1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
11 * Nicholas A. Bellinger <nab@kernel.org>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 ******************************************************************************/
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <asm/unaligned.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
47 #include <target/target_core_base.h>
48 #include <target/target_core_device.h>
49 #include <target/target_core_tmr.h>
50 #include <target/target_core_tpg.h>
51 #include <target/target_core_transport.h>
52 #include <target/target_core_fabric_ops.h>
53 #include <target/target_core_configfs.h>
55 #include "target_core_alua.h"
56 #include "target_core_cdb.h"
57 #include "target_core_hba.h"
58 #include "target_core_pr.h"
59 #include "target_core_ua.h"
61 static int sub_api_initialized
;
63 static struct workqueue_struct
*target_completion_wq
;
64 static struct kmem_cache
*se_cmd_cache
;
65 static struct kmem_cache
*se_sess_cache
;
66 struct kmem_cache
*se_tmr_req_cache
;
67 struct kmem_cache
*se_ua_cache
;
68 struct kmem_cache
*t10_pr_reg_cache
;
69 struct kmem_cache
*t10_alua_lu_gp_cache
;
70 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
71 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
72 struct kmem_cache
*t10_alua_tg_pt_gp_mem_cache
;
74 static int transport_generic_write_pending(struct se_cmd
*);
75 static int transport_processing_thread(void *param
);
76 static int __transport_execute_tasks(struct se_device
*dev
);
77 static void transport_complete_task_attr(struct se_cmd
*cmd
);
78 static void transport_handle_queue_full(struct se_cmd
*cmd
,
79 struct se_device
*dev
);
80 static void transport_free_dev_tasks(struct se_cmd
*cmd
);
81 static int transport_generic_get_mem(struct se_cmd
*cmd
);
82 static void transport_put_cmd(struct se_cmd
*cmd
);
83 static void transport_remove_cmd_from_queue(struct se_cmd
*cmd
);
84 static int transport_set_sense_codes(struct se_cmd
*cmd
, u8 asc
, u8 ascq
);
85 static void transport_generic_request_failure(struct se_cmd
*, int, int);
86 static void target_complete_ok_work(struct work_struct
*work
);
88 int init_se_kmem_caches(void)
90 se_cmd_cache
= kmem_cache_create("se_cmd_cache",
91 sizeof(struct se_cmd
), __alignof__(struct se_cmd
), 0, NULL
);
93 pr_err("kmem_cache_create for struct se_cmd failed\n");
96 se_tmr_req_cache
= kmem_cache_create("se_tmr_cache",
97 sizeof(struct se_tmr_req
), __alignof__(struct se_tmr_req
),
99 if (!se_tmr_req_cache
) {
100 pr_err("kmem_cache_create() for struct se_tmr_req"
102 goto out_free_cmd_cache
;
104 se_sess_cache
= kmem_cache_create("se_sess_cache",
105 sizeof(struct se_session
), __alignof__(struct se_session
),
107 if (!se_sess_cache
) {
108 pr_err("kmem_cache_create() for struct se_session"
110 goto out_free_tmr_req_cache
;
112 se_ua_cache
= kmem_cache_create("se_ua_cache",
113 sizeof(struct se_ua
), __alignof__(struct se_ua
),
116 pr_err("kmem_cache_create() for struct se_ua failed\n");
117 goto out_free_sess_cache
;
119 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
120 sizeof(struct t10_pr_registration
),
121 __alignof__(struct t10_pr_registration
), 0, NULL
);
122 if (!t10_pr_reg_cache
) {
123 pr_err("kmem_cache_create() for struct t10_pr_registration"
125 goto out_free_ua_cache
;
127 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
128 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
130 if (!t10_alua_lu_gp_cache
) {
131 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
133 goto out_free_pr_reg_cache
;
135 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
136 sizeof(struct t10_alua_lu_gp_member
),
137 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
138 if (!t10_alua_lu_gp_mem_cache
) {
139 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
141 goto out_free_lu_gp_cache
;
143 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
144 sizeof(struct t10_alua_tg_pt_gp
),
145 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
146 if (!t10_alua_tg_pt_gp_cache
) {
147 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
149 goto out_free_lu_gp_mem_cache
;
151 t10_alua_tg_pt_gp_mem_cache
= kmem_cache_create(
152 "t10_alua_tg_pt_gp_mem_cache",
153 sizeof(struct t10_alua_tg_pt_gp_member
),
154 __alignof__(struct t10_alua_tg_pt_gp_member
),
156 if (!t10_alua_tg_pt_gp_mem_cache
) {
157 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
159 goto out_free_tg_pt_gp_cache
;
162 target_completion_wq
= alloc_workqueue("target_completion",
164 if (!target_completion_wq
)
165 goto out_free_tg_pt_gp_mem_cache
;
169 out_free_tg_pt_gp_mem_cache
:
170 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
171 out_free_tg_pt_gp_cache
:
172 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
173 out_free_lu_gp_mem_cache
:
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
175 out_free_lu_gp_cache
:
176 kmem_cache_destroy(t10_alua_lu_gp_cache
);
177 out_free_pr_reg_cache
:
178 kmem_cache_destroy(t10_pr_reg_cache
);
180 kmem_cache_destroy(se_ua_cache
);
182 kmem_cache_destroy(se_sess_cache
);
183 out_free_tmr_req_cache
:
184 kmem_cache_destroy(se_tmr_req_cache
);
186 kmem_cache_destroy(se_cmd_cache
);
191 void release_se_kmem_caches(void)
193 destroy_workqueue(target_completion_wq
);
194 kmem_cache_destroy(se_cmd_cache
);
195 kmem_cache_destroy(se_tmr_req_cache
);
196 kmem_cache_destroy(se_sess_cache
);
197 kmem_cache_destroy(se_ua_cache
);
198 kmem_cache_destroy(t10_pr_reg_cache
);
199 kmem_cache_destroy(t10_alua_lu_gp_cache
);
200 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
201 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
202 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
205 /* This code ensures unique mib indexes are handed out. */
206 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
207 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
210 * Allocate a new row index for the entry type specified
212 u32
scsi_get_new_index(scsi_index_t type
)
216 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
218 spin_lock(&scsi_mib_index_lock
);
219 new_index
= ++scsi_mib_index
[type
];
220 spin_unlock(&scsi_mib_index_lock
);
225 void transport_init_queue_obj(struct se_queue_obj
*qobj
)
227 atomic_set(&qobj
->queue_cnt
, 0);
228 INIT_LIST_HEAD(&qobj
->qobj_list
);
229 init_waitqueue_head(&qobj
->thread_wq
);
230 spin_lock_init(&qobj
->cmd_queue_lock
);
232 EXPORT_SYMBOL(transport_init_queue_obj
);
234 void transport_subsystem_check_init(void)
238 if (sub_api_initialized
)
241 ret
= request_module("target_core_iblock");
243 pr_err("Unable to load target_core_iblock\n");
245 ret
= request_module("target_core_file");
247 pr_err("Unable to load target_core_file\n");
249 ret
= request_module("target_core_pscsi");
251 pr_err("Unable to load target_core_pscsi\n");
253 ret
= request_module("target_core_stgt");
255 pr_err("Unable to load target_core_stgt\n");
257 sub_api_initialized
= 1;
261 struct se_session
*transport_init_session(void)
263 struct se_session
*se_sess
;
265 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
267 pr_err("Unable to allocate struct se_session from"
269 return ERR_PTR(-ENOMEM
);
271 INIT_LIST_HEAD(&se_sess
->sess_list
);
272 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
273 INIT_LIST_HEAD(&se_sess
->sess_cmd_list
);
274 INIT_LIST_HEAD(&se_sess
->sess_wait_list
);
275 spin_lock_init(&se_sess
->sess_cmd_lock
);
279 EXPORT_SYMBOL(transport_init_session
);
282 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
284 void __transport_register_session(
285 struct se_portal_group
*se_tpg
,
286 struct se_node_acl
*se_nacl
,
287 struct se_session
*se_sess
,
288 void *fabric_sess_ptr
)
290 unsigned char buf
[PR_REG_ISID_LEN
];
292 se_sess
->se_tpg
= se_tpg
;
293 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
295 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
297 * Only set for struct se_session's that will actually be moving I/O.
298 * eg: *NOT* discovery sessions.
302 * If the fabric module supports an ISID based TransportID,
303 * save this value in binary from the fabric I_T Nexus now.
305 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
306 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
307 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
308 &buf
[0], PR_REG_ISID_LEN
);
309 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
311 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
313 * The se_nacl->nacl_sess pointer will be set to the
314 * last active I_T Nexus for each struct se_node_acl.
316 se_nacl
->nacl_sess
= se_sess
;
318 list_add_tail(&se_sess
->sess_acl_list
,
319 &se_nacl
->acl_sess_list
);
320 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
322 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
324 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
325 se_tpg
->se_tpg_tfo
->get_fabric_name(), se_sess
->fabric_sess_ptr
);
327 EXPORT_SYMBOL(__transport_register_session
);
329 void transport_register_session(
330 struct se_portal_group
*se_tpg
,
331 struct se_node_acl
*se_nacl
,
332 struct se_session
*se_sess
,
333 void *fabric_sess_ptr
)
335 spin_lock_bh(&se_tpg
->session_lock
);
336 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
337 spin_unlock_bh(&se_tpg
->session_lock
);
339 EXPORT_SYMBOL(transport_register_session
);
341 void transport_deregister_session_configfs(struct se_session
*se_sess
)
343 struct se_node_acl
*se_nacl
;
346 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
348 se_nacl
= se_sess
->se_node_acl
;
350 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
351 list_del(&se_sess
->sess_acl_list
);
353 * If the session list is empty, then clear the pointer.
354 * Otherwise, set the struct se_session pointer from the tail
355 * element of the per struct se_node_acl active session list.
357 if (list_empty(&se_nacl
->acl_sess_list
))
358 se_nacl
->nacl_sess
= NULL
;
360 se_nacl
->nacl_sess
= container_of(
361 se_nacl
->acl_sess_list
.prev
,
362 struct se_session
, sess_acl_list
);
364 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
367 EXPORT_SYMBOL(transport_deregister_session_configfs
);
369 void transport_free_session(struct se_session
*se_sess
)
371 kmem_cache_free(se_sess_cache
, se_sess
);
373 EXPORT_SYMBOL(transport_free_session
);
375 void transport_deregister_session(struct se_session
*se_sess
)
377 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
378 struct se_node_acl
*se_nacl
;
382 transport_free_session(se_sess
);
386 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
387 list_del(&se_sess
->sess_list
);
388 se_sess
->se_tpg
= NULL
;
389 se_sess
->fabric_sess_ptr
= NULL
;
390 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
393 * Determine if we need to do extra work for this initiator node's
394 * struct se_node_acl if it had been previously dynamically generated.
396 se_nacl
= se_sess
->se_node_acl
;
398 spin_lock_irqsave(&se_tpg
->acl_node_lock
, flags
);
399 if (se_nacl
->dynamic_node_acl
) {
400 if (!se_tpg
->se_tpg_tfo
->tpg_check_demo_mode_cache(
402 list_del(&se_nacl
->acl_list
);
403 se_tpg
->num_node_acls
--;
404 spin_unlock_irqrestore(&se_tpg
->acl_node_lock
, flags
);
406 core_tpg_wait_for_nacl_pr_ref(se_nacl
);
407 core_free_device_list_for_node(se_nacl
, se_tpg
);
408 se_tpg
->se_tpg_tfo
->tpg_release_fabric_acl(se_tpg
,
410 spin_lock_irqsave(&se_tpg
->acl_node_lock
, flags
);
413 spin_unlock_irqrestore(&se_tpg
->acl_node_lock
, flags
);
416 transport_free_session(se_sess
);
418 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
419 se_tpg
->se_tpg_tfo
->get_fabric_name());
421 EXPORT_SYMBOL(transport_deregister_session
);
424 * Called with cmd->t_state_lock held.
426 static void transport_all_task_dev_remove_state(struct se_cmd
*cmd
)
428 struct se_device
*dev
= cmd
->se_dev
;
429 struct se_task
*task
;
435 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
436 if (task
->task_flags
& TF_ACTIVE
)
439 if (!atomic_read(&task
->task_state_active
))
442 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
443 list_del(&task
->t_state_list
);
444 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
445 cmd
->se_tfo
->get_task_tag(cmd
), dev
, task
);
446 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
448 atomic_set(&task
->task_state_active
, 0);
449 atomic_dec(&cmd
->t_task_cdbs_ex_left
);
453 /* transport_cmd_check_stop():
455 * 'transport_off = 1' determines if t_transport_active should be cleared.
456 * 'transport_off = 2' determines if task_dev_state should be removed.
458 * A non-zero u8 t_state sets cmd->t_state.
459 * Returns 1 when command is stopped, else 0.
