QE/FHCI: fixed the CONTROL bug
[zen-stable.git] / arch / tile / kernel / single_step.c
blob4032ca8e51b613b894bee171f1afa8468ffddb1d
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
14 * A code-rewriter that enables instruction single-stepping.
15 * Derived from iLib's single-stepping code.
18 #ifndef __tilegx__ /* Hardware support for single step unavailable. */
20 /* These functions are only used on the TILE platform */
21 #include <linux/slab.h>
22 #include <linux/thread_info.h>
23 #include <linux/uaccess.h>
24 #include <linux/mman.h>
25 #include <linux/types.h>
26 #include <linux/err.h>
27 #include <asm/cacheflush.h>
28 #include <asm/opcode-tile.h>
29 #include <asm/opcode_constants.h>
30 #include <arch/abi.h>
32 #define signExtend17(val) sign_extend((val), 17)
33 #define TILE_X1_MASK (0xffffffffULL << 31)
35 int unaligned_printk;
37 static int __init setup_unaligned_printk(char *str)
39 long val;
40 if (strict_strtol(str, 0, &val) != 0)
41 return 0;
42 unaligned_printk = val;
43 pr_info("Printk for each unaligned data accesses is %s\n",
44 unaligned_printk ? "enabled" : "disabled");
45 return 1;
47 __setup("unaligned_printk=", setup_unaligned_printk);
49 unsigned int unaligned_fixup_count;
51 enum mem_op {
52 MEMOP_NONE,
53 MEMOP_LOAD,
54 MEMOP_STORE,
55 MEMOP_LOAD_POSTINCR,
56 MEMOP_STORE_POSTINCR
59 static inline tile_bundle_bits set_BrOff_X1(tile_bundle_bits n, s32 offset)
61 tile_bundle_bits result;
63 /* mask out the old offset */
64 tile_bundle_bits mask = create_BrOff_X1(-1);
65 result = n & (~mask);
67 /* or in the new offset */
68 result |= create_BrOff_X1(offset);
70 return result;
73 static inline tile_bundle_bits move_X1(tile_bundle_bits n, int dest, int src)
75 tile_bundle_bits result;
76 tile_bundle_bits op;
78 result = n & (~TILE_X1_MASK);
80 op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) |
81 create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) |
82 create_Dest_X1(dest) |
83 create_SrcB_X1(TREG_ZERO) |
84 create_SrcA_X1(src) ;
86 result |= op;
87 return result;
90 static inline tile_bundle_bits nop_X1(tile_bundle_bits n)
92 return move_X1(n, TREG_ZERO, TREG_ZERO);
95 static inline tile_bundle_bits addi_X1(
96 tile_bundle_bits n, int dest, int src, int imm)
98 n &= ~TILE_X1_MASK;
100 n |= (create_SrcA_X1(src) |
101 create_Dest_X1(dest) |
102 create_Imm8_X1(imm) |
103 create_S_X1(0) |
104 create_Opcode_X1(IMM_0_OPCODE_X1) |
105 create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1));
107 return n;
110 static tile_bundle_bits rewrite_load_store_unaligned(
111 struct single_step_state *state,
112 tile_bundle_bits bundle,
113 struct pt_regs *regs,
114 enum mem_op mem_op,
115 int size, int sign_ext)
117 unsigned char __user *addr;
118 int val_reg, addr_reg, err, val;
120 /* Get address and value registers */
121 if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) {
122 addr_reg = get_SrcA_Y2(bundle);
123 val_reg = get_SrcBDest_Y2(bundle);
124 } else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
125 addr_reg = get_SrcA_X1(bundle);
126 val_reg = get_Dest_X1(bundle);
127 } else {
128 addr_reg = get_SrcA_X1(bundle);
129 val_reg = get_SrcB_X1(bundle);
133 * If registers are not GPRs, don't try to handle it.
135 * FIXME: we could handle non-GPR loads by getting the real value
136 * from memory, writing it to the single step buffer, using a
137 * temp_reg to hold a pointer to that memory, then executing that
138 * instruction and resetting temp_reg. For non-GPR stores, it's a
139 * little trickier; we could use the single step buffer for that
140 * too, but we'd have to add some more state bits so that we could
141 * call back in here to copy that value to the real target. For
142 * now, we just handle the simple case.
