2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
26 #include <asm/pgtable.h>
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
33 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
34 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
35 unsigned long hugepages_treat_as_movable
;
37 static int max_hstate
;
38 unsigned int default_hstate_idx
;
39 struct hstate hstates
[HUGE_MAX_HSTATE
];
41 __initdata
LIST_HEAD(huge_boot_pages
);
43 /* for command line parsing */
44 static struct hstate
* __initdata parsed_hstate
;
45 static unsigned long __initdata default_hstate_max_huge_pages
;
46 static unsigned long __initdata default_hstate_size
;
48 #define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
54 static DEFINE_SPINLOCK(hugetlb_lock
);
56 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
58 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
60 spin_unlock(&spool
->lock
);
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
68 struct hugepage_subpool
*hugepage_new_subpool(long nr_blocks
)
70 struct hugepage_subpool
*spool
;
72 spool
= kmalloc(sizeof(*spool
), GFP_KERNEL
);
76 spin_lock_init(&spool
->lock
);
78 spool
->max_hpages
= nr_blocks
;
79 spool
->used_hpages
= 0;
84 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
86 spin_lock(&spool
->lock
);
87 BUG_ON(!spool
->count
);
89 unlock_or_release_subpool(spool
);
92 static int hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
100 spin_lock(&spool
->lock
);
101 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
) {
102 spool
->used_hpages
+= delta
;
106 spin_unlock(&spool
->lock
);
111 static void hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
117 spin_lock(&spool
->lock
);
118 spool
->used_hpages
-= delta
;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool
);
124 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
126 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
129 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
131 return subpool_inode(vma
->vm_file
->f_dentry
->d_inode
);
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantion_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation mutex:
143 * down_write(&mm->mmap_sem);
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
149 struct list_head link
;
154 static long region_add(struct list_head
*head
, long f
, long t
)
156 struct file_region
*rg
, *nrg
, *trg
;
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg
, head
, link
)
163 /* Round our left edge to the current segment if it encloses us. */
167 /* Check for and consume any regions we now overlap with. */
169 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
170 if (&rg
->link
== head
)
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
190 static long region_chg(struct list_head
*head
, long f
, long t
)
192 struct file_region
*rg
, *nrg
;
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg
, head
, link
)
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg
->link
== head
|| t
< rg
->from
) {
204 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
209 INIT_LIST_HEAD(&nrg
->link
);
210 list_add(&nrg
->link
, rg
->link
.prev
);
215 /* Round our left edge to the current segment if it encloses us. */
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
222 if (&rg
->link
== head
)
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
234 chg
-= rg
->to
- rg
->from
;
239 static long region_truncate(struct list_head
*head
, long end
)
241 struct file_region
*rg
, *trg
;
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg
, head
, link
)
248 if (&rg
->link
== head
)
251 /* If we are in the middle of a region then adjust it. */
252 if (end
> rg
->from
) {
255 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
260 if (&rg
->link
== head
)
262 chg
+= rg
->to
- rg
->from
;
269 static long region_count(struct list_head
*head
, long f
, long t
)
271 struct file_region
*rg
;
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg
, head
, link
) {
284 seg_from
= max(rg
->from
, f
);
285 seg_to
= min(rg
->to
, t
);
287 chg
+= seg_to
- seg_from
;
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
297 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
298 struct vm_area_struct
*vma
, unsigned long address
)
300 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
301 (vma
->vm_pgoff
>> huge_page_order(h
));
304 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
305 unsigned long address
)
307 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
314 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
316 struct hstate
*hstate
;
318 if (!is_vm_hugetlb_page(vma
))
321 hstate
= hstate_vma(vma
);
323 return 1UL << (hstate
->order
+ PAGE_SHIFT
);
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
336 return vma_kernel_pagesize(vma
);
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
368 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
370 return (unsigned long)vma
->vm_private_data
;
373 static void set_vma_private_data(struct vm_area_struct
*vma
,
376 vma
->vm_private_data
= (void *)value
;
381 struct list_head regions
;
384 static struct resv_map
*resv_map_alloc(void)
386 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
390 kref_init(&resv_map
->refs
);
391 INIT_LIST_HEAD(&resv_map
->regions
);
396 static void resv_map_release(struct kref
*ref
)
398 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map
->regions
, 0);
405 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
407 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
408 if (!(vma
->vm_flags
& VM_MAYSHARE
))
409 return (struct resv_map
*)(get_vma_private_data(vma
) &
414 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
416 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
417 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
419 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
420 HPAGE_RESV_MASK
) | (unsigned long)map
);
423 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
425 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
426 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
428 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
431 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
433 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
435 return (get_vma_private_data(vma
) & flag
) != 0;
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate
*h
,
440 struct vm_area_struct
*vma
)
442 if (vma
->vm_flags
& VM_NORESERVE
)
445 if (vma
->vm_flags
& VM_MAYSHARE
) {
446 /* Shared mappings always use reserves */
447 h
->resv_huge_pages
--;
448 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
450 * Only the process that called mmap() has reserves for
453 h
->resv_huge_pages
--;
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
460 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
461 if (!(vma
->vm_flags
& VM_MAYSHARE
))
462 vma
->vm_private_data
= (void *)0;
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct
*vma
)
468 if (vma
->vm_flags
& VM_MAYSHARE
)
470 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
475 static void copy_gigantic_page(struct page
*dst
, struct page
*src
)
478 struct hstate
*h
= page_hstate(src
);
479 struct page
*dst_base
= dst
;
480 struct page
*src_base
= src
;
482 for (i
= 0; i
< pages_per_huge_page(h
); ) {
484 copy_highpage(dst
, src
);
487 dst
= mem_map_next(dst
, dst_base
, i
);
488 src
= mem_map_next(src
, src_base
, i
);
492 void copy_huge_page(struct page
*dst
, struct page
*src
)
495 struct hstate
*h
= page_hstate(src
);
497 if (unlikely(pages_per_huge_page(h
) > MAX_ORDER_NR_PAGES
)) {
498 copy_gigantic_page(dst
, src
);
503 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
505 copy_highpage(dst
+ i
, src
+ i
);
509 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
511 int nid
= page_to_nid(page
);
512 list_add(&page
->lru
, &h
->hugepage_freelists
[nid
]);
513 h
->free_huge_pages
++;
514 h
->free_huge_pages_node
[nid
]++;
517 static struct page
*dequeue_huge_page_node(struct hstate
*h
, int nid
)
521 if (list_empty(&h
->hugepage_freelists
[nid
]))
523 page
= list_entry(h
->hugepage_freelists
[nid
].next
, struct page
, lru
);
524 list_del(&page
->lru
);
525 set_page_refcounted(page
);
526 h
->free_huge_pages
--;
527 h
->free_huge_pages_node
[nid
]--;
531 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
532 struct vm_area_struct
*vma
,
533 unsigned long address
, int avoid_reserve
)
535 struct page
*page
= NULL
;
536 struct mempolicy
*mpol
;
537 nodemask_t
*nodemask
;
538 struct zonelist
*zonelist
;
543 zonelist
= huge_zonelist(vma
, address
,
544 htlb_alloc_mask
, &mpol
, &nodemask
);
546 * A child process with MAP_PRIVATE mappings created by their parent
547 * have no page reserves. This check ensures that reservations are
548 * not "stolen". The child may still get SIGKILLed
550 if (!vma_has_reserves(vma
) &&
551 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
554 /* If reserves cannot be used, ensure enough pages are in the pool */
555 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
558 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
559 MAX_NR_ZONES
- 1, nodemask
) {
560 if (cpuset_zone_allowed_softwall(zone
, htlb_alloc_mask
)) {
561 page
= dequeue_huge_page_node(h
, zone_to_nid(zone
));
564 decrement_hugepage_resv_vma(h
, vma
);
575 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
579 VM_BUG_ON(h
->order
>= MAX_ORDER
);
582 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
583 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
584 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
585 1 << PG_referenced
| 1 << PG_dirty
|
586 1 << PG_active
| 1 << PG_reserved
|
587 1 << PG_private
| 1 << PG_writeback
);
589 set_compound_page_dtor(page
, NULL
);
590 set_page_refcounted(page
);
591 arch_release_hugepage(page
);
592 __free_pages(page
, huge_page_order(h
));
595 struct hstate
*size_to_hstate(unsigned long size
)
600 if (huge_page_size(h
) == size
)
606 static void free_huge_page(struct page
*page
)
609 * Can't pass hstate in here because it is called from the
610 * compound page destructor.
