1 ///////////////////////////////////////////////////////////////////////////////
4 /// \brief Handling of .xz Indexes and some other Stream information
6 // Author: Lasse Collin
8 // This file has been put into the public domain.
9 // You can do whatever you want with this file.
11 ///////////////////////////////////////////////////////////////////////////////
14 #include "stream_flags_common.h"
17 /// \brief How many Records to allocate at once
19 /// This should be big enough to avoid making lots of tiny allocations
20 /// but small enough to avoid too much unused memory at once.
21 #define INDEX_GROUP_SIZE 512
24 /// \brief How many Records can be allocated at once at maximum
25 #define PREALLOC_MAX ((SIZE_MAX - sizeof(index_group)) / sizeof(index_record))
28 /// \brief Base structure for index_stream and index_group structures
29 typedef struct index_tree_node_s index_tree_node
;
30 struct index_tree_node_s
{
31 /// Uncompressed start offset of this Stream (relative to the
32 /// beginning of the file) or Block (relative to the beginning
34 lzma_vli uncompressed_base
;
36 /// Compressed start offset of this Stream or Block
37 lzma_vli compressed_base
;
39 index_tree_node
*parent
;
40 index_tree_node
*left
;
41 index_tree_node
*right
;
45 /// \brief AVL tree to hold index_stream or index_group structures
48 index_tree_node
*root
;
50 /// Leftmost node. Since the tree will be filled sequentially,
51 /// this won't change after the first node has been added to
53 index_tree_node
*leftmost
;
55 /// The rightmost node in the tree. Since the tree is filled
56 /// sequentially, this is always the node where to add the new data.
57 index_tree_node
*rightmost
;
59 /// Number of nodes in the tree
66 lzma_vli uncompressed_sum
;
67 lzma_vli unpadded_sum
;
72 /// Every Record group is part of index_stream.groups tree.
75 /// Number of Blocks in this Stream before this group.
78 /// Number of Records that can be put in records[].
81 /// Index of the last Record in use.
84 /// The sizes in this array are stored as cumulative sums relative
85 /// to the beginning of the Stream. This makes it possible to
86 /// use binary search in lzma_index_locate().
88 /// Note that the cumulative summing is done specially for
89 /// unpadded_sum: The previous value is rounded up to the next
90 /// multiple of four before adding the Unpadded Size of the new
91 /// Block. The total encoded size of the Blocks in the Stream
92 /// is records[last].unpadded_sum in the last Record group of
95 /// For example, if the Unpadded Sizes are 39, 57, and 81, the
96 /// stored values are 39, 97 (40 + 57), and 181 (100 + 181).
97 /// The total encoded size of these Blocks is 184.
99 /// This is a flexible array, because it makes easy to optimize
100 /// memory usage in case someone concatenates many Streams that
101 /// have only one or few Blocks.
102 index_record records
[];
108 /// Every index_stream is a node in the tree of Sreams.
109 index_tree_node node
;
111 /// Number of this Stream (first one is 1)
114 /// Total number of Blocks before this Stream
115 lzma_vli block_number_base
;
117 /// Record groups of this Stream are stored in a tree.
118 /// It's a T-tree with AVL-tree balancing. There are
119 /// INDEX_GROUP_SIZE Records per node by default.
120 /// This keeps the number of memory allocations reasonable
121 /// and finding a Record is fast.
124 /// Number of Records in this Stream
125 lzma_vli record_count
;
127 /// Size of the List of Records field in this Stream. This is used
128 /// together with record_count to calculate the size of the Index
129 /// field and thus the total size of the Stream.
130 lzma_vli index_list_size
;
132 /// Stream Flags of this Stream. This is meaningful only if
133 /// the Stream Flags have been told us with lzma_index_stream_flags().
134 /// Initially stream_flags.version is set to UINT32_MAX to indicate
135 /// that the Stream Flags are unknown.
136 lzma_stream_flags stream_flags
;
138 /// Amount of Stream Padding after this Stream. This defaults to
139 /// zero and can be set with lzma_index_stream_padding().
140 lzma_vli stream_padding
;
145 struct lzma_index_s
{
146 /// AVL-tree containing the Stream(s). Often there is just one
147 /// Stream, but using a tree keeps lookups fast even when there
148 /// are many concatenated Streams.
151 /// Uncompressed size of all the Blocks in the Stream(s)
152 lzma_vli uncompressed_size
;
154 /// Total size of all the Blocks in the Stream(s)
157 /// Total number of Records in all Streams in this lzma_index
158 lzma_vli record_count
;
160 /// Size of the List of Records field if all the Streams in this
161 /// lzma_index were packed into a single Stream (makes it simpler to
162 /// take many .xz files and combine them into a single Stream).
164 /// This value together with record_count is needed to calculate
165 /// Backward Size that is stored into Stream Footer.
166 lzma_vli index_list_size
;
168 /// How many Records to allocate at once in lzma_index_append().
169 /// This defaults to INDEX_GROUP_SIZE but can be overriden with
170 /// lzma_index_prealloc().
