VICTORIA UNIVERSITY OF WELLINGTON SCHOOL OF MATHEMATICS, STATISTICS AND OPERATIONS RESEARCH Te Kura Mātai Tatauranga, Rangahau Pūnaha

MATH 437 GRÖBNER BASES AND THEIR APPLICATIONS	ND THEIR APPLICATIONS 2009
---	----------------------------

Assignment 3: The Division Algorithm and Term Orders

Due: Tuesday 18 August

- 1. Determine LT(f) for $f(x, y) = 3x^4z 2x^3y^4 + 7x^2y^2z^3 8xy^3z^3 \in \mathbb{Q}[x, y, z]$ with respect to LEX, DEGLEX and DEGREVLEX and given x > y > z.
- 2. Write down the DEGLEX and DEGREVLEX orderings for the degree 4 monomials in $k[x_1, x_2, x_3]$ given $x_1 > x_2 > x_3$.
- 3. Prove that DEGREVLEX is a term order.
- 4. Prove that the only term order on k[x] is the usual one:

 $1 < x < x^2 < x^3 < \dots$

- 5. Prove the lemma that in any term order, $x^{\alpha}|x^{\beta}$ implies $x^{\alpha} \leq x^{\beta}$.
- 6. A polynomial $f \in k[x_1, \ldots, x_n]$ is called **homogeneous** if every term has the same total degree $(eg \ x^2y^2z + 4xy^4 3zyz^3 z^5)$, having degree 5). Given f homogeneous and working with DEGREVLEX (with $x_1 > x_2 > \cdots > x_n$), prove that $x_n|f$ if and only if $x_n|\text{LT}(f)$. More generally, prove that $f \in \langle x_i, \ldots, x_n \rangle$ if and only if $\text{LT}(f) \in \langle x_i, \ldots, x_n \rangle$.
- 7. A polynomial $f \in k[x_1, \ldots, x_n]$ is called *symmetric* if it is invariant (remains the same) under any permutation of x_1, \ldots, x_n . For example, if n = 3, $x_1 + x_2 + x_3$, $x_1x_2 + x_1x_3 + x_2x_3$ and $x_1x_2x_3$ are all symmetric. In general the *elementary symmetric polynomials* are:

$$\sigma_1 = x_1 + x_2 + \dots + x_n$$

$$\sigma_2 = x_1 x_2 + x_1 x_3 + \dots + x_{n-1} x_n$$

$$\dots$$

$$\sigma_n = x_1 x_2 \dots x_n.$$

Use the following steps to prove:

Fundamental Theorem of Symmetric Polynomials. Every symmetric $f \in k[x_1, \ldots, x_n]$ can be written in the form $f = h(\sigma_1, \ldots, \sigma_n)$ where $h \in k[x_1, \ldots, x_n]$.

- (a) Furnish $k[x_1, \ldots, x_n]$ with LEX ordering and $x_1 > x_2 > \cdots > x_n$. Given f symmetric, let $LT(f) = cx^{\alpha}$ where $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$ and $c \in k$. Prove that $\alpha_1 \ge \alpha_2 \ge \cdots \ge \alpha_n$.
- (b) If

$$g = \sigma_1^{\alpha_1 - \alpha_2} \sigma_2^{\alpha_2 - \alpha_3} \dots \sigma_{n-1}^{\alpha_{n-1} - \alpha_n} \sigma_n^{\alpha_n}$$

show that $LP(g) = x^{\alpha}$.

- (c) Observe that LP(f cg) < LP(f) and that f cg is symmetric. Now use the well-ordering of the term order to prove the existence of the required polynomial h and hence prove the Theorem.
- (d) Apply the algorithm above to write $f = x_1^4 + x_2^4$ (n = 2) as a polynomial in $\sigma_1 = x_1 + x_2$ and $\sigma_2 = x_1 x_2$.
- 8. Compute a remainder for the given f following reduction by the given set G with the given term order. (You may want to use the division layout in Cox et al, p64.)

(a)
$$f = x^7 y^2 + x^3 y^2 - y + 1; G = \{xy^2 - x, x - y^3\}$$
 using DEGREVLEX $x > y > z;$

(b)
$$f = xy^2z^2 + xy - yz; G = \{x - y^2, y - z^3, z^2 - 1\}$$
 using LEX $x > y$.

9. In Assignment 2, Q6, we considered the variety $V(z - x^2, y^2 - x^3)$ parametrised by $\{(t^2, t^3, t^4) | t \in \mathbb{R}\}$. Use the Division Algorithm with an appropriate term order, to find $u_1, u_2 \in \mathbb{R}[x, y, z]$ so that $g = y^4 - z^3 \in \mathbf{I}(V) \subseteq \mathbb{R}[x, y, z]$ satisfies

$$g = u_1 (z - x^2) + u_2 (y^2 - x^3).$$