1 // SPDX-License-Identifier: 0BSD
3 ///////////////////////////////////////////////////////////////////////////////
5 /// \file stream_decoder_mt.c
6 /// \brief Multithreaded .xz Stream decoder
8 // Authors: Sebastian Andrzej Siewior
11 ///////////////////////////////////////////////////////////////////////////////
14 #include "block_decoder.h"
15 #include "stream_decoder.h"
22 /// Main thread may change this to THR_RUN or THR_EXIT.
25 /// Decoding is in progress.
26 /// Main thread may change this to THR_STOP or THR_EXIT.
27 /// The worker thread may change this to THR_IDLE.
30 /// The main thread wants the thread to stop whatever it was doing
31 /// but not exit. Main thread may change this to THR_EXIT.
32 /// The worker thread may change this to THR_IDLE.
35 /// The main thread wants the thread to exit.
42 /// Partial updates (storing of worker thread progress
43 /// to lzma_outbuf) are disabled.
46 /// Main thread requests partial updates to be enabled but
47 /// no partial update has been done by the worker thread yet.
49 /// Changing from PARTIAL_DISABLED to PARTIAL_START requires
50 /// use of the worker-thread mutex. Other transitions don't
54 /// Partial updates are enabled and the worker thread has done
55 /// at least one partial update.
58 } partial_update_mode
;
61 struct worker_thread
{
62 /// Worker state is protected with our mutex.
65 /// Input buffer that will contain the whole Block except Block Header.
68 /// Amount of memory allocated for "in"
71 /// Number of bytes written to "in" by the main thread
74 /// Number of bytes consumed from "in" by the worker thread.
77 /// Amount of uncompressed data that has been decoded. This local
78 /// copy is needed because updating outbuf->pos requires locking
79 /// the main mutex (coder->mutex).
82 /// Pointer to the main structure is needed to (1) lock the main
83 /// mutex (coder->mutex) when updating outbuf->pos and (2) when
84 /// putting this thread back to the stack of free threads.
85 struct lzma_stream_coder
*coder
;
87 /// The allocator is set by the main thread. Since a copy of the
88 /// pointer is kept here, the application must not change the
89 /// allocator before calling lzma_end().
90 const lzma_allocator
*allocator
;
92 /// Output queue buffer to which the uncompressed data is written.
95 /// Amount of compressed data that has already been decompressed.
96 /// This is updated from in_pos when our mutex is locked.
97 /// This is size_t, not uint64_t, because per-thread progress
98 /// is limited to sizes of allocated buffers.
101 /// Like progress_in but for uncompressed data.
104 /// Updating outbuf->pos requires locking the main mutex
105 /// (coder->mutex). Since the main thread will only read output
106 /// from the oldest outbuf in the queue, only the worker thread
107 /// that is associated with the oldest outbuf needs to update its
108 /// outbuf->pos. This avoids useless mutex contention that would
109 /// happen if all worker threads were frequently locking the main
110 /// mutex to update their outbuf->pos.
112 /// Only when partial_update is something else than PARTIAL_DISABLED,
113 /// this worker thread will update outbuf->pos after each call to
114 /// the Block decoder.
115 partial_update_mode partial_update
;
118 lzma_next_coder block_decoder
;
120 /// Thread-specific Block options are needed because the Block
121 /// decoder modifies the struct given to it at initialization.
122 lzma_block block_options
;
124 /// Filter chain memory usage
125 uint64_t mem_filters
;
127 /// Next structure in the stack of free worker threads.
128 struct worker_thread
*next
;
130 mythread_mutex mutex
;
133 /// The ID of this thread is used to join the thread
134 /// when it's not needed anymore.
139 struct lzma_stream_coder
{
146 SEQ_BLOCK_DIRECT_INIT
,
147 SEQ_BLOCK_DIRECT_RUN
,
148 SEQ_INDEX_WAIT_OUTPUT
,
156 lzma_next_coder block_decoder
;
158 /// Every Block Header will be decoded into this structure.
159 /// This is also used to initialize a Block decoder when in
160 /// direct mode. In threaded mode, a thread-specific copy will
161 /// be made for decoder initialization because the Block decoder
162 /// will modify the structure given to it.
163 lzma_block block_options
;
165 /// Buffer to hold a filter chain for Block Header decoding and
166 /// initialization. These are freed after successful Block decoder
167 /// initialization or at stream_decoder_mt_end(). The thread-specific
168 /// copy of block_options won't hold a pointer to filters[] after
170 lzma_filter filters
[LZMA_FILTERS_MAX
+ 1];
172 /// Stream Flags from Stream Header
173 lzma_stream_flags stream_flags
;
175 /// Index is hashed so that it can be compared to the sizes of Blocks
176 /// with O(1) memory usage.
177 lzma_index_hash
*index_hash
;
180 /// Maximum wait time if cannot use all the input and cannot
181 /// fill the output buffer. This is in milliseconds.
185 /// Error code from a worker thread.
188 lzma_ret thread_error
;
190 /// Error code to return after pending output has been copied out. If
191 /// set in read_output_and_wait(), this is a mirror of thread_error.
192 /// If set in stream_decode_mt() then it's, for example, error that
193 /// occurred when decoding Block Header.
194 lzma_ret pending_error
;
196 /// Number of threads that will be created at maximum.
197 uint32_t threads_max
;
199 /// Number of thread structures that have been initialized from
200 /// "threads", and thus the number of worker threads actually
202 uint32_t threads_initialized
;
204 /// Array of allocated thread-specific structures. When no threads
205 /// are in use (direct mode) this is NULL. In threaded mode this
206 /// points to an array of threads_max number of worker_thread structs.
207 struct worker_thread
*threads
;
209 /// Stack of free threads. When a thread finishes, it puts itself
210 /// back into this stack. This starts as empty because threads
211 /// are created only when actually needed.
214 struct worker_thread
*threads_free
;
216 /// The most recent worker thread to which the main thread writes
217 /// the new input from the application.
218 struct worker_thread
*thr
;
220 /// Output buffer queue for decompressed data from the worker threads
222 /// \note Use mutex with operations that need it.
225 mythread_mutex mutex
;
229 /// Memory usage that will not be exceeded in multi-threaded mode.
230 /// Single-threaded mode can exceed this even by a large amount.
231 uint64_t memlimit_threading
;
233 /// Memory usage limit that should never be exceeded.
234 /// LZMA_MEMLIMIT_ERROR will be returned if decoding isn't possible
235 /// even in single-threaded mode without exceeding this limit.
236 uint64_t memlimit_stop
;
238 /// Amount of memory in use by the direct mode decoder
239 /// (coder->block_decoder). In threaded mode this is 0.
240 uint64_t mem_direct_mode
;
242 /// Amount of memory needed by the running worker threads.
243 /// This doesn't include the memory needed by the output buffer.
248 /// Amount of memory used by the idle (cached) threads.
254 /// Amount of memory needed for the filter chain of the next Block.
255 uint64_t mem_next_filters
;
257 /// Amount of memory needed for the thread-specific input buffer
258 /// for the next Block.
259 uint64_t mem_next_in
;
261 /// Amount of memory actually needed to decode the next Block
262 /// in threaded mode. This is
263 /// mem_next_filters + mem_next_in + memory needed for lzma_outbuf.
264 uint64_t mem_next_block
;
267 /// Amount of compressed data in Stream Header + Blocks that have
268 /// already been finished.
271 uint64_t progress_in
;
273 /// Amount of uncompressed data in Blocks that have already
277 uint64_t progress_out
;
280 /// If true, LZMA_NO_CHECK is returned if the Stream has
281 /// no integrity check.
284 /// If true, LZMA_UNSUPPORTED_CHECK is returned if the Stream has
285 /// an integrity check that isn't supported by this liblzma build.
286 bool tell_unsupported_check
;
288 /// If true, LZMA_GET_CHECK is returned after decoding Stream Header.
291 /// If true, we will tell the Block decoder to skip calculating
292 /// and verifying the integrity check.
295 /// If true, we will decode concatenated Streams that possibly have
296 /// Stream Padding between or after them. LZMA_STREAM_END is returned
297 /// once the application isn't giving us any new input (LZMA_FINISH),
298 /// and we aren't in the middle of a Stream, and possible
299 /// Stream Padding is a multiple of four bytes.
302 /// If true, we will return any errors immediately instead of first
303 /// producing all output before the location of the error.
307 /// When decoding concatenated Streams, this is true as long as we
308 /// are decoding the first Stream. This is needed to avoid misleading
309 /// LZMA_FORMAT_ERROR in case the later Streams don't have valid magic
313 /// This is used to track if the previous call to stream_decode_mt()
314 /// had output space (*out_pos < out_size) and managed to fill the
315 /// output buffer (*out_pos == out_size). This may be set to true
316 /// in read_output_and_wait(). This is read and then reset to false
317 /// at the beginning of stream_decode_mt().
