OMAP4: l3: Introduce l3-interconnect error handling driver
[zen-stable.git] / fs / namespace.c
blobd1edf26025dcb018ec434309aacc839f9dbf2cfb
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/percpu.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/cpumask.h>
21 #include <linux/module.h>
22 #include <linux/sysfs.h>
23 #include <linux/seq_file.h>
24 #include <linux/mnt_namespace.h>
25 #include <linux/namei.h>
26 #include <linux/nsproxy.h>
27 #include <linux/security.h>
28 #include <linux/mount.h>
29 #include <linux/ramfs.h>
30 #include <linux/log2.h>
31 #include <linux/idr.h>
32 #include <linux/fs_struct.h>
33 #include <linux/fsnotify.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
36 #include "pnode.h"
37 #include "internal.h"
39 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40 #define HASH_SIZE (1UL << HASH_SHIFT)
42 static int event;
43 static DEFINE_IDA(mnt_id_ida);
44 static DEFINE_IDA(mnt_group_ida);
45 static DEFINE_SPINLOCK(mnt_id_lock);
46 static int mnt_id_start = 0;
47 static int mnt_group_start = 1;
49 static struct list_head *mount_hashtable __read_mostly;
50 static struct kmem_cache *mnt_cache __read_mostly;
51 static struct rw_semaphore namespace_sem;
53 /* /sys/fs */
54 struct kobject *fs_kobj;
55 EXPORT_SYMBOL_GPL(fs_kobj);
58 * vfsmount lock may be taken for read to prevent changes to the
59 * vfsmount hash, ie. during mountpoint lookups or walking back
60 * up the tree.
62 * It should be taken for write in all cases where the vfsmount
63 * tree or hash is modified or when a vfsmount structure is modified.
65 DEFINE_BRLOCK(vfsmount_lock);
67 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
71 tmp = tmp + (tmp >> HASH_SHIFT);
72 return tmp & (HASH_SIZE - 1);
75 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
78 * allocation is serialized by namespace_sem, but we need the spinlock to
79 * serialize with freeing.
81 static int mnt_alloc_id(struct vfsmount *mnt)
83 int res;
85 retry:
86 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
87 spin_lock(&mnt_id_lock);
88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
89 if (!res)
90 mnt_id_start = mnt->mnt_id + 1;
91 spin_unlock(&mnt_id_lock);
92 if (res == -EAGAIN)
93 goto retry;
95 return res;
98 static void mnt_free_id(struct vfsmount *mnt)
100 int id = mnt->mnt_id;
101 spin_lock(&mnt_id_lock);
102 ida_remove(&mnt_id_ida, id);
103 if (mnt_id_start > id)
104 mnt_id_start = id;
105 spin_unlock(&mnt_id_lock);
109 * Allocate a new peer group ID
111 * mnt_group_ida is protected by namespace_sem
113 static int mnt_alloc_group_id(struct vfsmount *mnt)
115 int res;
117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 return -ENOMEM;
120 res = ida_get_new_above(&mnt_group_ida,
121 mnt_group_start,
122 &mnt->mnt_group_id);
123 if (!res)
124 mnt_group_start = mnt->mnt_group_id + 1;
126 return res;
130 * Release a peer group ID
132 void mnt_release_group_id(struct vfsmount *mnt)
134 int id = mnt->mnt_group_id;
135 ida_remove(&mnt_group_ida, id);
136 if (mnt_group_start > id)
137 mnt_group_start = id;
138 mnt->mnt_group_id = 0;
142 * vfsmount lock must be held for read
144 static inline void mnt_add_count(struct vfsmount *mnt, int n)
146 #ifdef CONFIG_SMP
147 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
148 #else
149 preempt_disable();
150 mnt->mnt_count += n;
151 preempt_enable();
152 #endif
155 static inline void mnt_set_count(struct vfsmount *mnt, int n)
157 #ifdef CONFIG_SMP
158 this_cpu_write(mnt->mnt_pcp->mnt_count, n);
159 #else
160 mnt->mnt_count = n;
161 #endif
165 * vfsmount lock must be held for read
167 static inline void mnt_inc_count(struct vfsmount *mnt)
169 mnt_add_count(mnt, 1);
173 * vfsmount lock must be held for read
175 static inline void mnt_dec_count(struct vfsmount *mnt)
177 mnt_add_count(mnt, -1);
181 * vfsmount lock must be held for write
183 unsigned int mnt_get_count(struct vfsmount *mnt)
185 #ifdef CONFIG_SMP
186 unsigned int count = 0;
187 int cpu;
189 for_each_possible_cpu(cpu) {
190 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
193 return count;
194 #else
195 return mnt->mnt_count;
196 #endif
199 struct vfsmount *alloc_vfsmnt(const char *name)
201 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
202 if (mnt) {
203 int err;
205 err = mnt_alloc_id(mnt);
206 if (err)
207 goto out_free_cache;
209 if (name) {
210 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
211 if (!mnt->mnt_devname)
212 goto out_free_id;
215 #ifdef CONFIG_SMP
216 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
217 if (!mnt->mnt_pcp)
218 goto out_free_devname;
220 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
221 #else
222 mnt->mnt_count = 1;
223 mnt->mnt_writers = 0;
224 #endif
226 INIT_LIST_HEAD(&mnt->mnt_hash);
227 INIT_LIST_HEAD(&mnt->mnt_child);
228 INIT_LIST_HEAD(&mnt->mnt_mounts);
229 INIT_LIST_HEAD(&mnt->mnt_list);
230 INIT_LIST_HEAD(&mnt->mnt_expire);
231 INIT_LIST_HEAD(&mnt->mnt_share);
232 INIT_LIST_HEAD(&mnt->mnt_slave_list);
233 INIT_LIST_HEAD(&mnt->mnt_slave);
234 #ifdef CONFIG_FSNOTIFY
235 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
236 #endif
238 return mnt;
240 #ifdef CONFIG_SMP
241 out_free_devname:
242 kfree(mnt->mnt_devname);
243 #endif
244 out_free_id:
245 mnt_free_id(mnt);
246 out_free_cache:
247 kmem_cache_free(mnt_cache, mnt);
248 return NULL;
252 * Most r/o checks on a fs are for operations that take
253 * discrete amounts of time, like a write() or unlink().
254 * We must keep track of when those operations start
255 * (for permission checks) and when they end, so that
256 * we can determine when writes are able to occur to
257 * a filesystem.
260 * __mnt_is_readonly: check whether a mount is read-only
261 * @mnt: the mount to check for its write status
263 * This shouldn't be used directly ouside of the VFS.
264 * It does not guarantee that the filesystem will stay
265 * r/w, just that it is right *now*. This can not and
266 * should not be used in place of IS_RDONLY(inode).
267 * mnt_want/drop_write() will _keep_ the filesystem
268 * r/w.
270 int __mnt_is_readonly(struct vfsmount *mnt)
272 if (mnt->mnt_flags & MNT_READONLY)
273 return 1;
274 if (mnt->mnt_sb->s_flags & MS_RDONLY)
275 return 1;
276 return 0;
278 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
280 static inline void mnt_inc_writers(struct vfsmount *mnt)
282 #ifdef CONFIG_SMP
283 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
284 #else
285 mnt->mnt_writers++;
286 #endif
289 static inline void mnt_dec_writers(struct vfsmount *mnt)
291 #ifdef CONFIG_SMP
292 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
293 #else
294 mnt->mnt_writers--;
295 #endif
298 static unsigned int mnt_get_writers(struct vfsmount *mnt)
300 #ifdef CONFIG_SMP
301 unsigned int count = 0;
302 int cpu;
304 for_each_possible_cpu(cpu) {
305 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
308 return count;
309 #else
310 return mnt->mnt_writers;
311 #endif
315 * Most r/o checks on a fs are for operations that take
316 * discrete amounts of time, like a write() or unlink().
317 * We must keep track of when those operations start
318 * (for permission checks) and when they end, so that
319 * we can determine when writes are able to occur to
320 * a filesystem.
323 * mnt_want_write - get write access to a mount
324 * @mnt: the mount on which to take a write
326 * This tells the low-level filesystem that a write is
327 * about to be performed to it, and makes sure that
328 * writes are allowed before returning success. When
329 * the write operation is finished, mnt_drop_write()
330 * must be called. This is effectively a refcount.
332 int mnt_want_write(struct vfsmount *mnt)
334 int ret = 0;
336 preempt_disable();
337 mnt_inc_writers(mnt);
339 * The store to mnt_inc_writers must be visible before we pass
340 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
341 * incremented count after it has set MNT_WRITE_HOLD.
343 smp_mb();
344 while (mnt->mnt_flags & MNT_WRITE_HOLD)
345 cpu_relax();
347 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
348 * be set to match its requirements. So we must not load that until
349 * MNT_WRITE_HOLD is cleared.