144 if ((val_reg >= PTREGS_NR_GPRS &&
145 (val_reg != TREG_ZERO ||
146 mem_op == MEMOP_LOAD ||
147 mem_op == MEMOP_LOAD_POSTINCR)) ||
148 addr_reg >= PTREGS_NR_GPRS)
149 return bundle;
151 /* If it's aligned, don't handle it specially */
152 addr = (void __user *)regs->regs[addr_reg];
153 if (((unsigned long)addr % size) == 0)
154 return bundle;
156 #ifndef __LITTLE_ENDIAN
157 # error We assume little-endian representation with copy_xx_user size 2 here
158 #endif
159 /* Handle unaligned load/store */
160 if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
161 unsigned short val_16;
162 switch (size) {
163 case 2:
164 err = copy_from_user(&val_16, addr, sizeof(val_16));
165 val = sign_ext ? ((short)val_16) : val_16;
166 break;
167 case 4:
168 err = copy_from_user(&val, addr, sizeof(val));
169 break;
170 default:
171 BUG();
173 if (err == 0) {
174 state->update_reg = val_reg;
175 state->update_value = val;
176 state->update = 1;
178 } else {
179 val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg];
180 err = copy_to_user(addr, &val, size);
183 if (err) {
184 siginfo_t info = {
185 .si_signo = SIGSEGV,
186 .si_code = SEGV_MAPERR,
187 .si_addr = addr
189 trace_unhandled_signal("segfault", regs,
190 (unsigned long)addr, SIGSEGV);
191 force_sig_info(info.si_signo, &info, current);
192 return (tile_bundle_bits) 0;
195 if (unaligned_fixup == 0) {
196 siginfo_t info = {
197 .si_signo = SIGBUS,
198 .si_code = BUS_ADRALN,
199 .si_addr = addr
201 trace_unhandled_signal("unaligned trap", regs,
202 (unsigned long)addr, SIGBUS);
203 force_sig_info(info.si_signo, &info, current);
204 return (tile_bundle_bits) 0;
207 if (unaligned_printk || unaligned_fixup_count == 0) {
208 pr_info("Process %d/%s: PC %#lx: Fixup of"
209 " unaligned %s at %#lx.\n",
210 current->pid, current->comm, regs->pc,
211 (mem_op == MEMOP_LOAD ||
212 mem_op == MEMOP_LOAD_POSTINCR) ?
213 "load" : "store",
214 (unsigned long)addr);
215 if (!unaligned_printk) {
216 #define P pr_info
217 P("\n");
218 P("Unaligned fixups in the kernel will slow your application considerably.\n");
219 P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
220 P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
221 P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
222 P("access will become a SIGBUS you can debug. No further warnings will be\n");
223 P("shown so as to avoid additional slowdown, but you can track the number\n");
224 P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
225 P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
226 P("\n");
227 #undef P
230 ++unaligned_fixup_count;
232 if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) {
233 /* Convert the Y2 instruction to a prefetch. */
234 bundle &= ~(create_SrcBDest_Y2(-1) |
235 create_Opcode_Y2(-1));
236 bundle |= (create_SrcBDest_Y2(TREG_ZERO) |
237 create_Opcode_Y2(LW_OPCODE_Y2));
238 /* Replace the load postincr with an addi */
239 } else if (mem_op == MEMOP_LOAD_POSTINCR) {
240 bundle = addi_X1(bundle, addr_reg, addr_reg,
241 get_Imm8_X1(bundle));
242 /* Replace the store postincr with an addi */
243 } else if (mem_op == MEMOP_STORE_POSTINCR) {
244 bundle = addi_X1(bundle, addr_reg, addr_reg,
245 get_Dest_Imm8_X1(bundle));
246 } else {
247 /* Convert the X1 instruction to a nop. */
248 bundle &= ~(create_Opcode_X1(-1) |
249 create_UnShOpcodeExtension_X1(-1) |
250 create_UnOpcodeExtension_X1(-1));
251 bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) |
252 create_UnShOpcodeExtension_X1(
253 UN_0_SHUN_0_OPCODE_X1) |
254 create_UnOpcodeExtension_X1(
255 NOP_UN_0_SHUN_0_OPCODE_X1));
258 return bundle;
262 * Called after execve() has started the new image. This allows us
263 * to reset the info state. Note that the the mmap'ed memory, if there
264 * was any, has already been unmapped by the exec.
