[PATCH] IB uverbs: memory pinning implementation
[wrt350n-kernel.git] / include / asm-sh / io.h
blob6bc343fee7a02b1d980b1c591b973800c36689a2
1 #ifndef __ASM_SH_IO_H
2 #define __ASM_SH_IO_H
4 /*
5 * Convention:
6 * read{b,w,l}/write{b,w,l} are for PCI,
7 * while in{b,w,l}/out{b,w,l} are for ISA
8 * These may (will) be platform specific function.
9 * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p
10 * and 'string' versions: ins{b,w,l}/outs{b,w,l}
11 * For read{b,w,l} and write{b,w,l} there are also __raw versions, which
12 * do not have a memory barrier after them.
14 * In addition, we have
15 * ctrl_in{b,w,l}/ctrl_out{b,w,l} for SuperH specific I/O.
16 * which are processor specific.
20 * We follow the Alpha convention here:
21 * __inb expands to an inline function call (which calls via the mv)
22 * _inb is a real function call (note ___raw fns are _ version of __raw)
23 * inb by default expands to _inb, but the machine specific code may
24 * define it to __inb if it chooses.
27 #include <asm/cache.h>
28 #include <asm/system.h>
29 #include <asm/addrspace.h>
30 #include <asm/machvec.h>
31 #include <linux/config.h>
34 * Depending on which platform we are running on, we need different
35 * I/O functions.
38 #ifdef __KERNEL__
40 * Since boards are able to define their own set of I/O routines through
41 * their respective machine vector, we always wrap through the mv.
43 * Also, in the event that a board hasn't provided its own definition for
44 * a given routine, it will be wrapped to generic code at run-time.
47 # define __inb(p) sh_mv.mv_inb((p))
48 # define __inw(p) sh_mv.mv_inw((p))
49 # define __inl(p) sh_mv.mv_inl((p))
50 # define __outb(x,p) sh_mv.mv_outb((x),(p))
51 # define __outw(x,p) sh_mv.mv_outw((x),(p))
52 # define __outl(x,p) sh_mv.mv_outl((x),(p))
54 # define __inb_p(p) sh_mv.mv_inb_p((p))
55 # define __inw_p(p) sh_mv.mv_inw_p((p))
56 # define __inl_p(p) sh_mv.mv_inl_p((p))
57 # define __outb_p(x,p) sh_mv.mv_outb_p((x),(p))
58 # define __outw_p(x,p) sh_mv.mv_outw_p((x),(p))
59 # define __outl_p(x,p) sh_mv.mv_outl_p((x),(p))
61 # define __insb(p,b,c) sh_mv.mv_insb((p), (b), (c))
62 # define __insw(p,b,c) sh_mv.mv_insw((p), (b), (c))
63 # define __insl(p,b,c) sh_mv.mv_insl((p), (b), (c))
64 # define __outsb(p,b,c) sh_mv.mv_outsb((p), (b), (c))
65 # define __outsw(p,b,c) sh_mv.mv_outsw((p), (b), (c))
66 # define __outsl(p,b,c) sh_mv.mv_outsl((p), (b), (c))
68 # define __readb(a) sh_mv.mv_readb((a))
69 # define __readw(a) sh_mv.mv_readw((a))
70 # define __readl(a) sh_mv.mv_readl((a))
71 # define __writeb(v,a) sh_mv.mv_writeb((v),(a))
72 # define __writew(v,a) sh_mv.mv_writew((v),(a))
73 # define __writel(v,a) sh_mv.mv_writel((v),(a))
75 # define __ioremap(a,s) sh_mv.mv_ioremap((a), (s))
76 # define __iounmap(a) sh_mv.mv_iounmap((a))
78 # define __isa_port2addr(a) sh_mv.mv_isa_port2addr(a)
80 # define inb __inb
81 # define inw __inw
82 # define inl __inl
83 # define outb __outb
84 # define outw __outw
85 # define outl __outl
87 # define inb_p __inb_p
88 # define inw_p __inw_p
89 # define inl_p __inl_p
90 # define outb_p __outb_p
91 # define outw_p __outw_p
92 # define outl_p __outl_p
94 # define insb __insb
95 # define insw __insw
96 # define insl __insl
97 # define outsb __outsb
98 # define outsw __outsw
99 # define outsl __outsl
101 # define __raw_readb __readb
102 # define __raw_readw __readw
103 # define __raw_readl __readl
104 # define __raw_writeb __writeb
105 # define __raw_writew __writew
106 # define __raw_writel __writel
109 * The platform header files may define some of these macros to use
110 * the inlined versions where appropriate. These macros may also be
111 * redefined by userlevel programs.
113 #ifdef __raw_readb
114 # define readb(a) ({ unsigned long r_ = __raw_readb((unsigned long)a); mb(); r_; })
115 #endif
116 #ifdef __raw_readw
117 # define readw(a) ({ unsigned long r_ = __raw_readw((unsigned long)a); mb(); r_; })
118 #endif
119 #ifdef __raw_readl
120 # define readl(a) ({ unsigned long r_ = __raw_readl((unsigned long)a); mb(); r_; })
121 #endif
123 #ifdef __raw_writeb
124 # define writeb(v,a) ({ __raw_writeb((v),(unsigned long)(a)); mb(); })
125 #endif
126 #ifdef __raw_writew
127 # define writew(v,a) ({ __raw_writew((v),(unsigned long)(a)); mb(); })
128 #endif
129 #ifdef __raw_writel
130 # define writel(v,a) ({ __raw_writel((v),(unsigned long)(a)); mb(); })
131 #endif
133 #define readb_relaxed(a) readb(a)
134 #define readw_relaxed(a) readw(a)
135 #define readl_relaxed(a) readl(a)
137 #define mmiowb()
140 * If the platform has PC-like I/O, this function converts the offset into
141 * an address.