461 static int transport_cmd_check_stop(
468 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
470 * Determine if IOCTL context caller in requesting the stopping of this
471 * command for LUN shutdown purposes.
473 if (atomic_read(&cmd
->transport_lun_stop
)) {
474 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
475 " == TRUE for ITT: 0x%08x\n", __func__
, __LINE__
,
476 cmd
->se_tfo
->get_task_tag(cmd
));
478 atomic_set(&cmd
->t_transport_active
, 0);
479 if (transport_off
== 2)
480 transport_all_task_dev_remove_state(cmd
);
481 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
483 complete(&cmd
->transport_lun_stop_comp
);
487 * Determine if frontend context caller is requesting the stopping of
488 * this command for frontend exceptions.
490 if (atomic_read(&cmd
->t_transport_stop
)) {
491 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
492 " TRUE for ITT: 0x%08x\n", __func__
, __LINE__
,
493 cmd
->se_tfo
->get_task_tag(cmd
));
495 if (transport_off
== 2)
496 transport_all_task_dev_remove_state(cmd
);
499 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
502 if (transport_off
== 2)
504 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
506 complete(&cmd
->t_transport_stop_comp
);
510 atomic_set(&cmd
->t_transport_active
, 0);
511 if (transport_off
== 2) {
512 transport_all_task_dev_remove_state(cmd
);
514 * Clear struct se_cmd->se_lun before the transport_off == 2
515 * handoff to fabric module.
519 * Some fabric modules like tcm_loop can release
520 * their internally allocated I/O reference now and
523 * Fabric modules are expected to return '1' here if the
524 * se_cmd being passed is released at this point,
525 * or zero if not being released.
527 if (cmd
->se_tfo
->check_stop_free
!= NULL
) {
528 spin_unlock_irqrestore(
529 &cmd
->t_state_lock
, flags
);
531 return cmd
->se_tfo
->check_stop_free(cmd
);
534 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
538 cmd
->t_state
= t_state
;
539 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
544 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
546 return transport_cmd_check_stop(cmd
, 2, 0);
549 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
551 struct se_lun
*lun
= cmd
->se_lun
;
557 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
558 if (!atomic_read(&cmd
->transport_dev_active
)) {
559 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
562 atomic_set(&cmd
->transport_dev_active
, 0);
563 transport_all_task_dev_remove_state(cmd
);
564 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
568 spin_lock_irqsave(&lun
->lun_cmd_lock
, flags
);
569 if (atomic_read(&cmd
->transport_lun_active
)) {
570 list_del(&cmd
->se_lun_node
);
571 atomic_set(&cmd
->transport_lun_active
, 0);
573 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
574 cmd
->se_tfo
->get_task_tag(cmd
), lun
->unpacked_lun
);
577 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, flags
);
580 void transport_cmd_finish_abort(struct se_cmd
*cmd
, int remove
)
582 if (!cmd
->se_tmr_req
)
583 transport_lun_remove_cmd(cmd
);
585 if (transport_cmd_check_stop_to_fabric(cmd
))
588 transport_remove_cmd_from_queue(cmd
);
589 transport_put_cmd(cmd
);
593 static void transport_add_cmd_to_queue(struct se_cmd
*cmd
, int t_state
,
596 struct se_device
*dev
= cmd
->se_dev
;
597 struct se_queue_obj
*qobj
= &dev
->dev_queue_obj
;
601 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
602 cmd
->t_state
= t_state
;
603 atomic_set(&cmd
->t_transport_active
, 1);
604 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
607 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
609 /* If the cmd is already on the list, remove it before we add it */
610 if (!list_empty(&cmd
->se_queue_node
))
611 list_del(&cmd
->se_queue_node
);
613 atomic_inc(&qobj
->queue_cnt
);
616 list_add(&cmd
->se_queue_node
, &qobj
->qobj_list
);
618 list_add_tail(&cmd
->se_queue_node
, &qobj
->qobj_list
);
619 atomic_set(&cmd
->t_transport_queue_active
, 1);
620 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
622 wake_up_interruptible(&qobj
->thread_wq
);
625 static struct se_cmd
*
626 transport_get_cmd_from_queue(struct se_queue_obj
*qobj
)
631 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
632 if (list_empty(&qobj
->qobj_list
)) {
633 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
636 cmd
= list_first_entry(&qobj
->qobj_list
, struct se_cmd
, se_queue_node
);
638 atomic_set(&cmd
->t_transport_queue_active
, 0);
640 list_del_init(&cmd
->se_queue_node
);
641 atomic_dec(&qobj
->queue_cnt
);
642 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
647 static void transport_remove_cmd_from_queue(struct se_cmd
*cmd
)
649 struct se_queue_obj
*qobj
= &cmd
->se_dev
->dev_queue_obj
;
652 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
653 if (!atomic_read(&cmd
->t_transport_queue_active
)) {
654 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
657 atomic_set(&cmd
->t_transport_queue_active
, 0);
658 atomic_dec(&qobj
->queue_cnt
);
659 list_del_init(&cmd
->se_queue_node
);
660 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
662 if (atomic_read(&cmd
->t_transport_queue_active
)) {
663 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
664 cmd
->se_tfo
->get_task_tag(cmd
),
665 atomic_read(&cmd
->t_transport_queue_active
));
670 * Completion function used by TCM subsystem plugins (such as FILEIO)
671 * for queueing up response from struct se_subsystem_api->do_task()
673 void transport_complete_sync_cache(struct se_cmd
*cmd
, int good
)
675 struct se_task
*task
= list_entry(cmd
->t_task_list
.next
,
676 struct se_task
, t_list
);
679 cmd
->scsi_status
= SAM_STAT_GOOD
;
680 task
->task_scsi_status
= GOOD
;
682 task
->task_scsi_status
= SAM_STAT_CHECK_CONDITION
;
683 task
->task_error_status
= PYX_TRANSPORT_ILLEGAL_REQUEST
;
684 task
->task_se_cmd
->transport_error_status
=
685 PYX_TRANSPORT_ILLEGAL_REQUEST
;
688 transport_complete_task(task
, good
);
690 EXPORT_SYMBOL(transport_complete_sync_cache
);
692 static void target_complete_failure_work(struct work_struct
*work
)
694 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
696 transport_generic_request_failure(cmd
, 1, 1);
699 /* transport_complete_task():
701 * Called from interrupt and non interrupt context depending
702 * on the transport plugin.
704 void transport_complete_task(struct se_task
*task
, int success
)
706 struct se_cmd
*cmd
= task
->task_se_cmd
;
707 struct se_device
*dev
= cmd
->se_dev
;
710 pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task
,
711 cmd
->t_task_cdb
[0], dev
);
714 atomic_inc(&dev
->depth_left
);
716 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
717 task
->task_flags
&= ~TF_ACTIVE
;
720 * See if any sense data exists, if so set the TASK_SENSE flag.
721 * Also check for any other post completion work that needs to be
722 * done by the plugins.
724 if (dev
&& dev
->transport
->transport_complete
) {
725 if (dev
->transport
->transport_complete(task
) != 0) {
726 cmd
->se_cmd_flags
|= SCF_TRANSPORT_TASK_SENSE
;
727 task
->task_sense
= 1;
733 * See if we are waiting for outstanding struct se_task
734 * to complete for an exception condition
736 if (task
->task_flags
& TF_REQUEST_STOP
) {
737 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
738 complete(&task
->task_stop_comp
);
743 cmd
->t_tasks_failed
= 1;
746 * Decrement the outstanding t_task_cdbs_left count. The last
747 * struct se_task from struct se_cmd will complete itself into the
748 * device queue depending upon int success.
750 if (!atomic_dec_and_test(&cmd
->t_task_cdbs_left
)) {
751 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
755 if (cmd
->t_tasks_failed
) {
756 if (!task
->task_error_status
) {
757 task
->task_error_status
=
758 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE
;
759 cmd
->transport_error_status
=
760 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE
;
762 INIT_WORK(&cmd
->work
, target_complete_failure_work
);
764 atomic_set(&cmd
->t_transport_complete
, 1);
765 INIT_WORK(&cmd
->work
, target_complete_ok_work
);
768 cmd
->t_state
= TRANSPORT_COMPLETE
;
769 atomic_set(&cmd
->t_transport_active
, 1);
770 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
772 queue_work(target_completion_wq
, &cmd
->work
);
774 EXPORT_SYMBOL(transport_complete_task
);
777 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
778 * struct se_task list are ready to be added to the active execution list
781 * Called with se_dev_t->execute_task_lock called.
783 static inline int transport_add_task_check_sam_attr(
784 struct se_task
*task
,
785 struct se_task
*task_prev
,
786 struct se_device
*dev
)
789 * No SAM Task attribute emulation enabled, add to tail of
792 if (dev
->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
) {
793 list_add_tail(&task
->t_execute_list
, &dev
->execute_task_list
);
797 * HEAD_OF_QUEUE attribute for received CDB, which means
798 * the first task that is associated with a struct se_cmd goes to
799 * head of the struct se_device->execute_task_list, and task_prev
800 * after that for each subsequent task
802 if (task
->task_se_cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
803 list_add(&task
->t_execute_list
,
804 (task_prev
!= NULL
) ?
805 &task_prev
->t_execute_list
:
806 &dev
->execute_task_list
);
808 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
809 " in execution queue\n",
810 task
->task_se_cmd
->t_task_cdb
[0]);
814 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
815 * transitioned from Dermant -> Active state, and are added to the end
816 * of the struct se_device->execute_task_list
818 list_add_tail(&task
->t_execute_list
, &dev
->execute_task_list
);
822 /* __transport_add_task_to_execute_queue():
824 * Called with se_dev_t->execute_task_lock called.
826 static void __transport_add_task_to_execute_queue(
827 struct se_task
*task
,
828 struct se_task
*task_prev
,
829 struct se_device
*dev
)
833 head_of_queue
= transport_add_task_check_sam_attr(task
, task_prev
, dev
);
834 atomic_inc(&dev
->execute_tasks
);
836 if (atomic_read(&task
->task_state_active
))
839 * Determine if this task needs to go to HEAD_OF_QUEUE for the
840 * state list as well. Running with SAM Task Attribute emulation
841 * will always return head_of_queue == 0 here
844 list_add(&task
->t_state_list
, (task_prev
) ?
