VICTORIA UNIVERSITY OF WELLINGTON SCHOOL OF MATHEMATICS, STATISTICS AND OPERATIONS RESEARCH Te Kura Mātai Tatauranga, Rangahau Pūnaha

MATH 437 Gröbne	R BASES AND THEIR APPLICATIONS	2009
-----------------	--------------------------------	------

Assignment 2: Ideals and Varieties

Due: Friday 31 July

- 1. (a) Prove that if $f_1, \ldots, f_s \in k[x_1, \ldots, x_n]$, then $\langle f_1, \ldots, f_s \rangle$ is an ideal. (b) Let $f_1, \ldots, f_s \in k[x_1, \ldots, x_n]$. Prove that $I(\mathbf{V}(f_1, \ldots, f_s))$ is an ideal.
- 2. Prove that $\langle f_1, \ldots, f_s \rangle \subseteq \mathbf{I}(V(f_1, \ldots, f_s)).$
- 3. (a) Prove that if $\langle f_1, \ldots, f_s \rangle = \langle g_1, \ldots, g_t \rangle$ then $\mathbf{V}(f_1, \ldots, f_s) = \mathbf{V}(g_1, \ldots, g_t)$ (where the f_i s and g_j s are in $k[x_1, \ldots, x_n]$).
 - (b) Hence prove that $\mathbf{V}(x + xy, y + xy, x^2, y^2) = \mathbf{V}(x, y)$ in k^2 .
- 4. Let $f \in k[x_1, \ldots, x_n]$ and suppose that $f \notin \langle x_1, \ldots, x_n \rangle$. Prove that $\langle x_1, \ldots, x_n, f \rangle = k[x_1, \ldots, x_n]$.
- 5. Let $f_1 = y x^2$ and $f_2 = z x^3$ in $\mathbb{R}[x, y, z]$. In Lecture 3, we showed that $V(f_1, f_2) = \{(t, t^2, t^3) \mid t \in \mathbb{R}\}$ and $I(\mathbf{V}(f_1, f_2)) = \langle f_1, f_2 \rangle$.
 - (a) Use the parametrisation of V to show that $y^2 xz \in I(\mathbf{V}(f_1, f_2))$.
 - (b) Show directly that $y^2 xz \in \langle f_1, f_2 \rangle$.
- 6. Now consider the set $W \subset \mathbb{R}^3$ parametrised by $(t^2, t^3, t^4), t \in \mathbb{R}$.
 - (a) First show that W is a variety. You must find polynomials that vanish if and only if $(x, y, z) = (t^2, t^3, t^4)$.
 - (b) Is I(W) the same as the ideal generated by the polynomials you found in (a)?
- 7. Prove that if every ideal in $k[x_1, \ldots, x_n]$ is finitely generated then $k[x_1, \ldots, x_n]$ is Noetherian.
- 8. Let V, W be varieties. Prove that $V \subset W$ if and only if $I(V) \supset I(W)$. Hence show that V = W if and only if I(V) = I(W). Furthermore prove that if

$$V_1 \supseteq V_2 \supseteq \cdots \supseteq V_i \supseteq$$

is a descending sequence of affine varieties, then there is some $N \in \mathbb{N}$ such that $V_n = V_N$ for all $n \geq N$.

- 9. Let f_1, f_2, \ldots be an infinite sequence of polynomials in $k[x_1, \ldots, x_n]$. Prove that for some N, the variety $\mathbf{V}(f_1, f_2, \ldots) = \mathbf{V}(f_1, \ldots, f_N)$ (where $\mathbf{V}(f_1, f_2, \ldots) = \{(a_1, \ldots, a_n) \in k^n \mid \forall i \in \mathbb{N}, f_i(a_1, \ldots, a_n) = 0\}$).
- 10. Prove the uniqueness of q and r in the Division Algorithm.
- 11. Prove that for $f_1, f_2 \in k[x], \langle f_1, f_2 \rangle = \langle \operatorname{GCD}(f_1, f_2) \rangle$.
- 12. Find $GCD(f_1, f_2, f_3)$ where

$$f_1 = x^5 - 2x^4 - x^2 + 2x$$

$$f_2 = x^7 + x^6 - 2x^4 - 2x^3 + x + 1$$

$$f_3 = x^6 - 2x^5 + x^4 - 2x^3 + x^2 - 2x$$

13. Prove the Ideal Membership Test: $f \in \langle f_1, \ldots, f_s \rangle \subseteq k[x]$ if and only if $f \xrightarrow{g} 0$ where $g = \text{GCD}(f_1, \ldots, f_s)$.