612 struct hstate
*h
= page_hstate(page
);
613 int nid
= page_to_nid(page
);
614 struct hugepage_subpool
*spool
=
615 (struct hugepage_subpool
*)page_private(page
);
617 set_page_private(page
, 0);
618 page
->mapping
= NULL
;
619 BUG_ON(page_count(page
));
620 BUG_ON(page_mapcount(page
));
621 INIT_LIST_HEAD(&page
->lru
);
623 spin_lock(&hugetlb_lock
);
624 if (h
->surplus_huge_pages_node
[nid
] && huge_page_order(h
) < MAX_ORDER
) {
625 update_and_free_page(h
, page
);
626 h
->surplus_huge_pages
--;
627 h
->surplus_huge_pages_node
[nid
]--;
629 enqueue_huge_page(h
, page
);
631 spin_unlock(&hugetlb_lock
);
632 hugepage_subpool_put_pages(spool
, 1);
635 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
637 set_compound_page_dtor(page
, free_huge_page
);
638 spin_lock(&hugetlb_lock
);
640 h
->nr_huge_pages_node
[nid
]++;
641 spin_unlock(&hugetlb_lock
);
642 put_page(page
); /* free it into the hugepage allocator */
645 static void prep_compound_gigantic_page(struct page
*page
, unsigned long order
)
648 int nr_pages
= 1 << order
;
649 struct page
*p
= page
+ 1;
651 /* we rely on prep_new_huge_page to set the destructor */
652 set_compound_order(page
, order
);
654 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
656 set_page_count(p
, 0);
657 p
->first_page
= page
;
661 int PageHuge(struct page
*page
)
663 compound_page_dtor
*dtor
;
665 if (!PageCompound(page
))
668 page
= compound_head(page
);
669 dtor
= get_compound_page_dtor(page
);
671 return dtor
== free_huge_page
;
673 EXPORT_SYMBOL_GPL(PageHuge
);
675 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
679 if (h
->order
>= MAX_ORDER
)
682 page
= alloc_pages_exact_node(nid
,
683 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|
684 __GFP_REPEAT
|__GFP_NOWARN
,
687 if (arch_prepare_hugepage(page
)) {
688 __free_pages(page
, huge_page_order(h
));
691 prep_new_huge_page(h
, page
, nid
);
698 * common helper functions for hstate_next_node_to_{alloc|free}.
699 * We may have allocated or freed a huge page based on a different
700 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
701 * be outside of *nodes_allowed. Ensure that we use an allowed
702 * node for alloc or free.
704 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
706 nid
= next_node(nid
, *nodes_allowed
);
707 if (nid
== MAX_NUMNODES
)
708 nid
= first_node(*nodes_allowed
);
709 VM_BUG_ON(nid
>= MAX_NUMNODES
);
714 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
716 if (!node_isset(nid
, *nodes_allowed
))
717 nid
= next_node_allowed(nid
, nodes_allowed
);
722 * returns the previously saved node ["this node"] from which to
723 * allocate a persistent huge page for the pool and advance the
724 * next node from which to allocate, handling wrap at end of node
727 static int hstate_next_node_to_alloc(struct hstate
*h
,
728 nodemask_t
*nodes_allowed
)
732 VM_BUG_ON(!nodes_allowed
);
734 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
735 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
740 static int alloc_fresh_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
747 start_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
748 next_nid
= start_nid
;
751 page
= alloc_fresh_huge_page_node(h
, next_nid
);
756 next_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
757 } while (next_nid
!= start_nid
);
760 count_vm_event(HTLB_BUDDY_PGALLOC
);
762 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
768 * helper for free_pool_huge_page() - return the previously saved
769 * node ["this node"] from which to free a huge page. Advance the
770 * next node id whether or not we find a free huge page to free so
771 * that the next attempt to free addresses the next node.
773 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
777 VM_BUG_ON(!nodes_allowed
);
779 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
780 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
786 * Free huge page from pool from next node to free.
787 * Attempt to keep persistent huge pages more or less
788 * balanced over allowed nodes.
789 * Called with hugetlb_lock locked.
791 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
798 start_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
799 next_nid
= start_nid
;
803 * If we're returning unused surplus pages, only examine
804 * nodes with surplus pages.
806 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[next_nid
]) &&
807 !list_empty(&h
->hugepage_freelists
[next_nid
])) {
809 list_entry(h
->hugepage_freelists
[next_nid
].next
,
811 list_del(&page
->lru
);
812 h
->free_huge_pages
--;
813 h
->free_huge_pages_node
[next_nid
]--;
815 h
->surplus_huge_pages
--;
816 h
->surplus_huge_pages_node
[next_nid
]--;
818 update_and_free_page(h
, page
);
822 next_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
823 } while (next_nid
!= start_nid
);
828 static struct page
*alloc_buddy_huge_page(struct hstate
*h
, int nid
)
833 if (h
->order
>= MAX_ORDER
)
837 * Assume we will successfully allocate the surplus page to
838 * prevent racing processes from causing the surplus to exceed
841 * This however introduces a different race, where a process B
842 * tries to grow the static hugepage pool while alloc_pages() is
843 * called by process A. B will only examine the per-node
844 * counters in determining if surplus huge pages can be
845 * converted to normal huge pages in adjust_pool_surplus(). A
846 * won't be able to increment the per-node counter, until the
847 * lock is dropped by B, but B doesn't drop hugetlb_lock until
848 * no more huge pages can be converted from surplus to normal
849 * state (and doesn't try to convert again). Thus, we have a
850 * case where a surplus huge page exists, the pool is grown, and
851 * the surplus huge page still exists after, even though it
852 * should just have been converted to a normal huge page. This
853 * does not leak memory, though, as the hugepage will be freed
854 * once it is out of use. It also does not allow the counters to
855 * go out of whack in adjust_pool_surplus() as we don't modify
856 * the node values until we've gotten the hugepage and only the
857 * per-node value is checked there.
859 spin_lock(&hugetlb_lock
);
860 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
861 spin_unlock(&hugetlb_lock
);
865 h
->surplus_huge_pages
++;
867 spin_unlock(&hugetlb_lock
);
869 if (nid
== NUMA_NO_NODE
)
870 page
= alloc_pages(htlb_alloc_mask
|__GFP_COMP
|
871 __GFP_REPEAT
|__GFP_NOWARN
,
874 page
= alloc_pages_exact_node(nid
,
875 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|
876 __GFP_REPEAT
|__GFP_NOWARN
, huge_page_order(h
));
878 if (page
&& arch_prepare_hugepage(page
)) {
879 __free_pages(page
, huge_page_order(h
));
883 spin_lock(&hugetlb_lock
);
885 r_nid
= page_to_nid(page
);
886 set_compound_page_dtor(page
, free_huge_page
);
888 * We incremented the global counters already
890 h
->nr_huge_pages_node
[r_nid
]++;
891 h
->surplus_huge_pages_node
[r_nid
]++;
892 __count_vm_event(HTLB_BUDDY_PGALLOC
);
895 h
->surplus_huge_pages
--;
896 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
898 spin_unlock(&hugetlb_lock
);
904 * This allocation function is useful in the context where vma is irrelevant.
905 * E.g. soft-offlining uses this function because it only cares physical
906 * address of error page.
908 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
912 spin_lock(&hugetlb_lock
);
913 page
= dequeue_huge_page_node(h
, nid
);
914 spin_unlock(&hugetlb_lock
);
917 page
= alloc_buddy_huge_page(h
, nid
);
923 * Increase the hugetlb pool such that it can accommodate a reservation
926 static int gather_surplus_pages(struct hstate
*h
, int delta
)
928 struct list_head surplus_list
;
929 struct page
*page
, *tmp
;
931 int needed
, allocated
;
933 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
935 h
->resv_huge_pages
+= delta
;
940 INIT_LIST_HEAD(&surplus_list
);
944 spin_unlock(&hugetlb_lock
);
945 for (i
= 0; i
< needed
; i
++) {
946 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
949 * We were not able to allocate enough pages to
950 * satisfy the entire reservation so we free what
951 * we've allocated so far.
955 list_add(&page
->lru
, &surplus_list
);
960 * After retaking hugetlb_lock, we need to recalculate 'needed'
961 * because either resv_huge_pages or free_huge_pages may have changed.
963 spin_lock(&hugetlb_lock
);
964 needed
= (h
->resv_huge_pages
+ delta
) -
965 (h
->free_huge_pages
+ allocated
);
970 * The surplus_list now contains _at_least_ the number of extra pages
971 * needed to accommodate the reservation. Add the appropriate number
972 * of pages to the hugetlb pool and free the extras back to the buddy
973 * allocator. Commit the entire reservation here to prevent another
974 * process from stealing the pages as they are added to the pool but
975 * before they are reserved.
978 h
->resv_huge_pages
+= delta
;
981 /* Free the needed pages to the hugetlb pool */
982 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
985 list_del(&page
->lru
);
987 * This page is now managed by the hugetlb allocator and has
988 * no users -- drop the buddy allocator's reference.