266 void single_step_execve(void)
268 struct thread_info *ti = current_thread_info();
269 kfree(ti->step_state);
270 ti->step_state = NULL;
274 * single_step_once() - entry point when single stepping has been triggered.
275 * @regs: The machine register state
277 * When we arrive at this routine via a trampoline, the single step
278 * engine copies the executing bundle to the single step buffer.
279 * If the instruction is a condition branch, then the target is
280 * reset to one past the next instruction. If the instruction
281 * sets the lr, then that is noted. If the instruction is a jump
282 * or call, then the new target pc is preserved and the current
283 * bundle instruction set to null.
285 * The necessary post-single-step rewriting information is stored in
286 * single_step_state-> We use data segment values because the
287 * stack will be rewound when we run the rewritten single-stepped
288 * instruction.
290 void single_step_once(struct pt_regs *regs)
292 extern tile_bundle_bits __single_step_ill_insn;
293 extern tile_bundle_bits __single_step_j_insn;
294 extern tile_bundle_bits __single_step_addli_insn;
295 extern tile_bundle_bits __single_step_auli_insn;
296 struct thread_info *info = (void *)current_thread_info();
297 struct single_step_state *state = info->step_state;
298 int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
299 tile_bundle_bits __user *buffer, *pc;
300 tile_bundle_bits bundle;
301 int temp_reg;
302 int target_reg = TREG_LR;
303 int err;
304 enum mem_op mem_op = MEMOP_NONE;
305 int size = 0, sign_ext = 0; /* happy compiler */
307 asm(
308 " .pushsection .rodata.single_step\n"
309 " .align 8\n"
310 " .globl __single_step_ill_insn\n"
311 "__single_step_ill_insn:\n"
312 " ill\n"
313 " .globl __single_step_addli_insn\n"
314 "__single_step_addli_insn:\n"
315 " { nop; addli r0, zero, 0 }\n"
316 " .globl __single_step_auli_insn\n"
317 "__single_step_auli_insn:\n"
318 " { nop; auli r0, r0, 0 }\n"
319 " .globl __single_step_j_insn\n"
320 "__single_step_j_insn:\n"
321 " j .\n"
322 " .popsection\n"
326 * Enable interrupts here to allow touching userspace and the like.
327 * The callers expect this: do_trap() already has interrupts
328 * enabled, and do_work_pending() handles functions that enable
329 * interrupts internally.
331 local_irq_enable();
333 if (state == NULL) {
334 /* allocate a page of writable, executable memory */
335 state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL);
336 if (state == NULL) {
337 pr_err("Out of kernel memory trying to single-step\n");
338 return;
341 /* allocate a cache line of writable, executable memory */
342 down_write(&current->mm->mmap_sem);
343 buffer = (void __user *) do_mmap(NULL, 0, 64,
344 PROT_EXEC | PROT_READ | PROT_WRITE,
345 MAP_PRIVATE | MAP_ANONYMOUS,
347 up_write(&current->mm->mmap_sem);
349 if (IS_ERR((void __force *)buffer)) {
350 kfree(state);
351 pr_err("Out of kernel pages trying to single-step\n");
352 return;
355 state->buffer = buffer;
356 state->is_enabled = 0;
358 info->step_state = state;
360 /* Validate our stored instruction patterns */
361 BUG_ON(get_Opcode_X1(__single_step_addli_insn) !=
362 ADDLI_OPCODE_X1);
363 BUG_ON(get_Opcode_X1(__single_step_auli_insn) !=
364 AULI_OPCODE_X1);
365 BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO);
366 BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0);
367 BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0);
371 * If we are returning from a syscall, we still haven't hit the
372 * "ill" for the swint1 instruction. So back the PC up to be
373 * pointing at the swint1, but we'll actually return directly
374 * back to the "ill" so we come back in via SIGILL as if we
375 * had "executed" the swint1 without ever being in kernel space.