351 smp_rmb();
352 if (__mnt_is_readonly(mnt)) {
353 mnt_dec_writers(mnt);
354 ret = -EROFS;
355 goto out;
357 out:
358 preempt_enable();
359 return ret;
361 EXPORT_SYMBOL_GPL(mnt_want_write);
364 * mnt_clone_write - get write access to a mount
365 * @mnt: the mount on which to take a write
367 * This is effectively like mnt_want_write, except
368 * it must only be used to take an extra write reference
369 * on a mountpoint that we already know has a write reference
370 * on it. This allows some optimisation.
372 * After finished, mnt_drop_write must be called as usual to
373 * drop the reference.
375 int mnt_clone_write(struct vfsmount *mnt)
377 /* superblock may be r/o */
378 if (__mnt_is_readonly(mnt))
379 return -EROFS;
380 preempt_disable();
381 mnt_inc_writers(mnt);
382 preempt_enable();
383 return 0;
385 EXPORT_SYMBOL_GPL(mnt_clone_write);
388 * mnt_want_write_file - get write access to a file's mount
389 * @file: the file who's mount on which to take a write
391 * This is like mnt_want_write, but it takes a file and can
392 * do some optimisations if the file is open for write already
394 int mnt_want_write_file(struct file *file)
396 struct inode *inode = file->f_dentry->d_inode;
397 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
398 return mnt_want_write(file->f_path.mnt);
399 else
400 return mnt_clone_write(file->f_path.mnt);
402 EXPORT_SYMBOL_GPL(mnt_want_write_file);
405 * mnt_drop_write - give up write access to a mount
406 * @mnt: the mount on which to give up write access
408 * Tells the low-level filesystem that we are done
409 * performing writes to it. Must be matched with
410 * mnt_want_write() call above.
412 void mnt_drop_write(struct vfsmount *mnt)
414 preempt_disable();
415 mnt_dec_writers(mnt);
416 preempt_enable();
418 EXPORT_SYMBOL_GPL(mnt_drop_write);
420 static int mnt_make_readonly(struct vfsmount *mnt)
422 int ret = 0;
424 br_write_lock(vfsmount_lock);
425 mnt->mnt_flags |= MNT_WRITE_HOLD;
427 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
428 * should be visible before we do.
430 smp_mb();
433 * With writers on hold, if this value is zero, then there are
434 * definitely no active writers (although held writers may subsequently
435 * increment the count, they'll have to wait, and decrement it after
436 * seeing MNT_READONLY).
438 * It is OK to have counter incremented on one CPU and decremented on
439 * another: the sum will add up correctly. The danger would be when we
440 * sum up each counter, if we read a counter before it is incremented,
441 * but then read another CPU's count which it has been subsequently
442 * decremented from -- we would see more decrements than we should.
443 * MNT_WRITE_HOLD protects against this scenario, because
444 * mnt_want_write first increments count, then smp_mb, then spins on
445 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
446 * we're counting up here.
448 if (mnt_get_writers(mnt) > 0)
449 ret = -EBUSY;
450 else
451 mnt->mnt_flags |= MNT_READONLY;
453 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
454 * that become unheld will see MNT_READONLY.
456 smp_wmb();
457 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
458 br_write_unlock(vfsmount_lock);
459 return ret;
462 static void __mnt_unmake_readonly(struct vfsmount *mnt)
464 br_write_lock(vfsmount_lock);
465 mnt->mnt_flags &= ~MNT_READONLY;
466 br_write_unlock(vfsmount_lock);
469 void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
471 mnt->mnt_sb = sb;
472 mnt->mnt_root = dget(sb->s_root);
475 EXPORT_SYMBOL(simple_set_mnt);
477 void free_vfsmnt(struct vfsmount *mnt)
479 kfree(mnt->mnt_devname);
480 mnt_free_id(mnt);
481 #ifdef CONFIG_SMP
482 free_percpu(mnt->mnt_pcp);
483 #endif
484 kmem_cache_free(mnt_cache, mnt);
488 * find the first or last mount at @dentry on vfsmount @mnt depending on
489 * @dir. If @dir is set return the first mount else return the last mount.
490 * vfsmount_lock must be held for read or write.
492 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
493 int dir)
495 struct list_head *head = mount_hashtable + hash(mnt, dentry);
496 struct list_head *tmp = head;
497 struct vfsmount *p, *found = NULL;
499 for (;;) {
500 tmp = dir ? tmp->next : tmp->prev;
501 p = NULL;
502 if (tmp == head)
503 break;
504 p = list_entry(tmp, struct vfsmount, mnt_hash);
505 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
506 found = p;
507 break;
510 return found;
514 * lookup_mnt increments the ref count before returning
515 * the vfsmount struct.
517 struct vfsmount *lookup_mnt(struct path *path)
519 struct vfsmount *child_mnt;
521 br_read_lock(vfsmount_lock);
522 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
523 mntget(child_mnt);
524 br_read_unlock(vfsmount_lock);
525 return child_mnt;
528 static inline int check_mnt(struct vfsmount *mnt)
530 return mnt->mnt_ns == current->nsproxy->mnt_ns;
534 * vfsmount lock must be held for write
536 static void touch_mnt_namespace(struct mnt_namespace *ns)
538 if (ns) {
539 ns->event = ++event;
540 wake_up_interruptible(&ns->poll);
545 * vfsmount lock must be held for write
547 static void __touch_mnt_namespace(struct mnt_namespace *ns)
549 if (ns && ns->event != event) {
550 ns->event = event;
551 wake_up_interruptible(&ns->poll);
556 * Clear dentry's mounted state if it has no remaining mounts.
557 * vfsmount_lock must be held for write.
559 static void dentry_reset_mounted(struct vfsmount *mnt, struct dentry *dentry)
561 unsigned u;
563 for (u = 0; u < HASH_SIZE; u++) {
564 struct vfsmount *p;
566 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
567 if (p->mnt_mountpoint == dentry)
568 return;
571 spin_lock(&dentry->d_lock);
572 dentry->d_flags &= ~DCACHE_MOUNTED;
573 spin_unlock(&dentry->d_lock);
577 * vfsmount lock must be held for write
579 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
581 old_path->dentry = mnt->mnt_mountpoint;
582 old_path->mnt = mnt->mnt_parent;
583 mnt->mnt_parent = mnt;
584 mnt->mnt_mountpoint = mnt->mnt_root;
585 list_del_init(&mnt->mnt_child);
586 list_del_init(&mnt->mnt_hash);
587 dentry_reset_mounted(old_path->mnt, old_path->dentry);
591 * vfsmount lock must be held for write
593 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
594 struct vfsmount *child_mnt)
596 child_mnt->mnt_parent = mntget(mnt);
597 child_mnt->mnt_mountpoint = dget(dentry);
598 spin_lock(&dentry->d_lock);
599 dentry->d_flags |= DCACHE_MOUNTED;
600 spin_unlock(&dentry->d_lock);
604 * vfsmount lock must be held for write
606 static void attach_mnt(struct vfsmount *mnt, struct path *path)
608 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
609 list_add_tail(&mnt->mnt_hash, mount_hashtable +
610 hash(path->mnt, path->dentry));
611 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
614 static inline void __mnt_make_longterm(struct vfsmount *mnt)
616 #ifdef CONFIG_SMP
617 atomic_inc(&mnt->mnt_longterm);
618 #endif
621 /* needs vfsmount lock for write */
622 static inline void __mnt_make_shortterm(struct vfsmount *mnt)
624 #ifdef CONFIG_SMP
625 atomic_dec(&mnt->mnt_longterm);
626 #endif
630 * vfsmount lock must be held for write
632 static void commit_tree(struct vfsmount *mnt)
634 struct vfsmount *parent = mnt->mnt_parent;
635 struct vfsmount *m;
636 LIST_HEAD(head);
637 struct mnt_namespace *n = parent->mnt_ns;
639 BUG_ON(parent == mnt);
641 list_add_tail(&head, &mnt->mnt_list);
642 list_for_each_entry(m, &head, mnt_list) {
643 m->mnt_ns = n;
644 __mnt_make_longterm(m);
647 list_splice(&head, n->list.prev);
649 list_add_tail(&mnt->mnt_hash, mount_hashtable +
650 hash(parent, mnt->mnt_mountpoint));
651 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
652 touch_mnt_namespace(n);
655 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
657 struct list_head *next = p->mnt_mounts.next;
658 if (next == &p->mnt_mounts) {
659 while (1) {
660 if (p == root)
661 return NULL;
662 next = p->mnt_child.next;
663 if (next != &p->mnt_parent->mnt_mounts)
664 break;
665 p = p->mnt_parent;
668 return list_entry(next, struct vfsmount, mnt_child);
671 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
673 struct list_head *prev = p->mnt_mounts.prev;
674 while (prev != &p->mnt_mounts) {
675 p = list_entry(prev, struct vfsmount, mnt_child);
676 prev = p->mnt_mounts.prev;
678 return p;
681 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
682 int flag)
684 struct super_block *sb = old->mnt_sb;
685 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
687 if (mnt) {
688 if (flag & (CL_SLAVE | CL_PRIVATE))
689 mnt->mnt_group_id = 0; /* not a peer of original */
690 else
691 mnt->mnt_group_id = old->mnt_group_id;
693 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
694 int err = mnt_alloc_group_id(mnt);
695 if (err)
696 goto out_free;
699 mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
700 atomic_inc(&sb->s_active);
701 mnt->mnt_sb = sb;
702 mnt->mnt_root = dget(root);
703 mnt->mnt_mountpoint = mnt->mnt_root;
704 mnt->mnt_parent = mnt;
706 if (flag & CL_SLAVE) {
707 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
708 mnt->mnt_master = old;
709 CLEAR_MNT_SHARED(mnt);
710 } else if (!(flag & CL_PRIVATE)) {
711 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
712 list_add(&mnt->mnt_share, &old->mnt_share);
713 if (IS_MNT_SLAVE(old))
714 list_add(&mnt->mnt_slave, &old->mnt_slave);
715 mnt->mnt_master = old->mnt_master;
717 if (flag & CL_MAKE_SHARED)
718 set_mnt_shared(mnt);
720 /* stick the duplicate mount on the same expiry list
721 * as the original if that was on one */
722 if (flag & CL_EXPIRE) {
723 if (!list_empty(&old->mnt_expire))
724 list_add(&mnt->mnt_expire, &old->mnt_expire);
727 return mnt;
729 out_free:
730 free_vfsmnt(mnt);
731 return NULL;
734 static inline void mntfree(struct vfsmount *mnt)
736 struct super_block *sb = mnt->mnt_sb;
739 * This probably indicates that somebody messed
740 * up a mnt_want/drop_write() pair. If this
741 * happens, the filesystem was probably unable
742 * to make r/w->r/o transitions.