990 put_page_testzero(page
);
991 VM_BUG_ON(page_count(page
));
992 enqueue_huge_page(h
, page
);
994 spin_unlock(&hugetlb_lock
);
996 /* Free unnecessary surplus pages to the buddy allocator */
998 if (!list_empty(&surplus_list
)) {
999 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1000 list_del(&page
->lru
);
1004 spin_lock(&hugetlb_lock
);
1010 * When releasing a hugetlb pool reservation, any surplus pages that were
1011 * allocated to satisfy the reservation must be explicitly freed if they were
1013 * Called with hugetlb_lock held.
1015 static void return_unused_surplus_pages(struct hstate
*h
,
1016 unsigned long unused_resv_pages
)
1018 unsigned long nr_pages
;
1020 /* Uncommit the reservation */
1021 h
->resv_huge_pages
-= unused_resv_pages
;
1023 /* Cannot return gigantic pages currently */
1024 if (h
->order
>= MAX_ORDER
)
1027 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1030 * We want to release as many surplus pages as possible, spread
1031 * evenly across all nodes with memory. Iterate across these nodes
1032 * until we can no longer free unreserved surplus pages. This occurs
1033 * when the nodes with surplus pages have no free pages.
1034 * free_pool_huge_page() will balance the the freed pages across the
1035 * on-line nodes with memory and will handle the hstate accounting.
1037 while (nr_pages
--) {
1038 if (!free_pool_huge_page(h
, &node_states
[N_HIGH_MEMORY
], 1))
1044 * Determine if the huge page at addr within the vma has an associated
1045 * reservation. Where it does not we will need to logically increase
1046 * reservation and actually increase subpool usage before an allocation
1047 * can occur. Where any new reservation would be required the
1048 * reservation change is prepared, but not committed. Once the page
1049 * has been allocated from the subpool and instantiated the change should
1050 * be committed via vma_commit_reservation. No action is required on
1053 static long vma_needs_reservation(struct hstate
*h
,
1054 struct vm_area_struct
*vma
, unsigned long addr
)
1056 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1057 struct inode
*inode
= mapping
->host
;
1059 if (vma
->vm_flags
& VM_MAYSHARE
) {
1060 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1061 return region_chg(&inode
->i_mapping
->private_list
,
1064 } else if (!is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1069 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1070 struct resv_map
*reservations
= vma_resv_map(vma
);
1072 err
= region_chg(&reservations
->regions
, idx
, idx
+ 1);
1078 static void vma_commit_reservation(struct hstate
*h
,
1079 struct vm_area_struct
*vma
, unsigned long addr
)
1081 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1082 struct inode
*inode
= mapping
->host
;
1084 if (vma
->vm_flags
& VM_MAYSHARE
) {
1085 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1086 region_add(&inode
->i_mapping
->private_list
, idx
, idx
+ 1);
1088 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1089 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1090 struct resv_map
*reservations
= vma_resv_map(vma
);
1092 /* Mark this page used in the map. */
1093 region_add(&reservations
->regions
, idx
, idx
+ 1);
1097 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1098 unsigned long addr
, int avoid_reserve
)
1100 struct hugepage_subpool
*spool
= subpool_vma(vma
);
1101 struct hstate
*h
= hstate_vma(vma
);
1106 * Processes that did not create the mapping will have no
1107 * reserves and will not have accounted against subpool
1108 * limit. Check that the subpool limit can be made before
1109 * satisfying the allocation MAP_NORESERVE mappings may also
1110 * need pages and subpool limit allocated allocated if no reserve
1113 chg
= vma_needs_reservation(h
, vma
, addr
);
1115 return ERR_PTR(-VM_FAULT_OOM
);
1117 if (hugepage_subpool_get_pages(spool
, chg
))
1118 return ERR_PTR(-VM_FAULT_SIGBUS
);
1120 spin_lock(&hugetlb_lock
);
1121 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
);
1122 spin_unlock(&hugetlb_lock
);
1125 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
1127 hugepage_subpool_put_pages(spool
, chg
);
1128 return ERR_PTR(-VM_FAULT_SIGBUS
);
1132 set_page_private(page
, (unsigned long)spool
);
1134 vma_commit_reservation(h
, vma
, addr
);
1139 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
1141 struct huge_bootmem_page
*m
;
1142 int nr_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
1147 addr
= __alloc_bootmem_node_nopanic(
1148 NODE_DATA(hstate_next_node_to_alloc(h
,
1149 &node_states
[N_HIGH_MEMORY
])),
1150 huge_page_size(h
), huge_page_size(h
), 0);
1154 * Use the beginning of the huge page to store the
1155 * huge_bootmem_page struct (until gather_bootmem
1156 * puts them into the mem_map).
1166 BUG_ON((unsigned long)virt_to_phys(m
) & (huge_page_size(h
) - 1));
1167 /* Put them into a private list first because mem_map is not up yet */
1168 list_add(&m
->list
, &huge_boot_pages
);
1173 static void prep_compound_huge_page(struct page
*page
, int order
)
1175 if (unlikely(order
> (MAX_ORDER
- 1)))
1176 prep_compound_gigantic_page(page
, order
);
1178 prep_compound_page(page
, order
);
1181 /* Put bootmem huge pages into the standard lists after mem_map is up */
1182 static void __init
gather_bootmem_prealloc(void)
1184 struct huge_bootmem_page
*m
;
1186 list_for_each_entry(m
, &huge_boot_pages
, list
) {
1187 struct hstate
*h
= m
->hstate
;
1190 #ifdef CONFIG_HIGHMEM
1191 page
= pfn_to_page(m
->phys
>> PAGE_SHIFT
);
1192 free_bootmem_late((unsigned long)m
,
1193 sizeof(struct huge_bootmem_page
));
1195 page
= virt_to_page(m
);
1197 __ClearPageReserved(page
);
1198 WARN_ON(page_count(page
) != 1);
1199 prep_compound_huge_page(page
, h
->order
);
1200 prep_new_huge_page(h
, page
, page_to_nid(page
));
1202 * If we had gigantic hugepages allocated at boot time, we need
1203 * to restore the 'stolen' pages to totalram_pages in order to
1204 * fix confusing memory reports from free(1) and another
1205 * side-effects, like CommitLimit going negative.
1207 if (h
->order
> (MAX_ORDER
- 1))
1208 totalram_pages
+= 1 << h
->order
;
1212 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
1216 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
1217 if (h
->order
>= MAX_ORDER
) {
1218 if (!alloc_bootmem_huge_page(h
))
1220 } else if (!alloc_fresh_huge_page(h
,
1221 &node_states
[N_HIGH_MEMORY
]))
1224 h
->max_huge_pages
= i
;
1227 static void __init
hugetlb_init_hstates(void)
1231 for_each_hstate(h
) {
1232 /* oversize hugepages were init'ed in early boot */
1233 if (h
->order
< MAX_ORDER
)
1234 hugetlb_hstate_alloc_pages(h
);
1238 static char * __init
memfmt(char *buf
, unsigned long n
)
1240 if (n
>= (1UL << 30))
1241 sprintf(buf
, "%lu GB", n
>> 30);
1242 else if (n
>= (1UL << 20))
1243 sprintf(buf
, "%lu MB", n
>> 20);
1245 sprintf(buf
, "%lu KB", n
>> 10);
1249 static void __init
report_hugepages(void)
1253 for_each_hstate(h
) {
1255 printk(KERN_INFO
"HugeTLB registered %s page size, "
1256 "pre-allocated %ld pages\n",
1257 memfmt(buf
, huge_page_size(h
)),
1258 h
->free_huge_pages
);
1262 #ifdef CONFIG_HIGHMEM
1263 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
1264 nodemask_t
*nodes_allowed
)
1268 if (h
->order
>= MAX_ORDER
)
1271 for_each_node_mask(i
, *nodes_allowed
) {
1272 struct page
*page
, *next
;
1273 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1274 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1275 if (count
>= h
->nr_huge_pages
)
1277 if (PageHighMem(page
))
1279 list_del(&page
->lru
);
1280 update_and_free_page(h
, page
);
1281 h
->free_huge_pages
--;
1282 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1287 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
1288 nodemask_t
*nodes_allowed
)
1294 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1295 * balanced by operating on them in a round-robin fashion.
1296 * Returns 1 if an adjustment was made.