377 if (regs->faultnum == INT_SWINT_1)
378 regs->pc -= 8;
380 pc = (tile_bundle_bits __user *)(regs->pc);
381 if (get_user(bundle, pc) != 0) {
382 pr_err("Couldn't read instruction at %p trying to step\n", pc);
383 return;
386 /* We'll follow the instruction with 2 ill op bundles */
387 state->orig_pc = (unsigned long)pc;
388 state->next_pc = (unsigned long)(pc + 1);
389 state->branch_next_pc = 0;
390 state->update = 0;
392 if (!(bundle & TILE_BUNDLE_Y_ENCODING_MASK)) {
393 /* two wide, check for control flow */
394 int opcode = get_Opcode_X1(bundle);
396 switch (opcode) {
397 /* branches */
398 case BRANCH_OPCODE_X1:
400 s32 offset = signExtend17(get_BrOff_X1(bundle));
403 * For branches, we use a rewriting trick to let the
404 * hardware evaluate whether the branch is taken or
405 * untaken. We record the target offset and then
406 * rewrite the branch instruction to target 1 insn
407 * ahead if the branch is taken. We then follow the
408 * rewritten branch with two bundles, each containing
409 * an "ill" instruction. The supervisor examines the
410 * pc after the single step code is executed, and if
411 * the pc is the first ill instruction, then the
412 * branch (if any) was not taken. If the pc is the
413 * second ill instruction, then the branch was
414 * taken. The new pc is computed for these cases, and
415 * inserted into the registers for the thread. If
416 * the pc is the start of the single step code, then
417 * an exception or interrupt was taken before the
418 * code started processing, and the same "original"
419 * pc is restored. This change, different from the
420 * original implementation, has the advantage of
421 * executing a single user instruction.
423 state->branch_next_pc = (unsigned long)(pc + offset);
425 /* rewrite branch offset to go forward one bundle */
426 bundle = set_BrOff_X1(bundle, 2);
428 break;
430 /* jumps */
431 case JALB_OPCODE_X1:
432 case JALF_OPCODE_X1:
433 state->update = 1;
434 state->next_pc =
435 (unsigned long) (pc + get_JOffLong_X1(bundle));
436 break;
438 case JB_OPCODE_X1:
439 case JF_OPCODE_X1:
440 state->next_pc =
441 (unsigned long) (pc + get_JOffLong_X1(bundle));
442 bundle = nop_X1(bundle);
443 break;
445 case SPECIAL_0_OPCODE_X1:
446 switch (get_RRROpcodeExtension_X1(bundle)) {
447 /* jump-register */
448 case JALRP_SPECIAL_0_OPCODE_X1:
449 case JALR_SPECIAL_0_OPCODE_X1:
450 state->update = 1;
451 state->next_pc =
452 regs->regs[get_SrcA_X1(bundle)];
453 break;
455 case JRP_SPECIAL_0_OPCODE_X1:
456 case JR_SPECIAL_0_OPCODE_X1:
457 state->next_pc =
458 regs->regs[get_SrcA_X1(bundle)];
459 bundle = nop_X1(bundle);
460 break;
462 case LNK_SPECIAL_0_OPCODE_X1:
463 state->update = 1;
464 target_reg = get_Dest_X1(bundle);
465 break;
467 /* stores */
468 case SH_SPECIAL_0_OPCODE_X1:
469 mem_op = MEMOP_STORE;
470 size = 2;
471 break;
473 case SW_SPECIAL_0_OPCODE_X1:
474 mem_op = MEMOP_STORE;
475 size = 4;
476 break;
478 break;
480 /* loads and iret */
481 case SHUN_0_OPCODE_X1:
482 if (get_UnShOpcodeExtension_X1(bundle) ==
483 UN_0_SHUN_0_OPCODE_X1) {
484 switch (get_UnOpcodeExtension_X1(bundle)) {
485 case LH_UN_0_SHUN_0_OPCODE_X1:
486 mem_op = MEMOP_LOAD;
487 size = 2;
488 sign_ext = 1;
489 break;
491 case LH_U_UN_0_SHUN_0_OPCODE_X1:
492 mem_op = MEMOP_LOAD;
493 size = 2;
494 sign_ext = 0;
495 break;
497 case LW_UN_0_SHUN_0_OPCODE_X1:
498 mem_op = MEMOP_LOAD;
499 size = 4;
500 break;
502 case IRET_UN_0_SHUN_0_OPCODE_X1:
504 unsigned long ex0_0 = __insn_mfspr(
505 SPR_EX_CONTEXT_0_0);
506 unsigned long ex0_1 = __insn_mfspr(
507 SPR_EX_CONTEXT_0_1);
509 * Special-case it if we're iret'ing
510 * to PL0 again. Otherwise just let
511 * it run and it will generate SIGILL.