745 * The locking used to deal with mnt_count decrement provides barriers,
746 * so mnt_get_writers() below is safe.
748 WARN_ON(mnt_get_writers(mnt));
749 fsnotify_vfsmount_delete(mnt);
750 dput(mnt->mnt_root);
751 free_vfsmnt(mnt);
752 deactivate_super(sb);
755 static void mntput_no_expire(struct vfsmount *mnt)
757 put_again:
758 #ifdef CONFIG_SMP
759 br_read_lock(vfsmount_lock);
760 if (likely(atomic_read(&mnt->mnt_longterm))) {
761 mnt_dec_count(mnt);
762 br_read_unlock(vfsmount_lock);
763 return;
765 br_read_unlock(vfsmount_lock);
767 br_write_lock(vfsmount_lock);
768 mnt_dec_count(mnt);
769 if (mnt_get_count(mnt)) {
770 br_write_unlock(vfsmount_lock);
771 return;
773 #else
774 mnt_dec_count(mnt);
775 if (likely(mnt_get_count(mnt)))
776 return;
777 br_write_lock(vfsmount_lock);
778 #endif
779 if (unlikely(mnt->mnt_pinned)) {
780 mnt_add_count(mnt, mnt->mnt_pinned + 1);
781 mnt->mnt_pinned = 0;
782 br_write_unlock(vfsmount_lock);
783 acct_auto_close_mnt(mnt);
784 goto put_again;
786 br_write_unlock(vfsmount_lock);
787 mntfree(mnt);
790 void mntput(struct vfsmount *mnt)
792 if (mnt) {
793 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
794 if (unlikely(mnt->mnt_expiry_mark))
795 mnt->mnt_expiry_mark = 0;
796 mntput_no_expire(mnt);
799 EXPORT_SYMBOL(mntput);
801 struct vfsmount *mntget(struct vfsmount *mnt)
803 if (mnt)
804 mnt_inc_count(mnt);
805 return mnt;
807 EXPORT_SYMBOL(mntget);
809 void mnt_pin(struct vfsmount *mnt)
811 br_write_lock(vfsmount_lock);
812 mnt->mnt_pinned++;
813 br_write_unlock(vfsmount_lock);
815 EXPORT_SYMBOL(mnt_pin);
817 void mnt_unpin(struct vfsmount *mnt)
819 br_write_lock(vfsmount_lock);
820 if (mnt->mnt_pinned) {
821 mnt_inc_count(mnt);
822 mnt->mnt_pinned--;
824 br_write_unlock(vfsmount_lock);
826 EXPORT_SYMBOL(mnt_unpin);
828 static inline void mangle(struct seq_file *m, const char *s)
830 seq_escape(m, s, " \t\n\\");
834 * Simple .show_options callback for filesystems which don't want to
835 * implement more complex mount option showing.
837 * See also save_mount_options().
839 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
841 const char *options;
843 rcu_read_lock();
844 options = rcu_dereference(mnt->mnt_sb->s_options);
846 if (options != NULL && options[0]) {
847 seq_putc(m, ',');
848 mangle(m, options);
850 rcu_read_unlock();
852 return 0;
854 EXPORT_SYMBOL(generic_show_options);
857 * If filesystem uses generic_show_options(), this function should be
858 * called from the fill_super() callback.
860 * The .remount_fs callback usually needs to be handled in a special
861 * way, to make sure, that previous options are not overwritten if the
862 * remount fails.
864 * Also note, that if the filesystem's .remount_fs function doesn't
865 * reset all options to their default value, but changes only newly
866 * given options, then the displayed options will not reflect reality
867 * any more.
869 void save_mount_options(struct super_block *sb, char *options)
871 BUG_ON(sb->s_options);
872 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
874 EXPORT_SYMBOL(save_mount_options);
876 void replace_mount_options(struct super_block *sb, char *options)
878 char *old = sb->s_options;
879 rcu_assign_pointer(sb->s_options, options);
880 if (old) {
881 synchronize_rcu();
882 kfree(old);
885 EXPORT_SYMBOL(replace_mount_options);
887 #ifdef CONFIG_PROC_FS
888 /* iterator */
889 static void *m_start(struct seq_file *m, loff_t *pos)
891 struct proc_mounts *p = m->private;
893 down_read(&namespace_sem);
894 return seq_list_start(&p->ns->list, *pos);
897 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
899 struct proc_mounts *p = m->private;
901 return seq_list_next(v, &p->ns->list, pos);
904 static void m_stop(struct seq_file *m, void *v)
906 up_read(&namespace_sem);
909 int mnt_had_events(struct proc_mounts *p)
911 struct mnt_namespace *ns = p->ns;
912 int res = 0;
914 br_read_lock(vfsmount_lock);
915 if (p->event != ns->event) {
916 p->event = ns->event;
917 res = 1;
919 br_read_unlock(vfsmount_lock);
921 return res;
924 struct proc_fs_info {
925 int flag;
926 const char *str;
929 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
931 static const struct proc_fs_info fs_info[] = {
932 { MS_SYNCHRONOUS, ",sync" },
933 { MS_DIRSYNC, ",dirsync" },
934 { MS_MANDLOCK, ",mand" },
935 { 0, NULL }
937 const struct proc_fs_info *fs_infop;
939 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
940 if (sb->s_flags & fs_infop->flag)
941 seq_puts(m, fs_infop->str);
944 return security_sb_show_options(m, sb);
947 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
949 static const struct proc_fs_info mnt_info[] = {
950 { MNT_NOSUID, ",nosuid" },
951 { MNT_NODEV, ",nodev" },
952 { MNT_NOEXEC, ",noexec" },
953 { MNT_NOATIME, ",noatime" },
954 { MNT_NODIRATIME, ",nodiratime" },
955 { MNT_RELATIME, ",relatime" },
956 { 0, NULL }
958 const struct proc_fs_info *fs_infop;
960 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
961 if (mnt->mnt_flags & fs_infop->flag)
962 seq_puts(m, fs_infop->str);
966 static void show_type(struct seq_file *m, struct super_block *sb)
968 mangle(m, sb->s_type->name);
969 if (sb->s_subtype && sb->s_subtype[0]) {
970 seq_putc(m, '.');
971 mangle(m, sb->s_subtype);
975 static int show_vfsmnt(struct seq_file *m, void *v)
977 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
978 int err = 0;
979 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
981 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
982 seq_putc(m, ' ');
983 seq_path(m, &mnt_path, " \t\n\\");
984 seq_putc(m, ' ');
985 show_type(m, mnt->mnt_sb);
986 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
987 err = show_sb_opts(m, mnt->mnt_sb);
988 if (err)
989 goto out;
990 show_mnt_opts(m, mnt);
991 if (mnt->mnt_sb->s_op->show_options)
992 err = mnt->mnt_sb->s_op->show_options(m, mnt);
993 seq_puts(m, " 0 0\n");
994 out:
995 return err;
998 const struct seq_operations mounts_op = {
999 .start = m_start,
1000 .next = m_next,
1001 .stop = m_stop,
1002 .show = show_vfsmnt
1005 static int show_mountinfo(struct seq_file *m, void *v)
1007 struct proc_mounts *p = m->private;
1008 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1009 struct super_block *sb = mnt->mnt_sb;
1010 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1011 struct path root = p->root;
1012 int err = 0;
1014 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
1015 MAJOR(sb->s_dev), MINOR(sb->s_dev));
1016 seq_dentry(m, mnt->mnt_root, " \t\n\\");
1017 seq_putc(m, ' ');
1018 seq_path_root(m, &mnt_path, &root, " \t\n\\");
1019 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
1021 * Mountpoint is outside root, discard that one. Ugly,
1022 * but less so than trying to do that in iterator in a
1023 * race-free way (due to renames).