143 static __inline__ unsigned long isa_port2addr(unsigned long offset)
145 return __isa_port2addr(offset);
149 * This function provides a method for the generic case where a board-specific
150 * isa_port2addr simply needs to return the port + some arbitrary port base.
152 * We use this at board setup time to implicitly set the port base, and
153 * as a result, we can use the generic isa_port2addr.
155 static inline void __set_io_port_base(unsigned long pbase)
157 extern unsigned long generic_io_base;
159 generic_io_base = pbase;
162 #define isa_readb(a) readb(isa_port2addr(a))
163 #define isa_readw(a) readw(isa_port2addr(a))
164 #define isa_readl(a) readl(isa_port2addr(a))
165 #define isa_writeb(b,a) writeb(b,isa_port2addr(a))
166 #define isa_writew(w,a) writew(w,isa_port2addr(a))
167 #define isa_writel(l,a) writel(l,isa_port2addr(a))
168 #define isa_memset_io(a,b,c) \
169 memset((void *)(isa_port2addr((unsigned long)a)),(b),(c))
170 #define isa_memcpy_fromio(a,b,c) \
171 memcpy((a),(void *)(isa_port2addr((unsigned long)(b))),(c))
172 #define isa_memcpy_toio(a,b,c) \
173 memcpy((void *)(isa_port2addr((unsigned long)(a))),(b),(c))
175 /* We really want to try and get these to memcpy etc */
176 extern void memcpy_fromio(void *, unsigned long, unsigned long);
177 extern void memcpy_toio(unsigned long, const void *, unsigned long);
178 extern void memset_io(unsigned long, int, unsigned long);
180 /* SuperH on-chip I/O functions */
181 static __inline__ unsigned char ctrl_inb(unsigned long addr)
183 return *(volatile unsigned char*)addr;
186 static __inline__ unsigned short ctrl_inw(unsigned long addr)
188 return *(volatile unsigned short*)addr;
191 static __inline__ unsigned int ctrl_inl(unsigned long addr)
193 return *(volatile unsigned long*)addr;
196 static __inline__ void ctrl_outb(unsigned char b, unsigned long addr)
198 *(volatile unsigned char*)addr = b;
201 static __inline__ void ctrl_outw(unsigned short b, unsigned long addr)
203 *(volatile unsigned short*)addr = b;
206 static __inline__ void ctrl_outl(unsigned int b, unsigned long addr)
208 *(volatile unsigned long*)addr = b;
211 #define IO_SPACE_LIMIT 0xffffffff
214 * Change virtual addresses to physical addresses and vv.
215 * These are trivial on the 1:1 Linux/SuperH mapping
217 static __inline__ unsigned long virt_to_phys(volatile void * address)
219 return PHYSADDR(address);
222 static __inline__ void * phys_to_virt(unsigned long address)
224 return (void *)P1SEGADDR(address);
227 #define virt_to_bus virt_to_phys
228 #define bus_to_virt phys_to_virt
229 #define page_to_bus page_to_phys
232 * readX/writeX() are used to access memory mapped devices. On some
233 * architectures the memory mapped IO stuff needs to be accessed
234 * differently. On the x86 architecture, we just read/write the
235 * memory location directly.
237 * On SH, we have the whole physical address space mapped at all times
238 * (as MIPS does), so "ioremap()" and "iounmap()" do not need to do
239 * anything. (This isn't true for all machines but we still handle
240 * these cases with wired TLB entries anyway ...)
242 * We cheat a bit and always return uncachable areas until we've fixed
243 * the drivers to handle caching properly.
245 static __inline__ void * ioremap(unsigned long offset, unsigned long size)
247 return __ioremap(offset, size);
250 static __inline__ void iounmap(void *addr)
252 return __iounmap(addr);
255 #define ioremap_nocache(off,size) ioremap(off,size)
257 static __inline__ int check_signature(unsigned long io_addr,
258 const unsigned char *signature, int length)
260 int retval = 0;
261 do {
262 if (readb(io_addr) != *signature)
263 goto out;
264 io_addr++;
265 signature++;
266 length--;
267 } while (length);
268 retval = 1;
269 out:
270 return retval;
274 * The caches on some architectures aren't dma-coherent and have need to
275 * handle this in software. There are three types of operations that
276 * can be applied to dma buffers.
278 * - dma_cache_wback_inv(start, size) makes caches and RAM coherent by
279 * writing the content of the caches back to memory, if necessary.
280 * The function also invalidates the affected part of the caches as
281 * necessary before DMA transfers from outside to memory.
282 * - dma_cache_inv(start, size) invalidates the affected parts of the
283 * caches. Dirty lines of the caches may be written back or simply
284 * be discarded. This operation is necessary before dma operations
285 * to the memory.
286 * - dma_cache_wback(start, size) writes back any dirty lines but does
287 * not invalidate the cache. This can be used before DMA reads from
288 * memory,
291 #define dma_cache_wback_inv(_start,_size) \
292 __flush_purge_region(_start,_size)
293 #define dma_cache_inv(_start,_size) \
294 __flush_invalidate_region(_start,_size)
295 #define dma_cache_wback(_start,_size) \
296 __flush_wback_region(_start,_size)
299 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
300 * access
302 #define xlate_dev_mem_ptr(p) __va(p)
305 * Convert a virtual cached pointer to an uncached pointer
307 #define xlate_dev_kmem_ptr(p) p
309 #endif /* __KERNEL__ */
311 #endif /* __ASM_SH_IO_H */