splice: divorce the splice structure/function definitions from the pipe header
[wrt350n-kernel.git] / security / commoncap.c
blob384379ede4fd7c0f0e1a5c78c4ee9c70ce9f5cbb
1 /* Common capabilities, needed by capability.o and root_plug.o
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
8 */
10 #include <linux/capability.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/security.h>
15 #include <linux/file.h>
16 #include <linux/mm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/skbuff.h>
21 #include <linux/netlink.h>
22 #include <linux/ptrace.h>
23 #include <linux/xattr.h>
24 #include <linux/hugetlb.h>
26 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
28 NETLINK_CB(skb).eff_cap = current->cap_effective;
29 return 0;
32 EXPORT_SYMBOL(cap_netlink_send);
34 int cap_netlink_recv(struct sk_buff *skb, int cap)
36 if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
37 return -EPERM;
38 return 0;
41 EXPORT_SYMBOL(cap_netlink_recv);
43 int cap_capable (struct task_struct *tsk, int cap)
45 /* Derived from include/linux/sched.h:capable. */
46 if (cap_raised(tsk->cap_effective, cap))
47 return 0;
48 return -EPERM;
51 int cap_settime(struct timespec *ts, struct timezone *tz)
53 if (!capable(CAP_SYS_TIME))
54 return -EPERM;
55 return 0;
58 int cap_ptrace (struct task_struct *parent, struct task_struct *child)
60 /* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
61 if (!cap_issubset(child->cap_permitted, parent->cap_permitted) &&
62 !__capable(parent, CAP_SYS_PTRACE))
63 return -EPERM;
64 return 0;
67 int cap_capget (struct task_struct *target, kernel_cap_t *effective,
68 kernel_cap_t *inheritable, kernel_cap_t *permitted)
70 /* Derived from kernel/capability.c:sys_capget. */
71 *effective = cap_t (target->cap_effective);
72 *inheritable = cap_t (target->cap_inheritable);
73 *permitted = cap_t (target->cap_permitted);
74 return 0;
77 int cap_capset_check (struct task_struct *target, kernel_cap_t *effective,
78 kernel_cap_t *inheritable, kernel_cap_t *permitted)
80 /* Derived from kernel/capability.c:sys_capset. */
81 /* verify restrictions on target's new Inheritable set */
82 if (!cap_issubset (*inheritable,
83 cap_combine (target->cap_inheritable,
84 current->cap_permitted))) {
85 return -EPERM;
88 /* verify restrictions on target's new Permitted set */
89 if (!cap_issubset (*permitted,
90 cap_combine (target->cap_permitted,
91 current->cap_permitted))) {
92 return -EPERM;
95 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
96 if (!cap_issubset (*effective, *permitted)) {
97 return -EPERM;
100 return 0;
103 void cap_capset_set (struct task_struct *target, kernel_cap_t *effective,
104 kernel_cap_t *inheritable, kernel_cap_t *permitted)
106 target->cap_effective = *effective;
107 target->cap_inheritable = *inheritable;
108 target->cap_permitted = *permitted;
111 int cap_bprm_set_security (struct linux_binprm *bprm)
113 /* Copied from fs/exec.c:prepare_binprm. */
115 /* We don't have VFS support for capabilities yet */
116 cap_clear (bprm->cap_inheritable);
117 cap_clear (bprm->cap_permitted);
118 cap_clear (bprm->cap_effective);
120 /* To support inheritance of root-permissions and suid-root
121 * executables under compatibility mode, we raise all three
122 * capability sets for the file.
124 * If only the real uid is 0, we only raise the inheritable
125 * and permitted sets of the executable file.
128 if (!issecure (SECURE_NOROOT)) {
129 if (bprm->e_uid == 0 || current->uid == 0) {
130 cap_set_full (bprm->cap_inheritable);
131 cap_set_full (bprm->cap_permitted);
133 if (bprm->e_uid == 0)
134 cap_set_full (bprm->cap_effective);
136 return 0;
139 void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
141 /* Derived from fs/exec.c:compute_creds. */
142 kernel_cap_t new_permitted, working;
144 new_permitted = cap_intersect (bprm->cap_permitted, cap_bset);
145 working = cap_intersect (bprm->cap_inheritable,
146 current->cap_inheritable);
147 new_permitted = cap_combine (new_permitted, working);
149 if (bprm->e_uid != current->uid || bprm->e_gid != current->gid ||
150 !cap_issubset (new_permitted, current->cap_permitted)) {
151 current->mm->dumpable = suid_dumpable;
153 if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
154 if (!capable(CAP_SETUID)) {
155 bprm->e_uid = current->uid;
156 bprm->e_gid = current->gid;
158 if (!capable (CAP_SETPCAP)) {
159 new_permitted = cap_intersect (new_permitted,
160 current->cap_permitted);
165 current->suid = current->euid = current->fsuid = bprm->e_uid;
166 current->sgid = current->egid = current->fsgid = bprm->e_gid;
168 /* For init, we want to retain the capabilities set
169 * in the init_task struct. Thus we skip the usual
170 * capability rules */
171 if (!is_init(current)) {
172 current->cap_permitted = new_permitted;
173 current->cap_effective =
174 cap_intersect (new_permitted, bprm->cap_effective);
177 /* AUD: Audit candidate if current->cap_effective is set */
179 current->keep_capabilities = 0;
182 int cap_bprm_secureexec (struct linux_binprm *bprm)
184 /* If/when this module is enhanced to incorporate capability
185 bits on files, the test below should be extended to also perform a
186 test between the old and new capability sets. For now,
187 it simply preserves the legacy decision algorithm used by
188 the old userland. */
189 return (current->euid != current->uid ||
190 current->egid != current->gid);
193 int cap_inode_setxattr(struct dentry *dentry, char *name, void *value,
194 size_t size, int flags)
196 if (!strncmp(name, XATTR_SECURITY_PREFIX,
197 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
198 !capable(CAP_SYS_ADMIN))
199 return -EPERM;
200 return 0;
203 int cap_inode_removexattr(struct dentry *dentry, char *name)
205 if (!strncmp(name, XATTR_SECURITY_PREFIX,
206 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
207 !capable(CAP_SYS_ADMIN))
208 return -EPERM;
209 return 0;
212 /* moved from kernel/sys.c. */
214 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
215 * a process after a call to setuid, setreuid, or setresuid.