173 /// Bitmask indicating what integrity check types have been used
174 /// as set by lzma_index_stream_flags(). The bit of the last Stream
175 /// is not included here, since it is possible to change it by
176 /// calling lzma_index_stream_flags() again.
182 index_tree_init(index_tree
*tree
)
185 tree
->leftmost
= NULL
;
186 tree
->rightmost
= NULL
;
192 /// Helper for index_tree_end()
194 index_tree_node_end(index_tree_node
*node
, const lzma_allocator
*allocator
,
195 void (*free_func
)(void *node
, const lzma_allocator
*allocator
))
197 // The tree won't ever be very huge, so recursion should be fine.
198 // 20 levels in the tree is likely quite a lot already in practice.
199 if (node
->left
!= NULL
)
200 index_tree_node_end(node
->left
, allocator
, free_func
);
202 if (node
->right
!= NULL
)
203 index_tree_node_end(node
->right
, allocator
, free_func
);
205 free_func(node
, allocator
);
210 /// Free the memory allocated for a tree. Each node is freed using the
211 /// given free_func which is either &lzma_free or &index_stream_end.
212 /// The latter is used to free the Record groups from each index_stream
213 /// before freeing the index_stream itself.
215 index_tree_end(index_tree
*tree
, const lzma_allocator
*allocator
,
216 void (*free_func
)(void *node
, const lzma_allocator
*allocator
))
218 assert(free_func
!= NULL
);
220 if (tree
->root
!= NULL
)
221 index_tree_node_end(tree
->root
, allocator
, free_func
);
227 /// Add a new node to the tree. node->uncompressed_base and
228 /// node->compressed_base must have been set by the caller already.
230 index_tree_append(index_tree
*tree
, index_tree_node
*node
)
232 node
->parent
= tree
->rightmost
;
238 // Handle the special case of adding the first node.
239 if (tree
->root
== NULL
) {
241 tree
->leftmost
= node
;
242 tree
->rightmost
= node
;
246 // The tree is always filled sequentially.
247 assert(tree
->rightmost
->uncompressed_base
<= node
->uncompressed_base
);
248 assert(tree
->rightmost
->compressed_base
< node
->compressed_base
);
250 // Add the new node after the rightmost node. It's the correct
251 // place due to the reason above.
252 tree
->rightmost
->right
= node
;
253 tree
->rightmost
= node
;
255 // Balance the AVL-tree if needed. We don't need to keep the balance
256 // factors in nodes, because we always fill the tree sequentially,
257 // and thus know the state of the tree just by looking at the node
258 // count. From the node count we can calculate how many steps to go
259 // up in the tree to find the rotation root.
260 uint32_t up
= tree
->count
^ (UINT32_C(1) << bsr32(tree
->count
));
262 // Locate the root node for the rotation.
263 up
= ctz32(tree
->count
) + 2;
268 // Rotate left using node as the rotation root.
269 index_tree_node
*pivot
= node
->right
;
271 if (node
->parent
== NULL
) {
274 assert(node
->parent
->right
== node
);
275 node
->parent
->right
= pivot
;
278 pivot
->parent
= node
->parent
;
280 node
->right
= pivot
->left
;
281 if (node
->right
!= NULL
)
282 node
->right
->parent
= node
;
285 node
->parent
= pivot
;
292 /// Get the next node in the tree. Return NULL if there are no more nodes.
294 index_tree_next(const index_tree_node
*node
)
296 if (node
->right
!= NULL
) {
298 while (node
->left
!= NULL
)
301 return (void *)(node
);
304 while (node
->parent
!= NULL
&& node
->parent
->right
== node
)
307 return (void *)(node
->parent
);
311 /// Locate a node that contains the given uncompressed offset. It is
312 /// caller's job to check that target is not bigger than the uncompressed
313 /// size of the tree (the last node would be returned in that case still).
315 index_tree_locate(const index_tree
*tree
, lzma_vli target
)
317 const index_tree_node
*result
= NULL
;
318 const index_tree_node
*node
= tree
->root
;
320 assert(tree
->leftmost
== NULL
321 || tree
->leftmost
->uncompressed_base
== 0);
323 // Consecutive nodes may have the same uncompressed_base.
324 // We must pick the rightmost one.
325 while (node
!= NULL
) {
326 if (node
->uncompressed_base
> target
) {
334 return (void *)(result
);
338 /// Allocate and initialize a new Stream using the given base offsets.
339 static index_stream
*
340 index_stream_init(lzma_vli compressed_base
, lzma_vli uncompressed_base
,
341 uint32_t stream_number
, lzma_vli block_number_base
,
342 const lzma_allocator
*allocator
)
344 index_stream
*s
= lzma_alloc(sizeof(index_stream
), allocator
);
348 s
->node
.uncompressed_base
= uncompressed_base
;
349 s
->node
.compressed_base
= compressed_base
;
350 s
->node
.parent
= NULL
;
352 s
->node
.right
= NULL
;
354 s
->number
= stream_number
;
355 s
->block_number_base
= block_number_base
;
357 index_tree_init(&s
->groups
);
360 s
->index_list_size
= 0;
361 s
->stream_flags
.version
= UINT32_MAX
;
362 s
->stream_padding
= 0;
368 /// Free the memory allocated for a Stream and its Record groups.