1298 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1301 int start_nid
, next_nid
;
1304 VM_BUG_ON(delta
!= -1 && delta
!= 1);
1307 start_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
1309 start_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
1310 next_nid
= start_nid
;
1316 * To shrink on this node, there must be a surplus page
1318 if (!h
->surplus_huge_pages_node
[nid
]) {
1319 next_nid
= hstate_next_node_to_alloc(h
,
1326 * Surplus cannot exceed the total number of pages
1328 if (h
->surplus_huge_pages_node
[nid
] >=
1329 h
->nr_huge_pages_node
[nid
]) {
1330 next_nid
= hstate_next_node_to_free(h
,
1336 h
->surplus_huge_pages
+= delta
;
1337 h
->surplus_huge_pages_node
[nid
] += delta
;
1340 } while (next_nid
!= start_nid
);
1345 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1346 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
1347 nodemask_t
*nodes_allowed
)
1349 unsigned long min_count
, ret
;
1351 if (h
->order
>= MAX_ORDER
)
1352 return h
->max_huge_pages
;
1355 * Increase the pool size
1356 * First take pages out of surplus state. Then make up the
1357 * remaining difference by allocating fresh huge pages.
1359 * We might race with alloc_buddy_huge_page() here and be unable
1360 * to convert a surplus huge page to a normal huge page. That is
1361 * not critical, though, it just means the overall size of the
1362 * pool might be one hugepage larger than it needs to be, but
1363 * within all the constraints specified by the sysctls.
1365 spin_lock(&hugetlb_lock
);
1366 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1367 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
1371 while (count
> persistent_huge_pages(h
)) {
1373 * If this allocation races such that we no longer need the
1374 * page, free_huge_page will handle it by freeing the page
1375 * and reducing the surplus.
1377 spin_unlock(&hugetlb_lock
);
1378 ret
= alloc_fresh_huge_page(h
, nodes_allowed
);
1379 spin_lock(&hugetlb_lock
);
1383 /* Bail for signals. Probably ctrl-c from user */
1384 if (signal_pending(current
))
1389 * Decrease the pool size
1390 * First return free pages to the buddy allocator (being careful
1391 * to keep enough around to satisfy reservations). Then place
1392 * pages into surplus state as needed so the pool will shrink
1393 * to the desired size as pages become free.
1395 * By placing pages into the surplus state independent of the
1396 * overcommit value, we are allowing the surplus pool size to
1397 * exceed overcommit. There are few sane options here. Since
1398 * alloc_buddy_huge_page() is checking the global counter,
1399 * though, we'll note that we're not allowed to exceed surplus
1400 * and won't grow the pool anywhere else. Not until one of the
1401 * sysctls are changed, or the surplus pages go out of use.
1403 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1404 min_count
= max(count
, min_count
);
1405 try_to_free_low(h
, min_count
, nodes_allowed
);
1406 while (min_count
< persistent_huge_pages(h
)) {
1407 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
1410 while (count
< persistent_huge_pages(h
)) {
1411 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
1415 ret
= persistent_huge_pages(h
);
1416 spin_unlock(&hugetlb_lock
);
1420 #define HSTATE_ATTR_RO(_name) \
1421 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1423 #define HSTATE_ATTR(_name) \
1424 static struct kobj_attribute _name##_attr = \
1425 __ATTR(_name, 0644, _name##_show, _name##_store)
1427 static struct kobject
*hugepages_kobj
;
1428 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1430 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
1432 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
1436 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1437 if (hstate_kobjs
[i
] == kobj
) {
1439 *nidp
= NUMA_NO_NODE
;
1443 return kobj_to_node_hstate(kobj
, nidp
);
1446 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
1447 struct kobj_attribute
*attr
, char *buf
)
1450 unsigned long nr_huge_pages
;
1453 h
= kobj_to_hstate(kobj
, &nid
);
1454 if (nid
== NUMA_NO_NODE
)
1455 nr_huge_pages
= h
->nr_huge_pages
;
1457 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
1459 return sprintf(buf
, "%lu\n", nr_huge_pages
);
1462 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
1463 struct kobject
*kobj
, struct kobj_attribute
*attr
,
1464 const char *buf
, size_t len
)
1468 unsigned long count
;
1470 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
1472 err
= strict_strtoul(buf
, 10, &count
);
1476 h
= kobj_to_hstate(kobj
, &nid
);
1477 if (h
->order
>= MAX_ORDER
) {
1482 if (nid
== NUMA_NO_NODE
) {
1484 * global hstate attribute
1486 if (!(obey_mempolicy
&&
1487 init_nodemask_of_mempolicy(nodes_allowed
))) {
1488 NODEMASK_FREE(nodes_allowed
);
1489 nodes_allowed
= &node_states
[N_HIGH_MEMORY
];
1491 } else if (nodes_allowed
) {
1493 * per node hstate attribute: adjust count to global,
1494 * but restrict alloc/free to the specified node.
1496 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
1497 init_nodemask_of_node(nodes_allowed
, nid
);
1499 nodes_allowed
= &node_states
[N_HIGH_MEMORY
];
1501 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
1503 if (nodes_allowed
!= &node_states
[N_HIGH_MEMORY
])
1504 NODEMASK_FREE(nodes_allowed
);
1508 NODEMASK_FREE(nodes_allowed
);
1512 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1513 struct kobj_attribute
*attr
, char *buf
)
1515 return nr_hugepages_show_common(kobj
, attr
, buf
);
1518 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1519 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1521 return nr_hugepages_store_common(false, kobj
, attr
, buf
, len
);
1523 HSTATE_ATTR(nr_hugepages
);
1528 * hstate attribute for optionally mempolicy-based constraint on persistent
1529 * huge page alloc/free.
1531 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
1532 struct kobj_attribute
*attr
, char *buf
)
1534 return nr_hugepages_show_common(kobj
, attr
, buf
);
1537 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
1538 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1540 return nr_hugepages_store_common(true, kobj
, attr
, buf
, len
);
1542 HSTATE_ATTR(nr_hugepages_mempolicy
);
1546 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1547 struct kobj_attribute
*attr
, char *buf
)
1549 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1550 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1553 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1554 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1557 unsigned long input
;
1558 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1560 if (h
->order
>= MAX_ORDER
)
1563 err
= strict_strtoul(buf
, 10, &input
);
1567 spin_lock(&hugetlb_lock
);
1568 h
->nr_overcommit_huge_pages
= input
;
1569 spin_unlock(&hugetlb_lock
);
1573 HSTATE_ATTR(nr_overcommit_hugepages
);
1575 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1576 struct kobj_attribute
*attr
, char *buf
)
1579 unsigned long free_huge_pages
;
1582 h
= kobj_to_hstate(kobj
, &nid
);
1583 if (nid
== NUMA_NO_NODE
)
1584 free_huge_pages
= h
->free_huge_pages
;
1586 free_huge_pages
= h
->free_huge_pages_node
[nid
];
1588 return sprintf(buf
, "%lu\n", free_huge_pages
);
1590 HSTATE_ATTR_RO(free_hugepages
);
1592 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1593 struct kobj_attribute
*attr
, char *buf
)
1595 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1596 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1598 HSTATE_ATTR_RO(resv_hugepages
);
1600 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1601 struct kobj_attribute
*attr
, char *buf
)
1604 unsigned long surplus_huge_pages
;
1607 h
= kobj_to_hstate(kobj
, &nid
);
1608 if (nid
== NUMA_NO_NODE
)
1609 surplus_huge_pages
= h
->surplus_huge_pages
;
1611 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
1613 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
1615 HSTATE_ATTR_RO(surplus_hugepages
);
1617 static struct attribute
*hstate_attrs
[] = {
1618 &nr_hugepages_attr
.attr
,
1619 &nr_overcommit_hugepages_attr
.attr
,
1620 &free_hugepages_attr
.attr
,
1621 &resv_hugepages_attr
.attr
,
1622 &surplus_hugepages_attr
.attr
,
1624 &nr_hugepages_mempolicy_attr
.attr
,
1629 static struct attribute_group hstate_attr_group
= {
1630 .attrs
= hstate_attrs
,
1633 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
1634 struct kobject
**hstate_kobjs
,
1635 struct attribute_group
*hstate_attr_group
)
1638 int hi
= h
- hstates
;
1640 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
1641 if (!hstate_kobjs
[hi
])
1644 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
1646 kobject_put(hstate_kobjs
[hi
]);
1651 static void __init
hugetlb_sysfs_init(void)
1656 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
1657 if (!hugepages_kobj
)
1660 for_each_hstate(h
) {
1661 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
1662 hstate_kobjs
, &hstate_attr_group
);
1664 printk(KERN_ERR
"Hugetlb: Unable to add hstate %s",
1672 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1673 * with node devices in node_devices[] using a parallel array. The array
1674 * index of a node device or _hstate == node id.
1675 * This is here to avoid any static dependency of the node device driver, in
1676 * the base kernel, on the hugetlb module.
