionnum);
1398 if ((version & XFS_SB_VERSION_NUMBITS) != XFS_SB_VERSION_4 ||
1399 !(version & XFS_SB_VERSION_SHAREDBIT))
1400 version |= XFS_SB_VERSION_SHAREDBIT;
1401 sb->sb_versionnum = cpu_to_be16(version);
1405 xfs_unmountfs_writesb(xfs_mount_t *mp)
1407 xfs_buf_t *sbp;
1408 int error = 0;
1411 * skip superblock write if fs is read-only, or
1412 * if we are doing a forced umount.
1414 if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1415 XFS_FORCED_SHUTDOWN(mp))) {
1417 sbp = xfs_getsb(mp, 0);
1420 * mark shared-readonly if desired
1422 if (mp->m_mk_sharedro)
1423 xfs_mark_shared_ro(mp, sbp);
1425 XFS_BUF_UNDONE(sbp);
1426 XFS_BUF_UNREAD(sbp);
1427 XFS_BUF_UNDELAYWRITE(sbp);
1428 XFS_BUF_WRITE(sbp);
1429 XFS_BUF_UNASYNC(sbp);
1430 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1431 xfsbdstrat(mp, sbp);
1432 /* Nevermind errors we might get here. */
1433 error = xfs_iowait(sbp);
1434 if (error)
1435 xfs_ioerror_alert("xfs_unmountfs_writesb",
1436 mp, sbp, XFS_BUF_ADDR(sbp));
1437 if (error && mp->m_mk_sharedro)
1438 xfs_fs_cmn_err(CE_ALERT, mp, "Superblock write error detected while unmounting. Filesystem may not be marked shared readonly");
1439 xfs_buf_relse(sbp);
1441 return error;
1445 * xfs_mod_sb() can be used to copy arbitrary changes to the
1446 * in-core superblock into the superblock buffer to be logged.
1447 * It does not provide the higher level of locking that is
1448 * needed to protect the in-core superblock from concurrent
1449 * access.
1451 void
1452 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1454 xfs_buf_t *bp;
1455 int first;
1456 int last;
1457 xfs_mount_t *mp;
1458 xfs_sb_field_t f;
1460 ASSERT(fields);
1461 if (!fields)
1462 return;
1463 mp = tp->t_mountp;
1464 bp = xfs_trans_getsb(tp, mp, 0);
1465 first = sizeof(xfs_sb_t);
1466 last = 0;
1468 /* translate/copy */
1470 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1472 /* find modified range */
1474 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1475 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1476 first = xfs_sb_info[f].offset;
1478 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1479 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1480 last = xfs_sb_info[f + 1].offset - 1;
1482 xfs_trans_log_buf(tp, bp, first, last);
1487 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1488 * a delta to a specified field in the in-core superblock. Simply
1489 * switch on the field indicated and apply the delta to that field.
1490 * Fields are not allowed to dip below zero, so if the delta would
1491 * do this do not apply it and return EINVAL.
1493 * The m_sb_lock must be held when this routine is called.
1496 xfs_mod_incore_sb_unlocked(
1497 xfs_mount_t *mp,
1498 xfs_sb_field_t field,
1499 int64_t delta,
1500 int rsvd)
1502 int scounter; /* short counter for 32 bit fields */
1503 long long lcounter; /* long counter for 64 bit fields */
1504 long long res_used, rem;
1507 * With the in-core superblock spin lock held, switch
1508 * on the indicated field. Apply the delta to the
1509 * proper field. If the fields value would dip below
1510 * 0, then do not apply the delta and return EINVAL.