319 /// This is needed to support applications that call lzma_code() in
320 /// such a way that more input is provided only when lzma_code()
321 /// didn't fill the output buffer completely. Basically, this makes
322 /// it easier to convert such applications from single-threaded
323 /// decoder to multi-threaded decoder.
326 /// Write position in buffer[] and position in Stream Padding
329 /// Buffer to hold Stream Header, Block Header, and Stream Footer.
330 /// Block Header has biggest maximum size.
331 uint8_t buffer
[LZMA_BLOCK_HEADER_SIZE_MAX
];
335 /// Enables updating of outbuf->pos. This is a callback function that is
336 /// used with lzma_outq_enable_partial_output().
338 worker_enable_partial_update(void *thr_ptr
)
340 struct worker_thread
*thr
= thr_ptr
;
342 mythread_sync(thr
->mutex
) {
343 thr
->partial_update
= PARTIAL_START
;
344 mythread_cond_signal(&thr
->cond
);
349 /// Things do to at THR_STOP or when finishing a Block.
350 /// This is called with thr->mutex locked.
352 worker_stop(struct worker_thread
*thr
)
354 // Update memory usage counters.
355 thr
->coder
->mem_in_use
-= thr
->in_size
;
356 thr
->in_size
= 0; // thr->in was freed above.
358 thr
->coder
->mem_in_use
-= thr
->mem_filters
;
359 thr
->coder
->mem_cached
+= thr
->mem_filters
;
361 // Put this thread to the stack of free threads.
362 thr
->next
= thr
->coder
->threads_free
;
363 thr
->coder
->threads_free
= thr
;
365 mythread_cond_signal(&thr
->coder
->cond
);
370 static MYTHREAD_RET_TYPE
371 worker_decoder(void *thr_ptr
)
373 struct worker_thread
*thr
= thr_ptr
;
375 partial_update_mode partial_update
;
380 mythread_mutex_lock(&thr
->mutex
);
383 if (thr
->state
== THR_IDLE
) {
384 mythread_cond_wait(&thr
->cond
, &thr
->mutex
);
385 goto next_loop_unlocked
;
388 if (thr
->state
== THR_EXIT
) {
389 mythread_mutex_unlock(&thr
->mutex
);
391 lzma_free(thr
->in
, thr
->allocator
);
392 lzma_next_end(&thr
->block_decoder
, thr
->allocator
);
394 mythread_mutex_destroy(&thr
->mutex
);
395 mythread_cond_destroy(&thr
->cond
);
397 return MYTHREAD_RET_VALUE
;
400 if (thr
->state
== THR_STOP
) {
401 thr
->state
= THR_IDLE
;
402 mythread_mutex_unlock(&thr
->mutex
);
404 mythread_sync(thr
->coder
->mutex
) {
411 assert(thr
->state
== THR_RUN
);
413 // Update progress info for get_progress().
414 thr
->progress_in
= thr
->in_pos
;
415 thr
->progress_out
= thr
->out_pos
;
417 // If we don't have any new input, wait for a signal from the main
418 // thread except if partial output has just been enabled. In that
419 // case we will do one normal run so that the partial output info
420 // gets passed to the main thread. The call to block_decoder.code()
421 // is useless but harmless as it can occur only once per Block.
422 in_filled
= thr
->in_filled
;
423 partial_update
= thr
->partial_update
;
425 if (in_filled
== thr
->in_pos
&& partial_update
!= PARTIAL_START
) {
426 mythread_cond_wait(&thr
->cond
, &thr
->mutex
);
427 goto next_loop_unlocked
;
430 mythread_mutex_unlock(&thr
->mutex
);
432 // Pass the input in small chunks to the Block decoder.
433 // This way we react reasonably fast if we are told to stop/exit,
434 // and (when partial update is enabled) we tell about our progress
435 // to the main thread frequently enough.
436 const size_t chunk_size
= 16384;
437 if ((in_filled
- thr
->in_pos
) > chunk_size
)
438 in_filled
= thr
->in_pos
+ chunk_size
;
440 ret
= thr
->block_decoder
.code(
441 thr
->block_decoder
.coder
, thr
->allocator
,
442 thr
->in
, &thr
->in_pos
, in_filled
,
443 thr
->outbuf
->buf
, &thr
->out_pos
,
444 thr
->outbuf
->allocated
, LZMA_RUN
);
446 if (ret
== LZMA_OK
) {
447 if (partial_update
!= PARTIAL_DISABLED
) {
448 // The main thread uses thr->mutex to change from
449 // PARTIAL_DISABLED to PARTIAL_START. The main thread
450 // doesn't care about this variable after that so we
451 // can safely change it here to PARTIAL_ENABLED
453 thr
->partial_update
= PARTIAL_ENABLED
;
455 // The main thread is reading decompressed data
456 // from thr->outbuf. Tell the main thread about
459 // NOTE: It's possible that we consumed input without
460 // producing any new output so it's possible that
461 // only in_pos has changed. In case of PARTIAL_START
462 // it is possible that neither in_pos nor out_pos has
464 mythread_sync(thr
->coder
->mutex
) {
465 thr
->outbuf
->pos
= thr
->out_pos
;
466 thr
->outbuf
->decoder_in_pos
= thr
->in_pos
;
467 mythread_cond_signal(&thr
->coder
->cond
);
474 // Either we finished successfully (LZMA_STREAM_END) or an error
475 // occurred. Both cases are handled almost identically. The error
476 // case requires updating thr->coder->thread_error.
478 // The sizes are in the Block Header and the Block decoder
479 // checks that they match, thus we know these:
480 assert(ret
!= LZMA_STREAM_END
|| thr
->in_pos
== thr
->in_size
);
481 assert(ret
!= LZMA_STREAM_END
482 || thr
->out_pos
== thr
->block_options
.uncompressed_size
);
484 // Free the input buffer. Don't update in_size as we need
485 // it later to update thr->coder->mem_in_use.
486 lzma_free(thr
->in
, thr
->allocator
);
489 mythread_sync(thr
->mutex
) {
490 if (thr
->state
!= THR_EXIT
)
491 thr
->state
= THR_IDLE
;
494 mythread_sync(thr
->coder
->mutex
) {
495 // Move our progress info to the main thread.
496 thr
->coder
->progress_in
+= thr
->in_pos
;
497 thr
->coder
->progress_out
+= thr
->out_pos
;
498 thr
->progress_in
= 0;
499 thr
->progress_out
= 0;
501 // Mark the outbuf as finished.
502 thr
->outbuf
->pos
= thr
->out_pos
;
503 thr
->outbuf
->decoder_in_pos
= thr
->in_pos
;
504 thr
->outbuf
->finished
= true;
505 thr
->outbuf
->finish_ret
= ret
;
508 // If an error occurred, tell it to the main thread.
509 if (ret
!= LZMA_STREAM_END
510 && thr
->coder
->thread_error
== LZMA_OK
)
511 thr
->coder
->thread_error
= ret
;
520 /// Tells the worker threads to exit and waits for them to terminate.
522 threads_end(struct lzma_stream_coder
*coder
, const lzma_allocator
*allocator
)
524 for (uint32_t i
= 0; i
< coder
->threads_initialized
; ++i
) {
525 mythread_sync(coder
->threads
[i
].mutex
) {
526 coder
->threads
[i
].state
= THR_EXIT
;
527 mythread_cond_signal(&coder
->threads
[i
].cond
);
531 for (uint32_t i
= 0; i
< coder
->threads_initialized
; ++i
)
532 mythread_join(coder
->threads
[i
].thread_id
);
534 lzma_free(coder
->threads
, allocator
);
535 coder
->threads_initialized
= 0;
536 coder
->threads
= NULL
;
537 coder
->threads_free
= NULL
;
539 // The threads don't update these when they exit. Do it here.
540 coder
->mem_in_use
= 0;
541 coder
->mem_cached
= 0;
548 threads_stop(struct lzma_stream_coder
*coder
)
550 for (uint32_t i
= 0; i
< coder
->threads_initialized
; ++i
) {
551 mythread_sync(coder
->threads
[i
].mutex
) {
552 // The state must be changed conditionally because
553 // THR_IDLE -> THR_STOP is not a valid state change.
554 if (coder
->threads
[i
].state
!= THR_IDLE
) {
555 coder
->threads
[i
].state
= THR_STOP
;
556 mythread_cond_signal(&coder
->threads
[i
].cond
);
565 /// Initialize a new worker_thread structure and create a new thread.
