Victoria University of Wellington School of Mathematics, Statistics & Operations Research Math 434

Assignment Two	
Set	Theory 2009

Due: 16 October 2009

(1). Let $\mathcal{P} = \langle P, \leq \rangle$ be any linearly ordered set. Let \preceq be a well-ordering of P of length |P|. Define

$$B = \{ q \in P \mid \forall p \in P \ q \le p \implies q \le p \}.$$

(a) Let $r \in P$ and define

$$s = \min_{\prec} \left\{ p \in P \mid r \le p \right\}.$$

Show that $s \in B$ and $r \leq s$.

(b) Show that \leq and \leq agree on B – ie if $a, b \in B$ then

 $a \leq b \iff a \preceq b.$

(c) Show that $\langle B, \preceq \rangle$ is a well-order with ordertype at most |P|.

(2).

- (a) Show that the set of finite subsets of ω is countable.
- (b) Show that the set of permutations of ω has size 2^{\aleph_0} .

(3). Show the following:

(a)
$$2^{\omega} = \omega^{\omega};$$

(b)
$$(2^{\omega})^{\omega} = 2^{\omega};$$

- (c) $\omega_1^{\omega} = 2^{\omega}$.
- (4). Suppose that $\kappa^2 = \kappa$ for all infinite cardinals. Show that $\kappa + \lambda = \kappa \cdot \lambda$ for all infinite cardinals without using the Axiom of Choice!

(5). For infinite cardinals $\lambda \leq \kappa$ show that

$$|\{X \subseteq \kappa \mid |X| = \lambda\}| = \kappa^{\lambda}.$$

(6). When λ is an infinite cardinal and κ is any cardinal recall that

$$\kappa^{<\lambda} = \left| \bigcup_{\alpha < \lambda} {}^{\alpha} \kappa \right|.$$

- (a) Show that $\kappa^{<\lambda} = \sup \left\{ \kappa^{\theta} \mid \theta < \lambda \text{ and } \theta \text{ is a cardinal} \right\}.$
- (b) For any $\tau_0 < \lambda$ show that $\kappa^{<\lambda} = \sum_{\tau_0 < \tau < \lambda} \kappa^{\tau}$.
- (c) Show that either
 - (i) there is some $\tau < \lambda$ such that $\kappa^{<\lambda} = \kappa^{\tau}$; OR
 - (ii) there is a sequence of cardinals $\langle \lambda_{\xi} | \xi < cf(\lambda) \rangle$ cofinal in λ such that $-\alpha < \beta$ implies $\kappa^{\lambda_{\alpha}} < \kappa^{\lambda_{\beta}}$, and $\kappa^{<\lambda} = \sum_{\xi} \kappa^{\lambda_{\xi}}$.
- (d) Show that c(i) implies $cf(\kappa^{<\lambda}) \ge \lambda$.
- (e) Show that c(ii) implies $cf(\kappa^{<\lambda}) = cf(\lambda)$.
- (f) Show that case c(i) implies

$$(\kappa^{<\lambda})^{\rho} = \begin{cases} \kappa^{<\lambda} & \text{if } 0 < \rho < \lambda \\ \kappa^{\rho} & \text{if } \rho \ge \lambda. \end{cases}$$

(g) Show that case c(ii) implies

$$(\kappa^{<\lambda})^{\rho} = \begin{cases} \kappa^{<\lambda} & \text{ if } 0 < \rho < \operatorname{cf}(\lambda) \\ \kappa^{\lambda} & \text{ if } \operatorname{cf}(\lambda) \leq \rho < \lambda \\ \kappa^{\rho} & \text{ if } \rho \geq \lambda. \end{cases}$$