370 index_stream_end(void *node
, const lzma_allocator
*allocator
)
372 index_stream
*s
= node
;
373 index_tree_end(&s
->groups
, allocator
, &lzma_free
);
374 lzma_free(s
, allocator
);
380 index_init_plain(const lzma_allocator
*allocator
)
382 lzma_index
*i
= lzma_alloc(sizeof(lzma_index
), allocator
);
384 index_tree_init(&i
->streams
);
385 i
->uncompressed_size
= 0;
388 i
->index_list_size
= 0;
389 i
->prealloc
= INDEX_GROUP_SIZE
;
397 extern LZMA_API(lzma_index
*)
398 lzma_index_init(const lzma_allocator
*allocator
)
400 lzma_index
*i
= index_init_plain(allocator
);
404 index_stream
*s
= index_stream_init(0, 0, 1, 0, allocator
);
406 lzma_free(i
, allocator
);
410 index_tree_append(&i
->streams
, &s
->node
);
416 extern LZMA_API(void)
417 lzma_index_end(lzma_index
*i
, const lzma_allocator
*allocator
)
419 // NOTE: If you modify this function, check also the bottom
420 // of lzma_index_cat().
422 index_tree_end(&i
->streams
, allocator
, &index_stream_end
);
423 lzma_free(i
, allocator
);
431 lzma_index_prealloc(lzma_index
*i
, lzma_vli records
)
433 if (records
> PREALLOC_MAX
)
434 records
= PREALLOC_MAX
;
436 i
->prealloc
= (size_t)(records
);
441 extern LZMA_API(uint64_t)
442 lzma_index_memusage(lzma_vli streams
, lzma_vli blocks
)
444 // This calculates an upper bound that is only a little bit
445 // bigger than the exact maximum memory usage with the given
448 // Typical malloc() overhead is 2 * sizeof(void *) but we take
449 // a little bit extra just in case. Using LZMA_MEMUSAGE_BASE
450 // instead would give too inaccurate estimate.
451 const size_t alloc_overhead
= 4 * sizeof(void *);
453 // Amount of memory needed for each Stream base structures.
454 // We assume that every Stream has at least one Block and
455 // thus at least one group.
456 const size_t stream_base
= sizeof(index_stream
)
457 + sizeof(index_group
) + 2 * alloc_overhead
;
459 // Amount of memory needed per group.
460 const size_t group_base
= sizeof(index_group
)
461 + INDEX_GROUP_SIZE
* sizeof(index_record
)
464 // Number of groups. There may actually be more, but that overhead
465 // has been taken into account in stream_base already.
466 const lzma_vli groups
467 = (blocks
+ INDEX_GROUP_SIZE
- 1) / INDEX_GROUP_SIZE
;
469 // Memory used by index_stream and index_group structures.
470 const uint64_t streams_mem
= streams
* stream_base
;
471 const uint64_t groups_mem
= groups
* group_base
;
473 // Memory used by the base structure.
474 const uint64_t index_base
= sizeof(lzma_index
) + alloc_overhead
;
476 // Validate the arguments and catch integer overflows.
477 // Maximum number of Streams is "only" UINT32_MAX, because
478 // that limit is used by the tree containing the Streams.
479 const uint64_t limit
= UINT64_MAX
- index_base
;
480 if (streams
== 0 || streams
> UINT32_MAX
|| blocks
> LZMA_VLI_MAX
481 || streams
> limit
/ stream_base
482 || groups
> limit
/ group_base
483 || limit
- streams_mem
< groups_mem
)
486 return index_base
+ streams_mem
+ groups_mem
;
490 extern LZMA_API(uint64_t)
491 lzma_index_memused(const lzma_index
*i
)
493 return lzma_index_memusage(i
->streams
.count
, i
->record_count
);
497 extern LZMA_API(lzma_vli
)
498 lzma_index_block_count(const lzma_index
*i
)
500 return i
->record_count
;
504 extern LZMA_API(lzma_vli
)
505 lzma_index_stream_count(const lzma_index
*i
)
507 return i
->streams
.count
;
511 extern LZMA_API(lzma_vli
)
512 lzma_index_size(const lzma_index
*i
)
514 return index_size(i
->record_count
, i
->index_list_size
);
518 extern LZMA_API(lzma_vli
)
519 lzma_index_total_size(const lzma_index
*i
)
521 return i
->total_size
;
525 extern LZMA_API(lzma_vli
)
526 lzma_index_stream_size(const lzma_index
*i
)
528 // Stream Header + Blocks + Index + Stream Footer
529 return LZMA_STREAM_HEADER_SIZE
+ i
->total_size
530 + index_size(i
->record_count
, i
->index_list_size
)
531 + LZMA_STREAM_HEADER_SIZE
;
536 index_file_size(lzma_vli compressed_base
, lzma_vli unpadded_sum
,
537 lzma_vli record_count
, lzma_vli index_list_size
,
538 lzma_vli stream_padding
)
540 // Earlier Streams and Stream Paddings + Stream Header
541 // + Blocks + Index + Stream Footer + Stream Padding
543 // This might go over LZMA_VLI_MAX due to too big unpadded_sum
544 // when this function is used in lzma_index_append().