1678 struct node_hstate
{
1679 struct kobject
*hugepages_kobj
;
1680 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1682 struct node_hstate node_hstates
[MAX_NUMNODES
];
1685 * A subset of global hstate attributes for node devices
1687 static struct attribute
*per_node_hstate_attrs
[] = {
1688 &nr_hugepages_attr
.attr
,
1689 &free_hugepages_attr
.attr
,
1690 &surplus_hugepages_attr
.attr
,
1694 static struct attribute_group per_node_hstate_attr_group
= {
1695 .attrs
= per_node_hstate_attrs
,
1699 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1700 * Returns node id via non-NULL nidp.
1702 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1706 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
1707 struct node_hstate
*nhs
= &node_hstates
[nid
];
1709 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1710 if (nhs
->hstate_kobjs
[i
] == kobj
) {
1722 * Unregister hstate attributes from a single node device.
1723 * No-op if no hstate attributes attached.
1725 void hugetlb_unregister_node(struct node
*node
)
1728 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
1730 if (!nhs
->hugepages_kobj
)
1731 return; /* no hstate attributes */
1734 if (nhs
->hstate_kobjs
[h
- hstates
]) {
1735 kobject_put(nhs
->hstate_kobjs
[h
- hstates
]);
1736 nhs
->hstate_kobjs
[h
- hstates
] = NULL
;
1739 kobject_put(nhs
->hugepages_kobj
);
1740 nhs
->hugepages_kobj
= NULL
;
1744 * hugetlb module exit: unregister hstate attributes from node devices
1747 static void hugetlb_unregister_all_nodes(void)
1752 * disable node device registrations.
1754 register_hugetlbfs_with_node(NULL
, NULL
);
1757 * remove hstate attributes from any nodes that have them.
1759 for (nid
= 0; nid
< nr_node_ids
; nid
++)
1760 hugetlb_unregister_node(&node_devices
[nid
]);
1764 * Register hstate attributes for a single node device.
1765 * No-op if attributes already registered.
1767 void hugetlb_register_node(struct node
*node
)
1770 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
1773 if (nhs
->hugepages_kobj
)
1774 return; /* already allocated */
1776 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
1778 if (!nhs
->hugepages_kobj
)
1781 for_each_hstate(h
) {
1782 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
1784 &per_node_hstate_attr_group
);
1786 printk(KERN_ERR
"Hugetlb: Unable to add hstate %s"
1788 h
->name
, node
->dev
.id
);
1789 hugetlb_unregister_node(node
);
1796 * hugetlb init time: register hstate attributes for all registered node
1797 * devices of nodes that have memory. All on-line nodes should have
1798 * registered their associated device by this time.
1800 static void hugetlb_register_all_nodes(void)
1804 for_each_node_state(nid
, N_HIGH_MEMORY
) {
1805 struct node
*node
= &node_devices
[nid
];
1806 if (node
->dev
.id
== nid
)
1807 hugetlb_register_node(node
);
1811 * Let the node device driver know we're here so it can
1812 * [un]register hstate attributes on node hotplug.
1814 register_hugetlbfs_with_node(hugetlb_register_node
,
1815 hugetlb_unregister_node
);
1817 #else /* !CONFIG_NUMA */
1819 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1827 static void hugetlb_unregister_all_nodes(void) { }
1829 static void hugetlb_register_all_nodes(void) { }
1833 static void __exit
hugetlb_exit(void)
1837 hugetlb_unregister_all_nodes();
1839 for_each_hstate(h
) {
1840 kobject_put(hstate_kobjs
[h
- hstates
]);
1843 kobject_put(hugepages_kobj
);
1845 module_exit(hugetlb_exit
);
1847 static int __init
hugetlb_init(void)
1849 /* Some platform decide whether they support huge pages at boot
1850 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1851 * there is no such support
1853 if (HPAGE_SHIFT
== 0)
1856 if (!size_to_hstate(default_hstate_size
)) {
1857 default_hstate_size
= HPAGE_SIZE
;
1858 if (!size_to_hstate(default_hstate_size
))
1859 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
1861 default_hstate_idx
= size_to_hstate(default_hstate_size
) - hstates
;
1862 if (default_hstate_max_huge_pages
)
1863 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
1865 hugetlb_init_hstates();
1867 gather_bootmem_prealloc();
1871 hugetlb_sysfs_init();
1873 hugetlb_register_all_nodes();
1877 module_init(hugetlb_init
);
1879 /* Should be called on processing a hugepagesz=... option */
1880 void __init
hugetlb_add_hstate(unsigned order
)
1885 if (size_to_hstate(PAGE_SIZE
<< order
)) {
1886 printk(KERN_WARNING
"hugepagesz= specified twice, ignoring\n");
1889 BUG_ON(max_hstate
>= HUGE_MAX_HSTATE
);
1891 h
= &hstates
[max_hstate
++];
1893 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
1894 h
->nr_huge_pages
= 0;
1895 h
->free_huge_pages
= 0;
1896 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
1897 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
1898 h
->next_nid_to_alloc
= first_node(node_states
[N_HIGH_MEMORY
]);
1899 h
->next_nid_to_free
= first_node(node_states
[N_HIGH_MEMORY
]);
1900 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
1901 huge_page_size(h
)/1024);
1906 static int __init
hugetlb_nrpages_setup(char *s
)
1909 static unsigned long *last_mhp
;
1912 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1913 * so this hugepages= parameter goes to the "default hstate".
1916 mhp
= &default_hstate_max_huge_pages
;
1918 mhp
= &parsed_hstate
->max_huge_pages
;
1920 if (mhp
== last_mhp
) {
1921 printk(KERN_WARNING
"hugepages= specified twice without "
1922 "interleaving hugepagesz=, ignoring\n");
1926 if (sscanf(s
, "%lu", mhp
) <= 0)
1930 * Global state is always initialized later in hugetlb_init.
1931 * But we need to allocate >= MAX_ORDER hstates here early to still
1932 * use the bootmem allocator.
1934 if (max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
1935 hugetlb_hstate_alloc_pages(parsed_hstate
);
1941 __setup("hugepages=", hugetlb_nrpages_setup
);
1943 static int __init
hugetlb_default_setup(char *s
)
1945 default_hstate_size
= memparse(s
, &s
);
1948 __setup("default_hugepagesz=", hugetlb_default_setup
);
1950 static unsigned int cpuset_mems_nr(unsigned int *array
)
1953 unsigned int nr
= 0;
1955 for_each_node_mask(node
, cpuset_current_mems_allowed
)
1961 #ifdef CONFIG_SYSCTL
1962 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
1963 struct ctl_table
*table
, int write
,
1964 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1966 struct hstate
*h
= &default_hstate
;
1970 tmp
= h
->max_huge_pages
;
1972 if (write
&& h
->order
>= MAX_ORDER
)
1976 table
->maxlen
= sizeof(unsigned long);
1977 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
1982 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
,
1983 GFP_KERNEL
| __GFP_NORETRY
);
1984 if (!(obey_mempolicy
&&
1985 init_nodemask_of_mempolicy(nodes_allowed
))) {
1986 NODEMASK_FREE(nodes_allowed
);
1987 nodes_allowed
= &node_states
[N_HIGH_MEMORY
];
1989 h
->max_huge_pages
= set_max_huge_pages(h
, tmp
, nodes_allowed
);
1991 if (nodes_allowed
!= &node_states
[N_HIGH_MEMORY
])
1992 NODEMASK_FREE(nodes_allowed
);
1998 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
1999 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2002 return hugetlb_sysctl_handler_common(false, table
, write
,
2003 buffer
, length
, ppos
);
2007 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
2008 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2010 return hugetlb_sysctl_handler_common(true, table
, write
,
2011 buffer
, length
, ppos
);
2013 #endif /* CONFIG_NUMA */
2015 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
2016 void __user
*buffer
,
2017 size_t *length
, loff_t
*ppos
)
2019 proc_dointvec(table
, write
, buffer
, length
, ppos
);
2020 if (hugepages_treat_as_movable
)
2021 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
2023 htlb_alloc_mask
= GFP_HIGHUSER
;
2027 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
2028 void __user
*buffer
,
2029 size_t *length
, loff_t
*ppos
)
2031 struct hstate
*h
= &default_hstate
;
2035 tmp
= h
->nr_overcommit_huge_pages
;
2037 if (write
&& h
->order
>= MAX_ORDER
)
2041 table
->maxlen
= sizeof(unsigned long);
2042 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2047 spin_lock(&hugetlb_lock
);
2048 h
->nr_overcommit_huge_pages
= tmp
;
2049 spin_unlock(&hugetlb_lock
);
2055 #endif /* CONFIG_SYSCTL */
2057 void hugetlb_report_meminfo(struct seq_file
*m
)
2059 struct hstate
*h
= &default_hstate
;
2061 "HugePages_Total: %5lu\n"
2062 "HugePages_Free: %5lu\n"
2063 "HugePages_Rsvd: %5lu\n"
2064 "HugePages_Surp: %5lu\n"
2065 "Hugepagesize: %8lu kB\n",
2069 h
->surplus_huge_pages
,
2070 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2073 int hugetlb_report_node_meminfo(int nid
, char *buf
)
2075 struct hstate
*h
= &default_hstate
;
2077 "Node %d HugePages_Total: %5u\n"
2078 "Node %d HugePages_Free: %5u\n"
2079 "Node %d HugePages_Surp: %5u\n",
2080 nid
, h
->nr_huge_pages_node
[nid
],
2081 nid
, h
->free_huge_pages_node
[nid
],
2082 nid
, h
->surplus_huge_pages_node
[nid
]);
2085 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2086 unsigned long hugetlb_total_pages(void)
2088 struct hstate
*h
= &default_hstate
;
2089 return h
->nr_huge_pages
* pages_per_huge_page(h
);
2092 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
2096 spin_lock(&hugetlb_lock
);
2098 * When cpuset is configured, it breaks the strict hugetlb page
2099 * reservation as the accounting is done on a global variable. Such
2100 * reservation is completely rubbish in the presence of cpuset because
2101 * the reservation is not checked against page availability for the
2102 * current cpuset. Application can still potentially OOM'ed by kernel
2103 * with lack of free htlb page in cpuset that the task is in.
