liblzma: CRC CLMUL: Omit is_arch_extension_supported() when not needed
[xz/debian.git] / src / liblzma / common / stream_decoder_mt.c
blob244624a47900573d2fb8f6e2ea6af61fdbdb7248
1 // SPDX-License-Identifier: 0BSD
3 ///////////////////////////////////////////////////////////////////////////////
4 //
5 /// \file stream_decoder_mt.c
6 /// \brief Multithreaded .xz Stream decoder
7 //
8 // Authors: Sebastian Andrzej Siewior
9 // Lasse Collin
11 ///////////////////////////////////////////////////////////////////////////////
13 #include "common.h"
14 #include "block_decoder.h"
15 #include "stream_decoder.h"
16 #include "index.h"
17 #include "outqueue.h"
20 typedef enum {
21 /// Waiting for work.
22 /// Main thread may change this to THR_RUN or THR_EXIT.
23 THR_IDLE,
25 /// Decoding is in progress.
26 /// Main thread may change this to THR_STOP or THR_EXIT.
27 /// The worker thread may change this to THR_IDLE.
28 THR_RUN,
30 /// The main thread wants the thread to stop whatever it was doing
31 /// but not exit. Main thread may change this to THR_EXIT.
32 /// The worker thread may change this to THR_IDLE.
33 THR_STOP,
35 /// The main thread wants the thread to exit.
36 THR_EXIT,
38 } worker_state;
41 typedef enum {
42 /// Partial updates (storing of worker thread progress
43 /// to lzma_outbuf) are disabled.
44 PARTIAL_DISABLED,
46 /// Main thread requests partial updates to be enabled but
47 /// no partial update has been done by the worker thread yet.
48 ///
49 /// Changing from PARTIAL_DISABLED to PARTIAL_START requires
50 /// use of the worker-thread mutex. Other transitions don't
51 /// need a mutex.
52 PARTIAL_START,
54 /// Partial updates are enabled and the worker thread has done
55 /// at least one partial update.
56 PARTIAL_ENABLED,
58 } partial_update_mode;
61 struct worker_thread {
62 /// Worker state is protected with our mutex.
63 worker_state state;
65 /// Input buffer that will contain the whole Block except Block Header.
66 uint8_t *in;
68 /// Amount of memory allocated for "in"
69 size_t in_size;
71 /// Number of bytes written to "in" by the main thread
72 size_t in_filled;
74 /// Number of bytes consumed from "in" by the worker thread.
75 size_t in_pos;
77 /// Amount of uncompressed data that has been decoded. This local
78 /// copy is needed because updating outbuf->pos requires locking
79 /// the main mutex (coder->mutex).
80 size_t out_pos;
82 /// Pointer to the main structure is needed to (1) lock the main
83 /// mutex (coder->mutex) when updating outbuf->pos and (2) when
84 /// putting this thread back to the stack of free threads.
85 struct lzma_stream_coder *coder;
87 /// The allocator is set by the main thread. Since a copy of the
88 /// pointer is kept here, the application must not change the
89 /// allocator before calling lzma_end().
90 const lzma_allocator *allocator;
92 /// Output queue buffer to which the uncompressed data is written.
93 lzma_outbuf *outbuf;
95 /// Amount of compressed data that has already been decompressed.
96 /// This is updated from in_pos when our mutex is locked.
97 /// This is size_t, not uint64_t, because per-thread progress
98 /// is limited to sizes of allocated buffers.
99 size_t progress_in;
101 /// Like progress_in but for uncompressed data.
102 size_t progress_out;
104 /// Updating outbuf->pos requires locking the main mutex
105 /// (coder->mutex). Since the main thread will only read output
106 /// from the oldest outbuf in the queue, only the worker thread
107 /// that is associated with the oldest outbuf needs to update its
108 /// outbuf->pos. This avoids useless mutex contention that would
109 /// happen if all worker threads were frequently locking the main
110 /// mutex to update their outbuf->pos.
112 /// Only when partial_update is something else than PARTIAL_DISABLED,
113 /// this worker thread will update outbuf->pos after each call to
114 /// the Block decoder.
115 partial_update_mode partial_update;
117 /// Block decoder
118 lzma_next_coder block_decoder;
120 /// Thread-specific Block options are needed because the Block
121 /// decoder modifies the struct given to it at initialization.
122 lzma_block block_options;
124 /// Filter chain memory usage
125 uint64_t mem_filters;
127 /// Next structure in the stack of free worker threads.
128 struct worker_thread *next;
130 mythread_mutex mutex;
131 mythread_cond cond;
133 /// The ID of this thread is used to join the thread
134 /// when it's not needed anymore.
135 mythread thread_id;
139 struct lzma_stream_coder {
140 enum {
141 SEQ_STREAM_HEADER,
142 SEQ_BLOCK_HEADER,
143 SEQ_BLOCK_INIT,
144 SEQ_BLOCK_THR_INIT,
145 SEQ_BLOCK_THR_RUN,
146 SEQ_BLOCK_DIRECT_INIT,
147 SEQ_BLOCK_DIRECT_RUN,
148 SEQ_INDEX_WAIT_OUTPUT,
149 SEQ_INDEX_DECODE,
150 SEQ_STREAM_FOOTER,
151 SEQ_STREAM_PADDING,
152 SEQ_ERROR,
153 } sequence;
155 /// Block decoder
156 lzma_next_coder block_decoder;
158 /// Every Block Header will be decoded into this structure.
159 /// This is also used to initialize a Block decoder when in
160 /// direct mode. In threaded mode, a thread-specific copy will
161 /// be made for decoder initialization because the Block decoder
162 /// will modify the structure given to it.
163 lzma_block block_options;
165 /// Buffer to hold a filter chain for Block Header decoding and
166 /// initialization. These are freed after successful Block decoder
167 /// initialization or at stream_decoder_mt_end(). The thread-specific
168 /// copy of block_options won't hold a pointer to filters[] after
169 /// initialization.
170 lzma_filter filters[LZMA_FILTERS_MAX + 1];
172 /// Stream Flags from Stream Header
173 lzma_stream_flags stream_flags;
175 /// Index is hashed so that it can be compared to the sizes of Blocks
176 /// with O(1) memory usage.
177 lzma_index_hash *index_hash;
180 /// Maximum wait time if cannot use all the input and cannot
181 /// fill the output buffer. This is in milliseconds.
182 uint32_t timeout;
185 /// Error code from a worker thread.
187 /// \note Use mutex.
188 lzma_ret thread_error;
190 /// Error code to return after pending output has been copied out. If
191 /// set in read_output_and_wait(), this is a mirror of thread_error.
192 /// If set in stream_decode_mt() then it's, for example, error that
193 /// occurred when decoding Block Header.
194 lzma_ret pending_error;
196 /// Number of threads that will be created at maximum.
197 uint32_t threads_max;
199 /// Number of thread structures that have been initialized from
200 /// "threads", and thus the number of worker threads actually
201 /// created so far.
202 uint32_t threads_initialized;
204 /// Array of allocated thread-specific structures. When no threads
205 /// are in use (direct mode) this is NULL. In threaded mode this
206 /// points to an array of threads_max number of worker_thread structs.
207 struct worker_thread *threads;
209 /// Stack of free threads. When a thread finishes, it puts itself
210 /// back into this stack. This starts as empty because threads
211 /// are created only when actually needed.
213 /// \note Use mutex.
214 struct worker_thread *threads_free;
216 /// The most recent worker thread to which the main thread writes
217 /// the new input from the application.
218 struct worker_thread *thr;
220 /// Output buffer queue for decompressed data from the worker threads
222 /// \note Use mutex with operations that need it.
223 lzma_outq outq;
225 mythread_mutex mutex;
226 mythread_cond cond;
229 /// Memory usage that will not be exceeded in multi-threaded mode.
230 /// Single-threaded mode can exceed this even by a large amount.
231 uint64_t memlimit_threading;
233 /// Memory usage limit that should never be exceeded.
234 /// LZMA_MEMLIMIT_ERROR will be returned if decoding isn't possible
235 /// even in single-threaded mode without exceeding this limit.
236 uint64_t memlimit_stop;
238 /// Amount of memory in use by the direct mode decoder
239 /// (coder->block_decoder). In threaded mode this is 0.
240 uint64_t mem_direct_mode;
242 /// Amount of memory needed by the running worker threads.
243 /// This doesn't include the memory needed by the output buffer.
245 /// \note Use mutex.
246 uint64_t mem_in_use;
248 /// Amount of memory used by the idle (cached) threads.
250 /// \note Use mutex.
251 uint64_t mem_cached;
254 /// Amount of memory needed for the filter chain of the next Block.
255 uint64_t mem_next_filters;
257 /// Amount of memory needed for the thread-specific input buffer
258 /// for the next Block.
259 uint64_t mem_next_in;
261 /// Amount of memory actually needed to decode the next Block
262 /// in threaded mode. This is
263 /// mem_next_filters + mem_next_in + memory needed for lzma_outbuf.