545 lzma_vli file_size
= compressed_base
+ 2 * LZMA_STREAM_HEADER_SIZE
546 + stream_padding
+ vli_ceil4(unpadded_sum
);
547 if (file_size
> LZMA_VLI_MAX
)
548 return LZMA_VLI_UNKNOWN
;
550 // The same applies here.
551 file_size
+= index_size(record_count
, index_list_size
);
552 if (file_size
> LZMA_VLI_MAX
)
553 return LZMA_VLI_UNKNOWN
;
559 extern LZMA_API(lzma_vli
)
560 lzma_index_file_size(const lzma_index
*i
)
562 const index_stream
*s
= (const index_stream
*)(i
->streams
.rightmost
);
563 const index_group
*g
= (const index_group
*)(s
->groups
.rightmost
);
564 return index_file_size(s
->node
.compressed_base
,
565 g
== NULL
? 0 : g
->records
[g
->last
].unpadded_sum
,
566 s
->record_count
, s
->index_list_size
,
571 extern LZMA_API(lzma_vli
)
572 lzma_index_uncompressed_size(const lzma_index
*i
)
574 return i
->uncompressed_size
;
578 extern LZMA_API(uint32_t)
579 lzma_index_checks(const lzma_index
*i
)
581 uint32_t checks
= i
->checks
;
583 // Get the type of the Check of the last Stream too.
584 const index_stream
*s
= (const index_stream
*)(i
->streams
.rightmost
);
585 if (s
->stream_flags
.version
!= UINT32_MAX
)
586 checks
|= UINT32_C(1) << s
->stream_flags
.check
;
593 lzma_index_padding_size(const lzma_index
*i
)
595 return (LZMA_VLI_C(4) - index_size_unpadded(
596 i
->record_count
, i
->index_list_size
)) & 3;
600 extern LZMA_API(lzma_ret
)
601 lzma_index_stream_flags(lzma_index
*i
, const lzma_stream_flags
*stream_flags
)
603 if (i
== NULL
|| stream_flags
== NULL
)
604 return LZMA_PROG_ERROR
;
606 // Validate the Stream Flags.
607 return_if_error(lzma_stream_flags_compare(
608 stream_flags
, stream_flags
));
610 index_stream
*s
= (index_stream
*)(i
->streams
.rightmost
);
611 s
->stream_flags
= *stream_flags
;
617 extern LZMA_API(lzma_ret
)
618 lzma_index_stream_padding(lzma_index
*i
, lzma_vli stream_padding
)
620 if (i
== NULL
|| stream_padding
> LZMA_VLI_MAX
621 || (stream_padding
& 3) != 0)
622 return LZMA_PROG_ERROR
;
624 index_stream
*s
= (index_stream
*)(i
->streams
.rightmost
);
626 // Check that the new value won't make the file grow too big.
627 const lzma_vli old_stream_padding
= s
->stream_padding
;
628 s
->stream_padding
= 0;
629 if (lzma_index_file_size(i
) + stream_padding
> LZMA_VLI_MAX
) {
630 s
->stream_padding
= old_stream_padding
;
631 return LZMA_DATA_ERROR
;
634 s
->stream_padding
= stream_padding
;
639 extern LZMA_API(lzma_ret
)
640 lzma_index_append(lzma_index
*i
, const lzma_allocator
*allocator
,
641 lzma_vli unpadded_size
, lzma_vli uncompressed_size
)
644 if (i
== NULL
|| unpadded_size
< UNPADDED_SIZE_MIN
645 || unpadded_size
> UNPADDED_SIZE_MAX
646 || uncompressed_size
> LZMA_VLI_MAX
)
647 return LZMA_PROG_ERROR
;
649 index_stream
*s
= (index_stream
*)(i
->streams
.rightmost
);
650 index_group
*g
= (index_group
*)(s
->groups
.rightmost
);
652 const lzma_vli compressed_base
= g
== NULL
? 0
653 : vli_ceil4(g
->records
[g
->last
].unpadded_sum
);
654 const lzma_vli uncompressed_base
= g
== NULL
? 0
655 : g
->records
[g
->last
].uncompressed_sum
;
656 const uint32_t index_list_size_add
= lzma_vli_size(unpadded_size
)
657 + lzma_vli_size(uncompressed_size
);
659 // Check that the file size will stay within limits.
660 if (index_file_size(s
->node
.compressed_base
,
661 compressed_base
+ unpadded_size
, s
->record_count
+ 1,
662 s
->index_list_size
+ index_list_size_add
,
663 s
->stream_padding
) == LZMA_VLI_UNKNOWN
)
664 return LZMA_DATA_ERROR
;
666 // The size of the Index field must not exceed the maximum value
667 // that can be stored in the Backward Size field.