2104 * Attempt to enforce strict accounting with cpuset is almost
2105 * impossible (or too ugly) because cpuset is too fluid that
2106 * task or memory node can be dynamically moved between cpusets.
2108 * The change of semantics for shared hugetlb mapping with cpuset is
2109 * undesirable. However, in order to preserve some of the semantics,
2110 * we fall back to check against current free page availability as
2111 * a best attempt and hopefully to minimize the impact of changing
2112 * semantics that cpuset has.
2115 if (gather_surplus_pages(h
, delta
) < 0)
2118 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
2119 return_unused_surplus_pages(h
, delta
);
2126 return_unused_surplus_pages(h
, (unsigned long) -delta
);
2129 spin_unlock(&hugetlb_lock
);
2133 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
2135 struct resv_map
*reservations
= vma_resv_map(vma
);
2138 * This new VMA should share its siblings reservation map if present.
2139 * The VMA will only ever have a valid reservation map pointer where
2140 * it is being copied for another still existing VMA. As that VMA
2141 * has a reference to the reservation map it cannot disappear until
2142 * after this open call completes. It is therefore safe to take a
2143 * new reference here without additional locking.
2146 kref_get(&reservations
->refs
);
2149 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
2151 struct hstate
*h
= hstate_vma(vma
);
2152 struct resv_map
*reservations
= vma_resv_map(vma
);
2153 struct hugepage_subpool
*spool
= subpool_vma(vma
);
2154 unsigned long reserve
;
2155 unsigned long start
;
2159 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
2160 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
2162 reserve
= (end
- start
) -
2163 region_count(&reservations
->regions
, start
, end
);
2165 kref_put(&reservations
->refs
, resv_map_release
);
2168 hugetlb_acct_memory(h
, -reserve
);
2169 hugepage_subpool_put_pages(spool
, reserve
);
2175 * We cannot handle pagefaults against hugetlb pages at all. They cause
2176 * handle_mm_fault() to try to instantiate regular-sized pages in the
2177 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2180 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2186 const struct vm_operations_struct hugetlb_vm_ops
= {
2187 .fault
= hugetlb_vm_op_fault
,
2188 .open
= hugetlb_vm_op_open
,
2189 .close
= hugetlb_vm_op_close
,
2192 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
2199 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
2201 entry
= huge_pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
2203 entry
= pte_mkyoung(entry
);
2204 entry
= pte_mkhuge(entry
);
2209 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
2210 unsigned long address
, pte_t
*ptep
)
2214 entry
= pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep
)));
2215 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
2216 update_mmu_cache(vma
, address
, ptep
);
2220 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
2221 struct vm_area_struct
*vma
)
2223 pte_t
*src_pte
, *dst_pte
, entry
;
2224 struct page
*ptepage
;
2227 struct hstate
*h
= hstate_vma(vma
);
2228 unsigned long sz
= huge_page_size(h
);
2230 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
2232 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
2233 src_pte
= huge_pte_offset(src
, addr
);
2236 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
2240 /* If the pagetables are shared don't copy or take references */
2241 if (dst_pte
== src_pte
)
2244 spin_lock(&dst
->page_table_lock
);
2245 spin_lock_nested(&src
->page_table_lock
, SINGLE_DEPTH_NESTING
);
2246 if (!huge_pte_none(huge_ptep_get(src_pte
))) {
2248 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
2249 entry
= huge_ptep_get(src_pte
);
2250 ptepage
= pte_page(entry
);
2252 page_dup_rmap(ptepage
);
2253 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
2255 spin_unlock(&src
->page_table_lock
);
2256 spin_unlock(&dst
->page_table_lock
);
2264 static int is_hugetlb_entry_migration(pte_t pte
)
2268 if (huge_pte_none(pte
) || pte_present(pte
))
2270 swp
= pte_to_swp_entry(pte
);
2271 if (non_swap_entry(swp
) && is_migration_entry(swp
))
2277 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
2281 if (huge_pte_none(pte
) || pte_present(pte
))
2283 swp
= pte_to_swp_entry(pte
);
2284 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
2290 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2291 unsigned long end
, struct page
*ref_page
)
2293 struct mm_struct
*mm
= vma
->vm_mm
;
2294 unsigned long address
;
2299 struct hstate
*h
= hstate_vma(vma
);
2300 unsigned long sz
= huge_page_size(h
);
2303 * A page gathering list, protected by per file i_mmap_mutex. The
2304 * lock is used to avoid list corruption from multiple unmapping
2305 * of the same page since we are using page->lru.
2307 LIST_HEAD(page_list
);
2309 WARN_ON(!is_vm_hugetlb_page(vma
));
2310 BUG_ON(start
& ~huge_page_mask(h
));
2311 BUG_ON(end
& ~huge_page_mask(h
));
2313 mmu_notifier_invalidate_range_start(mm
, start
, end
);
2314 spin_lock(&mm
->page_table_lock
);
2315 for (address
= start
; address
< end
; address
+= sz
) {
2316 ptep
= huge_pte_offset(mm
, address
);
2320 if (huge_pmd_unshare(mm
, &address
, ptep
))
2324 * If a reference page is supplied, it is because a specific
2325 * page is being unmapped, not a range. Ensure the page we
2326 * are about to unmap is the actual page of interest.
2329 pte
= huge_ptep_get(ptep
);
2330 if (huge_pte_none(pte
))
2332 page
= pte_page(pte
);
2333 if (page
!= ref_page
)
2337 * Mark the VMA as having unmapped its page so that
2338 * future faults in this VMA will fail rather than
2339 * looking like data was lost
2341 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
2344 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2345 if (huge_pte_none(pte
))
2349 * HWPoisoned hugepage is already unmapped and dropped reference
2351 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
)))
2354 page
= pte_page(pte
);
2356 set_page_dirty(page
);
2357 list_add(&page
->lru
, &page_list
);
2359 flush_tlb_range(vma
, start
, end
);
2360 spin_unlock(&mm
->page_table_lock
);
2361 mmu_notifier_invalidate_range_end(mm
, start
, end
);
2362 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
2363 page_remove_rmap(page
);
2364 list_del(&page
->lru
);
2369 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2370 unsigned long end
, struct page
*ref_page
)
2372 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
2373 __unmap_hugepage_range(vma
, start
, end
, ref_page
);
2374 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
2378 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2379 * mappping it owns the reserve page for. The intention is to unmap the page
2380 * from other VMAs and let the children be SIGKILLed if they are faulting the
2383 static int unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2384 struct page
*page
, unsigned long address
)
2386 struct hstate
*h
= hstate_vma(vma
);
2387 struct vm_area_struct
*iter_vma
;
2388 struct address_space
*mapping
;
2389 struct prio_tree_iter iter
;
2393 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2394 * from page cache lookup which is in HPAGE_SIZE units.
2396 address
= address
& huge_page_mask(h
);
2397 pgoff
= vma_hugecache_offset(h
, vma
, address
);
2398 mapping
= vma
->vm_file
->f_dentry
->d_inode
->i_mapping
;
2401 * Take the mapping lock for the duration of the table walk. As
2402 * this mapping should be shared between all the VMAs,
2403 * __unmap_hugepage_range() is called as the lock is already held
2405 mutex_lock(&mapping
->i_mmap_mutex
);
2406 vma_prio_tree_foreach(iter_vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
2407 /* Do not unmap the current VMA */
2408 if (iter_vma
== vma
)
2412 * Unmap the page from other VMAs without their own reserves.