1025 return SEQ_SKIP;
1027 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
1028 show_mnt_opts(m, mnt);
1030 /* Tagged fields ("foo:X" or "bar") */
1031 if (IS_MNT_SHARED(mnt))
1032 seq_printf(m, " shared:%i", mnt->mnt_group_id);
1033 if (IS_MNT_SLAVE(mnt)) {
1034 int master = mnt->mnt_master->mnt_group_id;
1035 int dom = get_dominating_id(mnt, &p->root);
1036 seq_printf(m, " master:%i", master);
1037 if (dom && dom != master)
1038 seq_printf(m, " propagate_from:%i", dom);
1040 if (IS_MNT_UNBINDABLE(mnt))
1041 seq_puts(m, " unbindable");
1043 /* Filesystem specific data */
1044 seq_puts(m, " - ");
1045 show_type(m, sb);
1046 seq_putc(m, ' ');
1047 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1048 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
1049 err = show_sb_opts(m, sb);
1050 if (err)
1051 goto out;
1052 if (sb->s_op->show_options)
1053 err = sb->s_op->show_options(m, mnt);
1054 seq_putc(m, '\n');
1055 out:
1056 return err;
1059 const struct seq_operations mountinfo_op = {
1060 .start = m_start,
1061 .next = m_next,
1062 .stop = m_stop,
1063 .show = show_mountinfo,
1066 static int show_vfsstat(struct seq_file *m, void *v)
1068 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1069 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1070 int err = 0;
1072 /* device */
1073 if (mnt->mnt_devname) {
1074 seq_puts(m, "device ");
1075 mangle(m, mnt->mnt_devname);
1076 } else
1077 seq_puts(m, "no device");
1079 /* mount point */
1080 seq_puts(m, " mounted on ");
1081 seq_path(m, &mnt_path, " \t\n\\");
1082 seq_putc(m, ' ');
1084 /* file system type */
1085 seq_puts(m, "with fstype ");
1086 show_type(m, mnt->mnt_sb);
1088 /* optional statistics */
1089 if (mnt->mnt_sb->s_op->show_stats) {
1090 seq_putc(m, ' ');
1091 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
1094 seq_putc(m, '\n');
1095 return err;
1098 const struct seq_operations mountstats_op = {
1099 .start = m_start,
1100 .next = m_next,
1101 .stop = m_stop,
1102 .show = show_vfsstat,
1104 #endif /* CONFIG_PROC_FS */
1107 * may_umount_tree - check if a mount tree is busy
1108 * @mnt: root of mount tree
1110 * This is called to check if a tree of mounts has any
1111 * open files, pwds, chroots or sub mounts that are
1112 * busy.
1114 int may_umount_tree(struct vfsmount *mnt)
1116 int actual_refs = 0;
1117 int minimum_refs = 0;
1118 struct vfsmount *p;
1120 /* write lock needed for mnt_get_count */
1121 br_write_lock(vfsmount_lock);
1122 for (p = mnt; p; p = next_mnt(p, mnt)) {
1123 actual_refs += mnt_get_count(p);
1124 minimum_refs += 2;
1126 br_write_unlock(vfsmount_lock);
1128 if (actual_refs > minimum_refs)
1129 return 0;
1131 return 1;
1134 EXPORT_SYMBOL(may_umount_tree);
1137 * may_umount - check if a mount point is busy
1138 * @mnt: root of mount
1140 * This is called to check if a mount point has any
1141 * open files, pwds, chroots or sub mounts. If the
1142 * mount has sub mounts this will return busy
1143 * regardless of whether the sub mounts are busy.
1145 * Doesn't take quota and stuff into account. IOW, in some cases it will
1146 * give false negatives. The main reason why it's here is that we need
1147 * a non-destructive way to look for easily umountable filesystems.
1149 int may_umount(struct vfsmount *mnt)
1151 int ret = 1;
1152 down_read(&namespace_sem);
1153 br_write_lock(vfsmount_lock);
1154 if (propagate_mount_busy(mnt, 2))
1155 ret = 0;
1156 br_write_unlock(vfsmount_lock);
1157 up_read(&namespace_sem);
1158 return ret;
1161 EXPORT_SYMBOL(may_umount);
1163 void release_mounts(struct list_head *head)
1165 struct vfsmount *mnt;
1166 while (!list_empty(head)) {
1167 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
1168 list_del_init(&mnt->mnt_hash);
1169 if (mnt->mnt_parent != mnt) {
1170 struct dentry *dentry;
1171 struct vfsmount *m;
1173 br_write_lock(vfsmount_lock);
1174 dentry = mnt->mnt_mountpoint;
1175 m = mnt->mnt_parent;
1176 mnt->mnt_mountpoint = mnt->mnt_root;
1177 mnt->mnt_parent = mnt;
1178 m->mnt_ghosts--;
1179 br_write_unlock(vfsmount_lock);
1180 dput(dentry);
1181 mntput(m);
1183 mntput(mnt);
1188 * vfsmount lock must be held for write
1189 * namespace_sem must be held for write
1191 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1193 LIST_HEAD(tmp_list);
1194 struct vfsmount *p;
1196 for (p = mnt; p; p = next_mnt(p, mnt))
1197 list_move(&p->mnt_hash, &tmp_list);
1199 if (propagate)
1200 propagate_umount(&tmp_list);
1202 list_for_each_entry(p, &tmp_list, mnt_hash) {
1203 list_del_init(&p->mnt_expire);
1204 list_del_init(&p->mnt_list);
1205 __touch_mnt_namespace(p->mnt_ns);
1206 p->mnt_ns = NULL;
1207 __mnt_make_shortterm(p);
1208 list_del_init(&p->mnt_child);
1209 if (p->mnt_parent != p) {
1210 p->mnt_parent->mnt_ghosts++;
1211 dentry_reset_mounted(p->mnt_parent, p->mnt_mountpoint);
1213 change_mnt_propagation(p, MS_PRIVATE);
1215 list_splice(&tmp_list, kill);
1218 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1220 static int do_umount(struct vfsmount *mnt, int flags)
1222 struct super_block *sb = mnt->mnt_sb;
1223 int retval;
1224 LIST_HEAD(umount_list);
1226 retval = security_sb_umount(mnt, flags);
1227 if (retval)
1228 return retval;
1231 * Allow userspace to request a mountpoint be expired rather than
1232 * unmounting unconditionally. Unmount only happens if:
1233 * (1) the mark is already set (the mark is cleared by mntput())
1234 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1236 if (flags & MNT_EXPIRE) {
1237 if (mnt == current->fs->root.mnt ||
1238 flags & (MNT_FORCE | MNT_DETACH))
1239 return -EINVAL;
1242 * probably don't strictly need the lock here if we examined
1243 * all race cases, but it's a slowpath.
1245 br_write_lock(vfsmount_lock);
1246 if (mnt_get_count(mnt) != 2) {
1247 br_write_unlock(vfsmount_lock);
1248 return -EBUSY;
1250 br_write_unlock(vfsmount_lock);
1252 if (!xchg(&mnt->mnt_expiry_mark, 1))
1253 return -EAGAIN;
1257 * If we may have to abort operations to get out of this
1258 * mount, and they will themselves hold resources we must
1259 * allow the fs to do things. In the Unix tradition of
1260 * 'Gee thats tricky lets do it in userspace' the umount_begin
1261 * might fail to complete on the first run through as other tasks
1262 * must return, and the like. Thats for the mount program to worry
1263 * about for the moment.
1266 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1267 sb->s_op->umount_begin(sb);
1271 * No sense to grab the lock for this test, but test itself looks
1272 * somewhat bogus. Suggestions for better replacement?
1273 * Ho-hum... In principle, we might treat that as umount + switch
1274 * to rootfs. GC would eventually take care of the old vfsmount.
1275 * Actually it makes sense, especially if rootfs would contain a
1276 * /reboot - static binary that would close all descriptors and
1277 * call reboot(9). Then init(8) could umount root and exec /reboot.
1279 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1281 * Special case for "unmounting" root ...
1282 * we just try to remount it readonly.
1284 down_write(&sb->s_umount);
1285 if (!(sb->s_flags & MS_RDONLY))
1286 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1287 up_write(&sb->s_umount);
1288 return retval;
1291 down_write(&namespace_sem);
1292 br_write_lock(vfsmount_lock);
1293 event++;
1295 if (!(flags & MNT_DETACH))
1296 shrink_submounts(mnt, &umount_list);
1298 retval = -EBUSY;
1299 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1300 if (!list_empty(&mnt->mnt_list))
1301 umount_tree(mnt, 1, &umount_list);
1302 retval = 0;
1304 br_write_unlock(vfsmount_lock);
1305 up_write(&namespace_sem);
1306 release_mounts(&umount_list);
1307 return retval;
1311 * Now umount can handle mount points as well as block devices.
1312 * This is important for filesystems which use unnamed block devices.