668 if (index_size(i
->record_count
+ 1,
669 i
->index_list_size
+ index_list_size_add
)
670 > LZMA_BACKWARD_SIZE_MAX
)
671 return LZMA_DATA_ERROR
;
673 if (g
!= NULL
&& g
->last
+ 1 < g
->allocated
) {
674 // There is space in the last group at least for one Record.
677 // We need to allocate a new group.
678 g
= lzma_alloc(sizeof(index_group
)
679 + i
->prealloc
* sizeof(index_record
),
682 return LZMA_MEM_ERROR
;
685 g
->allocated
= i
->prealloc
;
687 // Reset prealloc so that if the application happens to
688 // add new Records, the allocation size will be sane.
689 i
->prealloc
= INDEX_GROUP_SIZE
;
691 // Set the start offsets of this group.
692 g
->node
.uncompressed_base
= uncompressed_base
;
693 g
->node
.compressed_base
= compressed_base
;
694 g
->number_base
= s
->record_count
+ 1;
696 // Add the new group to the Stream.
697 index_tree_append(&s
->groups
, &g
->node
);
700 // Add the new Record to the group.
701 g
->records
[g
->last
].uncompressed_sum
702 = uncompressed_base
+ uncompressed_size
;
703 g
->records
[g
->last
].unpadded_sum
704 = compressed_base
+ unpadded_size
;
706 // Update the totals.
708 s
->index_list_size
+= index_list_size_add
;
710 i
->total_size
+= vli_ceil4(unpadded_size
);
711 i
->uncompressed_size
+= uncompressed_size
;
713 i
->index_list_size
+= index_list_size_add
;
719 /// Structure to pass info to index_cat_helper()
721 /// Uncompressed size of the destination
722 lzma_vli uncompressed_size
;
724 /// Compressed file size of the destination
727 /// Same as above but for Block numbers
728 lzma_vli block_number_add
;
730 /// Number of Streams that were in the destination index before we
731 /// started appending new Streams from the source index. This is
732 /// used to fix the Stream numbering.
733 uint32_t stream_number_add
;
735 /// Destination index' Stream tree
741 /// Add the Stream nodes from the source index to dest using recursion.
742 /// Simplest iterative traversal of the source tree wouldn't work, because
743 /// we update the pointers in nodes when moving them to the destination tree.
745 index_cat_helper(const index_cat_info
*info
, index_stream
*this)
747 index_stream
*left
= (index_stream
*)(this->node
.left
);
748 index_stream
*right
= (index_stream
*)(this->node
.right
);
751 index_cat_helper(info
, left
);
753 this->node
.uncompressed_base
+= info
->uncompressed_size
;
754 this->node
.compressed_base
+= info
->file_size
;
755 this->number
+= info
->stream_number_add
;
756 this->block_number_base
+= info
->block_number_add
;
757 index_tree_append(info
->streams
, &this->node
);
760 index_cat_helper(info
, right
);
766 extern LZMA_API(lzma_ret
)
767 lzma_index_cat(lzma_index
*restrict dest
, lzma_index
*restrict src
,
768 const lzma_allocator
*allocator
)
770 const lzma_vli dest_file_size
= lzma_index_file_size(dest
);
772 // Check that we don't exceed the file size limits.
773 if (dest_file_size
+ lzma_index_file_size(src
) > LZMA_VLI_MAX
774 || dest
->uncompressed_size
+ src
->uncompressed_size
776 return LZMA_DATA_ERROR
;
778 // Check that the encoded size of the combined lzma_indexes stays
779 // within limits. In theory, this should be done only if we know
780 // that the user plans to actually combine the Streams and thus
781 // construct a single Index (probably rare). However, exceeding
782 // this limit is quite theoretical, so we do this check always
783 // to simplify things elsewhere.
785 const lzma_vli dest_size
= index_size_unpadded(
786 dest
->record_count
, dest
->index_list_size
);
787 const lzma_vli src_size
= index_size_unpadded(
788 src
->record_count
, src
->index_list_size
);
789 if (vli_ceil4(dest_size
+ src_size
) > LZMA_BACKWARD_SIZE_MAX
)
790 return LZMA_DATA_ERROR
;
793 // Optimize the last group to minimize memory usage. Allocation has
794 // to be done before modifying dest or src.
796 index_stream
*s
= (index_stream
*)(dest
->streams
.rightmost
);
797 index_group
*g
= (index_group
*)(s
->groups
.rightmost
);
798 if (g
!= NULL
&& g
->last
+ 1 < g
->allocated
) {
799 assert(g
->node
.left
== NULL
);
800 assert(g
->node
.right
== NULL
);
802 index_group
*newg
= lzma_alloc(sizeof(index_group
)
804 * sizeof(index_record
),
807 return LZMA_MEM_ERROR
;
809 newg
->node
= g
->node
;
810 newg
->allocated
= g
->last
+ 1;
811 newg
->last
= g
->last
;
812 newg
->number_base
= g
->number_base
;
814 memcpy(newg
->records
, g
->records
, newg
->allocated
815 * sizeof(index_record
));
817 if (g
->node
.parent
!= NULL
) {
818 assert(g
->node
.parent
->right
== &g
->node
);
819 g
->node
.parent
->right
= &newg
->node
;
822 if (s
->groups
.leftmost
== &g
->node
) {
823 assert(s
->groups
.root
== &g
->node
);
824 s
->groups
.leftmost
= &newg
->node
;
825 s
->groups
.root
= &newg
->node
;
828 if (s
->groups
.rightmost
== &g
->node
)
829 s
->groups
.rightmost
= &newg
->node
;
831 lzma_free(g
, allocator
);
833 // NOTE: newg isn't leaked here because
834 // newg == (void *)&newg->node.