264 uint64_t mem_next_block;
267 /// Amount of compressed data in Stream Header + Blocks that have
268 /// already been finished.
270 /// \note Use mutex.
271 uint64_t progress_in;
273 /// Amount of uncompressed data in Blocks that have already
274 /// been finished.
276 /// \note Use mutex.
277 uint64_t progress_out;
280 /// If true, LZMA_NO_CHECK is returned if the Stream has
281 /// no integrity check.
282 bool tell_no_check;
284 /// If true, LZMA_UNSUPPORTED_CHECK is returned if the Stream has
285 /// an integrity check that isn't supported by this liblzma build.
286 bool tell_unsupported_check;
288 /// If true, LZMA_GET_CHECK is returned after decoding Stream Header.
289 bool tell_any_check;
291 /// If true, we will tell the Block decoder to skip calculating
292 /// and verifying the integrity check.
293 bool ignore_check;
295 /// If true, we will decode concatenated Streams that possibly have
296 /// Stream Padding between or after them. LZMA_STREAM_END is returned
297 /// once the application isn't giving us any new input (LZMA_FINISH),
298 /// and we aren't in the middle of a Stream, and possible
299 /// Stream Padding is a multiple of four bytes.
300 bool concatenated;
302 /// If true, we will return any errors immediately instead of first
303 /// producing all output before the location of the error.
304 bool fail_fast;
307 /// When decoding concatenated Streams, this is true as long as we
308 /// are decoding the first Stream. This is needed to avoid misleading
309 /// LZMA_FORMAT_ERROR in case the later Streams don't have valid magic
310 /// bytes.
311 bool first_stream;
313 /// This is used to track if the previous call to stream_decode_mt()
314 /// had output space (*out_pos < out_size) and managed to fill the
315 /// output buffer (*out_pos == out_size). This may be set to true
316 /// in read_output_and_wait(). This is read and then reset to false
317 /// at the beginning of stream_decode_mt().
319 /// This is needed to support applications that call lzma_code() in
320 /// such a way that more input is provided only when lzma_code()
321 /// didn't fill the output buffer completely. Basically, this makes
322 /// it easier to convert such applications from single-threaded
323 /// decoder to multi-threaded decoder.
324 bool out_was_filled;
326 /// Write position in buffer[] and position in Stream Padding
327 size_t pos;
329 /// Buffer to hold Stream Header, Block Header, and Stream Footer.
330 /// Block Header has biggest maximum size.
331 uint8_t buffer[LZMA_BLOCK_HEADER_SIZE_MAX];
335 /// Enables updating of outbuf->pos. This is a callback function that is
336 /// used with lzma_outq_enable_partial_output().
337 static void
338 worker_enable_partial_update(void *thr_ptr)
340 struct worker_thread *thr = thr_ptr;
342 mythread_sync(thr->mutex) {
343 thr->partial_update = PARTIAL_START;
344 mythread_cond_signal(&thr->cond);
349 /// Things do to at THR_STOP or when finishing a Block.
350 /// This is called with thr->mutex locked.
351 static void
352 worker_stop(struct worker_thread *thr)
354 // Update memory usage counters.
355 thr->coder->mem_in_use -= thr->in_size;
356 thr->in_size = 0; // thr->in was freed above.
358 thr->coder->mem_in_use -= thr->mem_filters;
359 thr->coder->mem_cached += thr->mem_filters;
361 // Put this thread to the stack of free threads.
362 thr->next = thr->coder->threads_free;
363 thr->coder->threads_free = thr;
365 mythread_cond_signal(&thr->coder->cond);
366 return;
370 static MYTHREAD_RET_TYPE
371 worker_decoder(void *thr_ptr)
373 struct worker_thread *thr = thr_ptr;
374 size_t in_filled;
375 partial_update_mode partial_update;
376 lzma_ret ret;
378 next_loop_lock:
380 mythread_mutex_lock(&thr->mutex);
381 next_loop_unlocked:
383 if (thr->state == THR_IDLE) {
384 mythread_cond_wait(&thr->cond, &thr->mutex);
385 goto next_loop_unlocked;
388 if (thr->state == THR_EXIT) {
389 mythread_mutex_unlock(&thr->mutex);
391 lzma_free(thr->in, thr->allocator);
392 lzma_next_end(&thr->block_decoder, thr->allocator);
394 mythread_mutex_destroy(&thr->mutex);
395 mythread_cond_destroy(&thr->cond);
397 return MYTHREAD_RET_VALUE;
400 if (thr->state == THR_STOP) {
401 thr->state = THR_IDLE;
402 mythread_mutex_unlock(&thr->mutex);
404 mythread_sync(thr->coder->mutex) {
405 worker_stop(thr);
408 goto next_loop_lock;
411 assert(thr->state == THR_RUN);
413 // Update progress info for get_progress().
414 thr->progress_in = thr->in_pos;
415 thr->progress_out = thr->out_pos;
417 // If we don't have any new input, wait for a signal from the main
418 // thread except if partial output has just been enabled. In that
419 // case we will do one normal run so that the partial output info
420 // gets passed to the main thread. The call to block_decoder.code()
421 // is useless but harmless as it can occur only once per Block.
422 in_filled = thr->in_filled;
423 partial_update = thr->partial_update;
425 if (in_filled == thr->in_pos && partial_update != PARTIAL_START) {
426 mythread_cond_wait(&thr->cond, &thr->mutex);
427 goto next_loop_unlocked;
430 mythread_mutex_unlock(&thr->mutex);
432 // Pass the input in small chunks to the Block decoder.
433 // This way we react reasonably fast if we are told to stop/exit,
434 // and (when partial update is enabled) we tell about our progress
435 // to the main thread frequently enough.
436 const size_t chunk_size = 16384;
437 if ((in_filled - thr->in_pos) > chunk_size)
438 in_filled = thr->in_pos + chunk_size;
440 ret = thr->block_decoder.code(
441 thr->block_decoder.coder, thr->allocator,
442 thr->in, &thr->in_pos, in_filled,
443 thr->outbuf->buf, &thr->out_pos,
444 thr->outbuf->allocated, LZMA_RUN);
446 if (ret == LZMA_OK) {
447 if (partial_update != PARTIAL_DISABLED) {
448 // The main thread uses thr->mutex to change from
449 // PARTIAL_DISABLED to PARTIAL_START. The main thread
450 // doesn't care about this variable after that so we
451 // can safely change it here to PARTIAL_ENABLED
452 // without a mutex.
453 thr->partial_update = PARTIAL_ENABLED;
455 // The main thread is reading decompressed data
456 // from thr->outbuf. Tell the main thread about
457 // our progress.
459 // NOTE: It's possible that we consumed input without
460 // producing any new output so it's possible that
461 // only in_pos has changed. In case of PARTIAL_START
462 // it is possible that neither in_pos nor out_pos has
463 // changed.
464 mythread_sync(thr->coder->mutex) {
465 thr->outbuf->pos = thr->out_pos;
466 thr->outbuf->decoder_in_pos = thr->in_pos;
467 mythread_cond_signal(&thr->coder->cond);
471 goto next_loop_lock;
474 // Either we finished successfully (LZMA_STREAM_END) or an error
475 // occurred. Both cases are handled almost identically. The error
476 // case requires updating thr->coder->thread_error.
478 // The sizes are in the Block Header and the Block decoder
479 // checks that they match, thus we know these:
480 assert(ret != LZMA_STREAM_END || thr->in_pos == thr->in_size);
481 assert(ret != LZMA_STREAM_END
482 || thr->out_pos == thr->block_options.uncompressed_size);
484 // Free the input buffer. Don't update in_size as we need
485 // it later to update thr->coder->mem_in_use.
486 lzma_free(thr->in, thr->allocator);
487 thr->in = NULL;
489 mythread_sync(thr->mutex) {
490 if (thr->state != THR_EXIT)
491 thr->state = THR_IDLE;
494 mythread_sync(thr->coder->mutex) {
495 // Move our progress info to the main thread.
496 thr->coder->progress_in += thr->in_pos;
497 thr->coder->progress_out += thr->out_pos;
498 thr->progress_in = 0;
499 thr->progress_out = 0;
501 // Mark the outbuf as finished.
502 thr->outbuf->pos = thr->out_pos;
503 thr->outbuf->decoder_in_pos = thr->in_pos;
504 thr->outbuf->finished = true;
505 thr->outbuf->finish_ret = ret;
506 thr->outbuf = NULL;
508 // If an error occurred, tell it to the main thread.
509 if (ret != LZMA_STREAM_END
510 && thr->coder->thread_error == LZMA_OK)
511 thr->coder->thread_error = ret;
513 worker_stop(thr);
516 goto next_loop_lock;
520 /// Tells the worker threads to exit and waits for them to terminate.
