MATH 437 GRÖBNER BASES AND THEIR APPLICATIONS 2009

Assignment 5: Elimination and Closure

Due: Friday 18 September

1. Find bases for the elimination ideals I_1 , I_2 where

$$
I = \langle x^2 + y^2 + z^2 - 4, x^2 + 2y^2 - 5, xz - 1 \rangle.
$$

- 2. (a) Suppose $1 \leq l \leq n$. A term order on $k[x_1, \ldots, x_n]$ is said to be of *l*-elimination type provided any monomial involving any of x_1, \ldots, x_l is greater than any monomial in $k[x_{l+1}, \ldots, x_n]$. Prove the Generalised Elimination Theorem: if $I \subseteq k[x_1, \ldots, x_n]$ is an ideal and G a Gröbner basis for I with respect to an l –elimination type term order, then $G \cap k[x_{l+1},...,x_n]$ is a Gröbner basis for the *l*th elimination ideal $I \cap k[x_{l+1}, \ldots, x_n].$
	- (b) Prove that the following order \geq_l is a term order of *l*–elimination type: $x^{\alpha} \geq_l x^{\beta}$ if

$$
\alpha_1 + \cdots + \alpha_l > \beta_1 + \ldots \beta_l
$$

or

$$
\alpha_1 + \cdots + \alpha_l = \beta_1 + \ldots \beta_l
$$
 and $\alpha >_{degreevlex} \beta$.

3. Consider the equations

$$
t^{2} + x^{2} + y^{2} + z^{2} = 0
$$

$$
t^{2} + 2x^{2} - xy - z^{2} = 0
$$

$$
t + y^{3} - z^{3} = 0
$$

and let I be the ideal in $k[t, x, y, z]$ generated by the left-hand sides. In what follows I would prefer you to use Maple, with the Groebner package.

- (a) Find a Gröbner basis for I with LEX ordering, $t > x > y > z$. What is a Gröbner basis for the first elimination ideal? In Maple, the term order is called plex.
- (b) Repeat with an elimination order that eliminates t . In Maple, the term order is called lexdeg.

(c) Which is the "better" term order for elimination? Explain what your criteria are.

4. Consider the equations:

$$
x^{5} + \frac{1}{x^{5}} = y
$$

$$
x + \frac{1}{x} = z.
$$

- (a) Rewrite them in a form that enables you to work in $\mathbb{C}[x, y, z]$.
- (b) Find a basis for $I_1 \subset \mathbb{C}[y, z]$ and show that $I_2 = \{0\}.$
- (c) Use the Extension Theorem to show that each partial solution $c \in V(I_2) = \mathbb{C}$ extends to a solution in $V(I) \subset \mathbb{C}^3$.
- (d) Which partial solutions $(y, z) \in V(I_1) \subset \mathbb{R}^2$ extend to real solutions in $V(I) \subset \mathbb{R}^3$?
- 5. (a) Prove that the ideal I' , defined in the proof of the Weak Nullstellensatz, is an ideal.
	- (b) Suppose A is an $n \times n$ matrix with entries in the (algebraically closed) field k. Define a function

$$
\alpha : k[x_1, \ldots, x_n] \to k[x'_1, \ldots, x'_n]
$$

by $\alpha(f) = f'$ where $f'(x') = f(Ax')$.

- i. Show that α is linear.
- ii. Show that α is in fact a ring homomorphism: i.e. $\alpha(1) = 1$ and $\alpha(f.g) =$ $\alpha(f) \cdot \alpha(g)$.
- iii. What conditions on A ensure that α is an isomorphism (i.e. 1–1 and onto)?
- iv. Given an ideal $I \subseteq k[x_1, \ldots, x_n]$, is $\alpha(I)$ an ideal? What about $\alpha^{-1}(I')$ for an ideal $I' \subseteq k[x'_1, \ldots, x'_n]$?
- v. Do any of the above apply if the entries of A are themselves polynomials in $k[x_1, \ldots, x_n]$?
- 6. (a) Prove that \sqrt{I} is an ideal and is radical.
	- (b) Prove that I is radical if and only if $I =$ √ I.
	- (c) Deduce that $\sqrt{\sqrt{I}} =$ √ I.
- 7. Given an ideal $I = \langle f_1, \ldots, f_s \rangle$ in $k[x_1, \ldots, x_n]$, it follows from the proof of the Strong Nullstellensatz that $f \in \sqrt{I}$ if and only if $1 \in \langle f_1, \ldots, f_s, 1 - yf \rangle \subseteq k[x_1, \ldots, x_n, y]$. The ideal-membership problem can be resolved by first calulating a Gröbner basis for the ideal.
	- (a) Show that $f = yz x^3 \in$ √ \overline{I} where $I = \langle x^4y^2 + z^2 - 4xy^3z - 2y^5z, x^2 + 2xy^2 + y^4 \rangle$. (You can use Maple if you like.)
	- (b) Find the smallest m such that $f^m \in I$. (Membership can be determined by reducing with respect to a Gröbner basis and seeing if the remainder is zero or not.)