838 // Add all the Streams from src to dest. Update the base offsets
839 // of each Stream from src.
840 const index_cat_info info
= {
841 .uncompressed_size
= dest
->uncompressed_size
,
842 .file_size
= dest_file_size
,
843 .stream_number_add
= dest
->streams
.count
,
844 .block_number_add
= dest
->record_count
,
845 .streams
= &dest
->streams
,
847 index_cat_helper(&info
, (index_stream
*)(src
->streams
.root
));
849 // Update info about all the combined Streams.
850 dest
->uncompressed_size
+= src
->uncompressed_size
;
851 dest
->total_size
+= src
->total_size
;
852 dest
->record_count
+= src
->record_count
;
853 dest
->index_list_size
+= src
->index_list_size
;
854 dest
->checks
= lzma_index_checks(dest
) | src
->checks
;
856 // There's nothing else left in src than the base structure.
857 lzma_free(src
, allocator
);
863 /// Duplicate an index_stream.
864 static index_stream
*
865 index_dup_stream(const index_stream
*src
, const lzma_allocator
*allocator
)
867 // Catch a somewhat theoretical integer overflow.
868 if (src
->record_count
> PREALLOC_MAX
)
871 // Allocate and initialize a new Stream.
872 index_stream
*dest
= index_stream_init(src
->node
.compressed_base
,
873 src
->node
.uncompressed_base
, src
->number
,
874 src
->block_number_base
, allocator
);
878 // Copy the overall information.
879 dest
->record_count
= src
->record_count
;
880 dest
->index_list_size
= src
->index_list_size
;
881 dest
->stream_flags
= src
->stream_flags
;
882 dest
->stream_padding
= src
->stream_padding
;
884 // Return if there are no groups to duplicate.
885 if (src
->groups
.leftmost
== NULL
)
888 // Allocate memory for the Records. We put all the Records into
889 // a single group. It's simplest and also tends to make
890 // lzma_index_locate() a little bit faster with very big Indexes.
891 index_group
*destg
= lzma_alloc(sizeof(index_group
)
892 + src
->record_count
* sizeof(index_record
),
895 index_stream_end(dest
, allocator
);
900 destg
->node
.uncompressed_base
= 0;
901 destg
->node
.compressed_base
= 0;
902 destg
->number_base
= 1;
903 destg
->allocated
= src
->record_count
;
904 destg
->last
= src
->record_count
- 1;
906 // Go through all the groups in src and copy the Records into destg.
907 const index_group
*srcg
= (const index_group
*)(src
->groups
.leftmost
);
910 memcpy(destg
->records
+ i
, srcg
->records
,
911 (srcg
->last
+ 1) * sizeof(index_record
));
913 srcg
= index_tree_next(&srcg
->node
);
914 } while (srcg
!= NULL
);
916 assert(i
== destg
->allocated
);
918 // Add the group to the new Stream.
919 index_tree_append(&dest
->groups
, &destg
->node
);
925 extern LZMA_API(lzma_index
*)
926 lzma_index_dup(const lzma_index
*src
, const lzma_allocator
*allocator
)
928 // Allocate the base structure (no initial Stream).
929 lzma_index
*dest
= index_init_plain(allocator
);
934 dest
->uncompressed_size
= src
->uncompressed_size
;
935 dest
->total_size
= src
->total_size
;
936 dest
->record_count
= src
->record_count
;
937 dest
->index_list_size
= src
->index_list_size
;
939 // Copy the Streams and the groups in them.
940 const index_stream
*srcstream
941 = (const index_stream
*)(src
->streams
.leftmost
);
943 index_stream
*deststream
= index_dup_stream(
944 srcstream
, allocator
);
945 if (deststream
== NULL
) {
946 lzma_index_end(dest
, allocator
);
950 index_tree_append(&dest
->streams
, &deststream
->node
);
952 srcstream
= index_tree_next(&srcstream
->node
);
953 } while (srcstream
!= NULL
);
959 /// Indexing for lzma_index_iter.internal[]
969 /// Values for lzma_index_iter.internal[ITER_METHOD].s
973 ITER_METHOD_LEFTMOST
,
978 iter_set_info(lzma_index_iter
*iter
)
980 const lzma_index
*i
= iter
->internal
[ITER_INDEX
].p
;
981 const index_stream
*stream
= iter
->internal
[ITER_STREAM
].p
;
982 const index_group
*group
= iter
->internal
[ITER_GROUP
].p
;
983 const size_t record
= iter
->internal
[ITER_RECORD
].s
;
985 // lzma_index_iter.internal must not contain a pointer to the last
986 // group in the index, because that may be reallocated by
989 // There are no groups.