845 &task_prev
->t_state_list
:
846 &dev
->state_task_list
);
848 list_add_tail(&task
->t_state_list
, &dev
->state_task_list
);
850 atomic_set(&task
->task_state_active
, 1);
852 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
853 task
->task_se_cmd
->se_tfo
->get_task_tag(task
->task_se_cmd
),
857 static void transport_add_tasks_to_state_queue(struct se_cmd
*cmd
)
859 struct se_device
*dev
= cmd
->se_dev
;
860 struct se_task
*task
;
863 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
864 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
865 if (atomic_read(&task
->task_state_active
))
868 spin_lock(&dev
->execute_task_lock
);
869 list_add_tail(&task
->t_state_list
, &dev
->state_task_list
);
870 atomic_set(&task
->task_state_active
, 1);
872 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
873 task
->task_se_cmd
->se_tfo
->get_task_tag(
874 task
->task_se_cmd
), task
, dev
);
876 spin_unlock(&dev
->execute_task_lock
);
878 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
881 static void transport_add_tasks_from_cmd(struct se_cmd
*cmd
)
883 struct se_device
*dev
= cmd
->se_dev
;
884 struct se_task
*task
, *task_prev
= NULL
;
887 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
888 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
889 if (!list_empty(&task
->t_execute_list
))
892 * __transport_add_task_to_execute_queue() handles the
893 * SAM Task Attribute emulation if enabled
895 __transport_add_task_to_execute_queue(task
, task_prev
, dev
);
898 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
901 void __transport_remove_task_from_execute_queue(struct se_task
*task
,
902 struct se_device
*dev
)
904 list_del_init(&task
->t_execute_list
);
905 atomic_dec(&dev
->execute_tasks
);
908 void transport_remove_task_from_execute_queue(
909 struct se_task
*task
,
910 struct se_device
*dev
)
914 if (WARN_ON(list_empty(&task
->t_execute_list
)))
917 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
918 __transport_remove_task_from_execute_queue(task
, dev
);
919 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
923 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
926 static void target_qf_do_work(struct work_struct
*work
)
928 struct se_device
*dev
= container_of(work
, struct se_device
,
930 LIST_HEAD(qf_cmd_list
);
931 struct se_cmd
*cmd
, *cmd_tmp
;
933 spin_lock_irq(&dev
->qf_cmd_lock
);
934 list_splice_init(&dev
->qf_cmd_list
, &qf_cmd_list
);
935 spin_unlock_irq(&dev
->qf_cmd_lock
);
937 list_for_each_entry_safe(cmd
, cmd_tmp
, &qf_cmd_list
, se_qf_node
) {
938 list_del(&cmd
->se_qf_node
);
939 atomic_dec(&dev
->dev_qf_count
);
940 smp_mb__after_atomic_dec();
942 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
943 " context: %s\n", cmd
->se_tfo
->get_fabric_name(), cmd
,
944 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
) ? "COMPLETE_OK" :
945 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
948 transport_add_cmd_to_queue(cmd
, cmd
->t_state
, true);
952 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
954 switch (cmd
->data_direction
) {
957 case DMA_FROM_DEVICE
:
961 case DMA_BIDIRECTIONAL
:
970 void transport_dump_dev_state(
971 struct se_device
*dev
,
975 *bl
+= sprintf(b
+ *bl
, "Status: ");
976 switch (dev
->dev_status
) {
977 case TRANSPORT_DEVICE_ACTIVATED
:
978 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
980 case TRANSPORT_DEVICE_DEACTIVATED
:
981 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
983 case TRANSPORT_DEVICE_SHUTDOWN
:
984 *bl
+= sprintf(b
+ *bl
, "SHUTDOWN");
986 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED
:
987 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED
:
988 *bl
+= sprintf(b
+ *bl
, "OFFLINE");
991 *bl
+= sprintf(b
+ *bl
, "UNKNOWN=%d", dev
->dev_status
);
995 *bl
+= sprintf(b
+ *bl
, " Execute/Left/Max Queue Depth: %d/%d/%d",
996 atomic_read(&dev
->execute_tasks
), atomic_read(&dev
->depth_left
),
998 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u MaxSectors: %u\n",
999 dev
->se_sub_dev
->se_dev_attrib
.block_size
, dev
->se_sub_dev
->se_dev_attrib
.max_sectors
);
1000 *bl
+= sprintf(b
+ *bl
, " ");
1003 void transport_dump_vpd_proto_id(
1004 struct t10_vpd
*vpd
,
1005 unsigned char *p_buf
,
1008 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1011 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1012 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
1014 switch (vpd
->protocol_identifier
) {
1016 sprintf(buf
+len
, "Fibre Channel\n");
1019 sprintf(buf
+len
, "Parallel SCSI\n");
1022 sprintf(buf
+len
, "SSA\n");
1025 sprintf(buf
+len
, "IEEE 1394\n");
1028 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
1032 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
1035 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
1038 sprintf(buf
+len
, "Automation/Drive Interface Transport"
1042 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
1045 sprintf(buf
+len
, "Unknown 0x%02x\n",
1046 vpd
->protocol_identifier
);
1051 strncpy(p_buf
, buf
, p_buf_len
);
1053 pr_debug("%s", buf
);
1057 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
1060 * Check if the Protocol Identifier Valid (PIV) bit is set..
1062 * from spc3r23.pdf section 7.5.1
1064 if (page_83
[1] & 0x80) {
1065 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
1066 vpd
->protocol_identifier_set
= 1;
1067 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
1070 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
1072 int transport_dump_vpd_assoc(
1073 struct t10_vpd
*vpd
,
1074 unsigned char *p_buf
,
1077 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1081 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1082 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
1084 switch (vpd
->association
) {
1086 sprintf(buf
+len
, "addressed logical unit\n");
1089 sprintf(buf
+len
, "target port\n");
1092 sprintf(buf
+len
, "SCSI target device\n");
1095 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
1101 strncpy(p_buf
, buf
, p_buf_len
);
1103 pr_debug("%s", buf
);
1108 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
1111 * The VPD identification association..
1113 * from spc3r23.pdf Section 7.6.3.1 Table 297
1115 vpd
->association
= (page_83
[1] & 0x30);
1116 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
1118 EXPORT_SYMBOL(transport_set_vpd_assoc
);
1120 int transport_dump_vpd_ident_type(
1121 struct t10_vpd
*vpd
,
1122 unsigned char *p_buf
,
1125 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1129 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1130 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
1132 switch (vpd
->device_identifier_type
) {
1134 sprintf(buf
+len
, "Vendor specific\n");
1137 sprintf(buf
+len
, "T10 Vendor ID based\n");
1140 sprintf(buf
+len
, "EUI-64 based\n");
1143 sprintf(buf
+len
, "NAA\n");
1146 sprintf(buf
+len
, "Relative target port identifier\n");
1149 sprintf(buf
+len
, "SCSI name string\n");
1152 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
1153 vpd
->device_identifier_type
);
1159 if (p_buf_len
< strlen(buf
)+1)
1161 strncpy(p_buf
, buf
, p_buf_len
);
1163 pr_debug("%s", buf
);
1169 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
1172 * The VPD identifier type..
1174 * from spc3r23.pdf Section 7.6.3.1 Table 298
1176 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
1177 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
1179 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1181 int transport_dump_vpd_ident(
1182 struct t10_vpd
*vpd
,
1183 unsigned char *p_buf
,
1186 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1189 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1191 switch (vpd
->device_identifier_code_set
) {
1192 case 0x01: /* Binary */
1193 sprintf(buf
, "T10 VPD Binary Device Identifier: %s\n",
1194 &vpd
->device_identifier
[0]);
1196 case 0x02: /* ASCII */
1197 sprintf(buf
, "T10 VPD ASCII Device Identifier: %s\n",
1198 &vpd
->device_identifier
[0]);
1200 case 0x03: /* UTF-8 */
1201 sprintf(buf
, "T10 VPD UTF-8 Device Identifier: %s\n",
1202 &vpd
->device_identifier
[0]);
1205 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1206 " 0x%02x", vpd
->device_identifier_code_set
);
1212 strncpy(p_buf
, buf
, p_buf_len
);
1214 pr_debug("%s", buf
);
1220 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1222 static const char hex_str
[] = "0123456789abcdef";
1223 int j
= 0, i
= 4; /* offset to start of the identifer */
1226 * The VPD Code Set (encoding)
1228 * from spc3r23.pdf Section 7.6.3.1 Table 296
1230 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1231 switch (vpd
->device_identifier_code_set
) {
1232 case 0x01: /* Binary */
1233 vpd
->device_identifier
[j
++] =
1234 hex_str
[vpd
->device_identifier_type
];
1235 while (i
< (4 + page_83
[3])) {
1236 vpd
->device_identifier
[j
++] =
1237 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1238 vpd
->device_identifier
[j
++] =
1239 hex_str
[page_83
[i
] & 0x0f];
1243 case 0x02: /* ASCII */
1244 case 0x03: /* UTF-8 */
1245 while (i
< (4 + page_83
[3]))
1246 vpd
->device_identifier
[j
++] = page_83
[i
++];
1252 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1254 EXPORT_SYMBOL(transport_set_vpd_ident
);
1256 static void core_setup_task_attr_emulation(struct se_device
*dev
)
1259 * If this device is from Target_Core_Mod/pSCSI, disable the
1260 * SAM Task Attribute emulation.
1262 * This is currently not available in upsream Linux/SCSI Target
1263 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1265 if (dev
->transport
->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
) {
1266 dev
->dev_task_attr_type
= SAM_TASK_ATTR_PASSTHROUGH
;
1270 dev
->dev_task_attr_type
= SAM_TASK_ATTR_EMULATED
;
1271 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1272 " device\n", dev
->transport
->name
,
1273 dev
->transport
->get_device_rev(dev
));
1276 static void scsi_dump_inquiry(struct se_device
*dev
)
1278 struct t10_wwn
*wwn
= &dev
->se_sub_dev
->t10_wwn
;
1281 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1283 pr_debug(" Vendor: ");
1284 for (i
= 0; i
< 8; i
++)
1285 if (wwn
->vendor
[i
] >= 0x20)
1286 pr_debug("%c", wwn
->vendor
[i
]);
1290 pr_debug(" Model: ");
1291 for (i
= 0; i
< 16; i
++)
1292 if (wwn
->model
[i
] >= 0x20)
1293 pr_debug("%c", wwn
->model
[i
]);
1297 pr_debug(" Revision: ");
1298 for (i
= 0; i
< 4; i
++)
1299 if (wwn
->revision
[i
] >= 0x20)
1300 pr_debug("%c", wwn
->revision
[i
]);
1306 device_type
= dev
->transport
->get_device_type(dev
);
1307 pr_debug(" Type: %s ", scsi_device_type(device_type
));
1308 pr_debug(" ANSI SCSI revision: %02x\n",
1309 dev
->transport
->get_device_rev(dev
));
1312 struct se_device
*transport_add_device_to_core_hba(
1314 struct se_subsystem_api
*transport
,
1315 struct se_subsystem_dev
*se_dev
,
1317 void *transport_dev
,
1318 struct se_dev_limits
*dev_limits
,
1319 const char *inquiry_prod
,
1320 const char *inquiry_rev
)
1323 struct se_device
*dev
;
1325 dev
= kzalloc(sizeof(struct se_device
), GFP_KERNEL
);
1327 pr_err("Unable to allocate memory for se_dev_t\n");
1331 transport_init_queue_obj(&dev
->dev_queue_obj
);
1332 dev
->dev_flags
= device_flags
;
1333 dev
->dev_status
|= TRANSPORT_DEVICE_DEACTIVATED
;
1334 dev
->dev_ptr
= transport_dev
;
1336 dev
->se_sub_dev
= se_dev
;
1337 dev
->transport
= transport
;
1338 atomic_set(&dev
->active_cmds
, 0);
1339 INIT_LIST_HEAD(&dev
->dev_list
);
1340 INIT_LIST_HEAD(&dev
->dev_sep_list
);
1341 INIT_LIST_HEAD(&dev
->dev_tmr_list
);
1342 INIT_LIST_HEAD(&dev
->execute_task_list
);
1343 INIT_LIST_HEAD(&dev
->delayed_cmd_list
);
1344 INIT_LIST_HEAD(&dev
->ordered_cmd_list
);
1345 INIT_LIST_HEAD(&dev
->state_task_list
);
1346 INIT_LIST_HEAD(&dev
->qf_cmd_list
);
1347 spin_lock_init(&dev
->execute_task_lock
);
1348 spin_lock_init(&dev
->delayed_cmd_lock
);
1349 spin_lock_init(&dev
->ordered_cmd_lock
);
1350 spin_lock_init(&dev
->state_task_lock
);
1351 spin_lock_init(&dev
->dev_alua_lock
);
1352 spin_lock_init(&dev
->dev_reservation_lock
);
1353 spin_lock_init(&dev
->dev_status_lock
);
1354 spin_lock_init(&dev
->dev_status_thr_lock
);
1355 spin_lock_init(&dev
->se_port_lock
);
1356 spin_lock_init(&dev
->se_tmr_lock
);
1357 spin_lock_init(&dev
->qf_cmd_lock
);
1359 dev
->queue_depth
= dev_limits
->queue_depth
;
1360 atomic_set(&dev
->depth_left
, dev
->queue_depth
);
1361 atomic_set(&dev
->dev_ordered_id
, 0);
1363 se_dev_set_default_attribs(dev
, dev_limits
);
1365 dev
->dev_index
= scsi_get_new_index(SCSI_DEVICE_INDEX
);
1366 dev
->creation_time
= get_jiffies_64();
1367 spin_lock_init(&dev
->stats_lock
);
1369 spin_lock(&hba
->device_lock
);
1370 list_add_tail(&dev
->dev_list
, &hba
->hba_dev_list
);
1372 spin_unlock(&hba
->device_lock
);
1374 * Setup the SAM Task Attribute emulation for struct se_device
1376 core_setup_task_attr_emulation(dev
);
1378 * Force PR and ALUA passthrough emulation with internal object use.
1380 force_pt
= (hba
->hba_flags
& HBA_FLAGS_INTERNAL_USE
);
1382 * Setup the Reservations infrastructure for struct se_device
1384 core_setup_reservations(dev
, force_pt
);
1386 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1388 if (core_setup_alua(dev
, force_pt
) < 0)
1392 * Startup the struct se_device processing thread
1394 dev
->process_thread
= kthread_run(transport_processing_thread
, dev
,
1395 "LIO_%s", dev
->transport
->name
);
1396 if (IS_ERR(dev
->process_thread
)) {
1397 pr_err("Unable to create kthread: LIO_%s\n",
1398 dev
->transport
->name
);
1402 * Setup work_queue for QUEUE_FULL
1404 INIT_WORK(&dev
->qf_work_queue
, target_qf_do_work
);
1406 * Preload the initial INQUIRY const values if we are doing
1407 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1408 * passthrough because this is being provided by the backend LLD.