567 initialize_new_thread(struct lzma_stream_coder
*coder
,
568 const lzma_allocator
*allocator
)
570 // Allocate the coder->threads array if needed. It's done here instead
571 // of when initializing the decoder because we don't need this if we
572 // use the direct mode (we may even free coder->threads in the middle
573 // of the file if we switch from threaded to direct mode).
574 if (coder
->threads
== NULL
) {
575 coder
->threads
= lzma_alloc(
576 coder
->threads_max
* sizeof(struct worker_thread
),
579 if (coder
->threads
== NULL
)
580 return LZMA_MEM_ERROR
;
583 // Pick a free structure.
584 assert(coder
->threads_initialized
< coder
->threads_max
);
585 struct worker_thread
*thr
586 = &coder
->threads
[coder
->threads_initialized
];
588 if (mythread_mutex_init(&thr
->mutex
))
591 if (mythread_cond_init(&thr
->cond
))
594 thr
->state
= THR_IDLE
;
597 thr
->allocator
= allocator
;
600 thr
->block_decoder
= LZMA_NEXT_CODER_INIT
;
601 thr
->mem_filters
= 0;
603 if (mythread_create(&thr
->thread_id
, worker_decoder
, thr
))
606 ++coder
->threads_initialized
;
612 mythread_cond_destroy(&thr
->cond
);
615 mythread_mutex_destroy(&thr
->mutex
);
618 return LZMA_MEM_ERROR
;
623 get_thread(struct lzma_stream_coder
*coder
, const lzma_allocator
*allocator
)
625 // If there is a free structure on the stack, use it.
626 mythread_sync(coder
->mutex
) {
627 if (coder
->threads_free
!= NULL
) {
628 coder
->thr
= coder
->threads_free
;
629 coder
->threads_free
= coder
->threads_free
->next
;
631 // The thread is no longer in the cache so subtract
632 // it from the cached memory usage. Don't add it
633 // to mem_in_use though; the caller will handle it
634 // since it knows how much memory it will actually
635 // use (the filter chain might change).
636 coder
->mem_cached
-= coder
->thr
->mem_filters
;
640 if (coder
->thr
== NULL
) {
641 assert(coder
->threads_initialized
< coder
->threads_max
);
643 // Initialize a new thread.
644 return_if_error(initialize_new_thread(coder
, allocator
));
647 coder
->thr
->in_filled
= 0;
648 coder
->thr
->in_pos
= 0;
649 coder
->thr
->out_pos
= 0;
651 coder
->thr
->progress_in
= 0;
652 coder
->thr
->progress_out
= 0;
654 coder
->thr
->partial_update
= PARTIAL_DISABLED
;
661 read_output_and_wait(struct lzma_stream_coder
*coder
,
662 const lzma_allocator
*allocator
,
663 uint8_t *restrict out
, size_t *restrict out_pos
,
665 bool *input_is_possible
,
666 bool waiting_allowed
,
667 mythread_condtime
*wait_abs
, bool *has_blocked
)
669 lzma_ret ret
= LZMA_OK
;
671 mythread_sync(coder
->mutex
) {
673 // Get as much output from the queue as is possible
675 const size_t out_start
= *out_pos
;
677 ret
= lzma_outq_read(&coder
->outq
, allocator
,
678 out
, out_pos
, out_size
,
681 // If a Block was finished, tell the worker
682 // thread of the next Block (if it is still
683 // running) to start telling the main thread
684 // when new output is available.
685 if (ret
== LZMA_STREAM_END
)
686 lzma_outq_enable_partial_output(
688 &worker_enable_partial_update
);
690 // Loop until a Block wasn't finished.
691 // It's important to loop around even if
692 // *out_pos == out_size because there could
693 // be an empty Block that will return
694 // LZMA_STREAM_END without needing any
696 } while (ret
== LZMA_STREAM_END
);
698 // Check if lzma_outq_read reported an error from
699 // the Block decoder.
703 // If the output buffer is now full but it wasn't full
704 // when this function was called, set out_was_filled.
705 // This way the next call to stream_decode_mt() knows
706 // that some output was produced and no output space
707 // remained in the previous call to stream_decode_mt().
708 if (*out_pos
== out_size
&& *out_pos
!= out_start
)
709 coder
->out_was_filled
= true;
711 // Check if any thread has indicated an error.
712 if (coder
->thread_error
!= LZMA_OK
) {
713 // If LZMA_FAIL_FAST was used, report errors
714 // from worker threads immediately.
715 if (coder
->fail_fast
) {
716 ret
= coder
->thread_error
;
720 // Otherwise set pending_error. The value we
721 // set here will not actually get used other
722 // than working as a flag that an error has
723 // occurred. This is because in SEQ_ERROR
724 // all output before the error will be read
725 // first by calling this function, and once we
726 // reach the location of the (first) error the
727 // error code from the above lzma_outq_read()
728 // will be returned to the application.
730 // Use LZMA_PROG_ERROR since the value should
731 // never leak to the application. It's
732 // possible that pending_error has already
733 // been set but that doesn't matter: if we get
734 // here, pending_error only works as a flag.
735 coder
->pending_error
= LZMA_PROG_ERROR
;
738 // Check if decoding of the next Block can be started.
739 // The memusage of the active threads must be low
740 // enough, there must be a free buffer slot in the
741 // output queue, and there must be a free thread
742 // (that can be either created or an existing one
745 // NOTE: This is checked after reading the output
746 // above because reading the output can free a slot in
747 // the output queue and also reduce active memusage.
749 // NOTE: If output queue is empty, then input will
750 // always be possible.
751 if (input_is_possible
!= NULL
752 && coder
->memlimit_threading
754 - coder
->outq
.mem_in_use
755 >= coder
->mem_next_block
756 && lzma_outq_has_buf(&coder
->outq
)
757 && (coder
->threads_initialized
759 || coder
->threads_free
761 *input_is_possible
= true;
765 // If the caller doesn't want us to block, return now.
766 if (!waiting_allowed
)
769 // This check is needed only when input_is_possible
770 // is NULL. We must return if we aren't waiting for
771 // input to become possible and there is no more
772 // output coming from the queue.
773 if (lzma_outq_is_empty(&coder
->outq
)) {
774 assert(input_is_possible
== NULL
);
778 // If there is more data available from the queue,
779 // our out buffer must be full and we need to return
780 // so that the application can provide more output
783 // NOTE: In general lzma_outq_is_readable() can return
784 // true also when there are no more bytes available.
785 // This can happen when a Block has finished without
786 // providing any new output. We know that this is not
787 // the case because in the beginning of this loop we
788 // tried to read as much as possible even when we had
789 // no output space left and the mutex has been locked
790 // all the time (so worker threads cannot have changed
791 // anything). Thus there must be actual pending output
793 if (lzma_outq_is_readable(&coder
->outq
)) {
794 assert(*out_pos
== out_size
);
798 // If the application stops providing more input
799 // in the middle of a Block, there will eventually
800 // be one worker thread left that is stuck waiting for
801 // more input (that might never arrive) and a matching
802 // outbuf which the worker thread cannot finish due
803 // to lack of input. We must detect this situation,
804 // otherwise we would end up waiting indefinitely
805 // (if no timeout is in use) or keep returning
806 // LZMA_TIMED_OUT while making no progress. Thus, the
807 // application would never get LZMA_BUF_ERROR from
808 // lzma_code() which would tell the application that
809 // no more progress is possible. No LZMA_BUF_ERROR
810 // means that, for example, truncated .xz files could
811 // cause an infinite loop.
813 // A worker thread doing partial updates will
814 // store not only the output position in outbuf->pos
815 // but also the matching input position in
816 // outbuf->decoder_in_pos. Here we check if that
817 // input position matches the amount of input that
818 // the worker thread has been given (in_filled).
819 // If so, we must return and not wait as no more
820 // output will be coming without first getting more
821 // input to the worker thread. If the application
822 // keeps calling lzma_code() without providing more
823 // input, it will eventually get LZMA_BUF_ERROR.
825 // NOTE: We can read partial_update and in_filled
826 // without thr->mutex as only the main thread
827 // modifies these variables. decoder_in_pos requires
828 // coder->mutex which we are already holding.
829 if (coder
->thr
!= NULL
&& coder
->thr
->partial_update
830 != PARTIAL_DISABLED
) {
831 // There is exactly one outbuf in the queue.
832 assert(coder
->thr
->outbuf
== coder
->outq
.head
);
833 assert(coder
->thr
->outbuf
== coder
->outq
.tail
);
835 if (coder
->thr
->outbuf
->decoder_in_pos
836 == coder
->thr
->in_filled
)
840 // Wait for input or output to become possible.