990 assert(stream
->groups
.root
== NULL
);
991 iter
->internal
[ITER_METHOD
].s
= ITER_METHOD_LEFTMOST
;
993 } else if (i
->streams
.rightmost
!= &stream
->node
994 || stream
->groups
.rightmost
!= &group
->node
) {
995 // The group is not not the last group in the index.
996 iter
->internal
[ITER_METHOD
].s
= ITER_METHOD_NORMAL
;
998 } else if (stream
->groups
.leftmost
!= &group
->node
) {
999 // The group isn't the only group in the Stream, thus we
1000 // know that it must have a parent group i.e. it's not
1002 assert(stream
->groups
.root
!= &group
->node
);
1003 assert(group
->node
.parent
->right
== &group
->node
);
1004 iter
->internal
[ITER_METHOD
].s
= ITER_METHOD_NEXT
;
1005 iter
->internal
[ITER_GROUP
].p
= group
->node
.parent
;
1008 // The Stream has only one group.
1009 assert(stream
->groups
.root
== &group
->node
);
1010 assert(group
->node
.parent
== NULL
);
1011 iter
->internal
[ITER_METHOD
].s
= ITER_METHOD_LEFTMOST
;
1012 iter
->internal
[ITER_GROUP
].p
= NULL
;
1015 // NOTE: lzma_index_iter.stream.number is lzma_vli but we use uint32_t
1017 iter
->stream
.number
= stream
->number
;
1018 iter
->stream
.block_count
= stream
->record_count
;
1019 iter
->stream
.compressed_offset
= stream
->node
.compressed_base
;
1020 iter
->stream
.uncompressed_offset
= stream
->node
.uncompressed_base
;
1022 // iter->stream.flags will be NULL if the Stream Flags haven't been
1023 // set with lzma_index_stream_flags().
1024 iter
->stream
.flags
= stream
->stream_flags
.version
== UINT32_MAX
1025 ? NULL
: &stream
->stream_flags
;
1026 iter
->stream
.padding
= stream
->stream_padding
;
1028 if (stream
->groups
.rightmost
== NULL
) {
1029 // Stream has no Blocks.
1030 iter
->stream
.compressed_size
= index_size(0, 0)
1031 + 2 * LZMA_STREAM_HEADER_SIZE
;
1032 iter
->stream
.uncompressed_size
= 0;
1034 const index_group
*g
= (const index_group
*)(
1035 stream
->groups
.rightmost
);
1037 // Stream Header + Stream Footer + Index + Blocks
1038 iter
->stream
.compressed_size
= 2 * LZMA_STREAM_HEADER_SIZE
1039 + index_size(stream
->record_count
,
1040 stream
->index_list_size
)
1041 + vli_ceil4(g
->records
[g
->last
].unpadded_sum
);
1042 iter
->stream
.uncompressed_size
1043 = g
->records
[g
->last
].uncompressed_sum
;
1046 if (group
!= NULL
) {
1047 iter
->block
.number_in_stream
= group
->number_base
+ record
;
1048 iter
->block
.number_in_file
= iter
->block
.number_in_stream
1049 + stream
->block_number_base
;
1051 iter
->block
.compressed_stream_offset
1052 = record
== 0 ? group
->node
.compressed_base
1053 : vli_ceil4(group
->records
[
1054 record
- 1].unpadded_sum
);
1055 iter
->block
.uncompressed_stream_offset
1056 = record
== 0 ? group
->node
.uncompressed_base
1057 : group
->records
[record
- 1].uncompressed_sum
;
1059 iter
->block
.uncompressed_size
1060 = group
->records
[record
].uncompressed_sum
1061 - iter
->block
.uncompressed_stream_offset
;
1062 iter
->block
.unpadded_size
1063 = group
->records
[record
].unpadded_sum
1064 - iter
->block
.compressed_stream_offset
;
1065 iter
->block
.total_size
= vli_ceil4(iter
->block
.unpadded_size
);
1067 iter
->block
.compressed_stream_offset
1068 += LZMA_STREAM_HEADER_SIZE
;
1070 iter
->block
.compressed_file_offset
1071 = iter
->block
.compressed_stream_offset
1072 + iter
->stream
.compressed_offset
;
1073 iter
->block
.uncompressed_file_offset
1074 = iter
->block
.uncompressed_stream_offset
1075 + iter
->stream
.uncompressed_offset
;
1082 extern LZMA_API(void)
1083 lzma_index_iter_init(lzma_index_iter
*iter
, const lzma_index
*i
)
1085 iter
->internal
[ITER_INDEX
].p
= i
;
1086 lzma_index_iter_rewind(iter
);
1091 extern LZMA_API(void)
1092 lzma_index_iter_rewind(lzma_index_iter
*iter
)
1094 iter
->internal
[ITER_STREAM
].p
= NULL
;
1095 iter
->internal
[ITER_GROUP
].p
= NULL
;
1096 iter
->internal
[ITER_RECORD
].s
= 0;
1097 iter
->internal
[ITER_METHOD
].s
= ITER_METHOD_NORMAL
;
1102 extern LZMA_API(lzma_bool
)
1103 lzma_index_iter_next(lzma_index_iter
*iter
, lzma_index_iter_mode mode
)
1105 // Catch unsupported mode values.
