Victoria University of Wellington School of Mathematics, Statistics & Operations Research Math 434

Assignment Four	
Set The	ory 2009

Due: 16 October 2009

First we recall the definition of a ultrafilters, ultraproducts & ultrapowers and some of the basic properties of these constructs.

Definition 1: An *ultrafilter* on a set I is a set $U \subseteq \wp(I)$ such that

- (a) $I \in U, \emptyset \notin U;$
- (b) if $A \in U$ and $B \in U$ then $A \cap B \in U$;
- (c) if $A \in U$ and $A \subseteq B$ then $B \in U$;
- (d) if $A \subseteq I$ then either $A \in U$ or $I \setminus A \in U$.
- Definition 2: An ultrafilter U on I is principal iff there is some $i \in I$ such that $U = \{A \mid A \subseteq I \text{ and } i \in A\}$.
- Definition 3: An *ultrafilter* on a set I is κ -complete iff if $X \subseteq U$ and $|X| < \kappa$ then $\bigcap X \in U$.
- Definition 4: If $\langle \mathfrak{A}_i | i \in I \rangle$ are a family of \mathcal{L} -models (for some language \mathcal{L}), and U is an ultrafilter on I then the ultrapower

$$\mathfrak{A} = \prod \mathfrak{A}_i / U$$

is the model with universe

$$\prod_{i\in I} A_i / \equiv$$

where \equiv is the equivalence relation on $\prod_{i \in I} A_i$ given by

$$f \equiv g \text{ iff } \{I \mid f(i) = g(i)\} \in U.$$

Relations are defined by

$$R_a^{\mathfrak{A}}([f_1],\ldots,[f_k]) \text{ iff } \left\{ i \mid R_a^{\mathfrak{A}_i}(f_1(i),\ldots,f_k(i)) \right\} \in U$$

and

$$f_b^{\mathfrak{A}}([f_1],\ldots,[f_k]) = [i \mapsto f_b^{\mathfrak{A}_i}(f_1(i),\ldots,f_k(i))].$$

- Definition 5: If \mathfrak{A} is an \mathcal{L} -model, and U an ultrafilter on I, then the *ultrapower* is the same as the ultraproduct of $\langle \mathfrak{A}_i = \mathfrak{A} \mid i \in I \rangle$, denoted by $\text{Ult}_U(\mathfrak{A})$.
- Definition 6: The canonical embedding from A into $\text{Ult}_U(\mathfrak{A})$ is the function $j: A \to \text{Ult}_U(\mathfrak{A})$ given by

$$j(a) = [i \mapsto a].$$

A few useful facts:

i. if φ is a formula and f_1, \ldots, f_k are in $\prod_{i \in I} A_i$ then

$$\prod \mathfrak{A}_i/U \models \varphi[[f_1], \dots, [f_k]] \text{ iff } \{i \mid \mathfrak{A}_i \models \varphi[f_1(i), \dots, f_k(i)]\} \in U.$$

ii. if σ is any sentence then

$$\prod \mathfrak{A}_i/U \models \sigma \text{ iff } \{i \mid \mathfrak{A}_i \models \sigma\} \in U.$$

iii. if σ is any sentence, then

$$\mathfrak{A} \models \sigma \text{ iff } \operatorname{Ult}_U(\mathfrak{A}) \models \sigma.$$

iv. if φ is a formula and a_1, \ldots, a_k are in A then

$$\mathfrak{A} \models \varphi[a_1, \ldots, a_k]$$
 iff $\operatorname{Ult}_U(\mathfrak{A}) \models \varphi[j(a_1), \ldots, j(a_k)].$

If we are careful it is possible to define ultrapowers of V. We cannot just take equivalence classes as these are not sets. Instead we define the "equivalence class" of $f: I \to V$ as

 $[f] = \{g \mid g \equiv f \text{ and } \forall x \operatorname{rank}(x) < \operatorname{rank}(g) \to \neg(x \equiv f)\}.$

With this definition and some care, all of the above results about $Ult_U(V)$ still hold.

- (1). Show that an ultrafilter U on I is κ -complete iff for any set $X \subseteq \wp(I)$, if $|X| < \kappa$ and $\bigcup X \in U$ then $X \cap U \neq \emptyset$.
- (2). Let $\langle M, \in \rangle$ be a transitive model of some fragment of ZFC with $\omega \subseteq M$. Let U be a nonprincipal ultrafilter on ω . Define $f_k \colon \omega \to \omega$ by $f_k(n) = \max(n-k, 0)$. Show that the sequence

$$\langle [f_k] \mid k \in \omega \rangle$$

is strictly descending in $Ult_U(M)$.

- (3). Let $\langle M, \in \rangle$ be a transitive model of some fragment of ZFC with $\kappa \subseteq M$. Let U be a nonprincipal ultrafilter on κ which is **not** ω_1 -complete.
 - (a) Show that there is a partition $\{X_n \mid n \in \omega\}$ of κ with $X_n \notin U$ for all n.
 - (b) Define $f_k \colon \kappa \to \omega$ by $f_k(x) = \max(n-k, 0)$ for $x \in X_n$. Show that the sequence

 $\langle [f_k] \mid k \in \omega \rangle$

is strictly descending in $Ult_U(M)$.

- (4). Let U be an ω_1 -complete ultrafilter on I. Show that the " \in " relation in $\text{Ult}_U(V)$ is well-founded.
- (5). From the last exercise, if U is an ω_1 -complete ultrafilter on I, then we can collapse $\text{Ult}_U(V)$ to a transitive model M_U , in which case we get an elementary embedding \hat{j} as the composite:

$$V \xrightarrow{\jmath} \operatorname{Ult}_U(V) \xrightarrow{\pi} M_U.$$

If $x \in M_U$ we say that $f: I \to V$ represents x iff $\hat{j}(f) = x$.

- 1. Show that every ordinal α is represented by some $f: I \to OR$.
- 2. Show that if $\hat{j}(\alpha) = \alpha$ for all $\alpha \in OR$ then \hat{j} is the identity function. [Try induction on rank.]
- 3. Show that $\alpha \leq \hat{j}(\alpha)$ for all $\alpha \in OR$.
- 4. Let κ be the least ordinal such that $\kappa < \hat{j}(\kappa)$.
 - i. Show that $\kappa > \omega$.
 - ii. Define $D \subseteq \wp(\kappa)$ by

$$A \in D$$
 iff $\kappa \in \hat{j}(A)$

Show that D is a κ -complete ultrafilter on κ .