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1. Apply the method of Lagrange multipliers to find the maximum value of the quadratic
form f(x,y) = 2% + y* + zy subject to the constraint g(z,y) = 22 + 2y* — 1 = 0.

Lagrange multipliers require you to solve the equations Vf = AVg and ¢ = 0 simul-
taneously. Here X is a new variable introduced to solve the problem and V f is the

gradient of f, i.e. (%, g—i). If you can’t do it by hand, try using Maple.

2. The simplest of planar parallel mechanisms is the planar 4-bar, consisting of four
rigid components connected in a quadrilateral by revolute hinges. One bar is usually
regarded as fixed. Convince yourself that, generally, such a mechanism will have one
degree of freedom (which may include deciding what that actually means. .. ).

The configurations of a 4-bar can be described by means of the angles a, 3, which
are subject to equations which tell you that the quadrilateral is closed:

acosa+bcosff+ccosy—d = 0
asina + bsin f 4 csiny = 0

where a, b, ¢, d are the lengths of OA, AB, BC, C'O respectively.
Rewrite these equations as a system of polynomials in appropriate variables.

See how far you can get in solving them in the case a=b=c=d = 1.

3. (a) Show that g(z,y) = 2%y + xy? € Zs[z, y| gives rise to the zero function on Z3.

1



(b) Find a non-zero polynomial in Zs[z, y, z|, involving all 3 variables, which vanishes
identically on Z3.

(¢) In the field Z,, a?~* =1 for all a € Z,, a # 0. Deduce that a? = a for all a € Z,
and hence find a non-zero polynomial in Z,[z| which vanishes on Z, as a function.

. Use Theorem 1 in Lecture 2 to show, given f,g € k[ry,...,z,] with k infinite, that
f = g if and only if the associated functions f = §. (This is easy.)

(a) (Theorem 1 in Lecture 2.) Given affine varieties V' = V(f1,...,fs) and W =
V(g1,-..,9t), prove that VN W and V U W are also varieties. [Hint: for the
union, consider polynomials of the form f;g;.]

(b) Suppose V' C k™ and W C k™ are varieties. Prove that V' x W C k" is a
variety.

(c) Prove that every finite set of points in k" is a variety.

. By thinking about the proof in Q5(a), identify V((x — y)(z* + 4y* — 1), (z — 1)(2? +
4y* — 1)) as the union of two varieties and hence sketch the variety in R3.

. The polar equation r = sin(26) defines a four-leaved rose. Show that this curve is a
variety as follows:

(a) show that the rose is contained in the variety V ((z* + y?)% — 42?y?);

(b) show that the variety is contained in the rose.

(¢) you might try plotting the curve in Maple, first as a polar curve, then implicitly

using the defining equation.

(a) Consider the set X = {(x,z) : z € R,z # 1} C R?. Prove that X is not a variety
(iie. X AV (f,...,fs) forany f; € Rlz,yl,i=1,...,s).

(b) Hence or otherwise prove that: (i) an infinite union of varieties need not be a
variety; (ii) the difference of two varieties need not be a variety.

. Show that the 2-dimensional sphere x? +y*+ 22 = 1 in R? has the rational parametri-
sation:

2u
r = —
w2 +0v2 41

2v
Yy = S5 5.1
u +v4+1
w?+v2 =1
Zz = —
uz + 0241

by considering where the line joining the “north” pole (0,0,1) to the point (u,v,0)
in the zy—plane meets the sphere again. (Show the line is defined parametrically by
(x,y,2) = (tu,tv,t —1).) You should draw a picture first to illustrate the construction.