1106 if ((unsigned int)(mode
) > LZMA_INDEX_ITER_NONEMPTY_BLOCK
)
1109 const lzma_index
*i
= iter
->internal
[ITER_INDEX
].p
;
1110 const index_stream
*stream
= iter
->internal
[ITER_STREAM
].p
;
1111 const index_group
*group
= NULL
;
1112 size_t record
= iter
->internal
[ITER_RECORD
].s
;
1114 // If we are being asked for the next Stream, leave group to NULL
1115 // so that the rest of the this function thinks that this Stream
1116 // has no groups and will thus go to the next Stream.
1117 if (mode
!= LZMA_INDEX_ITER_STREAM
) {
1118 // Get the pointer to the current group. See iter_set_inf()
1120 switch (iter
->internal
[ITER_METHOD
].s
) {
1121 case ITER_METHOD_NORMAL
:
1122 group
= iter
->internal
[ITER_GROUP
].p
;
1125 case ITER_METHOD_NEXT
:
1126 group
= index_tree_next(iter
->internal
[ITER_GROUP
].p
);
1129 case ITER_METHOD_LEFTMOST
:
1130 group
= (const index_group
*)(
1131 stream
->groups
.leftmost
);
1137 if (stream
== NULL
) {
1138 // We at the beginning of the lzma_index.
1139 // Locate the first Stream.
1140 stream
= (const index_stream
*)(i
->streams
.leftmost
);
1141 if (mode
>= LZMA_INDEX_ITER_BLOCK
) {
1142 // Since we are being asked to return information
1143 // about the first a Block, skip Streams that have
1145 while (stream
->groups
.leftmost
== NULL
) {
1146 stream
= index_tree_next(&stream
->node
);
1152 // Start from the first Record in the Stream.
1153 group
= (const index_group
*)(stream
->groups
.leftmost
);
1156 } else if (group
!= NULL
&& record
< group
->last
) {
1157 // The next Record is in the same group.
1161 // This group has no more Records or this Stream has
1162 // no Blocks at all.
1165 // If group is not NULL, this Stream has at least one Block
1166 // and thus at least one group. Find the next group.
1168 group
= index_tree_next(&group
->node
);
1170 if (group
== NULL
) {
1171 // This Stream has no more Records. Find the next
1172 // Stream. If we are being asked to return information
1173 // about a Block, we skip empty Streams.
1175 stream
= index_tree_next(&stream
->node
);
1178 } while (mode
>= LZMA_INDEX_ITER_BLOCK
1179 && stream
->groups
.leftmost
== NULL
);
1181 group
= (const index_group
*)(
1182 stream
->groups
.leftmost
);
1186 if (mode
== LZMA_INDEX_ITER_NONEMPTY_BLOCK
) {
1187 // We need to look for the next Block again if this Block
1190 if (group
->node
.uncompressed_base
1191 == group
->records
[0].uncompressed_sum
)
1193 } else if (group
->records
[record
- 1].uncompressed_sum
1194 == group
->records
[record
].uncompressed_sum
) {
1199 iter
->internal
[ITER_STREAM
].p
= stream
;
1200 iter
->internal
[ITER_GROUP
].p
= group
;
1201 iter
->internal
[ITER_RECORD
].s
= record
;
1203 iter_set_info(iter
);
1209 extern LZMA_API(lzma_bool
)
1210 lzma_index_iter_locate(lzma_index_iter
*iter
, lzma_vli target
)
1212 const lzma_index
*i
= iter
->internal
[ITER_INDEX
].p
;
1214 // If the target is past the end of the file, return immediately.
1215 if (i
->uncompressed_size
<= target
)
1218 // Locate the Stream containing the target offset.
1219 const index_stream
*stream
= index_tree_locate(&i
->streams
, target
);
1220 assert(stream
!= NULL
);
1221 target
-= stream
->node
.uncompressed_base
;
1223 // Locate the group containing the target offset.
1224 const index_group
*group
= index_tree_locate(&stream
->groups
, target
);
1225 assert(group
!= NULL
);
1227 // Use binary search to locate the exact Record. It is the first
1228 // Record whose uncompressed_sum is greater than target.
1229 // This is because we want the rightmost Record that fullfills the
1230 // search criterion. It is possible that there are empty Blocks;
1231 // we don't want to return them.
1233 size_t right
= group
->last
;
1235 while (left
< right
) {
1236 const size_t pos
= left
+ (right
- left
) / 2;
1237 if (group
->records
[pos
].uncompressed_sum
<= target
)
1243 iter
->internal
[ITER_STREAM
].p
= stream
;
1244 iter
->internal
[ITER_GROUP
].p
= group
;
1245 iter
->internal
[ITER_RECORD
].s
= left
;
1247 iter_set_info(iter
);