1409 * This is required so that transport_get_inquiry() copies these
1410 * originals once back into DEV_T10_WWN(dev) for the virtual device
1413 if (dev
->transport
->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
) {
1414 if (!inquiry_prod
|| !inquiry_rev
) {
1415 pr_err("All non TCM/pSCSI plugins require"
1416 " INQUIRY consts\n");
1420 strncpy(&dev
->se_sub_dev
->t10_wwn
.vendor
[0], "LIO-ORG", 8);
1421 strncpy(&dev
->se_sub_dev
->t10_wwn
.model
[0], inquiry_prod
, 16);
1422 strncpy(&dev
->se_sub_dev
->t10_wwn
.revision
[0], inquiry_rev
, 4);
1424 scsi_dump_inquiry(dev
);
1428 kthread_stop(dev
->process_thread
);
1430 spin_lock(&hba
->device_lock
);
1431 list_del(&dev
->dev_list
);
1433 spin_unlock(&hba
->device_lock
);
1435 se_release_vpd_for_dev(dev
);
1441 EXPORT_SYMBOL(transport_add_device_to_core_hba
);
1443 /* transport_generic_prepare_cdb():
1445 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1446 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1447 * The point of this is since we are mapping iSCSI LUNs to
1448 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1449 * devices and HBAs for a loop.
1451 static inline void transport_generic_prepare_cdb(
1455 case READ_10
: /* SBC - RDProtect */
1456 case READ_12
: /* SBC - RDProtect */
1457 case READ_16
: /* SBC - RDProtect */
1458 case SEND_DIAGNOSTIC
: /* SPC - SELF-TEST Code */
1459 case VERIFY
: /* SBC - VRProtect */
1460 case VERIFY_16
: /* SBC - VRProtect */
1461 case WRITE_VERIFY
: /* SBC - VRProtect */
1462 case WRITE_VERIFY_12
: /* SBC - VRProtect */
1465 cdb
[1] &= 0x1f; /* clear logical unit number */
1470 static struct se_task
*
1471 transport_generic_get_task(struct se_cmd
*cmd
,
1472 enum dma_data_direction data_direction
)
1474 struct se_task
*task
;
1475 struct se_device
*dev
= cmd
->se_dev
;
1477 task
= dev
->transport
->alloc_task(cmd
->t_task_cdb
);
1479 pr_err("Unable to allocate struct se_task\n");
1483 INIT_LIST_HEAD(&task
->t_list
);
1484 INIT_LIST_HEAD(&task
->t_execute_list
);
1485 INIT_LIST_HEAD(&task
->t_state_list
);
1486 init_completion(&task
->task_stop_comp
);
1487 task
->task_se_cmd
= cmd
;
1488 task
->task_data_direction
= data_direction
;
1493 static int transport_generic_cmd_sequencer(struct se_cmd
*, unsigned char *);
1496 * Used by fabric modules containing a local struct se_cmd within their
1497 * fabric dependent per I/O descriptor.
1499 void transport_init_se_cmd(
1501 struct target_core_fabric_ops
*tfo
,
1502 struct se_session
*se_sess
,
1506 unsigned char *sense_buffer
)
1508 INIT_LIST_HEAD(&cmd
->se_lun_node
);
1509 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1510 INIT_LIST_HEAD(&cmd
->se_ordered_node
);
1511 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1512 INIT_LIST_HEAD(&cmd
->se_queue_node
);
1513 INIT_LIST_HEAD(&cmd
->se_cmd_list
);
1514 INIT_LIST_HEAD(&cmd
->t_task_list
);
1515 init_completion(&cmd
->transport_lun_fe_stop_comp
);
1516 init_completion(&cmd
->transport_lun_stop_comp
);
1517 init_completion(&cmd
->t_transport_stop_comp
);
1518 init_completion(&cmd
->cmd_wait_comp
);
1519 spin_lock_init(&cmd
->t_state_lock
);
1520 atomic_set(&cmd
->transport_dev_active
, 1);
1523 cmd
->se_sess
= se_sess
;
1524 cmd
->data_length
= data_length
;
1525 cmd
->data_direction
= data_direction
;
1526 cmd
->sam_task_attr
= task_attr
;
1527 cmd
->sense_buffer
= sense_buffer
;
1529 EXPORT_SYMBOL(transport_init_se_cmd
);
1531 static int transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1534 * Check if SAM Task Attribute emulation is enabled for this
1535 * struct se_device storage object
1537 if (cmd
->se_dev
->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
)
1540 if (cmd
->sam_task_attr
== MSG_ACA_TAG
) {
1541 pr_debug("SAM Task Attribute ACA"
1542 " emulation is not supported\n");
1546 * Used to determine when ORDERED commands should go from
1547 * Dormant to Active status.
1549 cmd
->se_ordered_id
= atomic_inc_return(&cmd
->se_dev
->dev_ordered_id
);
1550 smp_mb__after_atomic_inc();
1551 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1552 cmd
->se_ordered_id
, cmd
->sam_task_attr
,
1553 cmd
->se_dev
->transport
->name
);
1557 /* transport_generic_allocate_tasks():
1559 * Called from fabric RX Thread.
1561 int transport_generic_allocate_tasks(
1567 transport_generic_prepare_cdb(cdb
);
1569 * Ensure that the received CDB is less than the max (252 + 8) bytes
1570 * for VARIABLE_LENGTH_CMD
1572 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1573 pr_err("Received SCSI CDB with command_size: %d that"
1574 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1575 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1579 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1580 * allocate the additional extended CDB buffer now.. Otherwise
1581 * setup the pointer from __t_task_cdb to t_task_cdb.
1583 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1584 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1586 if (!cmd
->t_task_cdb
) {
1587 pr_err("Unable to allocate cmd->t_task_cdb"
1588 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1589 scsi_command_size(cdb
),
1590 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1594 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1596 * Copy the original CDB into cmd->
1598 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1600 * Setup the received CDB based on SCSI defined opcodes and
1601 * perform unit attention, persistent reservations and ALUA
1602 * checks for virtual device backends. The cmd->t_task_cdb
1603 * pointer is expected to be setup before we reach this point.
1605 ret
= transport_generic_cmd_sequencer(cmd
, cdb
);
1609 * Check for SAM Task Attribute Emulation
1611 if (transport_check_alloc_task_attr(cmd
) < 0) {
1612 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
1613 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
1616 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
1617 if (cmd
->se_lun
->lun_sep
)
1618 cmd
->se_lun
->lun_sep
->sep_stats
.cmd_pdus
++;
1619 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
1622 EXPORT_SYMBOL(transport_generic_allocate_tasks
);
1625 * Used by fabric module frontends to queue tasks directly.
1626 * Many only be used from process context only
1628 int transport_handle_cdb_direct(
1635 pr_err("cmd->se_lun is NULL\n");
1638 if (in_interrupt()) {
1640 pr_err("transport_generic_handle_cdb cannot be called"
1641 " from interrupt context\n");
1645 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1646 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1647 * in existing usage to ensure that outstanding descriptors are handled
1648 * correctly during shutdown via transport_wait_for_tasks()
1650 * Also, we don't take cmd->t_state_lock here as we only expect
1651 * this to be called for initial descriptor submission.
1653 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1654 atomic_set(&cmd
->t_transport_active
, 1);
1656 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1657 * so follow TRANSPORT_NEW_CMD processing thread context usage
1658 * and call transport_generic_request_failure() if necessary..
1660 ret
= transport_generic_new_cmd(cmd
);
1662 cmd
->transport_error_status
= ret
;
1663 transport_generic_request_failure(cmd
, 0,
1664 (cmd
->data_direction
!= DMA_TO_DEVICE
));
1668 EXPORT_SYMBOL(transport_handle_cdb_direct
);
1671 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1672 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1673 * complete setup in TCM process context w/ TFO->new_cmd_map().
1675 int transport_generic_handle_cdb_map(
1680 pr_err("cmd->se_lun is NULL\n");
1684 transport_add_cmd_to_queue(cmd
, TRANSPORT_NEW_CMD_MAP
, false);
1687 EXPORT_SYMBOL(transport_generic_handle_cdb_map
);
1689 /* transport_generic_handle_data():
1693 int transport_generic_handle_data(
1697 * For the software fabric case, then we assume the nexus is being
1698 * failed/shutdown when signals are pending from the kthread context
1699 * caller, so we return a failure. For the HW target mode case running
1700 * in interrupt code, the signal_pending() check is skipped.
1702 if (!in_interrupt() && signal_pending(current
))
1705 * If the received CDB has aleady been ABORTED by the generic
1706 * target engine, we now call transport_check_aborted_status()
1707 * to queue any delated TASK_ABORTED status for the received CDB to the
1708 * fabric module as we are expecting no further incoming DATA OUT
1709 * sequences at this point.
1711 if (transport_check_aborted_status(cmd
, 1) != 0)
1714 transport_add_cmd_to_queue(cmd
, TRANSPORT_PROCESS_WRITE
, false);
1717 EXPORT_SYMBOL(transport_generic_handle_data
);
1719 /* transport_generic_handle_tmr():
1723 int transport_generic_handle_tmr(
1726 transport_add_cmd_to_queue(cmd
, TRANSPORT_PROCESS_TMR
, false);
1729 EXPORT_SYMBOL(transport_generic_handle_tmr
);
1732 * If the task is active, request it to be stopped and sleep until it
1735 bool target_stop_task(struct se_task
*task
, unsigned long *flags
)
1737 struct se_cmd
*cmd
= task
->task_se_cmd
;
1738 bool was_active
= false;
1740 if (task
->task_flags
& TF_ACTIVE
) {
1741 task
->task_flags
|= TF_REQUEST_STOP
;
1742 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
1744 pr_debug("Task %p waiting to complete\n", task
);
1745 wait_for_completion(&task
->task_stop_comp
);
1746 pr_debug("Task %p stopped successfully\n", task
);
1748 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
1749 atomic_dec(&cmd
->t_task_cdbs_left
);
1750 task
->task_flags
&= ~(TF_ACTIVE
| TF_REQUEST_STOP
);
1757 static int transport_stop_tasks_for_cmd(struct se_cmd
*cmd
)
1759 struct se_task
*task
, *task_tmp
;
1760 unsigned long flags
;
1763 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1764 cmd
->se_tfo
->get_task_tag(cmd
));
1767 * No tasks remain in the execution queue
1769 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
1770 list_for_each_entry_safe(task
, task_tmp
,
1771 &cmd
->t_task_list
, t_list
) {
1772 pr_debug("Processing task %p\n", task
);
1774 * If the struct se_task has not been sent and is not active,
1775 * remove the struct se_task from the execution queue.
1777 if (!(task
->task_flags
& (TF_ACTIVE
| TF_SENT
))) {
1778 spin_unlock_irqrestore(&cmd
->t_state_lock
,
1780 transport_remove_task_from_execute_queue(task
,
1783 pr_debug("Task %p removed from execute queue\n", task
);
1784 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
1788 if (!target_stop_task(task
, &flags
)) {
1789 pr_debug("Task %p - did nothing\n", task
);
1793 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
1799 * Handle SAM-esque emulation for generic transport request failures.
1801 static void transport_generic_request_failure(
1808 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1809 " CDB: 0x%02x\n", cmd
, cmd
->se_tfo
->get_task_tag(cmd
),
1810 cmd
->t_task_cdb
[0]);
1811 pr_debug("-----[ i_state: %d t_state: %d transport_error_status: %d\n",
1812 cmd
->se_tfo
->get_cmd_state(cmd
),
1814 cmd
->transport_error_status
);
1815 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1816 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1817 " t_transport_active: %d t_transport_stop: %d"
1818 " t_transport_sent: %d\n", cmd
->t_task_list_num
,
1819 atomic_read(&cmd
->t_task_cdbs_left
),
1820 atomic_read(&cmd
->t_task_cdbs_sent
),
1821 atomic_read(&cmd
->t_task_cdbs_ex_left
),
1822 atomic_read(&cmd
->t_transport_active
),
1823 atomic_read(&cmd
->t_transport_stop
),
1824 atomic_read(&cmd
->t_transport_sent
));
1827 * For SAM Task Attribute emulation for failed struct se_cmd
1829 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
1830 transport_complete_task_attr(cmd
);
1833 cmd
->transport_error_status
= PYX_TRANSPORT_LU_COMM_FAILURE
;
1836 switch (cmd
->transport_error_status
) {
1837 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE
:
1838 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1840 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS
:
1841 cmd
->scsi_sense_reason
= TCM_SECTOR_COUNT_TOO_MANY
;
1843 case PYX_TRANSPORT_INVALID_CDB_FIELD
:
1844 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
1846 case PYX_TRANSPORT_INVALID_PARAMETER_LIST
:
1847 cmd
->scsi_sense_reason
= TCM_INVALID_PARAMETER_LIST
;
1849 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES
:
1851 transport_new_cmd_failure(cmd
);
1853 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1854 * we force this session to fall back to session
1857 cmd
->se_tfo
->fall_back_to_erl0(cmd
->se_sess
);
1858 cmd
->se_tfo
->stop_session(cmd
->se_sess
, 0, 0);
1861 case PYX_TRANSPORT_LU_COMM_FAILURE
:
1862 case PYX_TRANSPORT_ILLEGAL_REQUEST
:
1863 cmd
->scsi_sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1865 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE
:
1866 cmd
->scsi_sense_reason
= TCM_UNKNOWN_MODE_PAGE
;
1868 case PYX_TRANSPORT_WRITE_PROTECTED
:
1869 cmd
->scsi_sense_reason
= TCM_WRITE_PROTECTED
;
1871 case PYX_TRANSPORT_RESERVATION_CONFLICT
:
1873 * No SENSE Data payload for this case, set SCSI Status
1874 * and queue the response to $FABRIC_MOD.