2413 * They get marked to be SIGKILLed if they fault in these
2414 * areas. This is because a future no-page fault on this VMA
2415 * could insert a zeroed page instead of the data existing
2416 * from the time of fork. This would look like data corruption
2418 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
2419 __unmap_hugepage_range(iter_vma
,
2420 address
, address
+ huge_page_size(h
),
2423 mutex_unlock(&mapping
->i_mmap_mutex
);
2429 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2430 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2431 * cannot race with other handlers or page migration.
2432 * Keep the pte_same checks anyway to make transition from the mutex easier.
2434 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2435 unsigned long address
, pte_t
*ptep
, pte_t pte
,
2436 struct page
*pagecache_page
)
2438 struct hstate
*h
= hstate_vma(vma
);
2439 struct page
*old_page
, *new_page
;
2441 int outside_reserve
= 0;
2443 old_page
= pte_page(pte
);
2446 /* If no-one else is actually using this page, avoid the copy
2447 * and just make the page writable */
2448 avoidcopy
= (page_mapcount(old_page
) == 1);
2450 if (PageAnon(old_page
))
2451 page_move_anon_rmap(old_page
, vma
, address
);
2452 set_huge_ptep_writable(vma
, address
, ptep
);
2457 * If the process that created a MAP_PRIVATE mapping is about to
2458 * perform a COW due to a shared page count, attempt to satisfy
2459 * the allocation without using the existing reserves. The pagecache
2460 * page is used to determine if the reserve at this address was
2461 * consumed or not. If reserves were used, a partial faulted mapping
2462 * at the time of fork() could consume its reserves on COW instead
2463 * of the full address range.
2465 if (!(vma
->vm_flags
& VM_MAYSHARE
) &&
2466 is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
2467 old_page
!= pagecache_page
)
2468 outside_reserve
= 1;
2470 page_cache_get(old_page
);
2472 /* Drop page_table_lock as buddy allocator may be called */
2473 spin_unlock(&mm
->page_table_lock
);
2474 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
2476 if (IS_ERR(new_page
)) {
2477 page_cache_release(old_page
);
2480 * If a process owning a MAP_PRIVATE mapping fails to COW,
2481 * it is due to references held by a child and an insufficient
2482 * huge page pool. To guarantee the original mappers
2483 * reliability, unmap the page from child processes. The child
2484 * may get SIGKILLed if it later faults.
2486 if (outside_reserve
) {
2487 BUG_ON(huge_pte_none(pte
));
2488 if (unmap_ref_private(mm
, vma
, old_page
, address
)) {
2489 BUG_ON(huge_pte_none(pte
));
2490 spin_lock(&mm
->page_table_lock
);
2491 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2492 if (likely(pte_same(huge_ptep_get(ptep
), pte
)))
2493 goto retry_avoidcopy
;
2495 * race occurs while re-acquiring page_table_lock, and
2503 /* Caller expects lock to be held */
2504 spin_lock(&mm
->page_table_lock
);
2505 return -PTR_ERR(new_page
);
2509 * When the original hugepage is shared one, it does not have
2510 * anon_vma prepared.
2512 if (unlikely(anon_vma_prepare(vma
))) {
2513 page_cache_release(new_page
);
2514 page_cache_release(old_page
);
2515 /* Caller expects lock to be held */
2516 spin_lock(&mm
->page_table_lock
);
2517 return VM_FAULT_OOM
;
2520 copy_user_huge_page(new_page
, old_page
, address
, vma
,
2521 pages_per_huge_page(h
));
2522 __SetPageUptodate(new_page
);
2525 * Retake the page_table_lock to check for racing updates
2526 * before the page tables are altered
2528 spin_lock(&mm
->page_table_lock
);
2529 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2530 if (likely(pte_same(huge_ptep_get(ptep
), pte
))) {
2532 mmu_notifier_invalidate_range_start(mm
,
2533 address
& huge_page_mask(h
),
2534 (address
& huge_page_mask(h
)) + huge_page_size(h
));
2535 huge_ptep_clear_flush(vma
, address
, ptep
);
2536 set_huge_pte_at(mm
, address
, ptep
,
2537 make_huge_pte(vma
, new_page
, 1));
2538 page_remove_rmap(old_page
);
2539 hugepage_add_new_anon_rmap(new_page
, vma
, address
);
2540 /* Make the old page be freed below */
2541 new_page
= old_page
;
2542 mmu_notifier_invalidate_range_end(mm
,
2543 address
& huge_page_mask(h
),
2544 (address
& huge_page_mask(h
)) + huge_page_size(h
));
2546 page_cache_release(new_page
);
2547 page_cache_release(old_page
);
2551 /* Return the pagecache page at a given address within a VMA */
2552 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
2553 struct vm_area_struct
*vma
, unsigned long address
)
2555 struct address_space
*mapping
;
2558 mapping
= vma
->vm_file
->f_mapping
;
2559 idx
= vma_hugecache_offset(h
, vma
, address
);
2561 return find_lock_page(mapping
, idx
);
2565 * Return whether there is a pagecache page to back given address within VMA.
2566 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2568 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
2569 struct vm_area_struct
*vma
, unsigned long address
)
2571 struct address_space
*mapping
;
2575 mapping
= vma
->vm_file
->f_mapping
;
2576 idx
= vma_hugecache_offset(h
, vma
, address
);
2578 page
= find_get_page(mapping
, idx
);
2581 return page
!= NULL
;
2584 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2585 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
2587 struct hstate
*h
= hstate_vma(vma
);
2588 int ret
= VM_FAULT_SIGBUS
;
2593 struct address_space
*mapping
;
2597 * Currently, we are forced to kill the process in the event the
2598 * original mapper has unmapped pages from the child due to a failed
2599 * COW. Warn that such a situation has occurred as it may not be obvious
2601 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
2603 "PID %d killed due to inadequate hugepage pool\n",
2608 mapping
= vma
->vm_file
->f_mapping
;
2609 idx
= vma_hugecache_offset(h
, vma
, address
);
2612 * Use page lock to guard against racing truncation
2613 * before we get page_table_lock.
2616 page
= find_lock_page(mapping
, idx
);
2618 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2621 page
= alloc_huge_page(vma
, address
, 0);
2623 ret
= -PTR_ERR(page
);
2626 clear_huge_page(page
, address
, pages_per_huge_page(h
));
2627 __SetPageUptodate(page
);
2629 if (vma
->vm_flags
& VM_MAYSHARE
) {
2631 struct inode
*inode
= mapping
->host
;
2633 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
2641 spin_lock(&inode
->i_lock
);
2642 inode
->i_blocks
+= blocks_per_huge_page(h
);
2643 spin_unlock(&inode
->i_lock
);
2646 if (unlikely(anon_vma_prepare(vma
))) {
2648 goto backout_unlocked
;
2654 * If memory error occurs between mmap() and fault, some process
2655 * don't have hwpoisoned swap entry for errored virtual address.
2656 * So we need to block hugepage fault by PG_hwpoison bit check.
2658 if (unlikely(PageHWPoison(page
))) {
2659 ret
= VM_FAULT_HWPOISON
|
2660 VM_FAULT_SET_HINDEX(h
- hstates
);
2661 goto backout_unlocked
;
2666 * If we are going to COW a private mapping later, we examine the
2667 * pending reservations for this page now. This will ensure that
2668 * any allocations necessary to record that reservation occur outside
2671 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
))
2672 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2674 goto backout_unlocked
;
2677 spin_lock(&mm
->page_table_lock
);
2678 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2683 if (!huge_pte_none(huge_ptep_get(ptep
)))
2687 hugepage_add_new_anon_rmap(page
, vma
, address
);
2689 page_dup_rmap(page
);
2690 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
2691 && (vma
->vm_flags
& VM_SHARED
)));
2692 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
2694 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
2695 /* Optimization, do the COW without a second fault */
2696 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
);
2699 spin_unlock(&mm
->page_table_lock
);
2705 spin_unlock(&mm
->page_table_lock
);
2712 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2713 unsigned long address
, unsigned int flags
)
2718 struct page
*page
= NULL
;
2719 struct page
*pagecache_page
= NULL
;
2720 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
2721 struct hstate
*h
= hstate_vma(vma
);
2723 address
&= huge_page_mask(h
);
2725 ptep
= huge_pte_offset(mm
, address
);
2727 entry
= huge_ptep_get(ptep
);
2728 if (unlikely(is_hugetlb_entry_migration(entry
))) {
2729 migration_entry_wait(mm
, (pmd_t
*)ptep
, address
);
2731 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
2732 return VM_FAULT_HWPOISON_LARGE
|
2733 VM_FAULT_SET_HINDEX(h
- hstates
);
2736 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
2738 return VM_FAULT_OOM
;
2741 * Serialize hugepage allocation and instantiation, so that we don't
2742 * get spurious allocation failures if two CPUs race to instantiate
2743 * the same page in the page cache.