521 static void
522 threads_end(struct lzma_stream_coder *coder, const lzma_allocator *allocator)
524 for (uint32_t i = 0; i < coder->threads_initialized; ++i) {
525 mythread_sync(coder->threads[i].mutex) {
526 coder->threads[i].state = THR_EXIT;
527 mythread_cond_signal(&coder->threads[i].cond);
531 for (uint32_t i = 0; i < coder->threads_initialized; ++i)
532 mythread_join(coder->threads[i].thread_id);
534 lzma_free(coder->threads, allocator);
535 coder->threads_initialized = 0;
536 coder->threads = NULL;
537 coder->threads_free = NULL;
539 // The threads don't update these when they exit. Do it here.
540 coder->mem_in_use = 0;
541 coder->mem_cached = 0;
543 return;
547 static void
548 threads_stop(struct lzma_stream_coder *coder)
550 for (uint32_t i = 0; i < coder->threads_initialized; ++i) {
551 mythread_sync(coder->threads[i].mutex) {
552 // The state must be changed conditionally because
553 // THR_IDLE -> THR_STOP is not a valid state change.
554 if (coder->threads[i].state != THR_IDLE) {
555 coder->threads[i].state = THR_STOP;
556 mythread_cond_signal(&coder->threads[i].cond);
561 return;
565 /// Initialize a new worker_thread structure and create a new thread.
566 static lzma_ret
567 initialize_new_thread(struct lzma_stream_coder *coder,
568 const lzma_allocator *allocator)
570 // Allocate the coder->threads array if needed. It's done here instead
571 // of when initializing the decoder because we don't need this if we
572 // use the direct mode (we may even free coder->threads in the middle
573 // of the file if we switch from threaded to direct mode).
574 if (coder->threads == NULL) {
575 coder->threads = lzma_alloc(
576 coder->threads_max * sizeof(struct worker_thread),
577 allocator);
579 if (coder->threads == NULL)
580 return LZMA_MEM_ERROR;
583 // Pick a free structure.
584 assert(coder->threads_initialized < coder->threads_max);
585 struct worker_thread *thr
586 = &coder->threads[coder->threads_initialized];
588 if (mythread_mutex_init(&thr->mutex))
589 goto error_mutex;
591 if (mythread_cond_init(&thr->cond))
592 goto error_cond;
594 thr->state = THR_IDLE;
595 thr->in = NULL;
596 thr->in_size = 0;
597 thr->allocator = allocator;
598 thr->coder = coder;
599 thr->outbuf = NULL;
600 thr->block_decoder = LZMA_NEXT_CODER_INIT;
601 thr->mem_filters = 0;
603 if (mythread_create(&thr->thread_id, worker_decoder, thr))
604 goto error_thread;
606 ++coder->threads_initialized;
607 coder->thr = thr;
609 return LZMA_OK;
611 error_thread:
612 mythread_cond_destroy(&thr->cond);
614 error_cond:
615 mythread_mutex_destroy(&thr->mutex);
617 error_mutex:
618 return LZMA_MEM_ERROR;
622 static lzma_ret
623 get_thread(struct lzma_stream_coder *coder, const lzma_allocator *allocator)
625 // If there is a free structure on the stack, use it.
626 mythread_sync(coder->mutex) {
627 if (coder->threads_free != NULL) {
628 coder->thr = coder->threads_free;
629 coder->threads_free = coder->threads_free->next;
631 // The thread is no longer in the cache so subtract
632 // it from the cached memory usage. Don't add it
633 // to mem_in_use though; the caller will handle it
634 // since it knows how much memory it will actually
635 // use (the filter chain might change).
636 coder->mem_cached -= coder->thr->mem_filters;
640 if (coder->thr == NULL) {
641 assert(coder->threads_initialized < coder->threads_max);
643 // Initialize a new thread.
644 return_if_error(initialize_new_thread(coder, allocator));
647 coder->thr->in_filled = 0;
648 coder->thr->in_pos = 0;
649 coder->thr->out_pos = 0;
651 coder->thr->progress_in = 0;
652 coder->thr->progress_out = 0;
654 coder->thr->partial_update = PARTIAL_DISABLED;
656 return LZMA_OK;
660 static lzma_ret
661 read_output_and_wait(struct lzma_stream_coder *coder,
662 const lzma_allocator *allocator,
663 uint8_t *restrict out, size_t *restrict out_pos,
664 size_t out_size,
665 bool *input_is_possible,
666 bool waiting_allowed,
667 mythread_condtime *wait_abs, bool *has_blocked)
669 lzma_ret ret = LZMA_OK;
671 mythread_sync(coder->mutex) {
672 do {
673 // Get as much output from the queue as is possible
674 // without blocking.
675 const size_t out_start = *out_pos;
676 do {
677 ret = lzma_outq_read(&coder->outq, allocator,
678 out, out_pos, out_size,
679 NULL, NULL);
681 // If a Block was finished, tell the worker
682 // thread of the next Block (if it is still
683 // running) to start telling the main thread
684 // when new output is available.
685 if (ret == LZMA_STREAM_END)
686 lzma_outq_enable_partial_output(
687 &coder->outq,
688 &worker_enable_partial_update);
690 // Loop until a Block wasn't finished.
691 // It's important to loop around even if
692 // *out_pos == out_size because there could
693 // be an empty Block that will return
694 // LZMA_STREAM_END without needing any
695 // output space.
696 } while (ret == LZMA_STREAM_END);
698 // Check if lzma_outq_read reported an error from
699 // the Block decoder.
700 if (ret != LZMA_OK)
701 break;
703 // If the output buffer is now full but it wasn't full
704 // when this function was called, set out_was_filled.
705 // This way the next call to stream_decode_mt() knows
706 // that some output was produced and no output space
707 // remained in the previous call to stream_decode_mt().
708 if (*out_pos == out_size && *out_pos != out_start)
709 coder->out_was_filled = true;
711 // Check if any thread has indicated an error.
712 if (coder->thread_error != LZMA_OK) {
713 // If LZMA_FAIL_FAST was used, report errors
714 // from worker threads immediately.
715 if (coder->fail_fast) {
716 ret = coder->thread_error;
717 break;
720 // Otherwise set pending_error. The value we
721 // set here will not actually get used other
722 // than working as a flag that an error has
723 // occurred. This is because in SEQ_ERROR
724 // all output before the error will be read
725 // first by calling this function, and once we
726 // reach the location of the (first) error the
727 // error code from the above lzma_outq_read()
728 // will be returned to the application.
730 // Use LZMA_PROG_ERROR since the value should
731 // never leak to the application. It's
732 // possible that pending_error has already
733 // been set but that doesn't matter: if we get
734 // here, pending_error only works as a flag.
735 coder->pending_error = LZMA_PROG_ERROR;
738 // Check if decoding of the next Block can be started.
739 // The memusage of the active threads must be low
740 // enough, there must be a free buffer slot in the
741 // output queue, and there must be a free thread
742 // (that can be either created or an existing one
743 // reused).
745 // NOTE: This is checked after reading the output
746 // above because reading the output can free a slot in
747 // the output queue and also reduce active memusage.
749 // NOTE: If output queue is empty, then input will
750 // always be possible.
751 if (input_is_possible != NULL
752 && coder->memlimit_threading
753 - coder->mem_in_use
754 - coder->outq.mem_in_use
755 >= coder->mem_next_block
756 && lzma_outq_has_buf(&coder->outq)
757 && (coder->threads_initialized
758 < coder->threads_max
759 || coder->threads_free
760 != NULL)) {
761 *input_is_possible = true;
762 break;
765 // If the caller doesn't want us to block, return now.
766 if (!waiting_allowed)
767 break;
769 // This check is needed only when input_is_possible
770 // is NULL. We must return if we aren't waiting for
771 // input to become possible and there is no more
772 // output coming from the queue.
773 if (lzma_outq_is_empty(&coder->outq)) {
774 assert(input_is_possible == NULL);
775 break;
778 // If there is more data available from the queue,
779 // our out buffer must be full and we need to return
780 // so that the application can provide more output
781 // space.
783 // NOTE: In general lzma_outq_is_readable() can return
784 // true also when there are no more bytes available.
785 // This can happen when a Block has finished without
786 // providing any new output. We know that this is not
787 // the case because in the beginning of this loop we
788 // tried to read as much as possible even when we had
789 // no output space left and the mutex has been locked
790 // all the time (so worker threads cannot have changed
791 // anything). Thus there must be actual pending output
792 // in the queue.
793 if (lzma_outq_is_readable(&coder->outq)) {
794 assert(*out_pos == out_size);
795 break;
798 // If the application stops providing more input
799 // in the middle of a Block, there will eventually
800 // be one worker thread left that is stuck waiting for
801 // more input (that might never arrive) and a matching
802 // outbuf which the worker thread cannot finish due
803 // to lack of input. We must detect this situation,
804 // otherwise we would end up waiting indefinitely
805 // (if no timeout is in use) or keep returning
806 // LZMA_TIMED_OUT while making no progress. Thus, the
807 // application would never get LZMA_BUF_ERROR from
808 // lzma_code() which would tell the application that
809 // no more progress is possible. No LZMA_BUF_ERROR
810 // means that, for example, truncated .xz files could
811 // cause an infinite loop.