1876 * Uses linux/include/scsi/scsi.h SAM status codes defs
1878 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1880 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1881 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1884 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1887 cmd
->se_dev
->se_sub_dev
->se_dev_attrib
.emulate_ua_intlck_ctrl
== 2)
1888 core_scsi3_ua_allocate(cmd
->se_sess
->se_node_acl
,
1889 cmd
->orig_fe_lun
, 0x2C,
1890 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
1892 ret
= cmd
->se_tfo
->queue_status(cmd
);
1893 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1896 case PYX_TRANSPORT_USE_SENSE_REASON
:
1898 * struct se_cmd->scsi_sense_reason already set
1902 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1904 cmd
->transport_error_status
);
1905 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1909 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1910 * make the call to transport_send_check_condition_and_sense()
1911 * directly. Otherwise expect the fabric to make the call to
1912 * transport_send_check_condition_and_sense() after handling
1913 * possible unsoliticied write data payloads.
1915 if (!sc
&& !cmd
->se_tfo
->new_cmd_map
)
1916 transport_new_cmd_failure(cmd
);
1918 ret
= transport_send_check_condition_and_sense(cmd
,
1919 cmd
->scsi_sense_reason
, 0);
1920 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1925 transport_lun_remove_cmd(cmd
);
1926 if (!transport_cmd_check_stop_to_fabric(cmd
))
1931 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
1932 transport_handle_queue_full(cmd
, cmd
->se_dev
);
1935 static inline u32
transport_lba_21(unsigned char *cdb
)
1937 return ((cdb
[1] & 0x1f) << 16) | (cdb
[2] << 8) | cdb
[3];
1940 static inline u32
transport_lba_32(unsigned char *cdb
)
1942 return (cdb
[2] << 24) | (cdb
[3] << 16) | (cdb
[4] << 8) | cdb
[5];
1945 static inline unsigned long long transport_lba_64(unsigned char *cdb
)
1947 unsigned int __v1
, __v2
;
1949 __v1
= (cdb
[2] << 24) | (cdb
[3] << 16) | (cdb
[4] << 8) | cdb
[5];
1950 __v2
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
1952 return ((unsigned long long)__v2
) | (unsigned long long)__v1
<< 32;
1956 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1958 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb
)
1960 unsigned int __v1
, __v2
;
1962 __v1
= (cdb
[12] << 24) | (cdb
[13] << 16) | (cdb
[14] << 8) | cdb
[15];
1963 __v2
= (cdb
[16] << 24) | (cdb
[17] << 16) | (cdb
[18] << 8) | cdb
[19];
1965 return ((unsigned long long)__v2
) | (unsigned long long)__v1
<< 32;
1968 static void transport_set_supported_SAM_opcode(struct se_cmd
*se_cmd
)
1970 unsigned long flags
;
1972 spin_lock_irqsave(&se_cmd
->t_state_lock
, flags
);
1973 se_cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
1974 spin_unlock_irqrestore(&se_cmd
->t_state_lock
, flags
);
1977 static inline int transport_tcq_window_closed(struct se_device
*dev
)
1979 if (dev
->dev_tcq_window_closed
++ <
1980 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD
) {
1981 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT
);
1983 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG
);
1985 wake_up_interruptible(&dev
->dev_queue_obj
.thread_wq
);
1990 * Called from Fabric Module context from transport_execute_tasks()
1992 * The return of this function determins if the tasks from struct se_cmd
1993 * get added to the execution queue in transport_execute_tasks(),
1994 * or are added to the delayed or ordered lists here.
1996 static inline int transport_execute_task_attr(struct se_cmd
*cmd
)
1998 if (cmd
->se_dev
->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
)
2001 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2002 * to allow the passed struct se_cmd list of tasks to the front of the list.
2004 if (cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
2005 atomic_inc(&cmd
->se_dev
->dev_hoq_count
);
2006 smp_mb__after_atomic_inc();
2007 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2008 " 0x%02x, se_ordered_id: %u\n",
2010 cmd
->se_ordered_id
);
2012 } else if (cmd
->sam_task_attr
== MSG_ORDERED_TAG
) {
2013 spin_lock(&cmd
->se_dev
->ordered_cmd_lock
);
2014 list_add_tail(&cmd
->se_ordered_node
,
2015 &cmd
->se_dev
->ordered_cmd_list
);
2016 spin_unlock(&cmd
->se_dev
->ordered_cmd_lock
);
2018 atomic_inc(&cmd
->se_dev
->dev_ordered_sync
);
2019 smp_mb__after_atomic_inc();
2021 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2022 " list, se_ordered_id: %u\n",
2024 cmd
->se_ordered_id
);
2026 * Add ORDERED command to tail of execution queue if
2027 * no other older commands exist that need to be
2030 if (!atomic_read(&cmd
->se_dev
->simple_cmds
))
2034 * For SIMPLE and UNTAGGED Task Attribute commands
2036 atomic_inc(&cmd
->se_dev
->simple_cmds
);
2037 smp_mb__after_atomic_inc();
2040 * Otherwise if one or more outstanding ORDERED task attribute exist,
2041 * add the dormant task(s) built for the passed struct se_cmd to the
2042 * execution queue and become in Active state for this struct se_device.
2044 if (atomic_read(&cmd
->se_dev
->dev_ordered_sync
) != 0) {
2046 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2047 * will be drained upon completion of HEAD_OF_QUEUE task.
2049 spin_lock(&cmd
->se_dev
->delayed_cmd_lock
);
2050 cmd
->se_cmd_flags
|= SCF_DELAYED_CMD_FROM_SAM_ATTR
;
2051 list_add_tail(&cmd
->se_delayed_node
,
2052 &cmd
->se_dev
->delayed_cmd_list
);
2053 spin_unlock(&cmd
->se_dev
->delayed_cmd_lock
);
2055 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2056 " delayed CMD list, se_ordered_id: %u\n",
2057 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
,
2058 cmd
->se_ordered_id
);
2060 * Return zero to let transport_execute_tasks() know
2061 * not to add the delayed tasks to the execution list.
2066 * Otherwise, no ORDERED task attributes exist..
2072 * Called from fabric module context in transport_generic_new_cmd() and
2073 * transport_generic_process_write()
2075 static int transport_execute_tasks(struct se_cmd
*cmd
)
2079 if (se_dev_check_online(cmd
->se_orig_obj_ptr
) != 0) {
2080 cmd
->transport_error_status
= PYX_TRANSPORT_LU_COMM_FAILURE
;
2081 transport_generic_request_failure(cmd
, 0, 1);
2086 * Call transport_cmd_check_stop() to see if a fabric exception
2087 * has occurred that prevents execution.
2089 if (!transport_cmd_check_stop(cmd
, 0, TRANSPORT_PROCESSING
)) {
2091 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2092 * attribute for the tasks of the received struct se_cmd CDB
2094 add_tasks
= transport_execute_task_attr(cmd
);
2098 * This calls transport_add_tasks_from_cmd() to handle
2099 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2100 * (if enabled) in __transport_add_task_to_execute_queue() and
2101 * transport_add_task_check_sam_attr().
2103 transport_add_tasks_from_cmd(cmd
);
2106 * Kick the execution queue for the cmd associated struct se_device
2110 __transport_execute_tasks(cmd
->se_dev
);
2115 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2116 * from struct se_device->execute_task_list and
2118 * Called from transport_processing_thread()
2120 static int __transport_execute_tasks(struct se_device
*dev
)
2123 struct se_cmd
*cmd
= NULL
;
2124 struct se_task
*task
= NULL
;
2125 unsigned long flags
;
2128 * Check if there is enough room in the device and HBA queue to send
2129 * struct se_tasks to the selected transport.
2132 if (!atomic_read(&dev
->depth_left
))
2133 return transport_tcq_window_closed(dev
);
2135 dev
->dev_tcq_window_closed
= 0;
2137 spin_lock_irq(&dev
->execute_task_lock
);
2138 if (list_empty(&dev
->execute_task_list
)) {
2139 spin_unlock_irq(&dev
->execute_task_lock
);
2142 task
= list_first_entry(&dev
->execute_task_list
,
2143 struct se_task
, t_execute_list
);
2144 __transport_remove_task_from_execute_queue(task
, dev
);
2145 spin_unlock_irq(&dev
->execute_task_lock
);
2147 atomic_dec(&dev
->depth_left
);
2149 cmd
= task
->task_se_cmd
;
2151 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2152 task
->task_flags
|= (TF_ACTIVE
| TF_SENT
);
2153 atomic_inc(&cmd
->t_task_cdbs_sent
);
2155 if (atomic_read(&cmd
->t_task_cdbs_sent
) ==
2156 cmd
->t_task_list_num
)
2157 atomic_set(&cmd
->t_transport_sent
, 1);
2159 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2161 if (cmd
->execute_task
)
2162 error
= cmd
->execute_task(task
);
2164 error
= dev
->transport
->do_task(task
);
2166 cmd
->transport_error_status
= error
;
2167 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2168 task
->task_flags
&= ~TF_ACTIVE
;
2169 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2170 atomic_set(&cmd
->t_transport_sent
, 0);
2171 transport_stop_tasks_for_cmd(cmd
);
2172 atomic_inc(&dev
->depth_left
);
2173 transport_generic_request_failure(cmd
, 0, 1);
2181 void transport_new_cmd_failure(struct se_cmd
*se_cmd
)
2183 unsigned long flags
;
2185 * Any unsolicited data will get dumped for failed command inside of
2188 spin_lock_irqsave(&se_cmd
->t_state_lock
, flags
);
2189 se_cmd
->se_cmd_flags
|= SCF_SE_CMD_FAILED
;
2190 se_cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2191 spin_unlock_irqrestore(&se_cmd
->t_state_lock
, flags
);
2194 static inline u32
transport_get_sectors_6(
2199 struct se_device
*dev
= cmd
->se_dev
;
2202 * Assume TYPE_DISK for non struct se_device objects.
2203 * Use 8-bit sector value.
2209 * Use 24-bit allocation length for TYPE_TAPE.
2211 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
)
2212 return (u32
)(cdb
[2] << 16) + (cdb
[3] << 8) + cdb
[4];
2215 * Everything else assume TYPE_DISK Sector CDB location.
2216 * Use 8-bit sector value.
2222 static inline u32
transport_get_sectors_10(
2227 struct se_device
*dev
= cmd
->se_dev
;
2230 * Assume TYPE_DISK for non struct se_device objects.
2231 * Use 16-bit sector value.
2237 * XXX_10 is not defined in SSC, throw an exception
2239 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
) {
2245 * Everything else assume TYPE_DISK Sector CDB location.
2246 * Use 16-bit sector value.
2249 return (u32
)(cdb
[7] << 8) + cdb
[8];
2252 static inline u32
transport_get_sectors_12(
2257 struct se_device
*dev
= cmd
->se_dev
;
2260 * Assume TYPE_DISK for non struct se_device objects.
2261 * Use 32-bit sector value.
2267 * XXX_12 is not defined in SSC, throw an exception
2269 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
) {
2275 * Everything else assume TYPE_DISK Sector CDB location.
2276 * Use 32-bit sector value.
2279 return (u32
)(cdb
[6] << 24) + (cdb
[7] << 16) + (cdb
[8] << 8) + cdb
[9];
2282 static inline u32
transport_get_sectors_16(
2287 struct se_device
*dev
= cmd
->se_dev
;
2290 * Assume TYPE_DISK for non struct se_device objects.
2291 * Use 32-bit sector value.
2297 * Use 24-bit allocation length for TYPE_TAPE.
2299 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
)
2300 return (u32
)(cdb
[12] << 16) + (cdb
[13] << 8) + cdb
[14];
2303 return (u32
)(cdb
[10] << 24) + (cdb
[11] << 16) +
2304 (cdb
[12] << 8) + cdb
[13];
2308 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2310 static inline u32
transport_get_sectors_32(
2316 * Assume TYPE_DISK for non struct se_device objects.
2317 * Use 32-bit sector value.