1314 * We now support a flag for forced unmount like the other 'big iron'
1315 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1318 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1320 struct path path;
1321 int retval;
1322 int lookup_flags = 0;
1324 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1325 return -EINVAL;
1327 if (!(flags & UMOUNT_NOFOLLOW))
1328 lookup_flags |= LOOKUP_FOLLOW;
1330 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1331 if (retval)
1332 goto out;
1333 retval = -EINVAL;
1334 if (path.dentry != path.mnt->mnt_root)
1335 goto dput_and_out;
1336 if (!check_mnt(path.mnt))
1337 goto dput_and_out;
1339 retval = -EPERM;
1340 if (!capable(CAP_SYS_ADMIN))
1341 goto dput_and_out;
1343 retval = do_umount(path.mnt, flags);
1344 dput_and_out:
1345 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1346 dput(path.dentry);
1347 mntput_no_expire(path.mnt);
1348 out:
1349 return retval;
1352 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1355 * The 2.0 compatible umount. No flags.
1357 SYSCALL_DEFINE1(oldumount, char __user *, name)
1359 return sys_umount(name, 0);
1362 #endif
1364 static int mount_is_safe(struct path *path)
1366 if (capable(CAP_SYS_ADMIN))
1367 return 0;
1368 return -EPERM;
1369 #ifdef notyet
1370 if (S_ISLNK(path->dentry->d_inode->i_mode))
1371 return -EPERM;
1372 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1373 if (current_uid() != path->dentry->d_inode->i_uid)
1374 return -EPERM;
1376 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1377 return -EPERM;
1378 return 0;
1379 #endif
1382 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1383 int flag)
1385 struct vfsmount *res, *p, *q, *r, *s;
1386 struct path path;
1388 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1389 return NULL;
1391 res = q = clone_mnt(mnt, dentry, flag);
1392 if (!q)
1393 goto Enomem;
1394 q->mnt_mountpoint = mnt->mnt_mountpoint;
1396 p = mnt;
1397 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1398 if (!is_subdir(r->mnt_mountpoint, dentry))
1399 continue;
1401 for (s = r; s; s = next_mnt(s, r)) {
1402 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1403 s = skip_mnt_tree(s);
1404 continue;
1406 while (p != s->mnt_parent) {
1407 p = p->mnt_parent;
1408 q = q->mnt_parent;
1410 p = s;
1411 path.mnt = q;
1412 path.dentry = p->mnt_mountpoint;
1413 q = clone_mnt(p, p->mnt_root, flag);
1414 if (!q)
1415 goto Enomem;
1416 br_write_lock(vfsmount_lock);
1417 list_add_tail(&q->mnt_list, &res->mnt_list);
1418 attach_mnt(q, &path);
1419 br_write_unlock(vfsmount_lock);
1422 return res;
1423 Enomem:
1424 if (res) {
1425 LIST_HEAD(umount_list);
1426 br_write_lock(vfsmount_lock);
1427 umount_tree(res, 0, &umount_list);
1428 br_write_unlock(vfsmount_lock);
1429 release_mounts(&umount_list);
1431 return NULL;
1434 struct vfsmount *collect_mounts(struct path *path)
1436 struct vfsmount *tree;
1437 down_write(&namespace_sem);
1438 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1439 up_write(&namespace_sem);
1440 return tree;
1443 void drop_collected_mounts(struct vfsmount *mnt)
1445 LIST_HEAD(umount_list);
1446 down_write(&namespace_sem);
1447 br_write_lock(vfsmount_lock);
1448 umount_tree(mnt, 0, &umount_list);
1449 br_write_unlock(vfsmount_lock);
1450 up_write(&namespace_sem);
1451 release_mounts(&umount_list);
1454 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1455 struct vfsmount *root)
1457 struct vfsmount *mnt;
1458 int res = f(root, arg);
1459 if (res)
1460 return res;
1461 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1462 res = f(mnt, arg);
1463 if (res)
1464 return res;
1466 return 0;
1469 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1471 struct vfsmount *p;
1473 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1474 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1475 mnt_release_group_id(p);
1479 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1481 struct vfsmount *p;
1483 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1484 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1485 int err = mnt_alloc_group_id(p);
1486 if (err) {
1487 cleanup_group_ids(mnt, p);
1488 return err;
1493 return 0;
1497 * @source_mnt : mount tree to be attached
1498 * @nd : place the mount tree @source_mnt is attached
1499 * @parent_nd : if non-null, detach the source_mnt from its parent and
1500 * store the parent mount and mountpoint dentry.
1501 * (done when source_mnt is moved)
1503 * NOTE: in the table below explains the semantics when a source mount
1504 * of a given type is attached to a destination mount of a given type.
1505 * ---------------------------------------------------------------------------
1506 * | BIND MOUNT OPERATION |
1507 * |**************************************************************************
1508 * | source-->| shared | private | slave | unbindable |
1509 * | dest | | | | |
1510 * | | | | | | |
1511 * | v | | | | |
1512 * |**************************************************************************
1513 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1514 * | | | | | |
1515 * |non-shared| shared (+) | private | slave (*) | invalid |
1516 * ***************************************************************************
1517 * A bind operation clones the source mount and mounts the clone on the
1518 * destination mount.
1520 * (++) the cloned mount is propagated to all the mounts in the propagation
1521 * tree of the destination mount and the cloned mount is added to
1522 * the peer group of the source mount.
1523 * (+) the cloned mount is created under the destination mount and is marked
1524 * as shared. The cloned mount is added to the peer group of the source
1525 * mount.
1526 * (+++) the mount is propagated to all the mounts in the propagation tree
1527 * of the destination mount and the cloned mount is made slave
1528 * of the same master as that of the source mount. The cloned mount
1529 * is marked as 'shared and slave'.
1530 * (*) the cloned mount is made a slave of the same master as that of the
1531 * source mount.
1533 * ---------------------------------------------------------------------------
1534 * | MOVE MOUNT OPERATION |
1535 * |**************************************************************************
1536 * | source-->| shared | private | slave | unbindable |
1537 * | dest | | | | |
1538 * | | | | | | |
1539 * | v | | | | |
1540 * |**************************************************************************
1541 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1542 * | | | | | |
1543 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1544 * ***************************************************************************
1546 * (+) the mount is moved to the destination. And is then propagated to
1547 * all the mounts in the propagation tree of the destination mount.
1548 * (+*) the mount is moved to the destination.
1549 * (+++) the mount is moved to the destination and is then propagated to
1550 * all the mounts belonging to the destination mount's propagation tree.
1551 * the mount is marked as 'shared and slave'.
1552 * (*) the mount continues to be a slave at the new location.
1554 * if the source mount is a tree, the operations explained above is
1555 * applied to each mount in the tree.
1556 * Must be called without spinlocks held, since this function can sleep
1557 * in allocations.
1559 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1560 struct path *path, struct path *parent_path)
1562 LIST_HEAD(tree_list);
1563 struct vfsmount *dest_mnt = path->mnt;
1564 struct dentry *dest_dentry = path->dentry;
1565 struct vfsmount *child, *p;
1566 int err;
1568 if (IS_MNT_SHARED(dest_mnt)) {
1569 err = invent_group_ids(source_mnt, true);
1570 if (err)
1571 goto out;
1573 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1574 if (err)
1575 goto out_cleanup_ids;
1577 br_write_lock(vfsmount_lock);
1579 if (IS_MNT_SHARED(dest_mnt)) {
1580 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1581 set_mnt_shared(p);
1583 if (parent_path) {
1584 detach_mnt(source_mnt, parent_path);
1585 attach_mnt(source_mnt, path);
1586 touch_mnt_namespace(parent_path->mnt->mnt_ns);
1587 } else {
1588 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1589 commit_tree(source_mnt);
1592 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1593 list_del_init(&child->mnt_hash);
1594 commit_tree(child);
1596 br_write_unlock(vfsmount_lock);
1598 return 0;
1600 out_cleanup_ids:
1601 if (IS_MNT_SHARED(dest_mnt))
1602 cleanup_group_ids(source_mnt, NULL);
1603 out:
1604 return err;
1607 static int graft_tree(struct vfsmount *mnt, struct path *path)
1609 int err;
1610 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1611 return -EINVAL;
1613 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1614 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1615 return -ENOTDIR;
1617 err = -ENOENT;
1618 mutex_lock(&path->dentry->d_inode->i_mutex);
1619 if (cant_mount(path->dentry))
1620 goto out_unlock;
1622 if (!d_unlinked(path->dentry))
1623 err = attach_recursive_mnt(mnt, path, NULL);
1624 out_unlock:
1625 mutex_unlock(&path->dentry->d_inode->i_mutex);
1626 return err;
1630 * Sanity check the flags to change_mnt_propagation.
1633 static int flags_to_propagation_type(int flags)
1635 int type = flags & ~MS_REC;
1637 /* Fail if any non-propagation flags are set */
1638 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1639 return 0;
1640 /* Only one propagation flag should be set */
1641 if (!is_power_of_2(type))
1642 return 0;
1643 return type;
1647 * recursively change the type of the mountpoint.