1512 switch (field) {
1513 case XFS_SBS_ICOUNT:
1514 lcounter = (long long)mp->m_sb.sb_icount;
1515 lcounter += delta;
1516 if (lcounter < 0) {
1517 ASSERT(0);
1518 return XFS_ERROR(EINVAL);
1520 mp->m_sb.sb_icount = lcounter;
1521 return 0;
1522 case XFS_SBS_IFREE:
1523 lcounter = (long long)mp->m_sb.sb_ifree;
1524 lcounter += delta;
1525 if (lcounter < 0) {
1526 ASSERT(0);
1527 return XFS_ERROR(EINVAL);
1529 mp->m_sb.sb_ifree = lcounter;
1530 return 0;
1531 case XFS_SBS_FDBLOCKS:
1532 lcounter = (long long)
1533 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1534 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1536 if (delta > 0) { /* Putting blocks back */
1537 if (res_used > delta) {
1538 mp->m_resblks_avail += delta;
1539 } else {
1540 rem = delta - res_used;
1541 mp->m_resblks_avail = mp->m_resblks;
1542 lcounter += rem;
1544 } else { /* Taking blocks away */
1546 lcounter += delta;
1549 * If were out of blocks, use any available reserved blocks if
1550 * were allowed to.
1553 if (lcounter < 0) {
1554 if (rsvd) {
1555 lcounter = (long long)mp->m_resblks_avail + delta;
1556 if (lcounter < 0) {
1557 return XFS_ERROR(ENOSPC);
1559 mp->m_resblks_avail = lcounter;
1560 return 0;
1561 } else { /* not reserved */
1562 return XFS_ERROR(ENOSPC);
1567 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1568 return 0;
1569 case XFS_SBS_FREXTENTS:
1570 lcounter = (long long)mp->m_sb.sb_frextents;
1571 lcounter += delta;
1572 if (lcounter < 0) {
1573 return XFS_ERROR(ENOSPC);
1575 mp->m_sb.sb_frextents = lcounter;
1576 return 0;
1577 case XFS_SBS_DBLOCKS:
1578 lcounter = (long long)mp->m_sb.sb_dblocks;
1579 lcounter += delta;
1580 if (lcounter < 0) {
1581 ASSERT(0);
1582 return XFS_ERROR(EINVAL);
1584 mp->m_sb.sb_dblocks = lcounter;
1585 return 0;
1586 case XFS_SBS_AGCOUNT:
1587 scounter = mp->m_sb.sb_agcount;
1588 scounter += delta;
1589 if (scounter < 0) {
1590 ASSERT(0);
1591 return XFS_ERROR(EINVAL);
1593 mp->m_sb.sb_agcount = scounter;
1594 return 0;
1595 case XFS_SBS_IMAX_PCT:
1596 scounter = mp->m_sb.sb_imax_pct;
1597 scounter += delta;
1598 if (scounter < 0) {
1599 ASSERT(0);
1600 return XFS_ERROR(EINVAL);
1602 mp->m_sb.sb_imax_pct = scounter;
1603 return 0;
1604 case XFS_SBS_REXTSIZE:
1605 scounter = mp->m_sb.sb_rextsize;
1606 scounter += delta;
1607 if (scounter < 0) {
1608 ASSERT(0);
1609 return XFS_ERROR(EINVAL);
1611 mp->m_sb.sb_rextsize = scounter;
1612 return 0;
1613 case XFS_SBS_RBMBLOCKS:
1614 scounter = mp->m_sb.sb_rbmblocks;
1615 scounter += delta;
1616 if (scounter < 0) {
1617 ASSERT(0);
1618 return XFS_ERROR(EINVAL);
1620 mp->m_sb.sb_rbmblocks = scounter;
1621 return 0;
1622 case XFS_SBS_RBLOCKS:
1623 lcounter = (long long)mp->m_sb.sb_rblocks;
1624 lcounter += delta;
1625 if (lcounter < 0) {
1626 ASSERT(0);
1627 return XFS_ERROR(EINVAL);
1629 mp->m_sb.sb_rblocks = lcounter;
1630 return 0;
1631 case XFS_SBS_REXTENTS:
1632 lcounter = (long long)mp->m_sb.sb_rextents;
1633 lcounter += delta;
1634 if (lcounter < 0) {
1635 ASSERT(0);
1636 return XFS_ERROR(EINVAL);
1638 mp->m_sb.sb_rextents = lcounter;
1639 return 0;
1640 case XFS_SBS_REXTSLOG:
1641 scounter = mp->m_sb.sb_rextslog;
1642 scounter += delta;
1643 if (scounter < 0) {
1644 ASSERT(0);
1645 return XFS_ERROR(EINVAL);
1647 mp->m_sb.sb_rextslog = scounter;
1648 return 0;
1649 default:
1650 ASSERT(0);
1651 return XFS_ERROR(EINVAL);
1656 * xfs_mod_incore_sb() is used to change a field in the in-core
1657 * superblock structure by the specified delta. This modification
1658 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1659 * routine to do the work.