2745 mutex_lock(&hugetlb_instantiation_mutex
);
2746 entry
= huge_ptep_get(ptep
);
2747 if (huge_pte_none(entry
)) {
2748 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, flags
);
2755 * If we are going to COW the mapping later, we examine the pending
2756 * reservations for this page now. This will ensure that any
2757 * allocations necessary to record that reservation occur outside the
2758 * spinlock. For private mappings, we also lookup the pagecache
2759 * page now as it is used to determine if a reservation has been
2762 if ((flags
& FAULT_FLAG_WRITE
) && !pte_write(entry
)) {
2763 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2768 if (!(vma
->vm_flags
& VM_MAYSHARE
))
2769 pagecache_page
= hugetlbfs_pagecache_page(h
,
2774 * hugetlb_cow() requires page locks of pte_page(entry) and
2775 * pagecache_page, so here we need take the former one
2776 * when page != pagecache_page or !pagecache_page.
2777 * Note that locking order is always pagecache_page -> page,
2778 * so no worry about deadlock.
2780 page
= pte_page(entry
);
2782 if (page
!= pagecache_page
)
2785 spin_lock(&mm
->page_table_lock
);
2786 /* Check for a racing update before calling hugetlb_cow */
2787 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
2788 goto out_page_table_lock
;
2791 if (flags
& FAULT_FLAG_WRITE
) {
2792 if (!pte_write(entry
)) {
2793 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
2795 goto out_page_table_lock
;
2797 entry
= pte_mkdirty(entry
);
2799 entry
= pte_mkyoung(entry
);
2800 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
2801 flags
& FAULT_FLAG_WRITE
))
2802 update_mmu_cache(vma
, address
, ptep
);
2804 out_page_table_lock
:
2805 spin_unlock(&mm
->page_table_lock
);
2807 if (pagecache_page
) {
2808 unlock_page(pagecache_page
);
2809 put_page(pagecache_page
);
2811 if (page
!= pagecache_page
)
2816 mutex_unlock(&hugetlb_instantiation_mutex
);
2821 /* Can be overriden by architectures */
2822 __attribute__((weak
)) struct page
*
2823 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
2824 pud_t
*pud
, int write
)
2830 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2831 struct page
**pages
, struct vm_area_struct
**vmas
,
2832 unsigned long *position
, int *length
, int i
,
2835 unsigned long pfn_offset
;
2836 unsigned long vaddr
= *position
;
2837 int remainder
= *length
;
2838 struct hstate
*h
= hstate_vma(vma
);
2840 spin_lock(&mm
->page_table_lock
);
2841 while (vaddr
< vma
->vm_end
&& remainder
) {
2847 * Some archs (sparc64, sh*) have multiple pte_ts to
2848 * each hugepage. We have to make sure we get the
2849 * first, for the page indexing below to work.
2851 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
2852 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
2855 * When coredumping, it suits get_dump_page if we just return
2856 * an error where there's an empty slot with no huge pagecache
2857 * to back it. This way, we avoid allocating a hugepage, and
2858 * the sparse dumpfile avoids allocating disk blocks, but its
2859 * huge holes still show up with zeroes where they need to be.
2861 if (absent
&& (flags
& FOLL_DUMP
) &&
2862 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
2868 ((flags
& FOLL_WRITE
) && !pte_write(huge_ptep_get(pte
)))) {
2871 spin_unlock(&mm
->page_table_lock
);
2872 ret
= hugetlb_fault(mm
, vma
, vaddr
,
2873 (flags
& FOLL_WRITE
) ? FAULT_FLAG_WRITE
: 0);
2874 spin_lock(&mm
->page_table_lock
);
2875 if (!(ret
& VM_FAULT_ERROR
))
2882 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
2883 page
= pte_page(huge_ptep_get(pte
));
2886 pages
[i
] = mem_map_offset(page
, pfn_offset
);
2897 if (vaddr
< vma
->vm_end
&& remainder
&&
2898 pfn_offset
< pages_per_huge_page(h
)) {
2900 * We use pfn_offset to avoid touching the pageframes
2901 * of this compound page.
2906 spin_unlock(&mm
->page_table_lock
);
2907 *length
= remainder
;
2910 return i
? i
: -EFAULT
;
2913 void hugetlb_change_protection(struct vm_area_struct
*vma
,
2914 unsigned long address
, unsigned long end
, pgprot_t newprot
)
2916 struct mm_struct
*mm
= vma
->vm_mm
;
2917 unsigned long start
= address
;
2920 struct hstate
*h
= hstate_vma(vma
);
2922 BUG_ON(address
>= end
);
2923 flush_cache_range(vma
, address
, end
);
2925 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
2926 spin_lock(&mm
->page_table_lock
);
2927 for (; address
< end
; address
+= huge_page_size(h
)) {
2928 ptep
= huge_pte_offset(mm
, address
);
2931 if (huge_pmd_unshare(mm
, &address
, ptep
))
2933 if (!huge_pte_none(huge_ptep_get(ptep
))) {
2934 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2935 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
2936 set_huge_pte_at(mm
, address
, ptep
, pte
);
2939 spin_unlock(&mm
->page_table_lock
);
2940 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
2942 flush_tlb_range(vma
, start
, end
);
2945 int hugetlb_reserve_pages(struct inode
*inode
,
2947 struct vm_area_struct
*vma
,
2948 vm_flags_t vm_flags
)
2951 struct hstate
*h
= hstate_inode(inode
);
2952 struct hugepage_subpool
*spool
= subpool_inode(inode
);
2955 * Only apply hugepage reservation if asked. At fault time, an
2956 * attempt will be made for VM_NORESERVE to allocate a page
2957 * without using reserves
2959 if (vm_flags
& VM_NORESERVE
)
2963 * Shared mappings base their reservation on the number of pages that
2964 * are already allocated on behalf of the file. Private mappings need
2965 * to reserve the full area even if read-only as mprotect() may be
2966 * called to make the mapping read-write. Assume !vma is a shm mapping
2968 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
2969 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
2971 struct resv_map
*resv_map
= resv_map_alloc();
2977 set_vma_resv_map(vma
, resv_map
);
2978 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
2984 /* There must be enough pages in the subpool for the mapping */
2985 if (hugepage_subpool_get_pages(spool
, chg
))
2989 * Check enough hugepages are available for the reservation.
2990 * Hand the pages back to the subpool if there are not
2992 ret
= hugetlb_acct_memory(h
, chg
);
2994 hugepage_subpool_put_pages(spool
, chg
);
2999 * Account for the reservations made. Shared mappings record regions
3000 * that have reservations as they are shared by multiple VMAs.
3001 * When the last VMA disappears, the region map says how much
3002 * the reservation was and the page cache tells how much of
3003 * the reservation was consumed. Private mappings are per-VMA and
3004 * only the consumed reservations are tracked. When the VMA
3005 * disappears, the original reservation is the VMA size and the
3006 * consumed reservations are stored in the map. Hence, nothing
3007 * else has to be done for private mappings here
3009 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
3010 region_add(&inode
->i_mapping
->private_list
, from
, to
);
3014 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
3016 struct hstate
*h
= hstate_inode(inode
);
3017 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
3018 struct hugepage_subpool
*spool
= subpool_inode(inode
);
3020 spin_lock(&inode
->i_lock
);
3021 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
3022 spin_unlock(&inode
->i_lock
);
3024 hugepage_subpool_put_pages(spool
, (chg
- freed
));
3025 hugetlb_acct_memory(h
, -(chg
- freed
));
3028 #ifdef CONFIG_MEMORY_FAILURE
3030 /* Should be called in hugetlb_lock */
3031 static int is_hugepage_on_freelist(struct page
*hpage
)
3035 struct hstate
*h
= page_hstate(hpage
);
3036 int nid
= page_to_nid(hpage
);
3038 list_for_each_entry_safe(page
, tmp
, &h
->hugepage_freelists
[nid
], lru
)
3045 * This function is called from memory failure code.
3046 * Assume the caller holds page lock of the head page.
3048 int dequeue_hwpoisoned_huge_page(struct page
*hpage
)
3050 struct hstate
*h
= page_hstate(hpage
);
3051 int nid
= page_to_nid(hpage
);
3054 spin_lock(&hugetlb_lock
);
3055 if (is_hugepage_on_freelist(hpage
)) {
3056 list_del(&hpage
->lru
);
3057 set_page_refcounted(hpage
);
3058 h
->free_huge_pages
--;
3059 h
->free_huge_pages_node
[nid
]--;
3062 spin_unlock(&hugetlb_lock
);