1649 static int do_change_type(struct path *path, int flag)
1651 struct vfsmount *m, *mnt = path->mnt;
1652 int recurse = flag & MS_REC;
1653 int type;
1654 int err = 0;
1656 if (!capable(CAP_SYS_ADMIN))
1657 return -EPERM;
1659 if (path->dentry != path->mnt->mnt_root)
1660 return -EINVAL;
1662 type = flags_to_propagation_type(flag);
1663 if (!type)
1664 return -EINVAL;
1666 down_write(&namespace_sem);
1667 if (type == MS_SHARED) {
1668 err = invent_group_ids(mnt, recurse);
1669 if (err)
1670 goto out_unlock;
1673 br_write_lock(vfsmount_lock);
1674 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1675 change_mnt_propagation(m, type);
1676 br_write_unlock(vfsmount_lock);
1678 out_unlock:
1679 up_write(&namespace_sem);
1680 return err;
1684 * do loopback mount.
1686 static int do_loopback(struct path *path, char *old_name,
1687 int recurse)
1689 struct path old_path;
1690 struct vfsmount *mnt = NULL;
1691 int err = mount_is_safe(path);
1692 if (err)
1693 return err;
1694 if (!old_name || !*old_name)
1695 return -EINVAL;
1696 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1697 if (err)
1698 return err;
1700 down_write(&namespace_sem);
1701 err = -EINVAL;
1702 if (IS_MNT_UNBINDABLE(old_path.mnt))
1703 goto out;
1705 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1706 goto out;
1708 err = -ENOMEM;
1709 if (recurse)
1710 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1711 else
1712 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1714 if (!mnt)
1715 goto out;
1717 err = graft_tree(mnt, path);
1718 if (err) {
1719 LIST_HEAD(umount_list);
1721 br_write_lock(vfsmount_lock);
1722 umount_tree(mnt, 0, &umount_list);
1723 br_write_unlock(vfsmount_lock);
1724 release_mounts(&umount_list);
1727 out:
1728 up_write(&namespace_sem);
1729 path_put(&old_path);
1730 return err;
1733 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1735 int error = 0;
1736 int readonly_request = 0;
1738 if (ms_flags & MS_RDONLY)
1739 readonly_request = 1;
1740 if (readonly_request == __mnt_is_readonly(mnt))
1741 return 0;
1743 if (readonly_request)
1744 error = mnt_make_readonly(mnt);
1745 else
1746 __mnt_unmake_readonly(mnt);
1747 return error;
1751 * change filesystem flags. dir should be a physical root of filesystem.
1752 * If you've mounted a non-root directory somewhere and want to do remount
1753 * on it - tough luck.
1755 static int do_remount(struct path *path, int flags, int mnt_flags,
1756 void *data)
1758 int err;
1759 struct super_block *sb = path->mnt->mnt_sb;
1761 if (!capable(CAP_SYS_ADMIN))
1762 return -EPERM;
1764 if (!check_mnt(path->mnt))
1765 return -EINVAL;
1767 if (path->dentry != path->mnt->mnt_root)
1768 return -EINVAL;
1770 down_write(&sb->s_umount);
1771 if (flags & MS_BIND)
1772 err = change_mount_flags(path->mnt, flags);
1773 else
1774 err = do_remount_sb(sb, flags, data, 0);
1775 if (!err) {
1776 br_write_lock(vfsmount_lock);
1777 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
1778 path->mnt->mnt_flags = mnt_flags;
1779 br_write_unlock(vfsmount_lock);
1781 up_write(&sb->s_umount);
1782 if (!err) {
1783 br_write_lock(vfsmount_lock);
1784 touch_mnt_namespace(path->mnt->mnt_ns);
1785 br_write_unlock(vfsmount_lock);
1787 return err;
1790 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1792 struct vfsmount *p;
1793 for (p = mnt; p; p = next_mnt(p, mnt)) {
1794 if (IS_MNT_UNBINDABLE(p))
1795 return 1;
1797 return 0;
1800 static int do_move_mount(struct path *path, char *old_name)
1802 struct path old_path, parent_path;
1803 struct vfsmount *p;
1804 int err = 0;
1805 if (!capable(CAP_SYS_ADMIN))
1806 return -EPERM;
1807 if (!old_name || !*old_name)
1808 return -EINVAL;
1809 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1810 if (err)
1811 return err;
1813 down_write(&namespace_sem);
1814 err = follow_down(path, true);
1815 if (err < 0)
1816 goto out;
1818 err = -EINVAL;
1819 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1820 goto out;
1822 err = -ENOENT;
1823 mutex_lock(&path->dentry->d_inode->i_mutex);
1824 if (cant_mount(path->dentry))
1825 goto out1;
1827 if (d_unlinked(path->dentry))
1828 goto out1;
1830 err = -EINVAL;
1831 if (old_path.dentry != old_path.mnt->mnt_root)
1832 goto out1;
1834 if (old_path.mnt == old_path.mnt->mnt_parent)
1835 goto out1;
1837 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1838 S_ISDIR(old_path.dentry->d_inode->i_mode))
1839 goto out1;
1841 * Don't move a mount residing in a shared parent.
1843 if (old_path.mnt->mnt_parent &&
1844 IS_MNT_SHARED(old_path.mnt->mnt_parent))
1845 goto out1;
1847 * Don't move a mount tree containing unbindable mounts to a destination
1848 * mount which is shared.
1850 if (IS_MNT_SHARED(path->mnt) &&
1851 tree_contains_unbindable(old_path.mnt))
1852 goto out1;
1853 err = -ELOOP;
1854 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1855 if (p == old_path.mnt)
1856 goto out1;
1858 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1859 if (err)
1860 goto out1;
1862 /* if the mount is moved, it should no longer be expire
1863 * automatically */
1864 list_del_init(&old_path.mnt->mnt_expire);
1865 out1:
1866 mutex_unlock(&path->dentry->d_inode->i_mutex);
1867 out:
1868 up_write(&namespace_sem);
1869 if (!err)
1870 path_put(&parent_path);
1871 path_put(&old_path);
1872 return err;
1875 static int do_add_mount(struct vfsmount *, struct path *, int);
1878 * create a new mount for userspace and request it to be added into the
1879 * namespace's tree
1881 static int do_new_mount(struct path *path, char *type, int flags,
1882 int mnt_flags, char *name, void *data)
1884 struct vfsmount *mnt;
1885 int err;
1887 if (!type)
1888 return -EINVAL;
1890 /* we need capabilities... */
1891 if (!capable(CAP_SYS_ADMIN))
1892 return -EPERM;
1894 mnt = do_kern_mount(type, flags, name, data);
1895 if (IS_ERR(mnt))
1896 return PTR_ERR(mnt);
1898 err = do_add_mount(mnt, path, mnt_flags);
1899 if (err)
1900 mntput(mnt);
1901 return err;
1904 int finish_automount(struct vfsmount *m, struct path *path)
1906 int err;
1907 /* The new mount record should have at least 2 refs to prevent it being
1908 * expired before we get a chance to add it
1910 BUG_ON(mnt_get_count(m) < 2);
1912 if (m->mnt_sb == path->mnt->mnt_sb &&
1913 m->mnt_root == path->dentry) {
1914 err = -ELOOP;
1915 goto fail;
1918 err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
1919 if (!err)
1920 return 0;
1921 fail:
1922 /* remove m from any expiration list it may be on */
1923 if (!list_empty(&m->mnt_expire)) {
1924 down_write(&namespace_sem);
1925 br_write_lock(vfsmount_lock);
1926 list_del_init(&m->mnt_expire);
1927 br_write_unlock(vfsmount_lock);
1928 up_write(&namespace_sem);
1930 mntput(m);
1931 mntput(m);
1932 return err;
1936 * add a mount into a namespace's mount tree
1938 static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
1940 int err;
1942 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1944 down_write(&namespace_sem);
1945 /* Something was mounted here while we slept */
1946 err = follow_down(path, true);
1947 if (err < 0)
1948 goto unlock;
1950 err = -EINVAL;
1951 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1952 goto unlock;
1954 /* Refuse the same filesystem on the same mount point */
1955 err = -EBUSY;
1956 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1957 path->mnt->mnt_root == path->dentry)
1958 goto unlock;
1960 err = -EINVAL;
1961 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1962 goto unlock;
1964 newmnt->mnt_flags = mnt_flags;
1965 err = graft_tree(newmnt, path);
1967 unlock:
1968 up_write(&namespace_sem);
1969 return err;
1973 * mnt_set_expiry - Put a mount on an expiration list
1974 * @mnt: The mount to list.
1975 * @expiry_list: The list to add the mount to.