1662 xfs_mod_incore_sb(
1663 xfs_mount_t *mp,
1664 xfs_sb_field_t field,
1665 int64_t delta,
1666 int rsvd)
1668 int status;
1670 /* check for per-cpu counters */
1671 switch (field) {
1672 #ifdef HAVE_PERCPU_SB
1673 case XFS_SBS_ICOUNT:
1674 case XFS_SBS_IFREE:
1675 case XFS_SBS_FDBLOCKS:
1676 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1677 status = xfs_icsb_modify_counters(mp, field,
1678 delta, rsvd);
1679 break;
1681 /* FALLTHROUGH */
1682 #endif
1683 default:
1684 spin_lock(&mp->m_sb_lock);
1685 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1686 spin_unlock(&mp->m_sb_lock);
1687 break;
1690 return status;
1694 * xfs_mod_incore_sb_batch() is used to change more than one field
1695 * in the in-core superblock structure at a time. This modification
1696 * is protected by a lock internal to this module. The fields and
1697 * changes to those fields are specified in the array of xfs_mod_sb
1698 * structures passed in.
1700 * Either all of the specified deltas will be applied or none of
1701 * them will. If any modified field dips below 0, then all modifications
1702 * will be backed out and EINVAL will be returned.
1705 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1707 int status=0;
1708 xfs_mod_sb_t *msbp;
1711 * Loop through the array of mod structures and apply each
1712 * individually. If any fail, then back out all those
1713 * which have already been applied. Do all of this within
1714 * the scope of the m_sb_lock so that all of the changes will
1715 * be atomic.
1717 spin_lock(&mp->m_sb_lock);
1718 msbp = &msb[0];
1719 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1721 * Apply the delta at index n. If it fails, break
1722 * from the loop so we'll fall into the undo loop
1723 * below.
1725 switch (msbp->msb_field) {
1726 #ifdef HAVE_PERCPU_SB
1727 case XFS_SBS_ICOUNT:
1728 case XFS_SBS_IFREE:
1729 case XFS_SBS_FDBLOCKS:
1730 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1731 spin_unlock(&mp->m_sb_lock);
1732 status = xfs_icsb_modify_counters(mp,
1733 msbp->msb_field,
1734 msbp->msb_delta, rsvd);
1735 spin_lock(&mp->m_sb_lock);
1736 break;
1738 /* FALLTHROUGH */
1739 #endif
1740 default:
1741 status = xfs_mod_incore_sb_unlocked(mp,
1742 msbp->msb_field,
1743 msbp->msb_delta, rsvd);
1744 break;
1747 if (status != 0) {
1748 break;
1753 * If we didn't complete the loop above, then back out
1754 * any changes made to the superblock. If you add code
1755 * between the loop above and here, make sure that you
1756 * preserve the value of status. Loop back until
1757 * we step below the beginning of the array. Make sure
1758 * we don't touch anything back there.
1760 if (status != 0) {
1761 msbp--;
1762 while (msbp >= msb) {
1763 switch (msbp->msb_field) {
1764 #ifdef HAVE_PERCPU_SB
1765 case XFS_SBS_ICOUNT:
1766 case XFS_SBS_IFREE:
1767 case XFS_SBS_FDBLOCKS:
1768 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1769 spin_unlock(&mp->m_sb_lock);
1770 status = xfs_icsb_modify_counters(mp,
1771 msbp->msb_field,
1772 -(msbp->msb_delta),
1773 rsvd);
1774 spin_lock(&mp->m_sb_lock);
1775 break;
1777 /* FALLTHROUGH */
1778 #endif
1779 default:
1780 status = xfs_mod_incore_sb_unlocked(mp,
1781 msbp->msb_field,
1782 -(msbp->msb_delta),
1783 rsvd);
1784 break;
1786 ASSERT(status == 0);
1787 msbp--;
1790 spin_unlock(&mp->m_sb_lock);
1791 return status;
1795 * xfs_getsb() is called to obtain the buffer for the superblock.