841 if (coder
->timeout
!= 0) {
842 // See the comment in stream_encoder_mt.c
843 // about why mythread_condtime_set() is used
847 // In contrast to the encoder, this calls
848 // _condtime_set while the mutex is locked.
851 mythread_condtime_set(wait_abs
,
856 if (mythread_cond_timedwait(&coder
->cond
,
859 ret
= LZMA_TIMED_OUT
;
863 mythread_cond_wait(&coder
->cond
,
866 } while (ret
== LZMA_OK
);
869 // If we are returning an error, then the application cannot get
870 // more output from us and thus keeping the threads running is
871 // useless and waste of CPU time.
872 if (ret
!= LZMA_OK
&& ret
!= LZMA_TIMED_OUT
)
880 decode_block_header(struct lzma_stream_coder
*coder
,
881 const lzma_allocator
*allocator
, const uint8_t *restrict in
,
882 size_t *restrict in_pos
, size_t in_size
)
884 if (*in_pos
>= in_size
)
887 if (coder
->pos
== 0) {
888 // Detect if it's Index.
889 if (in
[*in_pos
] == INDEX_INDICATOR
)
890 return LZMA_INDEX_DETECTED
;
892 // Calculate the size of the Block Header. Note that
893 // Block Header decoder wants to see this byte too
894 // so don't advance *in_pos.
895 coder
->block_options
.header_size
896 = lzma_block_header_size_decode(
900 // Copy the Block Header to the internal buffer.
901 lzma_bufcpy(in
, in_pos
, in_size
, coder
->buffer
, &coder
->pos
,
902 coder
->block_options
.header_size
);
904 // Return if we didn't get the whole Block Header yet.
905 if (coder
->pos
< coder
->block_options
.header_size
)
910 // Version 1 is needed to support the .ignore_check option.
911 coder
->block_options
.version
= 1;
913 // Block Header decoder will initialize all members of this array
914 // so we don't need to do it here.
915 coder
->block_options
.filters
= coder
->filters
;
917 // Decode the Block Header.
918 return_if_error(lzma_block_header_decode(&coder
->block_options
,
919 allocator
, coder
->buffer
));
921 // If LZMA_IGNORE_CHECK was used, this flag needs to be set.
922 // It has to be set after lzma_block_header_decode() because
923 // it always resets this to false.
924 coder
->block_options
.ignore_check
= coder
->ignore_check
;
926 // coder->block_options is ready now.
927 return LZMA_STREAM_END
;
931 /// Get the size of the Compressed Data + Block Padding + Check.
933 comp_blk_size(const struct lzma_stream_coder
*coder
)
935 return vli_ceil4(coder
->block_options
.compressed_size
)
936 + lzma_check_size(coder
->stream_flags
.check
);
940 /// Returns true if the size (compressed or uncompressed) is such that
941 /// threaded decompression cannot be used. Sizes that are too big compared
942 /// to SIZE_MAX must be rejected to avoid integer overflows and truncations
943 /// when lzma_vli is assigned to a size_t.
945 is_direct_mode_needed(lzma_vli size
)
947 return size
== LZMA_VLI_UNKNOWN
|| size
> SIZE_MAX
/ 3;
952 stream_decoder_reset(struct lzma_stream_coder
*coder
,
953 const lzma_allocator
*allocator
)
955 // Initialize the Index hash used to verify the Index.
956 coder
->index_hash
= lzma_index_hash_init(coder
->index_hash
, allocator
);
957 if (coder
->index_hash
== NULL
)
958 return LZMA_MEM_ERROR
;
960 // Reset the rest of the variables.
961 coder
->sequence
= SEQ_STREAM_HEADER
;
969 stream_decode_mt(void *coder_ptr
, const lzma_allocator
*allocator
,
970 const uint8_t *restrict in
, size_t *restrict in_pos
,
972 uint8_t *restrict out
, size_t *restrict out_pos
,
973 size_t out_size
, lzma_action action
)
975 struct lzma_stream_coder
*coder
= coder_ptr
;
977 mythread_condtime wait_abs
;
978 bool has_blocked
= false;
980 // Determine if in SEQ_BLOCK_HEADER and SEQ_BLOCK_THR_RUN we should
981 // tell read_output_and_wait() to wait until it can fill the output
982 // buffer (or a timeout occurs). Two conditions must be met:
984 // (1) If the caller provided no new input. The reason for this
985 // can be, for example, the end of the file or that there is
986 // a pause in the input stream and more input is available
987 // a little later. In this situation we should wait for output
988 // because otherwise we would end up in a busy-waiting loop where
989 // we make no progress and the application just calls us again
990 // without providing any new input. This would then result in
991 // LZMA_BUF_ERROR even though more output would be available
992 // once the worker threads decode more data.
994 // (2) Even if (1) is true, we will not wait if the previous call to
995 // this function managed to produce some output and the output
996 // buffer became full. This is for compatibility with applications
997 // that call lzma_code() in such a way that new input is provided
998 // only when the output buffer didn't become full. Without this
999 // trick such applications would have bad performance (bad
1000 // parallelization due to decoder not getting input fast enough).
1002 // NOTE: Such loops might require that timeout is disabled (0)
1003 // if they assume that output-not-full implies that all input has
1004 // been consumed. If and only if timeout is enabled, we may return
1005 // when output isn't full *and* not all input has been consumed.
1007 // However, if LZMA_FINISH is used, the above is ignored and we always
1008 // wait (timeout can still cause us to return) because we know that
1009 // we won't get any more input. This matters if the input file is
1010 // truncated and we are doing single-shot decoding, that is,
1011 // timeout = 0 and LZMA_FINISH is used on the first call to
1012 // lzma_code() and the output buffer is known to be big enough
1013 // to hold all uncompressed data:
1015 // - If LZMA_FINISH wasn't handled specially, we could return
1016 // LZMA_OK before providing all output that is possible with the
1017 // truncated input. The rest would be available if lzma_code() was
1018 // called again but then it's not single-shot decoding anymore.
1020 // - By handling LZMA_FINISH specially here, the first call will
1021 // produce all the output, matching the behavior of the
1022 // single-threaded decoder.
1024 // So it's a very specific corner case but also easy to avoid. Note
1025 // that this special handling of LZMA_FINISH has no effect for
1026 // single-shot decoding when the input file is valid (not truncated);
1027 // premature LZMA_OK wouldn't be possible as long as timeout = 0.
1028 const bool waiting_allowed
= action
== LZMA_FINISH
1029 || (*in_pos
== in_size
&& !coder
->out_was_filled
);
1030 coder
->out_was_filled
= false;
1033 switch (coder
->sequence
) {
1034 case SEQ_STREAM_HEADER
: {
1035 // Copy the Stream Header to the internal buffer.
1036 const size_t in_old
= *in_pos
;
1037 lzma_bufcpy(in
, in_pos
, in_size
, coder
->buffer
, &coder
->pos
,
1038 LZMA_STREAM_HEADER_SIZE
);
1039 coder
->progress_in
+= *in_pos
- in_old
;
1041 // Return if we didn't get the whole Stream Header yet.
1042 if (coder
->pos
< LZMA_STREAM_HEADER_SIZE
)
1047 // Decode the Stream Header.
1048 const lzma_ret ret
= lzma_stream_header_decode(
1049 &coder
->stream_flags
, coder
->buffer
);
1051 return ret
== LZMA_FORMAT_ERROR
&& !coder
->first_stream
1052 ? LZMA_DATA_ERROR
: ret
;
1054 // If we are decoding concatenated Streams, and the later
1055 // Streams have invalid Header Magic Bytes, we give
1056 // LZMA_DATA_ERROR instead of LZMA_FORMAT_ERROR.
1057 coder
->first_stream
= false;
1059 // Copy the type of the Check so that Block Header and Block
1061 coder
->block_options
.check
= coder
->stream_flags
.check
;
1063 // Even if we return LZMA_*_CHECK below, we want
1064 // to continue from Block Header decoding.
1065 coder
->sequence
= SEQ_BLOCK_HEADER
;
1067 // Detect if there's no integrity check or if it is
1068 // unsupported if those were requested by the application.
1069 if (coder
->tell_no_check
&& coder
->stream_flags
.check
1071 return LZMA_NO_CHECK
;
1073 if (coder
->tell_unsupported_check
1074 && !lzma_check_is_supported(
1075 coder
->stream_flags
.check
))
1076 return LZMA_UNSUPPORTED_CHECK
;
1078 if (coder
->tell_any_check
)
1079 return LZMA_GET_CHECK
;
1084 case SEQ_BLOCK_HEADER
: {
1085 const size_t in_old
= *in_pos
;
1086 const lzma_ret ret
= decode_block_header(coder
, allocator
,
1087 in
, in_pos
, in_size
);
1088 coder
->progress_in
+= *in_pos
- in_old
;
1090 if (ret
== LZMA_OK
) {
1091 // We didn't decode the whole Block Header yet.