2319 return (u32
)(cdb
[28] << 24) + (cdb
[29] << 16) +
2320 (cdb
[30] << 8) + cdb
[31];
2324 static inline u32
transport_get_size(
2329 struct se_device
*dev
= cmd
->se_dev
;
2331 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
) {
2332 if (cdb
[1] & 1) { /* sectors */
2333 return dev
->se_sub_dev
->se_dev_attrib
.block_size
* sectors
;
2338 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2339 " %s object\n", dev
->se_sub_dev
->se_dev_attrib
.block_size
, sectors
,
2340 dev
->se_sub_dev
->se_dev_attrib
.block_size
* sectors
,
2341 dev
->transport
->name
);
2343 return dev
->se_sub_dev
->se_dev_attrib
.block_size
* sectors
;
2346 static void transport_xor_callback(struct se_cmd
*cmd
)
2348 unsigned char *buf
, *addr
;
2349 struct scatterlist
*sg
;
2350 unsigned int offset
;
2354 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2356 * 1) read the specified logical block(s);
2357 * 2) transfer logical blocks from the data-out buffer;
2358 * 3) XOR the logical blocks transferred from the data-out buffer with
2359 * the logical blocks read, storing the resulting XOR data in a buffer;
2360 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2361 * blocks transferred from the data-out buffer; and
2362 * 5) transfer the resulting XOR data to the data-in buffer.
2364 buf
= kmalloc(cmd
->data_length
, GFP_KERNEL
);
2366 pr_err("Unable to allocate xor_callback buf\n");
2370 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2371 * into the locally allocated *buf
2373 sg_copy_to_buffer(cmd
->t_data_sg
,
2379 * Now perform the XOR against the BIDI read memory located at
2380 * cmd->t_mem_bidi_list
2384 for_each_sg(cmd
->t_bidi_data_sg
, sg
, cmd
->t_bidi_data_nents
, count
) {
2385 addr
= kmap_atomic(sg_page(sg
), KM_USER0
);
2389 for (i
= 0; i
< sg
->length
; i
++)
2390 *(addr
+ sg
->offset
+ i
) ^= *(buf
+ offset
+ i
);
2392 offset
+= sg
->length
;
2393 kunmap_atomic(addr
, KM_USER0
);
2401 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2403 static int transport_get_sense_data(struct se_cmd
*cmd
)
2405 unsigned char *buffer
= cmd
->sense_buffer
, *sense_buffer
= NULL
;
2406 struct se_device
*dev
= cmd
->se_dev
;
2407 struct se_task
*task
= NULL
, *task_tmp
;
2408 unsigned long flags
;
2411 WARN_ON(!cmd
->se_lun
);
2416 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2417 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
2418 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2422 list_for_each_entry_safe(task
, task_tmp
,
2423 &cmd
->t_task_list
, t_list
) {
2424 if (!task
->task_sense
)
2427 if (!dev
->transport
->get_sense_buffer
) {
2428 pr_err("dev->transport->get_sense_buffer"
2433 sense_buffer
= dev
->transport
->get_sense_buffer(task
);
2434 if (!sense_buffer
) {
2435 pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2436 " sense buffer for task with sense\n",
2437 cmd
->se_tfo
->get_task_tag(cmd
), task
);
2440 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2442 offset
= cmd
->se_tfo
->set_fabric_sense_len(cmd
,
2443 TRANSPORT_SENSE_BUFFER
);
2445 memcpy(&buffer
[offset
], sense_buffer
,
2446 TRANSPORT_SENSE_BUFFER
);
2447 cmd
->scsi_status
= task
->task_scsi_status
;
2448 /* Automatically padded */
2449 cmd
->scsi_sense_length
=
2450 (TRANSPORT_SENSE_BUFFER
+ offset
);
2452 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2454 dev
->se_hba
->hba_id
, dev
->transport
->name
,
2458 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2464 transport_handle_reservation_conflict(struct se_cmd
*cmd
)
2466 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2467 cmd
->se_cmd_flags
|= SCF_SCSI_RESERVATION_CONFLICT
;
2468 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
2470 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2471 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2474 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2477 cmd
->se_dev
->se_sub_dev
->se_dev_attrib
.emulate_ua_intlck_ctrl
== 2)
2478 core_scsi3_ua_allocate(cmd
->se_sess
->se_node_acl
,
2479 cmd
->orig_fe_lun
, 0x2C,
2480 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
2484 static inline long long transport_dev_end_lba(struct se_device
*dev
)
2486 return dev
->transport
->get_blocks(dev
) + 1;
2489 static int transport_cmd_get_valid_sectors(struct se_cmd
*cmd
)
2491 struct se_device
*dev
= cmd
->se_dev
;
2494 if (dev
->transport
->get_device_type(dev
) != TYPE_DISK
)
2497 sectors
= (cmd
->data_length
/ dev
->se_sub_dev
->se_dev_attrib
.block_size
);
2499 if ((cmd
->t_task_lba
+ sectors
) > transport_dev_end_lba(dev
)) {
2500 pr_err("LBA: %llu Sectors: %u exceeds"
2501 " transport_dev_end_lba(): %llu\n",
2502 cmd
->t_task_lba
, sectors
,
2503 transport_dev_end_lba(dev
));
2510 static int target_check_write_same_discard(unsigned char *flags
, struct se_device
*dev
)
2513 * Determine if the received WRITE_SAME is used to for direct
2514 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2515 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2516 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2518 int passthrough
= (dev
->transport
->transport_type
==
2519 TRANSPORT_PLUGIN_PHBA_PDEV
);
2522 if ((flags
[0] & 0x04) || (flags
[0] & 0x02)) {
2523 pr_err("WRITE_SAME PBDATA and LBDATA"
2524 " bits not supported for Block Discard"
2529 * Currently for the emulated case we only accept
2530 * tpws with the UNMAP=1 bit set.
2532 if (!(flags
[0] & 0x08)) {
2533 pr_err("WRITE_SAME w/o UNMAP bit not"
2534 " supported for Block Discard Emulation\n");
2542 /* transport_generic_cmd_sequencer():
2544 * Generic Command Sequencer that should work for most DAS transport
2547 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2550 * FIXME: Need to support other SCSI OPCODES where as well.
2552 static int transport_generic_cmd_sequencer(
2556 struct se_device
*dev
= cmd
->se_dev
;
2557 struct se_subsystem_dev
*su_dev
= dev
->se_sub_dev
;
2558 int ret
= 0, sector_ret
= 0, passthrough
;
2559 u32 sectors
= 0, size
= 0, pr_reg_type
= 0;
2563 * Check for an existing UNIT ATTENTION condition
2565 if (core_scsi3_ua_check(cmd
, cdb
) < 0) {
2566 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2567 cmd
->scsi_sense_reason
= TCM_CHECK_CONDITION_UNIT_ATTENTION
;
2571 * Check status of Asymmetric Logical Unit Assignment port
2573 ret
= su_dev
->t10_alua
.alua_state_check(cmd
, cdb
, &alua_ascq
);
2576 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2577 * The ALUA additional sense code qualifier (ASCQ) is determined
2578 * by the ALUA primary or secondary access state..
2582 pr_debug("[%s]: ALUA TG Port not available,"
2583 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2584 cmd
->se_tfo
->get_fabric_name(), alua_ascq
);
2586 transport_set_sense_codes(cmd
, 0x04, alua_ascq
);
2587 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2588 cmd
->scsi_sense_reason
= TCM_CHECK_CONDITION_NOT_READY
;
2591 goto out_invalid_cdb_field
;
2594 * Check status for SPC-3 Persistent Reservations
2596 if (su_dev
->t10_pr
.pr_ops
.t10_reservation_check(cmd
, &pr_reg_type
) != 0) {
2597 if (su_dev
->t10_pr
.pr_ops
.t10_seq_non_holder(
2598 cmd
, cdb
, pr_reg_type
) != 0)
2599 return transport_handle_reservation_conflict(cmd
);
2601 * This means the CDB is allowed for the SCSI Initiator port
2602 * when said port is *NOT* holding the legacy SPC-2 or
2603 * SPC-3 Persistent Reservation.
2608 * If we operate in passthrough mode we skip most CDB emulation and
2609 * instead hand the commands down to the physical SCSI device.
2612 (dev
->transport
->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
);
2616 sectors
= transport_get_sectors_6(cdb
, cmd
, §or_ret
);
2618 goto out_unsupported_cdb
;
2619 size
= transport_get_size(sectors
, cdb
, cmd
);
2620 cmd
->t_task_lba
= transport_lba_21(cdb
);
2621 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2624 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
2626 goto out_unsupported_cdb
;
2627 size
= transport_get_size(sectors
, cdb
, cmd
);
2628 cmd
->t_task_lba
= transport_lba_32(cdb
);
2629 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2632 sectors
= transport_get_sectors_12(cdb
, cmd
, §or_ret
);
2634 goto out_unsupported_cdb
;
2635 size
= transport_get_size(sectors
, cdb
, cmd
);
2636 cmd
->t_task_lba
= transport_lba_32(cdb
);
2637 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2640 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
2642 goto out_unsupported_cdb
;
2643 size
= transport_get_size(sectors
, cdb
, cmd
);
2644 cmd
->t_task_lba
= transport_lba_64(cdb
);
2645 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2648 sectors
= transport_get_sectors_6(cdb
, cmd
, §or_ret
);
2650 goto out_unsupported_cdb
;
2651 size
= transport_get_size(sectors
, cdb
, cmd
);
2652 cmd
->t_task_lba
= transport_lba_21(cdb
);
2653 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2656 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
2658 goto out_unsupported_cdb
;
2659 size
= transport_get_size(sectors
, cdb
, cmd
);
2660 cmd
->t_task_lba
= transport_lba_32(cdb
);
2661 cmd
->t_tasks_fua
= (cdb
[1] & 0x8);
2662 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2665 sectors
= transport_get_sectors_12(cdb
, cmd
, §or_ret
);
2667 goto out_unsupported_cdb
;
2668 size
= transport_get_size(sectors
, cdb
, cmd
);
2669 cmd
->t_task_lba
= transport_lba_32(cdb
);
2670 cmd
->t_tasks_fua
= (cdb
[1] & 0x8);
2671 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2674 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
2676 goto out_unsupported_cdb
;
2677 size
= transport_get_size(sectors
, cdb
, cmd
);
2678 cmd
->t_task_lba
= transport_lba_64(cdb
);
2679 cmd
->t_tasks_fua
= (cdb
[1] & 0x8);
2680 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2682 case XDWRITEREAD_10
:
2683 if ((cmd
->data_direction
!= DMA_TO_DEVICE
) ||
2684 !(cmd
->t_tasks_bidi
))
2685 goto out_invalid_cdb_field
;
2686 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
2688 goto out_unsupported_cdb
;
2689 size
= transport_get_size(sectors
, cdb
, cmd
);
2690 cmd
->t_task_lba
= transport_lba_32(cdb
);
2691 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2694 * Do now allow BIDI commands for passthrough mode.
2697 goto out_unsupported_cdb
;
2700 * Setup BIDI XOR callback to be run after I/O completion.
2702 cmd
->transport_complete_callback
= &transport_xor_callback
;
2703 cmd
->t_tasks_fua
= (cdb
[1] & 0x8);
2705 case VARIABLE_LENGTH_CMD
:
2706 service_action
= get_unaligned_be16(&cdb
[8]);
2707 switch (service_action
) {
2708 case XDWRITEREAD_32
:
2709 sectors
= transport_get_sectors_32(cdb
, cmd
, §or_ret
);
2711 goto out_unsupported_cdb
;
2712 size
= transport_get_size(sectors
, cdb
, cmd
);
2714 * Use WRITE_32 and READ_32 opcodes for the emulated
2715 * XDWRITE_READ_32 logic.
2717 cmd
->t_task_lba
= transport_lba_64_ext(cdb
);
2718 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2721 * Do now allow BIDI commands for passthrough mode.
2724 goto out_unsupported_cdb
;
2727 * Setup BIDI XOR callback to be run during after I/O
2730 cmd
->transport_complete_callback
= &transport_xor_callback
;
2731 cmd
->t_tasks_fua
= (cdb
[10] & 0x8);
2734 sectors
= transport_get_sectors_32(cdb
, cmd
, §or_ret
);
2736 goto out_unsupported_cdb
;
2739 size
= transport_get_size(1, cdb
, cmd
);
2741 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2743 goto out_invalid_cdb_field
;
2746 cmd
->t_task_lba
= get_unaligned_be64(&cdb
[12]);
2747 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2749 if (target_check_write_same_discard(&cdb
[10], dev
) < 0)
2750 goto out_invalid_cdb_field
;
2752 cmd
->execute_task
= target_emulate_write_same
;
2755 pr_err("VARIABLE_LENGTH_CMD service action"
2756 " 0x%04x not supported\n", service_action
);
2757 goto out_unsupported_cdb
;
2760 case MAINTENANCE_IN
:
2761 if (dev
->transport
->get_device_type(dev
) != TYPE_ROM
) {
2762 /* MAINTENANCE_IN from SCC-2 */
2764 * Check for emulated MI_REPORT_TARGET_PGS.