1796 * The buffer is returned locked and read in from disk.
1797 * The buffer should be released with a call to xfs_brelse().
1799 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1800 * the superblock buffer if it can be locked without sleeping.
1801 * If it can't then we'll return NULL.
1803 xfs_buf_t *
1804 xfs_getsb(
1805 xfs_mount_t *mp,
1806 int flags)
1808 xfs_buf_t *bp;
1810 ASSERT(mp->m_sb_bp != NULL);
1811 bp = mp->m_sb_bp;
1812 if (flags & XFS_BUF_TRYLOCK) {
1813 if (!XFS_BUF_CPSEMA(bp)) {
1814 return NULL;
1816 } else {
1817 XFS_BUF_PSEMA(bp, PRIBIO);
1819 XFS_BUF_HOLD(bp);
1820 ASSERT(XFS_BUF_ISDONE(bp));
1821 return bp;
1825 * Used to free the superblock along various error paths.
1827 void
1828 xfs_freesb(
1829 xfs_mount_t *mp)
1831 xfs_buf_t *bp;
1834 * Use xfs_getsb() so that the buffer will be locked
1835 * when we call xfs_buf_relse().
1837 bp = xfs_getsb(mp, 0);
1838 XFS_BUF_UNMANAGE(bp);
1839 xfs_buf_relse(bp);
1840 mp->m_sb_bp = NULL;
1844 * See if the UUID is unique among mounted XFS filesystems.
1845 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
1847 STATIC int
1848 xfs_uuid_mount(
1849 xfs_mount_t *mp)
1851 if (uuid_is_nil(&mp->m_sb.sb_uuid)) {
1852 cmn_err(CE_WARN,
1853 "XFS: Filesystem %s has nil UUID - can't mount",
1854 mp->m_fsname);
1855 return -1;
1857 if (!uuid_table_insert(&mp->m_sb.sb_uuid)) {
1858 cmn_err(CE_WARN,
1859 "XFS: Filesystem %s has duplicate UUID - can't mount",
1860 mp->m_fsname);
1861 return -1;
1863 return 0;
1867 * Remove filesystem from the UUID table.
1869 STATIC void
1870 xfs_uuid_unmount(
1871 xfs_mount_t *mp)
1873 uuid_table_remove(&mp->m_sb.sb_uuid);
1877 * Used to log changes to the superblock unit and width fields which could
1878 * be altered by the mount options. Only the first superblock is updated.
1880 STATIC void
1881 xfs_mount_log_sbunit(
1882 xfs_mount_t *mp,
1883 __int64_t fields)
1885 xfs_trans_t *tp;
1887 ASSERT(fields & (XFS_SB_UNIT|XFS_SB_WIDTH|XFS_SB_UUID));
1889 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1890 if (xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1891 XFS_DEFAULT_LOG_COUNT)) {
1892 xfs_trans_cancel(tp, 0);
1893 return;
1895 xfs_mod_sb(tp, fields);
1896 xfs_trans_commit(tp, 0);
1900 #ifdef HAVE_PERCPU_SB
1902 * Per-cpu incore superblock counters
1904 * Simple concept, difficult implementation
1906 * Basically, replace the incore superblock counters with a distributed per cpu
1907 * counter for contended fields (e.g. free block count).
1909 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1910 * hence needs to be accurately read when we are running low on space. Hence
1911 * there is a method to enable and disable the per-cpu counters based on how
1912 * much "stuff" is available in them.
1914 * Basically, a counter is enabled if there is enough free resource to justify
1915 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1916 * ENOSPC), then we disable the counters to synchronise all callers and
1917 * re-distribute the available resources.