1093 // Read output from the queue before returning. This
1094 // is important because it is possible that the
1095 // application doesn't have any new input available
1096 // immediately. If we didn't try to copy output from
1097 // the output queue here, lzma_code() could end up
1098 // returning LZMA_BUF_ERROR even though queued output
1101 // If the lzma_code() call provided at least one input
1102 // byte, only copy as much data from the output queue
1103 // as is available immediately. This way the
1104 // application will be able to provide more input
1107 // On the other hand, if lzma_code() was called with
1108 // an empty input buffer(*), treat it specially: try
1109 // to fill the output buffer even if it requires
1110 // waiting for the worker threads to provide output
1111 // (timeout, if specified, can still cause us to
1114 // - This way the application will be able to get all
1115 // data that can be decoded from the input provided
1118 // - We avoid both premature LZMA_BUF_ERROR and
1119 // busy-waiting where the application repeatedly
1120 // calls lzma_code() which immediately returns
1121 // LZMA_OK without providing new data.
1123 // - If the queue becomes empty, we won't wait
1124 // anything and will return LZMA_OK immediately
1125 // (coder->timeout is completely ignored).
1127 // (*) See the comment at the beginning of this
1128 // function how waiting_allowed is determined
1129 // and why there is an exception to the rule
1130 // of "called with an empty input buffer".
1131 assert(*in_pos
== in_size
);
1133 // If LZMA_FINISH was used we know that we won't get
1134 // more input, so the file must be truncated if we
1135 // get here. If worker threads don't detect any
1136 // errors, eventually there will be no more output
1137 // while we keep returning LZMA_OK which gets
1138 // converted to LZMA_BUF_ERROR in lzma_code().
1140 // If fail-fast is enabled then we will return
1141 // immediately using LZMA_DATA_ERROR instead of
1142 // LZMA_OK or LZMA_BUF_ERROR. Rationale for the
1145 // - Worker threads may have a large amount of
1146 // not-yet-decoded input data and we don't
1147 // know for sure if all data is valid. Bad
1148 // data there would result in LZMA_DATA_ERROR
1149 // when fail-fast isn't used.
1151 // - Immediate LZMA_BUF_ERROR would be a bit weird
1152 // considering the older liblzma code. lzma_code()
1153 // even has an assertion to prevent coders from
1154 // returning LZMA_BUF_ERROR directly.
1156 // The downside of this is that with fail-fast apps
1157 // cannot always distinguish between corrupt and
1159 if (action
== LZMA_FINISH
&& coder
->fail_fast
) {
1160 // We won't produce any more output. Stop
1161 // the unfinished worker threads so they
1162 // won't waste CPU time.
1163 threads_stop(coder
);
1164 return LZMA_DATA_ERROR
;
1167 // read_output_and_wait() will call threads_stop()
1168 // if needed so with that we can use return_if_error.
1169 return_if_error(read_output_and_wait(coder
, allocator
,
1170 out
, out_pos
, out_size
,
1171 NULL
, waiting_allowed
,
1172 &wait_abs
, &has_blocked
));
1174 if (coder
->pending_error
!= LZMA_OK
) {
1175 coder
->sequence
= SEQ_ERROR
;
1182 if (ret
== LZMA_INDEX_DETECTED
) {
1183 coder
->sequence
= SEQ_INDEX_WAIT_OUTPUT
;
1187 // See if an error occurred.
1188 if (ret
!= LZMA_STREAM_END
) {
1189 // NOTE: Here and in all other places where
1190 // pending_error is set, it may overwrite the value
1191 // (LZMA_PROG_ERROR) set by read_output_and_wait().
1192 // That function might overwrite value set here too.
1193 // These are fine because when read_output_and_wait()
1194 // sets pending_error, it actually works as a flag
1195 // variable only ("some error has occurred") and the
1196 // actual value of pending_error is not used in
1197 // SEQ_ERROR. In such cases SEQ_ERROR will eventually
1198 // get the correct error code from the return value of
1199 // a later read_output_and_wait() call.
1200 coder
->pending_error
= ret
;
1201 coder
->sequence
= SEQ_ERROR
;
1205 // Calculate the memory usage of the filters / Block decoder.
1206 coder
->mem_next_filters
= lzma_raw_decoder_memusage(
1209 if (coder
->mem_next_filters
== UINT64_MAX
) {
1210 // One or more unknown Filter IDs.
1211 coder
->pending_error
= LZMA_OPTIONS_ERROR
;
1212 coder
->sequence
= SEQ_ERROR
;
1216 coder
->sequence
= SEQ_BLOCK_INIT
;
1221 case SEQ_BLOCK_INIT
: {
1222 // Check if decoding is possible at all with the current
1223 // memlimit_stop which we must never exceed.
1225 // This needs to be the first thing in SEQ_BLOCK_INIT
1226 // to make it possible to restart decoding after increasing
1227 // memlimit_stop with lzma_memlimit_set().
1228 if (coder
->mem_next_filters
> coder
->memlimit_stop
) {
1229 // Flush pending output before returning
1230 // LZMA_MEMLIMIT_ERROR. If the application doesn't
1231 // want to increase the limit, at least it will get
1232 // all the output possible so far.
1233 return_if_error(read_output_and_wait(coder
, allocator
,
1234 out
, out_pos
, out_size
,
1235 NULL
, true, &wait_abs
, &has_blocked
));
1237 if (!lzma_outq_is_empty(&coder
->outq
))
1240 return LZMA_MEMLIMIT_ERROR
;
1243 // Check if the size information is available in Block Header.
1244 // If it is, check if the sizes are small enough that we don't
1245 // need to worry *too* much about integer overflows later in
1246 // the code. If these conditions are not met, we must use the
1247 // single-threaded direct mode.
1248 if (is_direct_mode_needed(coder
->block_options
.compressed_size
)
1249 || is_direct_mode_needed(
1250 coder
->block_options
.uncompressed_size
)) {
1251 coder
->sequence
= SEQ_BLOCK_DIRECT_INIT
;
1255 // Calculate the amount of memory needed for the input and
1256 // output buffers in threaded mode.
1258 // These cannot overflow because we already checked that
1259 // the sizes are small enough using is_direct_mode_needed().
1260 coder
->mem_next_in
= comp_blk_size(coder
);
1261 const uint64_t mem_buffers
= coder
->mem_next_in
1262 + lzma_outq_outbuf_memusage(
1263 coder
->block_options
.uncompressed_size
);
1265 // Add the amount needed by the filters.
1266 // Avoid integer overflows.
1267 if (UINT64_MAX
- mem_buffers
< coder
->mem_next_filters
) {
1268 // Use direct mode if the memusage would overflow.
1269 // This is a theoretical case that shouldn't happen
1270 // in practice unless the input file is weird (broken
1272 coder
->sequence
= SEQ_BLOCK_DIRECT_INIT
;
1276 // Amount of memory needed to decode this Block in
1278 coder
->mem_next_block
= coder
->mem_next_filters
+ mem_buffers
;
1280 // If this alone would exceed memlimit_threading, then we must
1281 // use the single-threaded direct mode.
1282 if (coder
->mem_next_block
> coder
->memlimit_threading
) {
1283 coder
->sequence
= SEQ_BLOCK_DIRECT_INIT
;
1287 // Use the threaded mode. Free the direct mode decoder in
1288 // case it has been initialized.
1289 lzma_next_end(&coder
->block_decoder
, allocator
);
1290 coder
->mem_direct_mode
= 0;
1292 // Since we already know what the sizes are supposed to be,
1293 // we can already add them to the Index hash. The Block
1294 // decoder will verify the values while decoding.
1295 const lzma_ret ret
= lzma_index_hash_append(coder
->index_hash
,
1296 lzma_block_unpadded_size(
1297 &coder
->block_options
),
1298 coder
->block_options
.uncompressed_size
);
1299 if (ret
!= LZMA_OK
) {
1300 coder
->pending_error
= ret
;
1301 coder
->sequence
= SEQ_ERROR
;
1305 coder
->sequence
= SEQ_BLOCK_THR_INIT
;
1310 case SEQ_BLOCK_THR_INIT
: {
1311 // We need to wait for a multiple conditions to become true
1312 // until we can initialize the Block decoder and let a worker
1313 // thread decode it:
1315 // - Wait for the memory usage of the active threads to drop
1316 // so that starting the decoding of this Block won't make
1317 // us go over memlimit_threading.