1977 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1979 down_write(&namespace_sem);
1980 br_write_lock(vfsmount_lock);
1982 list_add_tail(&mnt->mnt_expire, expiry_list);
1984 br_write_unlock(vfsmount_lock);
1985 up_write(&namespace_sem);
1987 EXPORT_SYMBOL(mnt_set_expiry);
1990 * process a list of expirable mountpoints with the intent of discarding any
1991 * mountpoints that aren't in use and haven't been touched since last we came
1992 * here
1994 void mark_mounts_for_expiry(struct list_head *mounts)
1996 struct vfsmount *mnt, *next;
1997 LIST_HEAD(graveyard);
1998 LIST_HEAD(umounts);
2000 if (list_empty(mounts))
2001 return;
2003 down_write(&namespace_sem);
2004 br_write_lock(vfsmount_lock);
2006 /* extract from the expiration list every vfsmount that matches the
2007 * following criteria:
2008 * - only referenced by its parent vfsmount
2009 * - still marked for expiry (marked on the last call here; marks are
2010 * cleared by mntput())
2012 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2013 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2014 propagate_mount_busy(mnt, 1))
2015 continue;
2016 list_move(&mnt->mnt_expire, &graveyard);
2018 while (!list_empty(&graveyard)) {
2019 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
2020 touch_mnt_namespace(mnt->mnt_ns);
2021 umount_tree(mnt, 1, &umounts);
2023 br_write_unlock(vfsmount_lock);
2024 up_write(&namespace_sem);
2026 release_mounts(&umounts);
2029 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2032 * Ripoff of 'select_parent()'
2034 * search the list of submounts for a given mountpoint, and move any
2035 * shrinkable submounts to the 'graveyard' list.
2037 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
2039 struct vfsmount *this_parent = parent;
2040 struct list_head *next;
2041 int found = 0;
2043 repeat:
2044 next = this_parent->mnt_mounts.next;
2045 resume:
2046 while (next != &this_parent->mnt_mounts) {
2047 struct list_head *tmp = next;
2048 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
2050 next = tmp->next;
2051 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
2052 continue;
2054 * Descend a level if the d_mounts list is non-empty.
2056 if (!list_empty(&mnt->mnt_mounts)) {
2057 this_parent = mnt;
2058 goto repeat;
2061 if (!propagate_mount_busy(mnt, 1)) {
2062 list_move_tail(&mnt->mnt_expire, graveyard);
2063 found++;
2067 * All done at this level ... ascend and resume the search
2069 if (this_parent != parent) {
2070 next = this_parent->mnt_child.next;
2071 this_parent = this_parent->mnt_parent;
2072 goto resume;
2074 return found;
2078 * process a list of expirable mountpoints with the intent of discarding any
2079 * submounts of a specific parent mountpoint
2081 * vfsmount_lock must be held for write
2083 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
2085 LIST_HEAD(graveyard);
2086 struct vfsmount *m;
2088 /* extract submounts of 'mountpoint' from the expiration list */
2089 while (select_submounts(mnt, &graveyard)) {
2090 while (!list_empty(&graveyard)) {
2091 m = list_first_entry(&graveyard, struct vfsmount,
2092 mnt_expire);
2093 touch_mnt_namespace(m->mnt_ns);
2094 umount_tree(m, 1, umounts);
2100 * Some copy_from_user() implementations do not return the exact number of
2101 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2102 * Note that this function differs from copy_from_user() in that it will oops
2103 * on bad values of `to', rather than returning a short copy.
2105 static long exact_copy_from_user(void *to, const void __user * from,
2106 unsigned long n)
2108 char *t = to;
2109 const char __user *f = from;
2110 char c;
2112 if (!access_ok(VERIFY_READ, from, n))
2113 return n;
2115 while (n) {
2116 if (__get_user(c, f)) {
2117 memset(t, 0, n);
2118 break;
2120 *t++ = c;
2121 f++;
2122 n--;
2124 return n;
2127 int copy_mount_options(const void __user * data, unsigned long *where)
2129 int i;
2130 unsigned long page;
2131 unsigned long size;
2133 *where = 0;
2134 if (!data)
2135 return 0;
2137 if (!(page = __get_free_page(GFP_KERNEL)))
2138 return -ENOMEM;
2140 /* We only care that *some* data at the address the user
2141 * gave us is valid. Just in case, we'll zero
2142 * the remainder of the page.
2144 /* copy_from_user cannot cross TASK_SIZE ! */
2145 size = TASK_SIZE - (unsigned long)data;
2146 if (size > PAGE_SIZE)
2147 size = PAGE_SIZE;
2149 i = size - exact_copy_from_user((void *)page, data, size);
2150 if (!i) {
2151 free_page(page);
2152 return -EFAULT;
2154 if (i != PAGE_SIZE)
2155 memset((char *)page + i, 0, PAGE_SIZE - i);
2156 *where = page;
2157 return 0;
2160 int copy_mount_string(const void __user *data, char **where)
2162 char *tmp;
2164 if (!data) {
2165 *where = NULL;
2166 return 0;
2169 tmp = strndup_user(data, PAGE_SIZE);
2170 if (IS_ERR(tmp))
2171 return PTR_ERR(tmp);
2173 *where = tmp;
2174 return 0;
2178 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2179 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2181 * data is a (void *) that can point to any structure up to
2182 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2183 * information (or be NULL).
2185 * Pre-0.97 versions of mount() didn't have a flags word.
2186 * When the flags word was introduced its top half was required
2187 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2188 * Therefore, if this magic number is present, it carries no information
2189 * and must be discarded.
2191 long do_mount(char *dev_name, char *dir_name, char *type_page,
2192 unsigned long flags, void *data_page)
2194 struct path path;
2195 int retval = 0;
2196 int mnt_flags = 0;
2198 /* Discard magic */
2199 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2200 flags &= ~MS_MGC_MSK;
2202 /* Basic sanity checks */
2204 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2205 return -EINVAL;
2207 if (data_page)
2208 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2210 /* ... and get the mountpoint */
2211 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2212 if (retval)
2213 return retval;
2215 retval = security_sb_mount(dev_name, &path,
2216 type_page, flags, data_page);
2217 if (retval)
2218 goto dput_out;
2220 /* Default to relatime unless overriden */
2221 if (!(flags & MS_NOATIME))
2222 mnt_flags |= MNT_RELATIME;
2224 /* Separate the per-mountpoint flags */
2225 if (flags & MS_NOSUID)
2226 mnt_flags |= MNT_NOSUID;
2227 if (flags & MS_NODEV)
2228 mnt_flags |= MNT_NODEV;
2229 if (flags & MS_NOEXEC)
2230 mnt_flags |= MNT_NOEXEC;
2231 if (flags & MS_NOATIME)
2232 mnt_flags |= MNT_NOATIME;
2233 if (flags & MS_NODIRATIME)
2234 mnt_flags |= MNT_NODIRATIME;
2235 if (flags & MS_STRICTATIME)
2236 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2237 if (flags & MS_RDONLY)
2238 mnt_flags |= MNT_READONLY;
2240 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2241 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2242 MS_STRICTATIME);
2244 if (flags & MS_REMOUNT)
2245 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2246 data_page);
2247 else if (flags & MS_BIND)
2248 retval = do_loopback(&path, dev_name, flags & MS_REC);
2249 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2250 retval = do_change_type(&path, flags);
2251 else if (flags & MS_MOVE)
2252 retval = do_move_mount(&path, dev_name);
2253 else
2254 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2255 dev_name, data_page);
2256 dput_out:
2257 path_put(&path);
2258 return retval;
2261 static struct mnt_namespace *alloc_mnt_ns(void)
2263 struct mnt_namespace *new_ns;
2265 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2266 if (!new_ns)
2267 return ERR_PTR(-ENOMEM);
2268 atomic_set(&new_ns->count, 1);
2269 new_ns->root = NULL;
2270 INIT_LIST_HEAD(&new_ns->list);
2271 init_waitqueue_head(&new_ns->poll);
2272 new_ns->event = 0;
2273 return new_ns;
2276 void mnt_make_longterm(struct vfsmount *mnt)
2278 __mnt_make_longterm(mnt);
2281 void mnt_make_shortterm(struct vfsmount *mnt)
2283 #ifdef CONFIG_SMP
2284 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2285 return;
2286 br_write_lock(vfsmount_lock);
2287 atomic_dec(&mnt->mnt_longterm);
2288 br_write_unlock(vfsmount_lock);
2289 #endif
2293 * Allocate a new namespace structure and populate it with contents
2294 * copied from the namespace of the passed in task structure.
2296 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2297 struct fs_struct *fs)
2299 struct mnt_namespace *new_ns;
2300 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2301 struct vfsmount *p, *q;
2303 new_ns = alloc_mnt_ns();
2304 if (IS_ERR(new_ns))
2305 return new_ns;
2307 down_write(&namespace_sem);
2308 /* First pass: copy the tree topology */
2309 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
2310 CL_COPY_ALL | CL_EXPIRE);
2311 if (!new_ns->root) {
2312 up_write(&namespace_sem);
2313 kfree(new_ns);
2314 return ERR_PTR(-ENOMEM);
2316 br_write_lock(vfsmount_lock);
2317 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2318 br_write_unlock(vfsmount_lock);
2321 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2322 * as belonging to new namespace. We have already acquired a private
2323 * fs_struct, so tsk->fs->lock is not needed.