1919 * If, once we redistributed the available resources, we still get a failure,
1920 * we disable the per-cpu counter and go through the slow path.
1922 * The slow path is the current xfs_mod_incore_sb() function. This means that
1923 * when we disable a per-cpu counter, we need to drain it's resources back to
1924 * the global superblock. We do this after disabling the counter to prevent
1925 * more threads from queueing up on the counter.
1927 * Essentially, this means that we still need a lock in the fast path to enable
1928 * synchronisation between the global counters and the per-cpu counters. This
1929 * is not a problem because the lock will be local to a CPU almost all the time
1930 * and have little contention except when we get to ENOSPC conditions.
1932 * Basically, this lock becomes a barrier that enables us to lock out the fast
1933 * path while we do things like enabling and disabling counters and
1934 * synchronising the counters.
1936 * Locking rules:
1938 * 1. m_sb_lock before picking up per-cpu locks
1939 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1940 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1941 * 4. modifying per-cpu counters requires holding per-cpu lock
1942 * 5. modifying global counters requires holding m_sb_lock
1943 * 6. enabling or disabling a counter requires holding the m_sb_lock
1944 * and _none_ of the per-cpu locks.
1946 * Disabled counters are only ever re-enabled by a balance operation
1947 * that results in more free resources per CPU than a given threshold.
1948 * To ensure counters don't remain disabled, they are rebalanced when
1949 * the global resource goes above a higher threshold (i.e. some hysteresis
1950 * is present to prevent thrashing).
1953 #ifdef CONFIG_HOTPLUG_CPU
1955 * hot-plug CPU notifier support.
1957 * We need a notifier per filesystem as we need to be able to identify
1958 * the filesystem to balance the counters out. This is achieved by
1959 * having a notifier block embedded in the xfs_mount_t and doing pointer
1960 * magic to get the mount pointer from the notifier block address.
1962 STATIC int
1963 xfs_icsb_cpu_notify(
1964 struct notifier_block *nfb,
1965 unsigned long action,
1966 void *hcpu)
1968 xfs_icsb_cnts_t *cntp;
1969 xfs_mount_t *mp;
1971 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1972 cntp = (xfs_icsb_cnts_t *)
1973 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1974 switch (action) {
1975 case CPU_UP_PREPARE:
1976 case CPU_UP_PREPARE_FROZEN:
1977 /* Easy Case - initialize the area and locks, and
1978 * then rebalance when online does everything else for us. */
1979 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1980 break;
1981 case CPU_ONLINE:
1982 case CPU_ONLINE_FROZEN:
1983 xfs_icsb_lock(mp);
1984 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0, 0);
1985 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0, 0);
1986 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0, 0);
1987 xfs_icsb_unlock(mp);
1988 break;
1989 case CPU_DEAD:
1990 case CPU_DEAD_FROZEN:
1991 /* Disable all the counters, then fold the dead cpu's
1992 * count into the total on the global superblock and
1993 * re-enable the counters. */
1994 xfs_icsb_lock(mp);
1995 spin_lock(&mp->m_sb_lock);
1996 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1997 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1998 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2000 mp->m_sb.sb_icount += cntp->icsb_icount;
2001 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2002 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2004 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2006 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT,
2007 XFS_ICSB_SB_LOCKED, 0);
2008 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE,