813 // A worker thread doing partial updates will
814 // store not only the output position in outbuf->pos
815 // but also the matching input position in
816 // outbuf->decoder_in_pos. Here we check if that
817 // input position matches the amount of input that
818 // the worker thread has been given (in_filled).
819 // If so, we must return and not wait as no more
820 // output will be coming without first getting more
821 // input to the worker thread. If the application
822 // keeps calling lzma_code() without providing more
823 // input, it will eventually get LZMA_BUF_ERROR.
825 // NOTE: We can read partial_update and in_filled
826 // without thr->mutex as only the main thread
827 // modifies these variables. decoder_in_pos requires
828 // coder->mutex which we are already holding.
829 if (coder->thr != NULL && coder->thr->partial_update
830 != PARTIAL_DISABLED) {
831 // There is exactly one outbuf in the queue.
832 assert(coder->thr->outbuf == coder->outq.head);
833 assert(coder->thr->outbuf == coder->outq.tail);
835 if (coder->thr->outbuf->decoder_in_pos
836 == coder->thr->in_filled)
837 break;
840 // Wait for input or output to become possible.
841 if (coder->timeout != 0) {
842 // See the comment in stream_encoder_mt.c
843 // about why mythread_condtime_set() is used
844 // like this.
846 // FIXME?
847 // In contrast to the encoder, this calls
848 // _condtime_set while the mutex is locked.
849 if (!*has_blocked) {
850 *has_blocked = true;
851 mythread_condtime_set(wait_abs,
852 &coder->cond,
853 coder->timeout);
856 if (mythread_cond_timedwait(&coder->cond,
857 &coder->mutex,
858 wait_abs) != 0) {
859 ret = LZMA_TIMED_OUT;
860 break;
862 } else {
863 mythread_cond_wait(&coder->cond,
864 &coder->mutex);
866 } while (ret == LZMA_OK);
869 // If we are returning an error, then the application cannot get
870 // more output from us and thus keeping the threads running is
871 // useless and waste of CPU time.
872 if (ret != LZMA_OK && ret != LZMA_TIMED_OUT)
873 threads_stop(coder);
875 return ret;
879 static lzma_ret
880 decode_block_header(struct lzma_stream_coder *coder,
881 const lzma_allocator *allocator, const uint8_t *restrict in,
882 size_t *restrict in_pos, size_t in_size)
884 if (*in_pos >= in_size)
885 return LZMA_OK;
887 if (coder->pos == 0) {
888 // Detect if it's Index.
889 if (in[*in_pos] == INDEX_INDICATOR)
890 return LZMA_INDEX_DETECTED;
892 // Calculate the size of the Block Header. Note that
893 // Block Header decoder wants to see this byte too
894 // so don't advance *in_pos.
895 coder->block_options.header_size
896 = lzma_block_header_size_decode(
897 in[*in_pos]);
900 // Copy the Block Header to the internal buffer.
901 lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
902 coder->block_options.header_size);
904 // Return if we didn't get the whole Block Header yet.
905 if (coder->pos < coder->block_options.header_size)
906 return LZMA_OK;
908 coder->pos = 0;
910 // Version 1 is needed to support the .ignore_check option.
911 coder->block_options.version = 1;
913 // Block Header decoder will initialize all members of this array
914 // so we don't need to do it here.
915 coder->block_options.filters = coder->filters;
917 // Decode the Block Header.
918 return_if_error(lzma_block_header_decode(&coder->block_options,
919 allocator, coder->buffer));
921 // If LZMA_IGNORE_CHECK was used, this flag needs to be set.
922 // It has to be set after lzma_block_header_decode() because
923 // it always resets this to false.
924 coder->block_options.ignore_check = coder->ignore_check;
926 // coder->block_options is ready now.
927 return LZMA_STREAM_END;
931 /// Get the size of the Compressed Data + Block Padding + Check.
932 static size_t
933 comp_blk_size(const struct lzma_stream_coder *coder)
935 return vli_ceil4(coder->block_options.compressed_size)
936 + lzma_check_size(coder->stream_flags.check);
940 /// Returns true if the size (compressed or uncompressed) is such that
941 /// threaded decompression cannot be used. Sizes that are too big compared
942 /// to SIZE_MAX must be rejected to avoid integer overflows and truncations
943 /// when lzma_vli is assigned to a size_t.
944 static bool
945 is_direct_mode_needed(lzma_vli size)
947 return size == LZMA_VLI_UNKNOWN || size > SIZE_MAX / 3;
951 static lzma_ret
952 stream_decoder_reset(struct lzma_stream_coder *coder,
953 const lzma_allocator *allocator)
955 // Initialize the Index hash used to verify the Index.
956 coder->index_hash = lzma_index_hash_init(coder->index_hash, allocator);
957 if (coder->index_hash == NULL)
958 return LZMA_MEM_ERROR;
960 // Reset the rest of the variables.
961 coder->sequence = SEQ_STREAM_HEADER;
962 coder->pos = 0;
964 return LZMA_OK;
968 static lzma_ret
969 stream_decode_mt(void *coder_ptr, const lzma_allocator *allocator,
970 const uint8_t *restrict in, size_t *restrict in_pos,
971 size_t in_size,
972 uint8_t *restrict out, size_t *restrict out_pos,
973 size_t out_size, lzma_action action)
975 struct lzma_stream_coder *coder = coder_ptr;
977 mythread_condtime wait_abs;
978 bool has_blocked = false;
980 // Determine if in SEQ_BLOCK_HEADER and SEQ_BLOCK_THR_RUN we should
981 // tell read_output_and_wait() to wait until it can fill the output
982 // buffer (or a timeout occurs). Two conditions must be met:
984 // (1) If the caller provided no new input. The reason for this
985 // can be, for example, the end of the file or that there is
986 // a pause in the input stream and more input is available
987 // a little later. In this situation we should wait for output
988 // because otherwise we would end up in a busy-waiting loop where
989 // we make no progress and the application just calls us again
990 // without providing any new input. This would then result in
991 // LZMA_BUF_ERROR even though more output would be available
992 // once the worker threads decode more data.
994 // (2) Even if (1) is true, we will not wait if the previous call to
995 // this function managed to produce some output and the output
996 // buffer became full. This is for compatibility with applications
997 // that call lzma_code() in such a way that new input is provided
998 // only when the output buffer didn't become full. Without this
999 // trick such applications would have bad performance (bad
1000 // parallelization due to decoder not getting input fast enough).
1002 // NOTE: Such loops might require that timeout is disabled (0)
1003 // if they assume that output-not-full implies that all input has
1004 // been consumed. If and only if timeout is enabled, we may return
1005 // when output isn't full *and* not all input has been consumed.
1007 // However, if LZMA_FINISH is used, the above is ignored and we always
1008 // wait (timeout can still cause us to return) because we know that
1009 // we won't get any more input. This matters if the input file is
1010 // truncated and we are doing single-shot decoding, that is,
1011 // timeout = 0 and LZMA_FINISH is used on the first call to
1012 // lzma_code() and the output buffer is known to be big enough
1013 // to hold all uncompressed data:
1015 // - If LZMA_FINISH wasn't handled specially, we could return
1016 // LZMA_OK before providing all output that is possible with the
1017 // truncated input. The rest would be available if lzma_code() was
1018 // called again but then it's not single-shot decoding anymore.
1020 // - By handling LZMA_FINISH specially here, the first call will
1021 // produce all the output, matching the behavior of the
1022 // single-threaded decoder.
1024 // So it's a very specific corner case but also easy to avoid. Note
1025 // that this special handling of LZMA_FINISH has no effect for
1026 // single-shot decoding when the input file is valid (not truncated);
1027 // premature LZMA_OK wouldn't be possible as long as timeout = 0.
1028 const bool waiting_allowed = action == LZMA_FINISH
1029 || (*in_pos == in_size && !coder->out_was_filled);
1030 coder->out_was_filled = false;
1032 while (true)
1033 switch (coder->sequence) {
1034 case SEQ_STREAM_HEADER: {
1035 // Copy the Stream Header to the internal buffer.
1036 const size_t in_old = *in_pos;
1037 lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
1038 LZMA_STREAM_HEADER_SIZE);
1039 coder->progress_in += *in_pos - in_old;
1041 // Return if we didn't get the whole Stream Header yet.
1042 if (coder->pos < LZMA_STREAM_HEADER_SIZE)
1043 return LZMA_OK;
1045 coder->pos = 0;
1047 // Decode the Stream Header.