1319 // - Wait for at least one free output queue slot.
1321 // - Wait for a free worker thread.
1323 // While we wait, we must copy decompressed data to the out
1324 // buffer and catch possible decoder errors.
1326 // read_output_and_wait() does all the above.
1327 bool block_can_start
= false;
1329 return_if_error(read_output_and_wait(coder
, allocator
,
1330 out
, out_pos
, out_size
,
1331 &block_can_start
, true,
1332 &wait_abs
, &has_blocked
));
1334 if (coder
->pending_error
!= LZMA_OK
) {
1335 coder
->sequence
= SEQ_ERROR
;
1339 if (!block_can_start
) {
1340 // It's not a timeout because return_if_error handles
1341 // it already. Output queue cannot be empty either
1342 // because in that case block_can_start would have
1343 // been true. Thus the output buffer must be full and
1344 // the queue isn't empty.
1345 assert(*out_pos
== out_size
);
1346 assert(!lzma_outq_is_empty(&coder
->outq
));
1350 // We know that we can start decoding this Block without
1351 // exceeding memlimit_threading. However, to stay below
1352 // memlimit_threading may require freeing some of the
1355 // Get a local copy of variables that require locking the
1356 // mutex. It is fine if the worker threads modify the real
1357 // values after we read these as those changes can only be
1358 // towards more favorable conditions (less memory in use,
1361 // These are initialized to silence warnings.
1362 uint64_t mem_in_use
= 0;
1363 uint64_t mem_cached
= 0;
1364 struct worker_thread
*thr
= NULL
;
1366 mythread_sync(coder
->mutex
) {
1367 mem_in_use
= coder
->mem_in_use
;
1368 mem_cached
= coder
->mem_cached
;
1369 thr
= coder
->threads_free
;
1372 // The maximum amount of memory that can be held by other
1373 // threads and cached buffers while allowing us to start
1374 // decoding the next Block.
1375 const uint64_t mem_max
= coder
->memlimit_threading
1376 - coder
->mem_next_block
;
1378 // If the existing allocations are so large that starting
1379 // to decode this Block might exceed memlimit_threads,
1380 // try to free memory from the output queue cache first.
1382 // NOTE: This math assumes the worst case. It's possible
1383 // that the limit wouldn't be exceeded if the existing cached
1384 // allocations are reused.
1385 if (mem_in_use
+ mem_cached
+ coder
->outq
.mem_allocated
1387 // Clear the outq cache except leave one buffer in
1388 // the cache if its size is correct. That way we
1389 // don't free and almost immediately reallocate
1390 // an identical buffer.
1391 lzma_outq_clear_cache2(&coder
->outq
, allocator
,
1392 coder
->block_options
.uncompressed_size
);
1395 // If there is at least one worker_thread in the cache and
1396 // the existing allocations are so large that starting to
1397 // decode this Block might exceed memlimit_threads, free
1398 // memory by freeing cached Block decoders.
1400 // NOTE: The comparison is different here than above.
1401 // Here we don't care about cached buffers in outq anymore
1402 // and only look at memory actually in use. This is because
1403 // if there is something in outq cache, it's a single buffer
1404 // that can be used as is. We ensured this in the above
1406 uint64_t mem_freed
= 0;
1407 if (thr
!= NULL
&& mem_in_use
+ mem_cached
1408 + coder
->outq
.mem_in_use
> mem_max
) {
1409 // Don't free the first Block decoder if its memory
1410 // usage isn't greater than what this Block will need.
1411 // Typically the same filter chain is used for all
1412 // Blocks so this way the allocations can be reused
1413 // when get_thread() picks the first worker_thread
1415 if (thr
->mem_filters
<= coder
->mem_next_filters
)
1418 while (thr
!= NULL
) {
1419 lzma_next_end(&thr
->block_decoder
, allocator
);
1420 mem_freed
+= thr
->mem_filters
;
1421 thr
->mem_filters
= 0;
1426 // Update the memory usage counters. Note that coder->mem_*
1427 // may have changed since we read them so we must subtract
1428 // or add the changes.
1429 mythread_sync(coder
->mutex
) {
1430 coder
->mem_cached
-= mem_freed
;
1432 // Memory needed for the filters and the input buffer.
1433 // The output queue takes care of its own counter so
1434 // we don't touch it here.
1436 // NOTE: After this, coder->mem_in_use +
1437 // coder->mem_cached might count the same thing twice.
1438 // If so, this will get corrected in get_thread() when
1439 // a worker_thread is picked from coder->free_threads
1440 // and its memory usage is subtracted from mem_cached.
1441 coder
->mem_in_use
+= coder
->mem_next_in
1442 + coder
->mem_next_filters
;
1445 // Allocate memory for the output buffer in the output queue.
1446 lzma_ret ret
= lzma_outq_prealloc_buf(
1447 &coder
->outq
, allocator
,
1448 coder
->block_options
.uncompressed_size
);
1449 if (ret
!= LZMA_OK
) {
1450 threads_stop(coder
);
1454 // Set up coder->thr.
1455 ret
= get_thread(coder
, allocator
);
1456 if (ret
!= LZMA_OK
) {
1457 threads_stop(coder
);
1461 // The new Block decoder memory usage is already counted in
1462 // coder->mem_in_use. Store it in the thread too.
1463 coder
->thr
->mem_filters
= coder
->mem_next_filters
;
1465 // Initialize the Block decoder.
1466 coder
->thr
->block_options
= coder
->block_options
;
1467 ret
= lzma_block_decoder_init(
1468 &coder
->thr
->block_decoder
, allocator
,
1469 &coder
->thr
->block_options
);
1471 // Free the allocated filter options since they are needed
1472 // only to initialize the Block decoder.
1473 lzma_filters_free(coder
->filters
, allocator
);
1474 coder
->thr
->block_options
.filters
= NULL
;
1476 // Check if memory usage calculation and Block encoder
1477 // initialization succeeded.
1478 if (ret
!= LZMA_OK
) {
1479 coder
->pending_error
= ret
;
1480 coder
->sequence
= SEQ_ERROR
;
1484 // Allocate the input buffer.
1485 coder
->thr
->in_size
= coder
->mem_next_in
;
1486 coder
->thr
->in
= lzma_alloc(coder
->thr
->in_size
, allocator
);
1487 if (coder
->thr
->in
== NULL
) {
1488 threads_stop(coder
);
1489 return LZMA_MEM_ERROR
;
1492 // Get the preallocated output buffer.
1493 coder
->thr
->outbuf
= lzma_outq_get_buf(
1494 &coder
->outq
, coder
->thr
);
1496 // Start the decoder.
1497 mythread_sync(coder
->thr
->mutex
) {
1498 assert(coder
->thr
->state
== THR_IDLE
);
1499 coder
->thr
->state
= THR_RUN
;
1500 mythread_cond_signal(&coder
->thr
->cond
);
1503 // Enable output from the thread that holds the oldest output
1504 // buffer in the output queue (if such a thread exists).
1505 mythread_sync(coder
->mutex
) {
1506 lzma_outq_enable_partial_output(&coder
->outq
,
1507 &worker_enable_partial_update
);
1510 coder
->sequence
= SEQ_BLOCK_THR_RUN
;
1515 case SEQ_BLOCK_THR_RUN
: {
1516 if (action
== LZMA_FINISH
&& coder
->fail_fast
) {
1517 // We know that we won't get more input and that
1518 // the caller wants fail-fast behavior. If we see
1519 // that we don't have enough input to finish this
1520 // Block, return LZMA_DATA_ERROR immediately.
1521 // See SEQ_BLOCK_HEADER for the error code rationale.
1522 const size_t in_avail
= in_size
- *in_pos
;
1523 const size_t in_needed
= coder
->thr
->in_size
1524 - coder
->thr
->in_filled
;
1525 if (in_avail
< in_needed
) {
1526 threads_stop(coder
);
1527 return LZMA_DATA_ERROR
;
1531 // Copy input to the worker thread.
1532 size_t cur_in_filled
= coder
->thr
->in_filled
;
1533 lzma_bufcpy(in
, in_pos
, in_size
, coder
->thr
->in
,
1534 &cur_in_filled
, coder
->thr
->in_size
);
1536 // Tell the thread how much we copied.
1537 mythread_sync(coder
->thr
->mutex
) {
1538 coder
->thr
->in_filled
= cur_in_filled
;
1540 // NOTE: Most of the time we are copying input faster
1541 // than the thread can decode so most of the time
1542 // calling mythread_cond_signal() is useless but
1543 // we cannot make it conditional because thr->in_pos
1544 // is updated without a mutex. And the overhead should
1545 // be very much negligible anyway.