2009 XFS_ICSB_SB_LOCKED, 0);
2010 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS,
2011 XFS_ICSB_SB_LOCKED, 0);
2012 spin_unlock(&mp->m_sb_lock);
2013 xfs_icsb_unlock(mp);
2014 break;
2017 return NOTIFY_OK;
2019 #endif /* CONFIG_HOTPLUG_CPU */
2022 xfs_icsb_init_counters(
2023 xfs_mount_t *mp)
2025 xfs_icsb_cnts_t *cntp;
2026 int i;
2028 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2029 if (mp->m_sb_cnts == NULL)
2030 return -ENOMEM;
2032 #ifdef CONFIG_HOTPLUG_CPU
2033 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2034 mp->m_icsb_notifier.priority = 0;
2035 register_hotcpu_notifier(&mp->m_icsb_notifier);
2036 #endif /* CONFIG_HOTPLUG_CPU */
2038 for_each_online_cpu(i) {
2039 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2040 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2043 mutex_init(&mp->m_icsb_mutex);
2046 * start with all counters disabled so that the
2047 * initial balance kicks us off correctly
2049 mp->m_icsb_counters = -1;
2050 return 0;
2053 void
2054 xfs_icsb_reinit_counters(
2055 xfs_mount_t *mp)
2057 xfs_icsb_lock(mp);
2059 * start with all counters disabled so that the
2060 * initial balance kicks us off correctly
2062 mp->m_icsb_counters = -1;
2063 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0, 0);
2064 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0, 0);
2065 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0, 0);
2066 xfs_icsb_unlock(mp);
2069 STATIC void
2070 xfs_icsb_destroy_counters(
2071 xfs_mount_t *mp)
2073 if (mp->m_sb_cnts) {
2074 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2075 free_percpu(mp->m_sb_cnts);
2077 mutex_destroy(&mp->m_icsb_mutex);
2080 STATIC_INLINE void
2081 xfs_icsb_lock_cntr(
2082 xfs_icsb_cnts_t *icsbp)
2084 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2085 ndelay(1000);
2089 STATIC_INLINE void
2090 xfs_icsb_unlock_cntr(
2091 xfs_icsb_cnts_t *icsbp)
2093 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2097 STATIC_INLINE void
2098 xfs_icsb_lock_all_counters(
2099 xfs_mount_t *mp)
2101 xfs_icsb_cnts_t *cntp;
2102 int i;
2104 for_each_online_cpu(i) {
2105 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2106 xfs_icsb_lock_cntr(cntp);
2110 STATIC_INLINE void
2111 xfs_icsb_unlock_all_counters(
2112 xfs_mount_t *mp)
2114 xfs_icsb_cnts_t *cntp;
2115 int i;
2117 for_each_online_cpu(i) {
2118 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2119 xfs_icsb_unlock_cntr(cntp);
2123 STATIC void
2124 xfs_icsb_count(
2125 xfs_mount_t *mp,
2126 xfs_icsb_cnts_t *cnt,
2127 int flags)
2129 xfs_icsb_cnts_t *cntp;
2130 int i;
2132 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2134 if (!(flags & XFS_ICSB_LAZY_COUNT))
2135 xfs_icsb_lock_all_counters(mp);
2137 for_each_online_cpu(i) {
2138 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2139 cnt->icsb_icount += cntp->icsb_icount;
2140 cnt->icsb_ifree += cntp->icsb_ifree;
2141 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2144 if (!(flags & XFS_ICSB_LAZY_COUNT))
2145 xfs_icsb_unlock_all_counters(mp);
2148 STATIC int
2149 xfs_icsb_counter_disabled(
2150 xfs_mount_t *mp,
2151 xfs_sb_field_t field)
2153 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2154 return test_bit(field, &mp->m_icsb_counters);
2157 STATIC int
2158 xfs_icsb_disable_counter(
2159 xfs_mount_t *mp,
2160 xfs_sb_field_t field)
2162 xfs_icsb_cnts_t cnt;
2164 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2167 * If we are already disabled, then there is nothing to do
2168 * here. We check before locking all the counters to avoid
2169 * the expensive lock operation when being called in the
2170 * slow path and the counter is already disabled. This is
2171 * safe because the only time we set or clear this state is under
2172 * the m_icsb_mutex.