1048 const lzma_ret ret = lzma_stream_header_decode(
1049 &coder->stream_flags, coder->buffer);
1050 if (ret != LZMA_OK)
1051 return ret == LZMA_FORMAT_ERROR && !coder->first_stream
1052 ? LZMA_DATA_ERROR : ret;
1054 // If we are decoding concatenated Streams, and the later
1055 // Streams have invalid Header Magic Bytes, we give
1056 // LZMA_DATA_ERROR instead of LZMA_FORMAT_ERROR.
1057 coder->first_stream = false;
1059 // Copy the type of the Check so that Block Header and Block
1060 // decoders see it.
1061 coder->block_options.check = coder->stream_flags.check;
1063 // Even if we return LZMA_*_CHECK below, we want
1064 // to continue from Block Header decoding.
1065 coder->sequence = SEQ_BLOCK_HEADER;
1067 // Detect if there's no integrity check or if it is
1068 // unsupported if those were requested by the application.
1069 if (coder->tell_no_check && coder->stream_flags.check
1070 == LZMA_CHECK_NONE)
1071 return LZMA_NO_CHECK;
1073 if (coder->tell_unsupported_check
1074 && !lzma_check_is_supported(
1075 coder->stream_flags.check))
1076 return LZMA_UNSUPPORTED_CHECK;
1078 if (coder->tell_any_check)
1079 return LZMA_GET_CHECK;
1082 // Fall through
1084 case SEQ_BLOCK_HEADER: {
1085 const size_t in_old = *in_pos;
1086 const lzma_ret ret = decode_block_header(coder, allocator,
1087 in, in_pos, in_size);
1088 coder->progress_in += *in_pos - in_old;
1090 if (ret == LZMA_OK) {
1091 // We didn't decode the whole Block Header yet.
1093 // Read output from the queue before returning. This
1094 // is important because it is possible that the
1095 // application doesn't have any new input available
1096 // immediately. If we didn't try to copy output from
1097 // the output queue here, lzma_code() could end up
1098 // returning LZMA_BUF_ERROR even though queued output
1099 // is available.
1101 // If the lzma_code() call provided at least one input
1102 // byte, only copy as much data from the output queue
1103 // as is available immediately. This way the
1104 // application will be able to provide more input
1105 // without a delay.
1107 // On the other hand, if lzma_code() was called with
1108 // an empty input buffer(*), treat it specially: try
1109 // to fill the output buffer even if it requires
1110 // waiting for the worker threads to provide output
1111 // (timeout, if specified, can still cause us to
1112 // return).
1114 // - This way the application will be able to get all
1115 // data that can be decoded from the input provided
1116 // so far.
1118 // - We avoid both premature LZMA_BUF_ERROR and
1119 // busy-waiting where the application repeatedly
1120 // calls lzma_code() which immediately returns
1121 // LZMA_OK without providing new data.
1123 // - If the queue becomes empty, we won't wait
1124 // anything and will return LZMA_OK immediately
1125 // (coder->timeout is completely ignored).
1127 // (*) See the comment at the beginning of this
1128 // function how waiting_allowed is determined
1129 // and why there is an exception to the rule
1130 // of "called with an empty input buffer".
1131 assert(*in_pos == in_size);
1133 // If LZMA_FINISH was used we know that we won't get
1134 // more input, so the file must be truncated if we
1135 // get here. If worker threads don't detect any
1136 // errors, eventually there will be no more output
1137 // while we keep returning LZMA_OK which gets
1138 // converted to LZMA_BUF_ERROR in lzma_code().
1140 // If fail-fast is enabled then we will return
1141 // immediately using LZMA_DATA_ERROR instead of
1142 // LZMA_OK or LZMA_BUF_ERROR. Rationale for the
1143 // error code:
1145 // - Worker threads may have a large amount of
1146 // not-yet-decoded input data and we don't
1147 // know for sure if all data is valid. Bad
1148 // data there would result in LZMA_DATA_ERROR
1149 // when fail-fast isn't used.
1151 // - Immediate LZMA_BUF_ERROR would be a bit weird
1152 // considering the older liblzma code. lzma_code()
1153 // even has an assertion to prevent coders from
1154 // returning LZMA_BUF_ERROR directly.
1156 // The downside of this is that with fail-fast apps
1157 // cannot always distinguish between corrupt and
1158 // truncated files.
1159 if (action == LZMA_FINISH && coder->fail_fast) {
1160 // We won't produce any more output. Stop
1161 // the unfinished worker threads so they
1162 // won't waste CPU time.
1163 threads_stop(coder);
1164 return LZMA_DATA_ERROR;
1167 // read_output_and_wait() will call threads_stop()
1168 // if needed so with that we can use return_if_error.
1169 return_if_error(read_output_and_wait(coder, allocator,
1170 out, out_pos, out_size,
1171 NULL, waiting_allowed,
1172 &wait_abs, &has_blocked));
1174 if (coder->pending_error != LZMA_OK) {
1175 coder->sequence = SEQ_ERROR;
1176 break;
1179 return LZMA_OK;
1182 if (ret == LZMA_INDEX_DETECTED) {
1183 coder->sequence = SEQ_INDEX_WAIT_OUTPUT;
1184 break;
1187 // See if an error occurred.
1188 if (ret != LZMA_STREAM_END) {
1189 // NOTE: Here and in all other places where
1190 // pending_error is set, it may overwrite the value
1191 // (LZMA_PROG_ERROR) set by read_output_and_wait().
1192 // That function might overwrite value set here too.
1193 // These are fine because when read_output_and_wait()
1194 // sets pending_error, it actually works as a flag
1195 // variable only ("some error has occurred") and the
1196 // actual value of pending_error is not used in
1197 // SEQ_ERROR. In such cases SEQ_ERROR will eventually
1198 // get the correct error code from the return value of
1199 // a later read_output_and_wait() call.
1200 coder->pending_error = ret;
1201 coder->sequence = SEQ_ERROR;
1202 break;
1205 // Calculate the memory usage of the filters / Block decoder.
1206 coder->mem_next_filters = lzma_raw_decoder_memusage(
1207 coder->filters);
1209 if (coder->mem_next_filters == UINT64_MAX) {
1210 // One or more unknown Filter IDs.
1211 coder->pending_error = LZMA_OPTIONS_ERROR;
1212 coder->sequence = SEQ_ERROR;
1213 break;
1216 coder->sequence = SEQ_BLOCK_INIT;
1219 // Fall through
1221 case SEQ_BLOCK_INIT: {
1222 // Check if decoding is possible at all with the current
1223 // memlimit_stop which we must never exceed.
1225 // This needs to be the first thing in SEQ_BLOCK_INIT
1226 // to make it possible to restart decoding after increasing
1227 // memlimit_stop with lzma_memlimit_set().
1228 if (coder->mem_next_filters > coder->memlimit_stop) {
1229 // Flush pending output before returning
1230 // LZMA_MEMLIMIT_ERROR. If the application doesn't
1231 // want to increase the limit, at least it will get
1232 // all the output possible so far.
1233 return_if_error(read_output_and_wait(coder, allocator,
1234 out, out_pos, out_size,
1235 NULL, true, &wait_abs, &has_blocked));
1237 if (!lzma_outq_is_empty(&coder->outq))
1238 return LZMA_OK;
1240 return LZMA_MEMLIMIT_ERROR;
1243 // Check if the size information is available in Block Header.
1244 // If it is, check if the sizes are small enough that we don't
1245 // need to worry *too* much about integer overflows later in
1246 // the code. If these conditions are not met, we must use the
1247 // single-threaded direct mode.
1248 if (is_direct_mode_needed(coder->block_options.compressed_size)
1249 || is_direct_mode_needed(
1250 coder->block_options.uncompressed_size)) {
1251 coder->sequence = SEQ_BLOCK_DIRECT_INIT;
1252 break;
1255 // Calculate the amount of memory needed for the input and
1256 // output buffers in threaded mode.
1258 // These cannot overflow because we already checked that
1259 // the sizes are small enough using is_direct_mode_needed().
1260 coder->mem_next_in = comp_blk_size(coder);
1261 const uint64_t mem_buffers = coder->mem_next_in
1262 + lzma_outq_outbuf_memusage(
1263 coder->block_options.uncompressed_size);
1265 // Add the amount needed by the filters.
1266 // Avoid integer overflows.
1267 if (UINT64_MAX - mem_buffers < coder->mem_next_filters) {
1268 // Use direct mode if the memusage would overflow.
1269 // This is a theoretical case that shouldn't happen
1270 // in practice unless the input file is weird (broken
1271 // or malicious).
1272 coder->sequence = SEQ_BLOCK_DIRECT_INIT;
1273 break;
1276 // Amount of memory needed to decode this Block in
1277 // threaded mode:
1278 coder->mem_next_block = coder->mem_next_filters + mem_buffers;
1280 // If this alone would exceed memlimit_threading, then we must
1281 // use the single-threaded direct mode.
1282 if (coder->mem_next_block > coder->memlimit_threading) {
1283 coder->sequence = SEQ_BLOCK_DIRECT_INIT;
1284 break;
1287 // Use the threaded mode. Free the direct mode decoder in
1288 // case it has been initialized.