1546 mythread_cond_signal(&coder
->thr
->cond
);
1549 // Read output from the output queue. Just like in
1550 // SEQ_BLOCK_HEADER, we wait to fill the output buffer
1551 // only if waiting_allowed was set to true in the beginning
1552 // of this function (see the comment there).
1553 return_if_error(read_output_and_wait(coder
, allocator
,
1554 out
, out_pos
, out_size
,
1555 NULL
, waiting_allowed
,
1556 &wait_abs
, &has_blocked
));
1558 if (coder
->pending_error
!= LZMA_OK
) {
1559 coder
->sequence
= SEQ_ERROR
;
1563 // Return if the input didn't contain the whole Block.
1564 if (coder
->thr
->in_filled
< coder
->thr
->in_size
) {
1565 assert(*in_pos
== in_size
);
1569 // The whole Block has been copied to the thread-specific
1570 // buffer. Continue from the next Block Header or Index.
1572 coder
->sequence
= SEQ_BLOCK_HEADER
;
1576 case SEQ_BLOCK_DIRECT_INIT
: {
1577 // Wait for the threads to finish and that all decoded data
1578 // has been copied to the output. That is, wait until the
1579 // output queue becomes empty.
1581 // NOTE: No need to check for coder->pending_error as
1582 // we aren't consuming any input until the queue is empty
1583 // and if there is a pending error, read_output_and_wait()
1584 // will eventually return it before the queue is empty.
1585 return_if_error(read_output_and_wait(coder
, allocator
,
1586 out
, out_pos
, out_size
,
1587 NULL
, true, &wait_abs
, &has_blocked
));
1588 if (!lzma_outq_is_empty(&coder
->outq
))
1591 // Free the cached output buffers.
1592 lzma_outq_clear_cache(&coder
->outq
, allocator
);
1594 // Get rid of the worker threads, including the coder->threads
1596 threads_end(coder
, allocator
);
1598 // Initialize the Block decoder.
1599 const lzma_ret ret
= lzma_block_decoder_init(
1600 &coder
->block_decoder
, allocator
,
1601 &coder
->block_options
);
1603 // Free the allocated filter options since they are needed
1604 // only to initialize the Block decoder.
1605 lzma_filters_free(coder
->filters
, allocator
);
1606 coder
->block_options
.filters
= NULL
;
1608 // Check if Block decoder initialization succeeded.
1612 // Make the memory usage visible to _memconfig().
1613 coder
->mem_direct_mode
= coder
->mem_next_filters
;
1615 coder
->sequence
= SEQ_BLOCK_DIRECT_RUN
;
1620 case SEQ_BLOCK_DIRECT_RUN
: {
1621 const size_t in_old
= *in_pos
;
1622 const size_t out_old
= *out_pos
;
1623 const lzma_ret ret
= coder
->block_decoder
.code(
1624 coder
->block_decoder
.coder
, allocator
,
1625 in
, in_pos
, in_size
, out
, out_pos
, out_size
,
1627 coder
->progress_in
+= *in_pos
- in_old
;
1628 coder
->progress_out
+= *out_pos
- out_old
;
1630 if (ret
!= LZMA_STREAM_END
)
1633 // Block decoded successfully. Add the new size pair to
1635 return_if_error(lzma_index_hash_append(coder
->index_hash
,
1636 lzma_block_unpadded_size(
1637 &coder
->block_options
),
1638 coder
->block_options
.uncompressed_size
));
1640 coder
->sequence
= SEQ_BLOCK_HEADER
;
1644 case SEQ_INDEX_WAIT_OUTPUT
:
1645 // Flush the output from all worker threads so that we can
1646 // decode the Index without thinking about threading.
1647 return_if_error(read_output_and_wait(coder
, allocator
,
1648 out
, out_pos
, out_size
,
1649 NULL
, true, &wait_abs
, &has_blocked
));
1651 if (!lzma_outq_is_empty(&coder
->outq
))
1654 coder
->sequence
= SEQ_INDEX_DECODE
;
1658 case SEQ_INDEX_DECODE
: {
1659 // If we don't have any input, don't call
1660 // lzma_index_hash_decode() since it would return
1661 // LZMA_BUF_ERROR, which we must not do here.
1662 if (*in_pos
>= in_size
)
1665 // Decode the Index and compare it to the hash calculated
1666 // from the sizes of the Blocks (if any).
1667 const size_t in_old
= *in_pos
;
1668 const lzma_ret ret
= lzma_index_hash_decode(coder
->index_hash
,
1669 in
, in_pos
, in_size
);
1670 coder
->progress_in
+= *in_pos
- in_old
;
1671 if (ret
!= LZMA_STREAM_END
)
1674 coder
->sequence
= SEQ_STREAM_FOOTER
;
1679 case SEQ_STREAM_FOOTER
: {
1680 // Copy the Stream Footer to the internal buffer.
1681 const size_t in_old
= *in_pos
;
1682 lzma_bufcpy(in
, in_pos
, in_size
, coder
->buffer
, &coder
->pos
,
1683 LZMA_STREAM_HEADER_SIZE
);
1684 coder
->progress_in
+= *in_pos
- in_old
;
1686 // Return if we didn't get the whole Stream Footer yet.
1687 if (coder
->pos
< LZMA_STREAM_HEADER_SIZE
)
1692 // Decode the Stream Footer. The decoder gives
1693 // LZMA_FORMAT_ERROR if the magic bytes don't match,
1694 // so convert that return code to LZMA_DATA_ERROR.
1695 lzma_stream_flags footer_flags
;
1696 const lzma_ret ret
= lzma_stream_footer_decode(
1697 &footer_flags
, coder
->buffer
);
1699 return ret
== LZMA_FORMAT_ERROR
1700 ? LZMA_DATA_ERROR
: ret
;
1702 // Check that Index Size stored in the Stream Footer matches
1703 // the real size of the Index field.
1704 if (lzma_index_hash_size(coder
->index_hash
)
1705 != footer_flags
.backward_size
)
1706 return LZMA_DATA_ERROR
;
1708 // Compare that the Stream Flags fields are identical in
1709 // both Stream Header and Stream Footer.
1710 return_if_error(lzma_stream_flags_compare(
1711 &coder
->stream_flags
, &footer_flags
));
1713 if (!coder
->concatenated
)
1714 return LZMA_STREAM_END
;
1716 coder
->sequence
= SEQ_STREAM_PADDING
;
1721 case SEQ_STREAM_PADDING
:
1722 assert(coder
->concatenated
);
1724 // Skip over possible Stream Padding.
1726 if (*in_pos
>= in_size
) {
1727 // Unless LZMA_FINISH was used, we cannot
1728 // know if there's more input coming later.
1729 if (action
!= LZMA_FINISH
)
1732 // Stream Padding must be a multiple of
1734 return coder
->pos
== 0
1739 // If the byte is not zero, it probably indicates
1740 // beginning of a new Stream (or the file is corrupt).
1741 if (in
[*in_pos
] != 0x00)
1745 ++coder
->progress_in
;
1746 coder
->pos
= (coder
->pos
+ 1) & 3;
1749 // Stream Padding must be a multiple of four bytes (empty
1750 // Stream Padding is OK).
1751 if (coder
->pos
!= 0) {
1753 ++coder
->progress_in
;
1754 return LZMA_DATA_ERROR
;
1757 // Prepare to decode the next Stream.
1758 return_if_error(stream_decoder_reset(coder
, allocator
));
1762 if (!coder
->fail_fast
) {
1763 // Let the application get all data before the point
1764 // where the error was detected. This matches the
1765 // behavior of single-threaded use.
1767 // FIXME? Some errors (LZMA_MEM_ERROR) don't get here,
1768 // they are returned immediately. Thus in rare cases
1769 // the output will be less than in the single-threaded
1770 // mode. Maybe this doesn't matter much in practice.
1771 return_if_error(read_output_and_wait(coder
, allocator
,
1772 out
, out_pos
, out_size
,
1773 NULL
, true, &wait_abs
, &has_blocked
));
1775 // We get here only if the error happened in the main
1776 // thread, for example, unsupported Block Header.
1777 if (!lzma_outq_is_empty(&coder
->outq
))
1781 // We only get here if no errors were detected by the worker
1782 // threads. Errors from worker threads would have already been
1783 // returned by the call to read_output_and_wait() above.