2174 if (xfs_icsb_counter_disabled(mp, field))
2175 return 0;
2177 xfs_icsb_lock_all_counters(mp);
2178 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2179 /* drain back to superblock */
2181 xfs_icsb_count(mp, &cnt, XFS_ICSB_SB_LOCKED|XFS_ICSB_LAZY_COUNT);
2182 switch(field) {
2183 case XFS_SBS_ICOUNT:
2184 mp->m_sb.sb_icount = cnt.icsb_icount;
2185 break;
2186 case XFS_SBS_IFREE:
2187 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2188 break;
2189 case XFS_SBS_FDBLOCKS:
2190 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2191 break;
2192 default:
2193 BUG();
2197 xfs_icsb_unlock_all_counters(mp);
2199 return 0;
2202 STATIC void
2203 xfs_icsb_enable_counter(
2204 xfs_mount_t *mp,
2205 xfs_sb_field_t field,
2206 uint64_t count,
2207 uint64_t resid)
2209 xfs_icsb_cnts_t *cntp;
2210 int i;
2212 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2214 xfs_icsb_lock_all_counters(mp);
2215 for_each_online_cpu(i) {
2216 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2217 switch (field) {
2218 case XFS_SBS_ICOUNT:
2219 cntp->icsb_icount = count + resid;
2220 break;
2221 case XFS_SBS_IFREE:
2222 cntp->icsb_ifree = count + resid;
2223 break;
2224 case XFS_SBS_FDBLOCKS:
2225 cntp->icsb_fdblocks = count + resid;
2226 break;
2227 default:
2228 BUG();
2229 break;
2231 resid = 0;
2233 clear_bit(field, &mp->m_icsb_counters);
2234 xfs_icsb_unlock_all_counters(mp);
2237 void
2238 xfs_icsb_sync_counters_flags(
2239 xfs_mount_t *mp,
2240 int flags)
2242 xfs_icsb_cnts_t cnt;
2244 /* Pass 1: lock all counters */
2245 if ((flags & XFS_ICSB_SB_LOCKED) == 0)
2246 spin_lock(&mp->m_sb_lock);
2248 xfs_icsb_count(mp, &cnt, flags);
2250 /* Step 3: update mp->m_sb fields */
2251 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2252 mp->m_sb.sb_icount = cnt.icsb_icount;
2253 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2254 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2255 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2256 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2258 if ((flags & XFS_ICSB_SB_LOCKED) == 0)
2259 spin_unlock(&mp->m_sb_lock);
2263 * Accurate update of per-cpu counters to incore superblock
2265 STATIC void
2266 xfs_icsb_sync_counters(
2267 xfs_mount_t *mp)
2269 xfs_icsb_sync_counters_flags(mp, 0);
2273 * Balance and enable/disable counters as necessary.
2275 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2276 * chosen to be the same number as single on disk allocation chunk per CPU, and
2277 * free blocks is something far enough zero that we aren't going thrash when we
2278 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2279 * prevent looping endlessly when xfs_alloc_space asks for more than will
2280 * be distributed to a single CPU but each CPU has enough blocks to be
2281 * reenabled.
2283 * Note that we can be called when counters are already disabled.
2284 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2285 * prevent locking every per-cpu counter needlessly.
2288 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2289 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2290 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2291 STATIC void
2292 xfs_icsb_balance_counter(
2293 xfs_mount_t *mp,
2294 xfs_sb_field_t field,
2295 int flags,
2296 int min_per_cpu)
2298 uint64_t count, resid;
2299 int weight = num_online_cpus();
2300 uint64_t min = (uint64_t)min_per_cpu;
2302 if (!(flags & XFS_ICSB_SB_LOCKED))
2303 spin_lock(&mp->m_sb_lock);
2305 /* disable counter and sync counter */
2306 xfs_icsb_disable_counter(mp, field);
2308 /* update counters - first CPU gets residual*/
2309 switch (field) {
2310 case XFS_SBS_ICOUNT:
2311 count = mp->m_sb.sb_icount;
2312 resid = do_div(count, weight);
2313 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2314 goto out;
2315 break;
2316 case XFS_SBS_IFREE:
2317 count = mp->m_sb.sb_ifree;
2318 resid = do_div(count, weight);
2319 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2320 goto out;
2321 break;