2766 if (cdb
[1] == MI_REPORT_TARGET_PGS
&&
2767 su_dev
->t10_alua
.alua_type
== SPC3_ALUA_EMULATED
) {
2769 target_emulate_report_target_port_groups
;
2771 size
= (cdb
[6] << 24) | (cdb
[7] << 16) |
2772 (cdb
[8] << 8) | cdb
[9];
2774 /* GPCMD_SEND_KEY from multi media commands */
2775 size
= (cdb
[8] << 8) + cdb
[9];
2777 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2781 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2783 case MODE_SELECT_10
:
2784 size
= (cdb
[7] << 8) + cdb
[8];
2785 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2789 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2791 cmd
->execute_task
= target_emulate_modesense
;
2794 size
= (cdb
[7] << 8) + cdb
[8];
2795 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2797 cmd
->execute_task
= target_emulate_modesense
;
2799 case GPCMD_READ_BUFFER_CAPACITY
:
2800 case GPCMD_SEND_OPC
:
2803 size
= (cdb
[7] << 8) + cdb
[8];
2804 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2806 case READ_BLOCK_LIMITS
:
2807 size
= READ_BLOCK_LEN
;
2808 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2810 case GPCMD_GET_CONFIGURATION
:
2811 case GPCMD_READ_FORMAT_CAPACITIES
:
2812 case GPCMD_READ_DISC_INFO
:
2813 case GPCMD_READ_TRACK_RZONE_INFO
:
2814 size
= (cdb
[7] << 8) + cdb
[8];
2815 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2817 case PERSISTENT_RESERVE_IN
:
2818 if (su_dev
->t10_pr
.res_type
== SPC3_PERSISTENT_RESERVATIONS
)
2819 cmd
->execute_task
= target_scsi3_emulate_pr_in
;
2820 size
= (cdb
[7] << 8) + cdb
[8];
2821 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2823 case PERSISTENT_RESERVE_OUT
:
2824 if (su_dev
->t10_pr
.res_type
== SPC3_PERSISTENT_RESERVATIONS
)
2825 cmd
->execute_task
= target_scsi3_emulate_pr_out
;
2826 size
= (cdb
[7] << 8) + cdb
[8];
2827 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2829 case GPCMD_MECHANISM_STATUS
:
2830 case GPCMD_READ_DVD_STRUCTURE
:
2831 size
= (cdb
[8] << 8) + cdb
[9];
2832 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2835 size
= READ_POSITION_LEN
;
2836 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2838 case MAINTENANCE_OUT
:
2839 if (dev
->transport
->get_device_type(dev
) != TYPE_ROM
) {
2840 /* MAINTENANCE_OUT from SCC-2
2842 * Check for emulated MO_SET_TARGET_PGS.
2844 if (cdb
[1] == MO_SET_TARGET_PGS
&&
2845 su_dev
->t10_alua
.alua_type
== SPC3_ALUA_EMULATED
) {
2847 target_emulate_set_target_port_groups
;
2850 size
= (cdb
[6] << 24) | (cdb
[7] << 16) |
2851 (cdb
[8] << 8) | cdb
[9];
2853 /* GPCMD_REPORT_KEY from multi media commands */
2854 size
= (cdb
[8] << 8) + cdb
[9];
2856 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2859 size
= (cdb
[3] << 8) + cdb
[4];
2861 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2862 * See spc4r17 section 5.3
2864 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
2865 cmd
->sam_task_attr
= MSG_HEAD_TAG
;
2866 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2868 cmd
->execute_task
= target_emulate_inquiry
;
2871 size
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
2872 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2875 size
= READ_CAP_LEN
;
2876 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2878 cmd
->execute_task
= target_emulate_readcapacity
;
2880 case READ_MEDIA_SERIAL_NUMBER
:
2881 case SECURITY_PROTOCOL_IN
:
2882 case SECURITY_PROTOCOL_OUT
:
2883 size
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
2884 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2886 case SERVICE_ACTION_IN
:
2887 switch (cmd
->t_task_cdb
[1] & 0x1f) {
2888 case SAI_READ_CAPACITY_16
:
2891 target_emulate_readcapacity_16
;
2897 pr_err("Unsupported SA: 0x%02x\n",
2898 cmd
->t_task_cdb
[1] & 0x1f);
2899 goto out_unsupported_cdb
;
2902 case ACCESS_CONTROL_IN
:
2903 case ACCESS_CONTROL_OUT
:
2905 case READ_ATTRIBUTE
:
2906 case RECEIVE_COPY_RESULTS
:
2907 case WRITE_ATTRIBUTE
:
2908 size
= (cdb
[10] << 24) | (cdb
[11] << 16) |
2909 (cdb
[12] << 8) | cdb
[13];
2910 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2912 case RECEIVE_DIAGNOSTIC
:
2913 case SEND_DIAGNOSTIC
:
2914 size
= (cdb
[3] << 8) | cdb
[4];
2915 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2917 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2920 sectors
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
2921 size
= (2336 * sectors
);
2922 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2927 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2931 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2933 cmd
->execute_task
= target_emulate_request_sense
;
2935 case READ_ELEMENT_STATUS
:
2936 size
= 65536 * cdb
[7] + 256 * cdb
[8] + cdb
[9];
2937 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2940 size
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
2941 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2946 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2947 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2949 if (cdb
[0] == RESERVE_10
)
2950 size
= (cdb
[7] << 8) | cdb
[8];
2952 size
= cmd
->data_length
;
2955 * Setup the legacy emulated handler for SPC-2 and
2956 * >= SPC-3 compatible reservation handling (CRH=1)
2957 * Otherwise, we assume the underlying SCSI logic is
2958 * is running in SPC_PASSTHROUGH, and wants reservations
2959 * emulation disabled.
2961 if (su_dev
->t10_pr
.res_type
!= SPC_PASSTHROUGH
)
2962 cmd
->execute_task
= target_scsi2_reservation_reserve
;
2963 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
2968 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2969 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2971 if (cdb
[0] == RELEASE_10
)
2972 size
= (cdb
[7] << 8) | cdb
[8];
2974 size
= cmd
->data_length
;
2976 if (su_dev
->t10_pr
.res_type
!= SPC_PASSTHROUGH
)
2977 cmd
->execute_task
= target_scsi2_reservation_release
;
2978 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
2980 case SYNCHRONIZE_CACHE
:
2981 case 0x91: /* SYNCHRONIZE_CACHE_16: */
2983 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2985 if (cdb
[0] == SYNCHRONIZE_CACHE
) {
2986 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
2987 cmd
->t_task_lba
= transport_lba_32(cdb
);
2989 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
2990 cmd
->t_task_lba
= transport_lba_64(cdb
);
2993 goto out_unsupported_cdb
;
2995 size
= transport_get_size(sectors
, cdb
, cmd
);
2996 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3002 * Check to ensure that LBA + Range does not exceed past end of
3003 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3005 if ((cmd
->t_task_lba
!= 0) || (sectors
!= 0)) {
3006 if (transport_cmd_get_valid_sectors(cmd
) < 0)
3007 goto out_invalid_cdb_field
;
3009 cmd
->execute_task
= target_emulate_synchronize_cache
;
3012 size
= get_unaligned_be16(&cdb
[7]);
3013 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3015 cmd
->execute_task
= target_emulate_unmap
;
3018 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3020 goto out_unsupported_cdb
;
3023 size
= transport_get_size(1, cdb
, cmd
);
3025 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3026 goto out_invalid_cdb_field
;
3029 cmd
->t_task_lba
= get_unaligned_be64(&cdb
[2]);
3030 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3032 if (target_check_write_same_discard(&cdb
[1], dev
) < 0)
3033 goto out_invalid_cdb_field
;
3035 cmd
->execute_task
= target_emulate_write_same
;
3038 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3040 goto out_unsupported_cdb
;
3043 size
= transport_get_size(1, cdb
, cmd
);
3045 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3046 goto out_invalid_cdb_field
;
3049 cmd
->t_task_lba
= get_unaligned_be32(&cdb
[2]);
3050 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3052 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3053 * of byte 1 bit 3 UNMAP instead of original reserved field
3055 if (target_check_write_same_discard(&cdb
[1], dev
) < 0)
3056 goto out_invalid_cdb_field
;
3058 cmd
->execute_task
= target_emulate_write_same
;
3060 case ALLOW_MEDIUM_REMOVAL
:
3066 case TEST_UNIT_READY
:
3068 case WRITE_FILEMARKS
:
3069 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3071 cmd
->execute_task
= target_emulate_noop
;
3073 case GPCMD_CLOSE_TRACK
:
3074 case INITIALIZE_ELEMENT_STATUS
:
3075 case GPCMD_LOAD_UNLOAD
:
3076 case GPCMD_SET_SPEED
:
3078 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3081 cmd
->execute_task
= target_report_luns
;
3082 size
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
3084 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3085 * See spc4r17 section 5.3
3087 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3088 cmd
->sam_task_attr
= MSG_HEAD_TAG
;
3089 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3092 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3093 " 0x%02x, sending CHECK_CONDITION.\n",
3094 cmd
->se_tfo
->get_fabric_name(), cdb
[0]);
3095 goto out_unsupported_cdb
;
3098 if (size
!= cmd
->data_length
) {
3099 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3100 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3101 " 0x%02x\n", cmd
->se_tfo
->get_fabric_name(),
3102 cmd
->data_length
, size
, cdb
[0]);
3104 cmd
->cmd_spdtl
= size
;
3106 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
3107 pr_err("Rejecting underflow/overflow"
3109 goto out_invalid_cdb_field
;
3112 * Reject READ_* or WRITE_* with overflow/underflow for
3113 * type SCF_SCSI_DATA_SG_IO_CDB.
3115 if (!ret
&& (dev
->se_sub_dev
->se_dev_attrib
.block_size
!= 512)) {
3116 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3117 " CDB on non 512-byte sector setup subsystem"
3118 " plugin: %s\n", dev
->transport
->name
);
3119 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3120 goto out_invalid_cdb_field
;
3123 if (size
> cmd
->data_length
) {
3124 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
3125 cmd
->residual_count
= (size
- cmd
->data_length
);
3127 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
3128 cmd
->residual_count
= (cmd
->data_length
- size
);
3130 cmd
->data_length
= size
;
3133 /* reject any command that we don't have a handler for */
3134 if (!(passthrough
|| cmd
->execute_task
||
3135 (cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
)))
3136 goto out_unsupported_cdb
;
3138 /* Let's limit control cdbs to a page, for simplicity's sake. */
3139 if ((cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
) &&
3141 goto out_invalid_cdb_field
;
3143 transport_set_supported_SAM_opcode(cmd
);
3146 out_unsupported_cdb
:
3147 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3148 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
3150 out_invalid_cdb_field
:
3151 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3152 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
3157 * Called from I/O completion to determine which dormant/delayed
3158 * and ordered cmds need to have their tasks added to the execution queue.
3160 static void transport_complete_task_attr(struct se_cmd
*cmd
)
3162 struct se_device
*dev
= cmd
->se_dev
;
3163 struct se_cmd
*cmd_p
, *cmd_tmp
;
3164 int new_active_tasks
= 0;
3166 if (cmd
->sam_task_attr
== MSG_SIMPLE_TAG
) {
3167 atomic_dec(&dev
->simple_cmds
);
3168 smp_mb__after_atomic_dec();
3169 dev
->dev_cur_ordered_id
++;
3170 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3171 " SIMPLE: %u\n", dev
->dev_cur_ordered_id
,
3172 cmd
->se_ordered_id
);
3173 } else if (cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
3174 atomic_dec(&dev
->dev_hoq_count
);
3175 smp_mb__after_atomic_dec();
3176 dev
->dev_cur_ordered_id
++;
3177 pr_debug("Incremented dev_cur_ordered_id: %u for"
3178 " HEAD_OF_QUEUE: %u\n", dev
->dev_cur_ordered_id
,
3179 cmd
->se_ordered_id
);
3180 } else if (cmd
->sam_task_attr
== MSG_ORDERED_TAG
) {
3181 spin_lock(&dev
->ordered_cmd_lock
);
3182 list_del(&cmd
->se_ordered_node
);
3183 atomic_dec(&dev
->dev_ordered_sync
);
3184 smp_mb__after_atomic_dec();
3185 spin_unlock(&dev
->ordered_cmd_lock
);
3187 dev
->dev_cur_ordered_id
++;
3188 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3189 " %u\n", dev
->dev_cur_ordered_id
, cmd
->se_ordered_id
);
3192 * Process all commands up to the last received
3193 * ORDERED task attribute which requires another blocking
3196 spin_lock(&dev
->delayed_cmd_lock
);
3197 list_for_each_entry_safe(cmd_p
, cmd_tmp
,
3198 &dev
->delayed_cmd_list
, se_delayed_node
) {
3200 list_del(&cmd_p
->se_delayed_node
);
3201 spin_unlock(&dev
->delayed_cmd_lock
);
3203 pr_debug("Calling add_tasks() for"
3204 " cmd_p: 0x%02x Task Attr: 0x%02x"
3205 " Dormant -> Active, se_ordered_id: %u\n",
3206 cmd_p
->t_task_cdb
[0],
3207 cmd_p
->sam_task_attr
, cmd_p
->se_ordered_id
);
3209 transport_add_tasks_from_cmd(cmd_p
);
3212 spin_lock(&dev
->delayed_cmd_lock
);
3213 if (cmd_p
->sam_task_attr
== MSG_ORDERED_TAG
)
3216 spin_unlock(&dev
->delayed_cmd_lock
);
3218 * If new tasks have become active, wake up the transport thread
3219 * to do the processing of the Active tasks.