513 if (EX1_PL(ex0_1) == USER_PL) {
514 state->next_pc = ex0_0;
515 regs->ex1 = ex0_1;
516 bundle = nop_X1(bundle);
521 break;
523 #if CHIP_HAS_WH64()
524 /* postincrement operations */
525 case IMM_0_OPCODE_X1:
526 switch (get_ImmOpcodeExtension_X1(bundle)) {
527 case LWADD_IMM_0_OPCODE_X1:
528 mem_op = MEMOP_LOAD_POSTINCR;
529 size = 4;
530 break;
532 case LHADD_IMM_0_OPCODE_X1:
533 mem_op = MEMOP_LOAD_POSTINCR;
534 size = 2;
535 sign_ext = 1;
536 break;
538 case LHADD_U_IMM_0_OPCODE_X1:
539 mem_op = MEMOP_LOAD_POSTINCR;
540 size = 2;
541 sign_ext = 0;
542 break;
544 case SWADD_IMM_0_OPCODE_X1:
545 mem_op = MEMOP_STORE_POSTINCR;
546 size = 4;
547 break;
549 case SHADD_IMM_0_OPCODE_X1:
550 mem_op = MEMOP_STORE_POSTINCR;
551 size = 2;
552 break;
554 default:
555 break;
557 break;
558 #endif /* CHIP_HAS_WH64() */
561 if (state->update) {
563 * Get an available register. We start with a
564 * bitmask with 1's for available registers.
565 * We truncate to the low 32 registers since
566 * we are guaranteed to have set bits in the
567 * low 32 bits, then use ctz to pick the first.
569 u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) |
570 (1ULL << get_SrcA_X0(bundle)) |
571 (1ULL << get_SrcB_X0(bundle)) |
572 (1ULL << target_reg));
573 temp_reg = __builtin_ctz(mask);
574 state->update_reg = temp_reg;
575 state->update_value = regs->regs[temp_reg];
576 regs->regs[temp_reg] = (unsigned long) (pc+1);
577 regs->flags |= PT_FLAGS_RESTORE_REGS;
578 bundle = move_X1(bundle, target_reg, temp_reg);
580 } else {
581 int opcode = get_Opcode_Y2(bundle);
583 switch (opcode) {
584 /* loads */
585 case LH_OPCODE_Y2:
586 mem_op = MEMOP_LOAD;
587 size = 2;
588 sign_ext = 1;
589 break;
591 case LH_U_OPCODE_Y2:
592 mem_op = MEMOP_LOAD;
593 size = 2;
594 sign_ext = 0;
595 break;
597 case LW_OPCODE_Y2:
598 mem_op = MEMOP_LOAD;
599 size = 4;
600 break;
602 /* stores */
603 case SH_OPCODE_Y2:
604 mem_op = MEMOP_STORE;
605 size = 2;
606 break;
608 case SW_OPCODE_Y2:
609 mem_op = MEMOP_STORE;
610 size = 4;
611 break;
616 * Check if we need to rewrite an unaligned load/store.
617 * Returning zero is a special value meaning we need to SIGSEGV.