1289 lzma_next_end(&coder->block_decoder, allocator);
1290 coder->mem_direct_mode = 0;
1292 // Since we already know what the sizes are supposed to be,
1293 // we can already add them to the Index hash. The Block
1294 // decoder will verify the values while decoding.
1295 const lzma_ret ret = lzma_index_hash_append(coder->index_hash,
1296 lzma_block_unpadded_size(
1297 &coder->block_options),
1298 coder->block_options.uncompressed_size);
1299 if (ret != LZMA_OK) {
1300 coder->pending_error = ret;
1301 coder->sequence = SEQ_ERROR;
1302 break;
1305 coder->sequence = SEQ_BLOCK_THR_INIT;
1308 // Fall through
1310 case SEQ_BLOCK_THR_INIT: {
1311 // We need to wait for a multiple conditions to become true
1312 // until we can initialize the Block decoder and let a worker
1313 // thread decode it:
1315 // - Wait for the memory usage of the active threads to drop
1316 // so that starting the decoding of this Block won't make
1317 // us go over memlimit_threading.
1319 // - Wait for at least one free output queue slot.
1321 // - Wait for a free worker thread.
1323 // While we wait, we must copy decompressed data to the out
1324 // buffer and catch possible decoder errors.
1326 // read_output_and_wait() does all the above.
1327 bool block_can_start = false;
1329 return_if_error(read_output_and_wait(coder, allocator,
1330 out, out_pos, out_size,
1331 &block_can_start, true,
1332 &wait_abs, &has_blocked));
1334 if (coder->pending_error != LZMA_OK) {
1335 coder->sequence = SEQ_ERROR;
1336 break;
1339 if (!block_can_start) {
1340 // It's not a timeout because return_if_error handles
1341 // it already. Output queue cannot be empty either
1342 // because in that case block_can_start would have
1343 // been true. Thus the output buffer must be full and
1344 // the queue isn't empty.
1345 assert(*out_pos == out_size);
1346 assert(!lzma_outq_is_empty(&coder->outq));
1347 return LZMA_OK;
1350 // We know that we can start decoding this Block without
1351 // exceeding memlimit_threading. However, to stay below
1352 // memlimit_threading may require freeing some of the
1353 // cached memory.
1355 // Get a local copy of variables that require locking the
1356 // mutex. It is fine if the worker threads modify the real
1357 // values after we read these as those changes can only be
1358 // towards more favorable conditions (less memory in use,
1359 // more in cache).
1361 // These are initialized to silence warnings.
1362 uint64_t mem_in_use = 0;
1363 uint64_t mem_cached = 0;
1364 struct worker_thread *thr = NULL;
1366 mythread_sync(coder->mutex) {
1367 mem_in_use = coder->mem_in_use;
1368 mem_cached = coder->mem_cached;
1369 thr = coder->threads_free;
1372 // The maximum amount of memory that can be held by other
1373 // threads and cached buffers while allowing us to start
1374 // decoding the next Block.
1375 const uint64_t mem_max = coder->memlimit_threading
1376 - coder->mem_next_block;
1378 // If the existing allocations are so large that starting
1379 // to decode this Block might exceed memlimit_threads,
1380 // try to free memory from the output queue cache first.
1382 // NOTE: This math assumes the worst case. It's possible
1383 // that the limit wouldn't be exceeded if the existing cached
1384 // allocations are reused.
1385 if (mem_in_use + mem_cached + coder->outq.mem_allocated
1386 > mem_max) {
1387 // Clear the outq cache except leave one buffer in
1388 // the cache if its size is correct. That way we
1389 // don't free and almost immediately reallocate
1390 // an identical buffer.
1391 lzma_outq_clear_cache2(&coder->outq, allocator,
1392 coder->block_options.uncompressed_size);
1395 // If there is at least one worker_thread in the cache and
1396 // the existing allocations are so large that starting to
1397 // decode this Block might exceed memlimit_threads, free
1398 // memory by freeing cached Block decoders.
1400 // NOTE: The comparison is different here than above.
1401 // Here we don't care about cached buffers in outq anymore
1402 // and only look at memory actually in use. This is because
1403 // if there is something in outq cache, it's a single buffer
1404 // that can be used as is. We ensured this in the above
1405 // if-block.
1406 uint64_t mem_freed = 0;
1407 if (thr != NULL && mem_in_use + mem_cached
1408 + coder->outq.mem_in_use > mem_max) {
1409 // Don't free the first Block decoder if its memory
1410 // usage isn't greater than what this Block will need.
1411 // Typically the same filter chain is used for all
1412 // Blocks so this way the allocations can be reused
1413 // when get_thread() picks the first worker_thread
1414 // from the cache.
1415 if (thr->mem_filters <= coder->mem_next_filters)
1416 thr = thr->next;
1418 while (thr != NULL) {
1419 lzma_next_end(&thr->block_decoder, allocator);
1420 mem_freed += thr->mem_filters;
1421 thr->mem_filters = 0;
1422 thr = thr->next;
1426 // Update the memory usage counters. Note that coder->mem_*
1427 // may have changed since we read them so we must subtract
1428 // or add the changes.
1429 mythread_sync(coder->mutex) {
1430 coder->mem_cached -= mem_freed;
1432 // Memory needed for the filters and the input buffer.
1433 // The output queue takes care of its own counter so
1434 // we don't touch it here.
1436 // NOTE: After this, coder->mem_in_use +
1437 // coder->mem_cached might count the same thing twice.
1438 // If so, this will get corrected in get_thread() when
1439 // a worker_thread is picked from coder->free_threads
1440 // and its memory usage is subtracted from mem_cached.
1441 coder->mem_in_use += coder->mem_next_in
1442 + coder->mem_next_filters;
1445 // Allocate memory for the output buffer in the output queue.
1446 lzma_ret ret = lzma_outq_prealloc_buf(
1447 &coder->outq, allocator,
1448 coder->block_options.uncompressed_size);
1449 if (ret != LZMA_OK) {
1450 threads_stop(coder);
1451 return ret;
1454 // Set up coder->thr.
1455 ret = get_thread(coder, allocator);
1456 if (ret != LZMA_OK) {
1457 threads_stop(coder);
1458 return ret;
1461 // The new Block decoder memory usage is already counted in
1462 // coder->mem_in_use. Store it in the thread too.
1463 coder->thr->mem_filters = coder->mem_next_filters;
1465 // Initialize the Block decoder.
1466 coder->thr->block_options = coder->block_options;
1467 ret = lzma_block_decoder_init(
1468 &coder->thr->block_decoder, allocator,
1469 &coder->thr->block_options);
1471 // Free the allocated filter options since they are needed
1472 // only to initialize the Block decoder.
1473 lzma_filters_free(coder->filters, allocator);
1474 coder->thr->block_options.filters = NULL;
1476 // Check if memory usage calculation and Block encoder
1477 // initialization succeeded.
1478 if (ret != LZMA_OK) {
1479 coder->pending_error = ret;
1480 coder->sequence = SEQ_ERROR;
1481 break;
1484 // Allocate the input buffer.
1485 coder->thr->in_size = coder->mem_next_in;
1486 coder->thr->in = lzma_alloc(coder->thr->in_size, allocator);
1487 if (coder->thr->in == NULL) {
1488 threads_stop(coder);
1489 return LZMA_MEM_ERROR;
1492 // Get the preallocated output buffer.
1493 coder->thr->outbuf = lzma_outq_get_buf(
1494 &coder->outq, coder->thr);
1496 // Start the decoder.
1497 mythread_sync(coder->thr->mutex) {
1498 assert(coder->thr->state == THR_IDLE);
1499 coder->thr->state = THR_RUN;
1500 mythread_cond_signal(&coder->thr->cond);
1503 // Enable output from the thread that holds the oldest output
1504 // buffer in the output queue (if such a thread exists).
1505 mythread_sync(coder->mutex) {
1506 lzma_outq_enable_partial_output(&coder->outq,
1507 &worker_enable_partial_update);
1510 coder->sequence = SEQ_BLOCK_THR_RUN;
1513 // Fall through
1515 case SEQ_BLOCK_THR_RUN: {
1516 if (action == LZMA_FINISH && coder->fail_fast) {
1517 // We know that we won't get more input and that
1518 // the caller wants fail-fast behavior. If we see
1519 // that we don't have enough input to finish this
1520 // Block, return LZMA_DATA_ERROR immediately.
1521 // See SEQ_BLOCK_HEADER for the error code rationale.
1522 const size_t in_avail = in_size - *in_pos;
1523 const size_t in_needed = coder->thr->in_size
1524 - coder->thr->in_filled;
1525 if (in_avail < in_needed) {
1526 threads_stop(coder);
1527 return LZMA_DATA_ERROR;
1531 // Copy input to the worker thread.