2325 p = mnt_ns->root;
2326 q = new_ns->root;
2327 while (p) {
2328 q->mnt_ns = new_ns;
2329 __mnt_make_longterm(q);
2330 if (fs) {
2331 if (p == fs->root.mnt) {
2332 fs->root.mnt = mntget(q);
2333 __mnt_make_longterm(q);
2334 mnt_make_shortterm(p);
2335 rootmnt = p;
2337 if (p == fs->pwd.mnt) {
2338 fs->pwd.mnt = mntget(q);
2339 __mnt_make_longterm(q);
2340 mnt_make_shortterm(p);
2341 pwdmnt = p;
2344 p = next_mnt(p, mnt_ns->root);
2345 q = next_mnt(q, new_ns->root);
2347 up_write(&namespace_sem);
2349 if (rootmnt)
2350 mntput(rootmnt);
2351 if (pwdmnt)
2352 mntput(pwdmnt);
2354 return new_ns;
2357 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2358 struct fs_struct *new_fs)
2360 struct mnt_namespace *new_ns;
2362 BUG_ON(!ns);
2363 get_mnt_ns(ns);
2365 if (!(flags & CLONE_NEWNS))
2366 return ns;
2368 new_ns = dup_mnt_ns(ns, new_fs);
2370 put_mnt_ns(ns);
2371 return new_ns;
2375 * create_mnt_ns - creates a private namespace and adds a root filesystem
2376 * @mnt: pointer to the new root filesystem mountpoint
2378 struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2380 struct mnt_namespace *new_ns;
2382 new_ns = alloc_mnt_ns();
2383 if (!IS_ERR(new_ns)) {
2384 mnt->mnt_ns = new_ns;
2385 __mnt_make_longterm(mnt);
2386 new_ns->root = mnt;
2387 list_add(&new_ns->list, &new_ns->root->mnt_list);
2389 return new_ns;
2391 EXPORT_SYMBOL(create_mnt_ns);
2393 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2394 char __user *, type, unsigned long, flags, void __user *, data)
2396 int ret;
2397 char *kernel_type;
2398 char *kernel_dir;
2399 char *kernel_dev;
2400 unsigned long data_page;
2402 ret = copy_mount_string(type, &kernel_type);
2403 if (ret < 0)
2404 goto out_type;
2406 kernel_dir = getname(dir_name);
2407 if (IS_ERR(kernel_dir)) {
2408 ret = PTR_ERR(kernel_dir);
2409 goto out_dir;
2412 ret = copy_mount_string(dev_name, &kernel_dev);
2413 if (ret < 0)
2414 goto out_dev;
2416 ret = copy_mount_options(data, &data_page);
2417 if (ret < 0)
2418 goto out_data;
2420 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2421 (void *) data_page);
2423 free_page(data_page);
2424 out_data:
2425 kfree(kernel_dev);
2426 out_dev:
2427 putname(kernel_dir);
2428 out_dir:
2429 kfree(kernel_type);
2430 out_type:
2431 return ret;
2435 * pivot_root Semantics:
2436 * Moves the root file system of the current process to the directory put_old,
2437 * makes new_root as the new root file system of the current process, and sets
2438 * root/cwd of all processes which had them on the current root to new_root.
2440 * Restrictions:
2441 * The new_root and put_old must be directories, and must not be on the
2442 * same file system as the current process root. The put_old must be
2443 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2444 * pointed to by put_old must yield the same directory as new_root. No other
2445 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2447 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2448 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2449 * in this situation.
2451 * Notes:
2452 * - we don't move root/cwd if they are not at the root (reason: if something
2453 * cared enough to change them, it's probably wrong to force them elsewhere)
2454 * - it's okay to pick a root that isn't the root of a file system, e.g.
2455 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2456 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2457 * first.
2459 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2460 const char __user *, put_old)
2462 struct vfsmount *tmp;
2463 struct path new, old, parent_path, root_parent, root;
2464 int error;
2466 if (!capable(CAP_SYS_ADMIN))
2467 return -EPERM;
2469 error = user_path_dir(new_root, &new);
2470 if (error)
2471 goto out0;
2472 error = -EINVAL;
2473 if (!check_mnt(new.mnt))
2474 goto out1;
2476 error = user_path_dir(put_old, &old);
2477 if (error)
2478 goto out1;
2480 error = security_sb_pivotroot(&old, &new);
2481 if (error) {
2482 path_put(&old);
2483 goto out1;
2486 get_fs_root(current->fs, &root);
2487 down_write(&namespace_sem);
2488 mutex_lock(&old.dentry->d_inode->i_mutex);
2489 error = -EINVAL;
2490 if (IS_MNT_SHARED(old.mnt) ||
2491 IS_MNT_SHARED(new.mnt->mnt_parent) ||
2492 IS_MNT_SHARED(root.mnt->mnt_parent))
2493 goto out2;
2494 if (!check_mnt(root.mnt))
2495 goto out2;
2496 error = -ENOENT;
2497 if (cant_mount(old.dentry))
2498 goto out2;
2499 if (d_unlinked(new.dentry))
2500 goto out2;
2501 if (d_unlinked(old.dentry))
2502 goto out2;
2503 error = -EBUSY;
2504 if (new.mnt == root.mnt ||
2505 old.mnt == root.mnt)
2506 goto out2; /* loop, on the same file system */
2507 error = -EINVAL;
2508 if (root.mnt->mnt_root != root.dentry)
2509 goto out2; /* not a mountpoint */
2510 if (root.mnt->mnt_parent == root.mnt)
2511 goto out2; /* not attached */
2512 if (new.mnt->mnt_root != new.dentry)
2513 goto out2; /* not a mountpoint */
2514 if (new.mnt->mnt_parent == new.mnt)
2515 goto out2; /* not attached */
2516 /* make sure we can reach put_old from new_root */
2517 tmp = old.mnt;
2518 br_write_lock(vfsmount_lock);
2519 if (tmp != new.mnt) {
2520 for (;;) {
2521 if (tmp->mnt_parent == tmp)
2522 goto out3; /* already mounted on put_old */
2523 if (tmp->mnt_parent == new.mnt)
2524 break;
2525 tmp = tmp->mnt_parent;
2527 if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2528 goto out3;
2529 } else if (!is_subdir(old.dentry, new.dentry))
2530 goto out3;
2531 detach_mnt(new.mnt, &parent_path);
2532 detach_mnt(root.mnt, &root_parent);
2533 /* mount old root on put_old */
2534 attach_mnt(root.mnt, &old);
2535 /* mount new_root on / */
2536 attach_mnt(new.mnt, &root_parent);
2537 touch_mnt_namespace(current->nsproxy->mnt_ns);
2538 br_write_unlock(vfsmount_lock);
2539 chroot_fs_refs(&root, &new);
2541 error = 0;
2542 path_put(&root_parent);
2543 path_put(&parent_path);
2544 out2:
2545 mutex_unlock(&old.dentry->d_inode->i_mutex);
2546 up_write(&namespace_sem);
2547 path_put(&root);
2548 path_put(&old);
2549 out1:
2550 path_put(&new);
2551 out0:
2552 return error;
2553 out3:
2554 br_write_unlock(vfsmount_lock);
2555 goto out2;
2558 static void __init init_mount_tree(void)
2560 struct vfsmount *mnt;
2561 struct mnt_namespace *ns;
2562 struct path root;
2564 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2565 if (IS_ERR(mnt))
2566 panic("Can't create rootfs");
2568 ns = create_mnt_ns(mnt);
2569 if (IS_ERR(ns))
2570 panic("Can't allocate initial namespace");
2572 init_task.nsproxy->mnt_ns = ns;
2573 get_mnt_ns(ns);
2575 root.mnt = ns->root;
2576 root.dentry = ns->root->mnt_root;
2578 set_fs_pwd(current->fs, &root);
2579 set_fs_root(current->fs, &root);
2582 void __init mnt_init(void)
2584 unsigned u;
2585 int err;
2587 init_rwsem(&namespace_sem);
2589 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2590 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2592 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2594 if (!mount_hashtable)
2595 panic("Failed to allocate mount hash table\n");
2597 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2599 for (u = 0; u < HASH_SIZE; u++)
2600 INIT_LIST_HEAD(&mount_hashtable[u]);
2602 br_lock_init(vfsmount_lock);
2604 err = sysfs_init();
2605 if (err)
2606 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2607 __func__, err);
2608 fs_kobj = kobject_create_and_add("fs", NULL);
2609 if (!fs_kobj)
2610 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2611 init_rootfs();
2612 init_mount_tree();
2615 void put_mnt_ns(struct mnt_namespace *ns)
2617 LIST_HEAD(umount_list);
2619 if (!atomic_dec_and_test(&ns->count))
2620 return;
2621 down_write(&namespace_sem);
2622 br_write_lock(vfsmount_lock);
2623 umount_tree(ns->root, 0, &umount_list);
2624 br_write_unlock(vfsmount_lock);
2625 up_write(&namespace_sem);
2626 release_mounts(&umount_list);
2627 kfree(ns);
2629 EXPORT_SYMBOL(put_mnt_ns);