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1. Apply the method of Lagrange multipliers to find the maximum value of the quadratic
form f(x, y) = x2 + y2 + xy subject to the constraint g(x, y) = x2 + 2y2 − 1 = 0.

Lagrange multipliers require you to solve the equations ∇f = λ∇g and g = 0 simul-
taneously. Here λ is a new variable introduced to solve the problem and ∇f is the

gradient of f , i.e.
(

∂f
∂x
, ∂f

∂y

)
. If you can’t do it by hand, try using Maple.

2. The simplest of planar parallel mechanisms is the planar 4–bar , consisting of four
rigid components connected in a quadrilateral by revolute hinges. One bar is usually
regarded as fixed. Convince yourself that, generally, such a mechanism will have one
degree of freedom (which may include deciding what that actually means. . . ).

The configurations of a 4–bar can be described by means of the angles α, β, γ which
are subject to equations which tell you that the quadrilateral is closed:

a cosα + b cos β + c cos γ − d = 0

a sinα + b sin β + c sin γ = 0

where a, b, c, d are the lengths of OA,AB,BC,CO respectively.

Rewrite these equations as a system of polynomials in appropriate variables.

See how far you can get in solving them in the case a = b = c = d = 1.

3. (a) Show that g(x, y) = x2y + xy2 ∈ Z2[x, y] gives rise to the zero function on Z2
2.
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(b) Find a non-zero polynomial in Z2[x, y, z], involving all 3 variables, which vanishes
identically on Z3

2.

(c) In the field Zp, ap−1 = 1 for all a ∈ Zp, a 6= 0. Deduce that ap = a for all a ∈ Zp

and hence find a non-zero polynomial in Zp[x] which vanishes on Zp as a function.

4. Use Theorem 1 in Lecture 2 to show, given f, g ∈ k[x1, . . . , xn] with k infinite, that
f = g if and only if the associated functions f̂ = ĝ. (This is easy.)

5. (a) (Theorem 1 in Lecture 2.) Given affine varieties V = V(f1, . . . , fs) and W =
V(g1, . . . , gt), prove that V ∩ W and V ∪ W are also varieties. [Hint: for the
union, consider polynomials of the form figj.]

(b) Suppose V ⊂ kn and W ⊂ km are varieties. Prove that V × W ⊂ kn+m is a
variety.

(c) Prove that every finite set of points in kn is a variety.

6. By thinking about the proof in Q5(a), identify V ((x − y)(x2 + 4y2 − 1), (z − 1)(x2 +
4y2 − 1)) as the union of two varieties and hence sketch the variety in R3.

7. The polar equation r = sin(2θ) defines a four–leaved rose. Show that this curve is a
variety as follows:

(a) show that the rose is contained in the variety V ((x2 + y2)3 − 4x2y2);

(b) show that the variety is contained in the rose.

(c) you might try plotting the curve in Maple, first as a polar curve, then implicitly
using the defining equation.

8. (a) Consider the set X = {(x, x) : x ∈ R, x 6= 1} ⊆ R2. Prove that X is not a variety
(i.e. X 6= V(f1, . . . , fs) for any fi ∈ R[x, y], i = 1, . . . , s).

(b) Hence or otherwise prove that: (i) an infinite union of varieties need not be a
variety; (ii) the difference of two varieties need not be a variety.

9. Show that the 2–dimensional sphere x2 + y2 + z2 = 1 in R3 has the rational parametri-
sation:

x =
2u

u2 + v2 + 1

y =
2v

u2 + v2 + 1

z =
u2 + v2 − 1

u2 + v2 + 1

by considering where the line joining the “north” pole (0, 0, 1) to the point (u, v, 0)
in the xy–plane meets the sphere again. (Show the line is defined parametrically by
(x, y, z) = (tu, tv, t−1).) You should draw a picture first to illustrate the construction.
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