Victoria University of Wellington School of Mathematics, Statistics and Operations Research Math 434

Assignment Three	
 Set Theory	2009

Due: 16 October 2009

Definition 0.1. Let $\mathbb{P} = \langle P, \leq \rangle$ be a partial order. A *cover* for \mathbb{P} is a set $C \subseteq P$ such that for all $p \in P$ there is a $c \in C$ with $p \leq c$. The *cofinality* of \mathbb{P} is $cf(\mathbb{P}) = min \{ |C| | C \text{ is a cover for } \mathbb{P} \}.$

The *true cofinality* of \mathbb{P} is

 $tcf(\mathbb{P}) = \min \{ \alpha \mid \alpha \in \text{OR and } \exists f \colon \alpha \to P \text{ with } f \text{ increasing, and } rng(f) \text{ is a cover for } \mathbb{P} \}.$

- (1). Show that every partial order has a cofinality.
- (2). Show that $\langle \omega \times \omega_1, \leq \rangle$ (where $\langle n, \alpha \rangle \leq \langle m, \beta \rangle$ iff $n \leq m$ and $\alpha \leq \beta$) does not have a true cofinality.
- (3). Show that $tcf(\alpha)$ exists for all ordinals α (with the usual order).
- (4). Show that if $tcf(\mathbb{P})$ exists, then
 - (a) it is a regular cardinal;
 - (b) and equals $cf(\mathbb{P})$.

Definition 0.2. Let α be any ordinal. A subset $C \subseteq \alpha$ is

i. *closed* if for any $X \subseteq C$, then $\bigcup X \in C \cup \{\alpha\}$;

- ii. *unbounded* if C is a cover for α ;
- iii. *club* if it is both closed and unbounded.
- (5). Show that for any α there is a club $C \subseteq \alpha$ with order type equal to the cofinality of α .
- (6). Show that if $\alpha > \omega$ is a regular cardinal, and \mathscr{C} is a set of clubs in α of size strictly less than α , then $\bigcap \mathscr{C}$ is club in α .
- (7). Suppose that α is a regular cardinal, and $\langle C_{\beta} \mid \beta \in \alpha \rangle$ is a family of clubs in α . Let

$$\Delta_{\beta}C_{\beta} = \{x \mid \forall \gamma \in x \ x \in C_{\gamma}\}.$$

Show that $\Delta_{\beta}C_{\beta}$ is a club in α .