1784 return coder
->pending_error
;
1788 return LZMA_PROG_ERROR
;
1796 stream_decoder_mt_end(void *coder_ptr
, const lzma_allocator
*allocator
)
1798 struct lzma_stream_coder
*coder
= coder_ptr
;
1800 threads_end(coder
, allocator
);
1801 lzma_outq_end(&coder
->outq
, allocator
);
1803 lzma_next_end(&coder
->block_decoder
, allocator
);
1804 lzma_filters_free(coder
->filters
, allocator
);
1805 lzma_index_hash_end(coder
->index_hash
, allocator
);
1807 lzma_free(coder
, allocator
);
1813 stream_decoder_mt_get_check(const void *coder_ptr
)
1815 const struct lzma_stream_coder
*coder
= coder_ptr
;
1816 return coder
->stream_flags
.check
;
1821 stream_decoder_mt_memconfig(void *coder_ptr
, uint64_t *memusage
,
1822 uint64_t *old_memlimit
, uint64_t new_memlimit
)
1824 // NOTE: This function gets/sets memlimit_stop. For now,
1825 // memlimit_threading cannot be modified after initialization.
1827 // *memusage will include cached memory too. Excluding cached memory
1828 // would be misleading and it wouldn't help the applications to
1829 // know how much memory is actually needed to decompress the file
1830 // because the higher the number of threads and the memlimits are
1831 // the more memory the decoder may use.
1833 // Setting a new limit includes the cached memory too and too low
1834 // limits will be rejected. Alternative could be to free the cached
1835 // memory immediately if that helps to bring the limit down but
1836 // the current way is the simplest. It's unlikely that limit needs
1837 // to be lowered in the middle of a file anyway; the typical reason
1838 // to want a new limit is to increase after LZMA_MEMLIMIT_ERROR
1839 // and even such use isn't common.
1840 struct lzma_stream_coder
*coder
= coder_ptr
;
1842 mythread_sync(coder
->mutex
) {
1843 *memusage
= coder
->mem_direct_mode
1846 + coder
->outq
.mem_allocated
;
1849 // If no filter chains are allocated, *memusage may be zero.
1850 // Always return at least LZMA_MEMUSAGE_BASE.
1851 if (*memusage
< LZMA_MEMUSAGE_BASE
)
1852 *memusage
= LZMA_MEMUSAGE_BASE
;
1854 *old_memlimit
= coder
->memlimit_stop
;
1856 if (new_memlimit
!= 0) {
1857 if (new_memlimit
< *memusage
)
1858 return LZMA_MEMLIMIT_ERROR
;
1860 coder
->memlimit_stop
= new_memlimit
;
1868 stream_decoder_mt_get_progress(void *coder_ptr
,
1869 uint64_t *progress_in
, uint64_t *progress_out
)
1871 struct lzma_stream_coder
*coder
= coder_ptr
;
1873 // Lock coder->mutex to prevent finishing threads from moving their
1874 // progress info from the worker_thread structure to lzma_stream_coder.
1875 mythread_sync(coder
->mutex
) {
1876 *progress_in
= coder
->progress_in
;
1877 *progress_out
= coder
->progress_out
;
1879 for (size_t i
= 0; i
< coder
->threads_initialized
; ++i
) {
1880 mythread_sync(coder
->threads
[i
].mutex
) {
1881 *progress_in
+= coder
->threads
[i
].progress_in
;
1882 *progress_out
+= coder
->threads
[i
]
1893 stream_decoder_mt_init(lzma_next_coder
*next
, const lzma_allocator
*allocator
,
1894 const lzma_mt
*options
)
1896 struct lzma_stream_coder
*coder
;
1898 if (options
->threads
== 0 || options
->threads
> LZMA_THREADS_MAX
)
1899 return LZMA_OPTIONS_ERROR
;
1901 if (options
->flags
& ~LZMA_SUPPORTED_FLAGS
)
1902 return LZMA_OPTIONS_ERROR
;
1904 lzma_next_coder_init(&stream_decoder_mt_init
, next
, allocator
);
1906 coder
= next
->coder
;
1908 coder
= lzma_alloc(sizeof(struct lzma_stream_coder
), allocator
);
1910 return LZMA_MEM_ERROR
;
1912 next
->coder
= coder
;
1914 if (mythread_mutex_init(&coder
->mutex
)) {
1915 lzma_free(coder
, allocator
);
1916 return LZMA_MEM_ERROR
;
1919 if (mythread_cond_init(&coder
->cond
)) {
1920 mythread_mutex_destroy(&coder
->mutex
);
1921 lzma_free(coder
, allocator
);
1922 return LZMA_MEM_ERROR
;
1925 next
->code
= &stream_decode_mt
;
1926 next
->end
= &stream_decoder_mt_end
;
1927 next
->get_check
= &stream_decoder_mt_get_check
;
1928 next
->memconfig
= &stream_decoder_mt_memconfig
;
1929 next
->get_progress
= &stream_decoder_mt_get_progress
;
1931 coder
->filters
[0].id
= LZMA_VLI_UNKNOWN
;
1932 memzero(&coder
->outq
, sizeof(coder
->outq
));
1934 coder
->block_decoder
= LZMA_NEXT_CODER_INIT
;
1935 coder
->mem_direct_mode
= 0;
1937 coder
->index_hash
= NULL
;
1938 coder
->threads
= NULL
;
1939 coder
->threads_free
= NULL
;
1940 coder
->threads_initialized
= 0;
1943 // Cleanup old filter chain if one remains after unfinished decoding
1944 // of a previous Stream.
1945 lzma_filters_free(coder
->filters
, allocator
);
1947 // By allocating threads from scratch we can start memory-usage
1948 // accounting from scratch, too. Changes in filter and block sizes may
1949 // affect number of threads.
1951 // FIXME? Reusing should be easy but unlike the single-threaded
1952 // decoder, with some types of input file combinations reusing
1953 // could leave quite a lot of memory allocated but unused (first
1954 // file could allocate a lot, the next files could use fewer
1955 // threads and some of the allocations from the first file would not
1956 // get freed unless memlimit_threading forces us to clear caches).
1958 // NOTE: The direct mode decoder isn't freed here if one exists.
1959 // It will be reused or freed as needed in the main loop.
1960 threads_end(coder
, allocator
);
1962 // All memusage counters start at 0 (including mem_direct_mode).
1963 // The little extra that is needed for the structs in this file
1964 // get accounted well enough by the filter chain memory usage
1965 // which adds LZMA_MEMUSAGE_BASE for each chain. However,
1966 // stream_decoder_mt_memconfig() has to handle this specially so that
1967 // it will never return less than LZMA_MEMUSAGE_BASE as memory usage.
1968 coder
->mem_in_use
= 0;
1969 coder
->mem_cached
= 0;
1970 coder
->mem_next_block
= 0;
1972 coder
->progress_in
= 0;
1973 coder
->progress_out
= 0;
1975 coder
->sequence
= SEQ_STREAM_HEADER
;
1976 coder
->thread_error
= LZMA_OK
;
1977 coder
->pending_error
= LZMA_OK
;
1980 coder
->timeout
= options
->timeout
;
1982 coder
->memlimit_threading
= my_max(1, options
->memlimit_threading
);
1983 coder
->memlimit_stop
= my_max(1, options
->memlimit_stop
);
1984 if (coder
->memlimit_threading
> coder
->memlimit_stop
)
1985 coder
->memlimit_threading
= coder
->memlimit_stop
;
1987 coder
->tell_no_check
= (options
->flags
& LZMA_TELL_NO_CHECK
) != 0;
1988 coder
->tell_unsupported_check
1989 = (options
->flags
& LZMA_TELL_UNSUPPORTED_CHECK
) != 0;
1990 coder
->tell_any_check
= (options
->flags
& LZMA_TELL_ANY_CHECK
) != 0;
1991 coder
->ignore_check
= (options
->flags
& LZMA_IGNORE_CHECK
) != 0;
1992 coder
->concatenated
= (options
->flags
& LZMA_CONCATENATED
) != 0;
1993 coder
->fail_fast
= (options
->flags
& LZMA_FAIL_FAST
) != 0;
1995 coder
->first_stream
= true;
1996 coder
->out_was_filled
= false;
1999 coder
->threads_max
= options
->threads
;
2001 return_if_error(lzma_outq_init(&coder
->outq
, allocator
,
2002 coder
->threads_max
));
2004 return stream_decoder_reset(coder
, allocator
);
2008 extern LZMA_API(lzma_ret
)
2009 lzma_stream_decoder_mt(lzma_stream
*strm
, const lzma_mt
*options
)
2011 lzma_next_strm_init(stream_decoder_mt_init
, strm
, options
);
2013 strm
->internal
->supported_actions
[LZMA_RUN
] = true;
2014 strm
->internal
->supported_actions
[LZMA_FINISH
] = true;