619 if (mem_op != MEMOP_NONE && unaligned_fixup >= 0) {
620 bundle = rewrite_load_store_unaligned(state, bundle, regs,
621 mem_op, size, sign_ext);
622 if (bundle == 0)
623 return;
626 /* write the bundle to our execution area */
627 buffer = state->buffer;
628 err = __put_user(bundle, buffer++);
631 * If we're really single-stepping, we take an INT_ILL after.
632 * If we're just handling an unaligned access, we can just
633 * jump directly back to where we were in user code.
635 if (is_single_step) {
636 err |= __put_user(__single_step_ill_insn, buffer++);
637 err |= __put_user(__single_step_ill_insn, buffer++);
638 } else {
639 long delta;
641 if (state->update) {
642 /* We have some state to update; do it inline */
643 int ha16;
644 bundle = __single_step_addli_insn;
645 bundle |= create_Dest_X1(state->update_reg);
646 bundle |= create_Imm16_X1(state->update_value);
647 err |= __put_user(bundle, buffer++);
648 bundle = __single_step_auli_insn;
649 bundle |= create_Dest_X1(state->update_reg);
650 bundle |= create_SrcA_X1(state->update_reg);
651 ha16 = (state->update_value + 0x8000) >> 16;
652 bundle |= create_Imm16_X1(ha16);
653 err |= __put_user(bundle, buffer++);
654 state->update = 0;
657 /* End with a jump back to the next instruction */
658 delta = ((regs->pc + TILE_BUNDLE_SIZE_IN_BYTES) -
659 (unsigned long)buffer) >>
660 TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES;
661 bundle = __single_step_j_insn;
662 bundle |= create_JOffLong_X1(delta);
663 err |= __put_user(bundle, buffer++);
666 if (err) {
667 pr_err("Fault when writing to single-step buffer\n");
668 return;
672 * Flush the buffer.
673 * We do a local flush only, since this is a thread-specific buffer.
675 __flush_icache_range((unsigned long)state->buffer,
676 (unsigned long)buffer);
678 /* Indicate enabled */
679 state->is_enabled = is_single_step;
680 regs->pc = (unsigned long)state->buffer;
682 /* Fault immediately if we are coming back from a syscall. */
683 if (regs->faultnum == INT_SWINT_1)
684 regs->pc += 8;
687 #else
688 #include <linux/smp.h>
689 #include <linux/ptrace.h>
690 #include <arch/spr_def.h>
692 static DEFINE_PER_CPU(unsigned long, ss_saved_pc);
696 * Called directly on the occasion of an interrupt.
698 * If the process doesn't have single step set, then we use this as an
699 * opportunity to turn single step off.
701 * It has been mentioned that we could conditionally turn off single stepping
702 * on each entry into the kernel and rely on single_step_once to turn it
703 * on for the processes that matter (as we already do), but this
704 * implementation is somewhat more efficient in that we muck with registers
705 * once on a bum interrupt rather than on every entry into the kernel.
707 * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred,
708 * so we have to run through this process again before we can say that an
709 * instruction has executed.
711 * swint will set CANCELED, but it's a legitimate instruction. Fortunately
712 * it changes the PC. If it hasn't changed, then we know that the interrupt
713 * wasn't generated by swint and we'll need to run this process again before
714 * we can say an instruction has executed.
716 * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get
717 * on with our lives.
720 void gx_singlestep_handle(struct pt_regs *regs, int fault_num)
722 unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
723 struct thread_info *info = (void *)current_thread_info();
724 int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
725 unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
727 if (is_single_step == 0) {
728 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 0);
730 } else if ((*ss_pc != regs->pc) ||
731 (!(control & SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK))) {
733 ptrace_notify(SIGTRAP);
734 control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
735 control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
736 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
742 * Called from need_singlestep. Set up the control registers and the enable
743 * register, then return back.
746 void single_step_once(struct pt_regs *regs)
748 unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
749 unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
751 *ss_pc = regs->pc;
752 control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
753 control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
754 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
755 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 1 << USER_PL);
758 void single_step_execve(void)
760 /* Nothing */
763 #endif /* !__tilegx__ */