1532 size_t cur_in_filled = coder->thr->in_filled;
1533 lzma_bufcpy(in, in_pos, in_size, coder->thr->in,
1534 &cur_in_filled, coder->thr->in_size);
1536 // Tell the thread how much we copied.
1537 mythread_sync(coder->thr->mutex) {
1538 coder->thr->in_filled = cur_in_filled;
1540 // NOTE: Most of the time we are copying input faster
1541 // than the thread can decode so most of the time
1542 // calling mythread_cond_signal() is useless but
1543 // we cannot make it conditional because thr->in_pos
1544 // is updated without a mutex. And the overhead should
1545 // be very much negligible anyway.
1546 mythread_cond_signal(&coder->thr->cond);
1549 // Read output from the output queue. Just like in
1550 // SEQ_BLOCK_HEADER, we wait to fill the output buffer
1551 // only if waiting_allowed was set to true in the beginning
1552 // of this function (see the comment there).
1553 return_if_error(read_output_and_wait(coder, allocator,
1554 out, out_pos, out_size,
1555 NULL, waiting_allowed,
1556 &wait_abs, &has_blocked));
1558 if (coder->pending_error != LZMA_OK) {
1559 coder->sequence = SEQ_ERROR;
1560 break;
1563 // Return if the input didn't contain the whole Block.
1564 if (coder->thr->in_filled < coder->thr->in_size) {
1565 assert(*in_pos == in_size);
1566 return LZMA_OK;
1569 // The whole Block has been copied to the thread-specific
1570 // buffer. Continue from the next Block Header or Index.
1571 coder->thr = NULL;
1572 coder->sequence = SEQ_BLOCK_HEADER;
1573 break;
1576 case SEQ_BLOCK_DIRECT_INIT: {
1577 // Wait for the threads to finish and that all decoded data
1578 // has been copied to the output. That is, wait until the
1579 // output queue becomes empty.
1581 // NOTE: No need to check for coder->pending_error as
1582 // we aren't consuming any input until the queue is empty
1583 // and if there is a pending error, read_output_and_wait()
1584 // will eventually return it before the queue is empty.
1585 return_if_error(read_output_and_wait(coder, allocator,
1586 out, out_pos, out_size,
1587 NULL, true, &wait_abs, &has_blocked));
1588 if (!lzma_outq_is_empty(&coder->outq))
1589 return LZMA_OK;
1591 // Free the cached output buffers.
1592 lzma_outq_clear_cache(&coder->outq, allocator);
1594 // Get rid of the worker threads, including the coder->threads
1595 // array.
1596 threads_end(coder, allocator);
1598 // Initialize the Block decoder.
1599 const lzma_ret ret = lzma_block_decoder_init(
1600 &coder->block_decoder, allocator,
1601 &coder->block_options);
1603 // Free the allocated filter options since they are needed
1604 // only to initialize the Block decoder.
1605 lzma_filters_free(coder->filters, allocator);
1606 coder->block_options.filters = NULL;
1608 // Check if Block decoder initialization succeeded.
1609 if (ret != LZMA_OK)
1610 return ret;
1612 // Make the memory usage visible to _memconfig().
1613 coder->mem_direct_mode = coder->mem_next_filters;
1615 coder->sequence = SEQ_BLOCK_DIRECT_RUN;
1618 // Fall through
1620 case SEQ_BLOCK_DIRECT_RUN: {
1621 const size_t in_old = *in_pos;
1622 const size_t out_old = *out_pos;
1623 const lzma_ret ret = coder->block_decoder.code(
1624 coder->block_decoder.coder, allocator,
1625 in, in_pos, in_size, out, out_pos, out_size,
1626 action);
1627 coder->progress_in += *in_pos - in_old;
1628 coder->progress_out += *out_pos - out_old;
1630 if (ret != LZMA_STREAM_END)
1631 return ret;
1633 // Block decoded successfully. Add the new size pair to
1634 // the Index hash.
1635 return_if_error(lzma_index_hash_append(coder->index_hash,
1636 lzma_block_unpadded_size(
1637 &coder->block_options),
1638 coder->block_options.uncompressed_size));
1640 coder->sequence = SEQ_BLOCK_HEADER;
1641 break;
1644 case SEQ_INDEX_WAIT_OUTPUT:
1645 // Flush the output from all worker threads so that we can
1646 // decode the Index without thinking about threading.
1647 return_if_error(read_output_and_wait(coder, allocator,
1648 out, out_pos, out_size,
1649 NULL, true, &wait_abs, &has_blocked));
1651 if (!lzma_outq_is_empty(&coder->outq))
1652 return LZMA_OK;
1654 coder->sequence = SEQ_INDEX_DECODE;
1656 // Fall through
1658 case SEQ_INDEX_DECODE: {
1659 // If we don't have any input, don't call
1660 // lzma_index_hash_decode() since it would return
1661 // LZMA_BUF_ERROR, which we must not do here.
1662 if (*in_pos >= in_size)
1663 return LZMA_OK;
1665 // Decode the Index and compare it to the hash calculated
1666 // from the sizes of the Blocks (if any).
1667 const size_t in_old = *in_pos;
1668 const lzma_ret ret = lzma_index_hash_decode(coder->index_hash,
1669 in, in_pos, in_size);
1670 coder->progress_in += *in_pos - in_old;
1671 if (ret != LZMA_STREAM_END)
1672 return ret;
1674 coder->sequence = SEQ_STREAM_FOOTER;
1677 // Fall through
1679 case SEQ_STREAM_FOOTER: {
1680 // Copy the Stream Footer to the internal buffer.
1681 const size_t in_old = *in_pos;
1682 lzma_bufcpy(in, in_pos, in_size, coder->buffer, &coder->pos,
1683 LZMA_STREAM_HEADER_SIZE);
1684 coder->progress_in += *in_pos - in_old;
1686 // Return if we didn't get the whole Stream Footer yet.
1687 if (coder->pos < LZMA_STREAM_HEADER_SIZE)
1688 return LZMA_OK;
1690 coder->pos = 0;
1692 // Decode the Stream Footer. The decoder gives
1693 // LZMA_FORMAT_ERROR if the magic bytes don't match,
1694 // so convert that return code to LZMA_DATA_ERROR.
1695 lzma_stream_flags footer_flags;
1696 const lzma_ret ret = lzma_stream_footer_decode(
1697 &footer_flags, coder->buffer);
1698 if (ret != LZMA_OK)
1699 return ret == LZMA_FORMAT_ERROR
1700 ? LZMA_DATA_ERROR : ret;
1702 // Check that Index Size stored in the Stream Footer matches
1703 // the real size of the Index field.
1704 if (lzma_index_hash_size(coder->index_hash)
1705 != footer_flags.backward_size)
1706 return LZMA_DATA_ERROR;
1708 // Compare that the Stream Flags fields are identical in
1709 // both Stream Header and Stream Footer.
1710 return_if_error(lzma_stream_flags_compare(
1711 &coder->stream_flags, &footer_flags));
1713 if (!coder->concatenated)
1714 return LZMA_STREAM_END;
1716 coder->sequence = SEQ_STREAM_PADDING;
1719 // Fall through
1721 case SEQ_STREAM_PADDING:
1722 assert(coder->concatenated);
1724 // Skip over possible Stream Padding.
1725 while (true) {
1726 if (*in_pos >= in_size) {
1727 // Unless LZMA_FINISH was used, we cannot
1728 // know if there's more input coming later.
1729 if (action != LZMA_FINISH)
1730 return LZMA_OK;
1732 // Stream Padding must be a multiple of
1733 // four bytes.
1734 return coder->pos == 0
1735 ? LZMA_STREAM_END
1736 : LZMA_DATA_ERROR;
1739 // If the byte is not zero, it probably indicates
1740 // beginning of a new Stream (or the file is corrupt).
1741 if (in[*in_pos] != 0x00)
1742 break;
1744 ++*in_pos;
1745 ++coder->progress_in;
1746 coder->pos = (coder->pos + 1) & 3;
1749 // Stream Padding must be a multiple of four bytes (empty
1750 // Stream Padding is OK).
1751 if (coder->pos != 0) {
1752 ++*in_pos;
1753 ++coder->progress_in;
1754 return LZMA_DATA_ERROR;
1757 // Prepare to decode the next Stream.
1758 return_if_error(stream_decoder_reset(coder, allocator));
1759 break;
1761 case SEQ_ERROR:
1762 if (!coder->fail_fast) {
1763 // Let the application get all data before the point
1764 // where the error was detected. This matches the
1765 // behavior of single-threaded use.
1767 // FIXME? Some errors (LZMA_MEM_ERROR) don't get here,
1768 // they are returned immediately. Thus in rare cases
1769 // the output will be less than in the single-threaded
1770 // mode. Maybe this doesn't matter much in practice.
1771 return_if_error(read_output_and_wait(coder, allocator,
1772 out, out_pos, out_size,
1773 NULL, true, &wait_abs, &has_blocked));
1775 // We get here only if the error happened in the main
1776 // thread, for example, unsupported Block Header.
