Victoria University of Wellington School of Mathematics, Statistics & Operations Research Math 434

Assignment One	
Set Theory	2009

Due: 16 October 2009

(1). Let x, y be two sets and define

$$\langle x, y \rangle = \{\{x\}, \{x, y\}\}.$$

- (a) Show that $\langle x, y \rangle = \langle u, v \rangle$ iff x = u and y = v.
- (b) If A is any set and $x, y \in A$ show that $\{x\}$ and $\{x, y\}$ are in $\wp(A)$; and $\langle x, y \rangle \in \wp(\wp(A))$.
- (c) If A is a set, show that $B = \{ \langle x, y \rangle \mid x, y \in A \}$ is also a set.
- (d) If C is a set and $\{x, y\} \in C$ show that $x, y \in \bigcup C$.
- (e) If D is a set and $\langle x, y \rangle \in D$ show that $x, y \in \bigcup \bigcup D$.

(2). Let $\mathbb{N} = \bigcap \{X \mid X \text{ is inductive}\}$. Let $0 = \emptyset$ and $n + 1 = n \cup \{n\}$. Define < on \mathbb{N} by $n < m \iff n \in m$.

A set S is T-finite iff every nonempty $X \subseteq \wp(S)$ has a \subset -maximal element, i.e. $u \in X$ such that there is no $v \in X$ with $u \subset v$. A set T is *transitive* iff $x \in T$ implies $x \subset T$. Show :

(a) If X is inductive, then the set $\{x \in X \mid x \subseteq X\}$ is inductive. Hence N is transitive, and for each $n \in \mathbb{N}$

$$n = \{m \in \mathbb{N} \mid m < n\}.$$

- (b) If X is inductive, then the set $\{x \in X \mid x \text{ is transitive}\}$ is inductive. Hence every $n \in \mathbb{N}$ is transitive.
- (c) If X is inductive, then the set $\{x \in X \mid x \text{ is transitive and } x \notin x\}$ is inductive. Hence $n \notin n$ and $n \neq n+1$ for each $n \in \mathbb{N}$. [DO NOT use regularity to prove this.]
- (d) \mathbb{N} is *T*-infinite; the set $\mathbb{N} \subseteq \wp(\mathbb{N})$ has no \subset -maximal element.
- (e) If X is inductive, then the set
 {x ∈ X | x is transitive and every nonempty z ⊆ x has an ∈ -minimal element} is inductive.
 [t is ∈-minimal in z if there is no s ∈ z such that s ∈ t.]
- (f) Every nonempty $X \subseteq \mathbb{N}$ has an \in -minimal element. [Pick $n \in X$ and look at $X \cap n$].
- (g) If X is inductive, then the set $\{x \in X \mid x = \emptyset \text{ or } x = y \cup \{y\} \text{ for some } y\}$ is inductive. Hence each $n \neq 0$ is m + 1 for some m.
- (h) Induction. Let A ne a subset of N such that $0 \in A$ and $n \in A \to n + 1 \in A$. Then $A = \mathbb{N}$.
- (i) Each $n \in \mathbb{N}$ is *T*-finite.

A set X is said to have n elements iff there is a bijection from n to X. A set is *finite* if it has n elements for some $n \in \mathbb{N}$.

- (j) Every finite set is *T*-finite.
- (k) Every infinite set is *T*-infinite. [If *S* is infinite, consider $X = \{u \subset S \mid u \text{ is finite}\}.$]
- (3). Let A be a set of ordinals.
 - (a) Show that $\bigcup A$ is an ordinal.
 - (b) Let β be any ordinal such that $\alpha \leq \beta$ for all $\alpha \in A$. Show that $\bigcup A \leq \beta$.
 - (c) Show that for any limit ordinal $\beta \quad \bigcup \beta = \beta$.
 - (d) Show that for any ordinal $\alpha \quad \bigcup (\alpha + 1) = \alpha$.
- (4). Let OR_{α} denote the α^{th} class obtained via Cantor-Bendixon derivation.
 - (a) Show that $OR_{a+1} \subseteq OR_{\alpha}$ for all α .
 - (b) Prove, in detail, that $\omega^{\alpha} \in OR_{\alpha}$ for all α .
 - (c) Show that $\beta \in OR$ and $\gamma \in OR_{\alpha}$ implies $\beta + \gamma \in OR_{\alpha}$ for all α, β, γ .
 - (d) Let α, β and γ be any three ordinals. Show that $\beta + \gamma \in OR_{\alpha}$ implies $\gamma \in OR_{\alpha}$.
 - (e) Show that $\gamma \in OR_{\alpha} \setminus OR_{\alpha+1}$ iff there is an ordinal β such that $\gamma = \beta + \omega^{\alpha}$. [Your proof should be based on the preceding results, not on the Cantor Decomposition theorem.]
- (5). Let X be a set of ordinals. Define a function f on X by

$$f(x) = \{f(y) \mid y \in X \text{ and } y \in x\}.$$

- (a) Show that $f(\min X) = \emptyset$;
- (b) Show that f(x) is an ordinal for all $x \in X$;
- (c) Show that the range of f is an ordinal;
- (d) Show that f is one-one.