217 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
218 * {r,e,s}uid != 0, the permitted and effective capabilities are
219 * cleared.
221 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
222 * capabilities of the process are cleared.
224 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
225 * capabilities are set to the permitted capabilities.
227 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
228 * never happen.
230 * -astor
232 * cevans - New behaviour, Oct '99
233 * A process may, via prctl(), elect to keep its capabilities when it
234 * calls setuid() and switches away from uid==0. Both permitted and
235 * effective sets will be retained.
236 * Without this change, it was impossible for a daemon to drop only some
237 * of its privilege. The call to setuid(!=0) would drop all privileges!
238 * Keeping uid 0 is not an option because uid 0 owns too many vital
239 * files..
240 * Thanks to Olaf Kirch and Peter Benie for spotting this.
242 static inline void cap_emulate_setxuid (int old_ruid, int old_euid,
243 int old_suid)
245 if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) &&
246 (current->uid != 0 && current->euid != 0 && current->suid != 0) &&
247 !current->keep_capabilities) {
248 cap_clear (current->cap_permitted);
249 cap_clear (current->cap_effective);
251 if (old_euid == 0 && current->euid != 0) {
252 cap_clear (current->cap_effective);
254 if (old_euid != 0 && current->euid == 0) {
255 current->cap_effective = current->cap_permitted;
259 int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid,
260 int flags)
262 switch (flags) {
263 case LSM_SETID_RE:
264 case LSM_SETID_ID:
265 case LSM_SETID_RES:
266 /* Copied from kernel/sys.c:setreuid/setuid/setresuid. */
267 if (!issecure (SECURE_NO_SETUID_FIXUP)) {
268 cap_emulate_setxuid (old_ruid, old_euid, old_suid);
270 break;
271 case LSM_SETID_FS:
273 uid_t old_fsuid = old_ruid;
275 /* Copied from kernel/sys.c:setfsuid. */
278 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
279 * if not, we might be a bit too harsh here.
282 if (!issecure (SECURE_NO_SETUID_FIXUP)) {
283 if (old_fsuid == 0 && current->fsuid != 0) {
284 cap_t (current->cap_effective) &=
285 ~CAP_FS_MASK;
287 if (old_fsuid != 0 && current->fsuid == 0) {
288 cap_t (current->cap_effective) |=
289 (cap_t (current->cap_permitted) &
290 CAP_FS_MASK);
293 break;
295 default:
296 return -EINVAL;
299 return 0;
302 void cap_task_reparent_to_init (struct task_struct *p)
304 p->cap_effective = CAP_INIT_EFF_SET;
305 p->cap_inheritable = CAP_INIT_INH_SET;
306 p->cap_permitted = CAP_FULL_SET;
307 p->keep_capabilities = 0;
308 return;
311 int cap_syslog (int type)
313 if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
314 return -EPERM;
315 return 0;
318 int cap_vm_enough_memory(long pages)
320 int cap_sys_admin = 0;
322 if (cap_capable(current, CAP_SYS_ADMIN) == 0)
323 cap_sys_admin = 1;
324 return __vm_enough_memory(pages, cap_sys_admin);
327 EXPORT_SYMBOL(cap_capable);
328 EXPORT_SYMBOL(cap_settime);
329 EXPORT_SYMBOL(cap_ptrace);
330 EXPORT_SYMBOL(cap_capget);
331 EXPORT_SYMBOL(cap_capset_check);
332 EXPORT_SYMBOL(cap_capset_set);
333 EXPORT_SYMBOL(cap_bprm_set_security);
334 EXPORT_SYMBOL(cap_bprm_apply_creds);
335 EXPORT_SYMBOL(cap_bprm_secureexec);
336 EXPORT_SYMBOL(cap_inode_setxattr);
337 EXPORT_SYMBOL(cap_inode_removexattr);
338 EXPORT_SYMBOL(cap_task_post_setuid);
339 EXPORT_SYMBOL(cap_task_reparent_to_init);
340 EXPORT_SYMBOL(cap_syslog);
341 EXPORT_SYMBOL(cap_vm_enough_memory);
343 MODULE_DESCRIPTION("Standard Linux Common Capabilities Security Module");
344 MODULE_LICENSE("GPL");