1777 if (!lzma_outq_is_empty(&coder->outq))
1778 return LZMA_OK;
1781 // We only get here if no errors were detected by the worker
1782 // threads. Errors from worker threads would have already been
1783 // returned by the call to read_output_and_wait() above.
1784 return coder->pending_error;
1786 default:
1787 assert(0);
1788 return LZMA_PROG_ERROR;
1791 // Never reached
1795 static void
1796 stream_decoder_mt_end(void *coder_ptr, const lzma_allocator *allocator)
1798 struct lzma_stream_coder *coder = coder_ptr;
1800 threads_end(coder, allocator);
1801 lzma_outq_end(&coder->outq, allocator);
1803 lzma_next_end(&coder->block_decoder, allocator);
1804 lzma_filters_free(coder->filters, allocator);
1805 lzma_index_hash_end(coder->index_hash, allocator);
1807 lzma_free(coder, allocator);
1808 return;
1812 static lzma_check
1813 stream_decoder_mt_get_check(const void *coder_ptr)
1815 const struct lzma_stream_coder *coder = coder_ptr;
1816 return coder->stream_flags.check;
1820 static lzma_ret
1821 stream_decoder_mt_memconfig(void *coder_ptr, uint64_t *memusage,
1822 uint64_t *old_memlimit, uint64_t new_memlimit)
1824 // NOTE: This function gets/sets memlimit_stop. For now,
1825 // memlimit_threading cannot be modified after initialization.
1827 // *memusage will include cached memory too. Excluding cached memory
1828 // would be misleading and it wouldn't help the applications to
1829 // know how much memory is actually needed to decompress the file
1830 // because the higher the number of threads and the memlimits are
1831 // the more memory the decoder may use.
1833 // Setting a new limit includes the cached memory too and too low
1834 // limits will be rejected. Alternative could be to free the cached
1835 // memory immediately if that helps to bring the limit down but
1836 // the current way is the simplest. It's unlikely that limit needs
1837 // to be lowered in the middle of a file anyway; the typical reason
1838 // to want a new limit is to increase after LZMA_MEMLIMIT_ERROR
1839 // and even such use isn't common.
1840 struct lzma_stream_coder *coder = coder_ptr;
1842 mythread_sync(coder->mutex) {
1843 *memusage = coder->mem_direct_mode
1844 + coder->mem_in_use
1845 + coder->mem_cached
1846 + coder->outq.mem_allocated;
1849 // If no filter chains are allocated, *memusage may be zero.
1850 // Always return at least LZMA_MEMUSAGE_BASE.
1851 if (*memusage < LZMA_MEMUSAGE_BASE)
1852 *memusage = LZMA_MEMUSAGE_BASE;
1854 *old_memlimit = coder->memlimit_stop;
1856 if (new_memlimit != 0) {
1857 if (new_memlimit < *memusage)
1858 return LZMA_MEMLIMIT_ERROR;
1860 coder->memlimit_stop = new_memlimit;
1863 return LZMA_OK;
1867 static void
1868 stream_decoder_mt_get_progress(void *coder_ptr,
1869 uint64_t *progress_in, uint64_t *progress_out)
1871 struct lzma_stream_coder *coder = coder_ptr;
1873 // Lock coder->mutex to prevent finishing threads from moving their
1874 // progress info from the worker_thread structure to lzma_stream_coder.
1875 mythread_sync(coder->mutex) {
1876 *progress_in = coder->progress_in;
1877 *progress_out = coder->progress_out;
1879 for (size_t i = 0; i < coder->threads_initialized; ++i) {
1880 mythread_sync(coder->threads[i].mutex) {
1881 *progress_in += coder->threads[i].progress_in;
1882 *progress_out += coder->threads[i]
1883 .progress_out;
1888 return;
1892 static lzma_ret
1893 stream_decoder_mt_init(lzma_next_coder *next, const lzma_allocator *allocator,
1894 const lzma_mt *options)
1896 struct lzma_stream_coder *coder;
1898 if (options->threads == 0 || options->threads > LZMA_THREADS_MAX)
1899 return LZMA_OPTIONS_ERROR;
1901 if (options->flags & ~LZMA_SUPPORTED_FLAGS)
1902 return LZMA_OPTIONS_ERROR;
1904 lzma_next_coder_init(&stream_decoder_mt_init, next, allocator);
1906 coder = next->coder;
1907 if (!coder) {
1908 coder = lzma_alloc(sizeof(struct lzma_stream_coder), allocator);
1909 if (coder == NULL)
1910 return LZMA_MEM_ERROR;
1912 next->coder = coder;
1914 if (mythread_mutex_init(&coder->mutex)) {
1915 lzma_free(coder, allocator);
1916 return LZMA_MEM_ERROR;
1919 if (mythread_cond_init(&coder->cond)) {
1920 mythread_mutex_destroy(&coder->mutex);
1921 lzma_free(coder, allocator);
1922 return LZMA_MEM_ERROR;
1925 next->code = &stream_decode_mt;
1926 next->end = &stream_decoder_mt_end;
1927 next->get_check = &stream_decoder_mt_get_check;
1928 next->memconfig = &stream_decoder_mt_memconfig;
1929 next->get_progress = &stream_decoder_mt_get_progress;
1931 coder->filters[0].id = LZMA_VLI_UNKNOWN;
1932 memzero(&coder->outq, sizeof(coder->outq));
1934 coder->block_decoder = LZMA_NEXT_CODER_INIT;
1935 coder->mem_direct_mode = 0;
1937 coder->index_hash = NULL;
1938 coder->threads = NULL;
1939 coder->threads_free = NULL;
1940 coder->threads_initialized = 0;
1943 // Cleanup old filter chain if one remains after unfinished decoding
1944 // of a previous Stream.
1945 lzma_filters_free(coder->filters, allocator);
1947 // By allocating threads from scratch we can start memory-usage
1948 // accounting from scratch, too. Changes in filter and block sizes may
1949 // affect number of threads.
1951 // FIXME? Reusing should be easy but unlike the single-threaded
1952 // decoder, with some types of input file combinations reusing
1953 // could leave quite a lot of memory allocated but unused (first
1954 // file could allocate a lot, the next files could use fewer
1955 // threads and some of the allocations from the first file would not
1956 // get freed unless memlimit_threading forces us to clear caches).
1958 // NOTE: The direct mode decoder isn't freed here if one exists.
1959 // It will be reused or freed as needed in the main loop.
1960 threads_end(coder, allocator);
1962 // All memusage counters start at 0 (including mem_direct_mode).
1963 // The little extra that is needed for the structs in this file
1964 // get accounted well enough by the filter chain memory usage
1965 // which adds LZMA_MEMUSAGE_BASE for each chain. However,
1966 // stream_decoder_mt_memconfig() has to handle this specially so that
1967 // it will never return less than LZMA_MEMUSAGE_BASE as memory usage.
1968 coder->mem_in_use = 0;
1969 coder->mem_cached = 0;
1970 coder->mem_next_block = 0;
1972 coder->progress_in = 0;
1973 coder->progress_out = 0;
1975 coder->sequence = SEQ_STREAM_HEADER;
1976 coder->thread_error = LZMA_OK;
1977 coder->pending_error = LZMA_OK;
1978 coder->thr = NULL;
1980 coder->timeout = options->timeout;
1982 coder->memlimit_threading = my_max(1, options->memlimit_threading);
1983 coder->memlimit_stop = my_max(1, options->memlimit_stop);
1984 if (coder->memlimit_threading > coder->memlimit_stop)
1985 coder->memlimit_threading = coder->memlimit_stop;
1987 coder->tell_no_check = (options->flags & LZMA_TELL_NO_CHECK) != 0;
1988 coder->tell_unsupported_check
1989 = (options->flags & LZMA_TELL_UNSUPPORTED_CHECK) != 0;
1990 coder->tell_any_check = (options->flags & LZMA_TELL_ANY_CHECK) != 0;
1991 coder->ignore_check = (options->flags & LZMA_IGNORE_CHECK) != 0;
1992 coder->concatenated = (options->flags & LZMA_CONCATENATED) != 0;
1993 coder->fail_fast = (options->flags & LZMA_FAIL_FAST) != 0;
1995 coder->first_stream = true;
1996 coder->out_was_filled = false;
1997 coder->pos = 0;
1999 coder->threads_max = options->threads;
2001 return_if_error(lzma_outq_init(&coder->outq, allocator,
2002 coder->threads_max));
2004 return stream_decoder_reset(coder, allocator);
2008 extern LZMA_API(lzma_ret)
2009 lzma_stream_decoder_mt(lzma_stream *strm, const lzma_mt *options)
2011 lzma_next_strm_init(stream_decoder_mt_init, strm, options);
2013 strm->internal->supported_actions[LZMA_RUN] = true;
2014 strm->internal->supported_actions[LZMA_FINISH] = true;
2016 return LZMA_OK;