2322 case XFS_SBS_FDBLOCKS:
2323 count = mp->m_sb.sb_fdblocks;
2324 resid = do_div(count, weight);
2325 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2326 goto out;
2327 break;
2328 default:
2329 BUG();
2330 count = resid = 0; /* quiet, gcc */
2331 break;
2334 xfs_icsb_enable_counter(mp, field, count, resid);
2335 out:
2336 if (!(flags & XFS_ICSB_SB_LOCKED))
2337 spin_unlock(&mp->m_sb_lock);
2340 STATIC int
2341 xfs_icsb_modify_counters(
2342 xfs_mount_t *mp,
2343 xfs_sb_field_t field,
2344 int64_t delta,
2345 int rsvd)
2347 xfs_icsb_cnts_t *icsbp;
2348 long long lcounter; /* long counter for 64 bit fields */
2349 int cpu, ret = 0;
2351 might_sleep();
2352 again:
2353 cpu = get_cpu();
2354 icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu);
2357 * if the counter is disabled, go to slow path
2359 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2360 goto slow_path;
2361 xfs_icsb_lock_cntr(icsbp);
2362 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2363 xfs_icsb_unlock_cntr(icsbp);
2364 goto slow_path;
2367 switch (field) {
2368 case XFS_SBS_ICOUNT:
2369 lcounter = icsbp->icsb_icount;
2370 lcounter += delta;
2371 if (unlikely(lcounter < 0))
2372 goto balance_counter;
2373 icsbp->icsb_icount = lcounter;
2374 break;
2376 case XFS_SBS_IFREE:
2377 lcounter = icsbp->icsb_ifree;
2378 lcounter += delta;
2379 if (unlikely(lcounter < 0))
2380 goto balance_counter;
2381 icsbp->icsb_ifree = lcounter;
2382 break;
2384 case XFS_SBS_FDBLOCKS:
2385 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2387 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2388 lcounter += delta;
2389 if (unlikely(lcounter < 0))
2390 goto balance_counter;
2391 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2392 break;
2393 default:
2394 BUG();
2395 break;
2397 xfs_icsb_unlock_cntr(icsbp);
2398 put_cpu();
2399 return 0;
2401 slow_path:
2402 put_cpu();
2405 * serialise with a mutex so we don't burn lots of cpu on
2406 * the superblock lock. We still need to hold the superblock
2407 * lock, however, when we modify the global structures.
2409 xfs_icsb_lock(mp);
2412 * Now running atomically.
2414 * If the counter is enabled, someone has beaten us to rebalancing.
2415 * Drop the lock and try again in the fast path....
2417 if (!(xfs_icsb_counter_disabled(mp, field))) {
2418 xfs_icsb_unlock(mp);
2419 goto again;
2423 * The counter is currently disabled. Because we are
2424 * running atomically here, we know a rebalance cannot
2425 * be in progress. Hence we can go straight to operating
2426 * on the global superblock. We do not call xfs_mod_incore_sb()
2427 * here even though we need to get the m_sb_lock. Doing so
2428 * will cause us to re-enter this function and deadlock.
2429 * Hence we get the m_sb_lock ourselves and then call
2430 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2431 * directly on the global counters.
2433 spin_lock(&mp->m_sb_lock);
2434 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2435 spin_unlock(&mp->m_sb_lock);
2438 * Now that we've modified the global superblock, we
2439 * may be able to re-enable the distributed counters
2440 * (e.g. lots of space just got freed). After that
2441 * we are done.
2443 if (ret != ENOSPC)
2444 xfs_icsb_balance_counter(mp, field, 0, 0);
2445 xfs_icsb_unlock(mp);
2446 return ret;
2448 balance_counter:
2449 xfs_icsb_unlock_cntr(icsbp);
2450 put_cpu();
2453 * We may have multiple threads here if multiple per-cpu
2454 * counters run dry at the same time. This will mean we can
2455 * do more balances than strictly necessary but it is not
2456 * the common slowpath case.
2458 xfs_icsb_lock(mp);
2461 * running atomically.
2463 * This will leave the counter in the correct state for future
2464 * accesses. After the rebalance, we simply try again and our retry
2465 * will either succeed through the fast path or slow path without
2466 * another balance operation being required.
2468 xfs_icsb_balance_counter(mp, field, 0, delta);
2469 xfs_icsb_unlock(mp);
2470 goto again;
2473 #endif