3221 if (new_active_tasks
!= 0)
3222 wake_up_interruptible(&dev
->dev_queue_obj
.thread_wq
);
3225 static void transport_complete_qf(struct se_cmd
*cmd
)
3229 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3230 transport_complete_task_attr(cmd
);
3232 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
3233 ret
= cmd
->se_tfo
->queue_status(cmd
);
3238 switch (cmd
->data_direction
) {
3239 case DMA_FROM_DEVICE
:
3240 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
3243 if (cmd
->t_bidi_data_sg
) {
3244 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
3248 /* Fall through for DMA_TO_DEVICE */
3250 ret
= cmd
->se_tfo
->queue_status(cmd
);
3258 transport_handle_queue_full(cmd
, cmd
->se_dev
);
3261 transport_lun_remove_cmd(cmd
);
3262 transport_cmd_check_stop_to_fabric(cmd
);
3265 static void transport_handle_queue_full(
3267 struct se_device
*dev
)
3269 spin_lock_irq(&dev
->qf_cmd_lock
);
3270 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
3271 atomic_inc(&dev
->dev_qf_count
);
3272 smp_mb__after_atomic_inc();
3273 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
3275 schedule_work(&cmd
->se_dev
->qf_work_queue
);
3278 static void target_complete_ok_work(struct work_struct
*work
)
3280 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
3281 int reason
= 0, ret
;
3284 * Check if we need to move delayed/dormant tasks from cmds on the
3285 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3288 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3289 transport_complete_task_attr(cmd
);
3291 * Check to schedule QUEUE_FULL work, or execute an existing
3292 * cmd->transport_qf_callback()
3294 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
3295 schedule_work(&cmd
->se_dev
->qf_work_queue
);
3298 * Check if we need to retrieve a sense buffer from
3299 * the struct se_cmd in question.
3301 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
3302 if (transport_get_sense_data(cmd
) < 0)
3303 reason
= TCM_NON_EXISTENT_LUN
;
3306 * Only set when an struct se_task->task_scsi_status returned
3307 * a non GOOD status.
3309 if (cmd
->scsi_status
) {
3310 ret
= transport_send_check_condition_and_sense(
3312 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
3315 transport_lun_remove_cmd(cmd
);
3316 transport_cmd_check_stop_to_fabric(cmd
);
3321 * Check for a callback, used by amongst other things
3322 * XDWRITE_READ_10 emulation.
3324 if (cmd
->transport_complete_callback
)
3325 cmd
->transport_complete_callback(cmd
);
3327 switch (cmd
->data_direction
) {
3328 case DMA_FROM_DEVICE
:
3329 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3330 if (cmd
->se_lun
->lun_sep
) {
3331 cmd
->se_lun
->lun_sep
->sep_stats
.tx_data_octets
+=
3334 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3336 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
3337 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
3341 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3342 if (cmd
->se_lun
->lun_sep
) {
3343 cmd
->se_lun
->lun_sep
->sep_stats
.rx_data_octets
+=
3346 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3348 * Check if we need to send READ payload for BIDI-COMMAND
3350 if (cmd
->t_bidi_data_sg
) {
3351 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3352 if (cmd
->se_lun
->lun_sep
) {
3353 cmd
->se_lun
->lun_sep
->sep_stats
.tx_data_octets
+=
3356 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3357 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
3358 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
3362 /* Fall through for DMA_TO_DEVICE */
3364 ret
= cmd
->se_tfo
->queue_status(cmd
);
3365 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
3372 transport_lun_remove_cmd(cmd
);
3373 transport_cmd_check_stop_to_fabric(cmd
);
3377 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3378 " data_direction: %d\n", cmd
, cmd
->data_direction
);
3379 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
3380 transport_handle_queue_full(cmd
, cmd
->se_dev
);
3383 static void transport_free_dev_tasks(struct se_cmd
*cmd
)
3385 struct se_task
*task
, *task_tmp
;
3386 unsigned long flags
;
3387 LIST_HEAD(dispose_list
);
3389 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3390 list_for_each_entry_safe(task
, task_tmp
,
3391 &cmd
->t_task_list
, t_list
) {
3392 if (!(task
->task_flags
& TF_ACTIVE
))
3393 list_move_tail(&task
->t_list
, &dispose_list
);
3395 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3397 while (!list_empty(&dispose_list
)) {
3398 task
= list_first_entry(&dispose_list
, struct se_task
, t_list
);
3400 if (task
->task_sg
!= cmd
->t_data_sg
&&
3401 task
->task_sg
!= cmd
->t_bidi_data_sg
)
3402 kfree(task
->task_sg
);
3404 list_del(&task
->t_list
);
3406 cmd
->se_dev
->transport
->free_task(task
);
3410 static inline void transport_free_sgl(struct scatterlist
*sgl
, int nents
)
3412 struct scatterlist
*sg
;
3415 for_each_sg(sgl
, sg
, nents
, count
)
3416 __free_page(sg_page(sg
));
3421 static inline void transport_free_pages(struct se_cmd
*cmd
)
3423 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
)
3426 transport_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
3427 cmd
->t_data_sg
= NULL
;
3428 cmd
->t_data_nents
= 0;
3430 transport_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
3431 cmd
->t_bidi_data_sg
= NULL
;
3432 cmd
->t_bidi_data_nents
= 0;
3436 * transport_put_cmd - release a reference to a command
3437 * @cmd: command to release
3439 * This routine releases our reference to the command and frees it if possible.
3441 static void transport_put_cmd(struct se_cmd
*cmd
)
3443 unsigned long flags
;
3446 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3447 if (atomic_read(&cmd
->t_fe_count
)) {
3448 if (!atomic_dec_and_test(&cmd
->t_fe_count
))
3452 if (atomic_read(&cmd
->t_se_count
)) {
3453 if (!atomic_dec_and_test(&cmd
->t_se_count
))
3457 if (atomic_read(&cmd
->transport_dev_active
)) {
3458 atomic_set(&cmd
->transport_dev_active
, 0);
3459 transport_all_task_dev_remove_state(cmd
);
3462 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3464 if (free_tasks
!= 0)
3465 transport_free_dev_tasks(cmd
);
3467 transport_free_pages(cmd
);
3468 transport_release_cmd(cmd
);
3471 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3475 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3476 * allocating in the core.
3477 * @cmd: Associated se_cmd descriptor
3478 * @mem: SGL style memory for TCM WRITE / READ
3479 * @sg_mem_num: Number of SGL elements
3480 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3481 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3483 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3486 int transport_generic_map_mem_to_cmd(
3488 struct scatterlist
*sgl
,
3490 struct scatterlist
*sgl_bidi
,
3493 if (!sgl
|| !sgl_count
)
3496 if ((cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
) ||
3497 (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
)) {
3499 cmd
->t_data_sg
= sgl
;
3500 cmd
->t_data_nents
= sgl_count
;
3502 if (sgl_bidi
&& sgl_bidi_count
) {
3503 cmd
->t_bidi_data_sg
= sgl_bidi
;
3504 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
3506 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
3511 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd
);
3513 void *transport_kmap_first_data_page(struct se_cmd
*cmd
)
3515 struct scatterlist
*sg
= cmd
->t_data_sg
;
3519 * We need to take into account a possible offset here for fabrics like
3520 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3521 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3523 return kmap(sg_page(sg
)) + sg
->offset
;
3525 EXPORT_SYMBOL(transport_kmap_first_data_page
);
3527 void transport_kunmap_first_data_page(struct se_cmd
*cmd
)
3529 kunmap(sg_page(cmd
->t_data_sg
));
3531 EXPORT_SYMBOL(transport_kunmap_first_data_page
);
3534 transport_generic_get_mem(struct se_cmd
*cmd
)
3536 u32 length
= cmd
->data_length
;
3541 nents
= DIV_ROUND_UP(length
, PAGE_SIZE
);
3542 cmd
->t_data_sg
= kmalloc(sizeof(struct scatterlist
) * nents
, GFP_KERNEL
);
3543 if (!cmd
->t_data_sg
)
3546 cmd
->t_data_nents
= nents
;
3547 sg_init_table(cmd
->t_data_sg
, nents
);
3550 u32 page_len
= min_t(u32
, length
, PAGE_SIZE
);
3551 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
3555 sg_set_page(&cmd
->t_data_sg
[i
], page
, page_len
, 0);
3563 __free_page(sg_page(&cmd
->t_data_sg
[i
]));
3566 kfree(cmd
->t_data_sg
);
3567 cmd
->t_data_sg
= NULL
;
3571 /* Reduce sectors if they are too long for the device */
3572 static inline sector_t
transport_limit_task_sectors(
3573 struct se_device
*dev
,
3574 unsigned long long lba
,
3577 sectors
= min_t(sector_t
, sectors
, dev
->se_sub_dev
->se_dev_attrib
.max_sectors
);
3579 if (dev
->transport
->get_device_type(dev
) == TYPE_DISK
)
3580 if ((lba
+ sectors
) > transport_dev_end_lba(dev
))
3581 sectors
= ((transport_dev_end_lba(dev
) - lba
) + 1);
3588 * This function can be used by HW target mode drivers to create a linked
3589 * scatterlist from all contiguously allocated struct se_task->task_sg[].
3590 * This is intended to be called during the completion path by TCM Core
3591 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3593 void transport_do_task_sg_chain(struct se_cmd
*cmd
)
3595 struct scatterlist
*sg_first
= NULL
;
3596 struct scatterlist
*sg_prev
= NULL
;
3597 int sg_prev_nents
= 0;
3598 struct scatterlist
*sg
;
3599 struct se_task
*task
;
3600 u32 chained_nents
= 0;
3603 BUG_ON(!cmd
->se_tfo
->task_sg_chaining
);
3606 * Walk the struct se_task list and setup scatterlist chains
3607 * for each contiguously allocated struct se_task->task_sg[].
3609 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
3614 sg_first
= task
->task_sg
;
3615 chained_nents
= task
->task_sg_nents
;
3617 sg_chain(sg_prev
, sg_prev_nents
, task
->task_sg
);
3618 chained_nents
+= task
->task_sg_nents
;
3621 * For the padded tasks, use the extra SGL vector allocated
3622 * in transport_allocate_data_tasks() for the sg_prev_nents
3623 * offset into sg_chain() above.
3625 * We do not need the padding for the last task (or a single
3626 * task), but in that case we will never use the sg_prev_nents
3627 * value below which would be incorrect.
3629 sg_prev_nents
= (task
->task_sg_nents
+ 1);
3630 sg_prev
= task
->task_sg
;
3633 * Setup the starting pointer and total t_tasks_sg_linked_no including
3634 * padding SGs for linking and to mark the end.
3636 cmd
->t_tasks_sg_chained
= sg_first
;
3637 cmd
->t_tasks_sg_chained_no
= chained_nents
;
3639 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3640 " t_tasks_sg_chained_no: %u\n", cmd
, cmd
->t_tasks_sg_chained
,
3641 cmd
->t_tasks_sg_chained_no
);
3643 for_each_sg(cmd
->t_tasks_sg_chained
, sg
,
3644 cmd
->t_tasks_sg_chained_no
, i
) {
3646 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3647 i
, sg
, sg_page(sg
), sg
->length
, sg
->offset
);
3648 if (sg_is_chain(sg
))
3649 pr_debug("SG: %p sg_is_chain=1\n", sg
);
3651 pr_debug("SG: %p sg_is_last=1\n", sg
);
3654 EXPORT_SYMBOL(transport_do_task_sg_chain
);
3657 * Break up cmd into chunks transport can handle
3660 transport_allocate_data_tasks(struct se_cmd
*cmd
,
3661 enum dma_data_direction data_direction
,
3662 struct scatterlist
*cmd_sg
, unsigned int sgl_nents
)
3664 struct se_device
*dev
= cmd
->se_dev
;
3666 unsigned long long lba
;
3667 sector_t sectors
, dev_max_sectors
;
3670 if (transport_cmd_get_valid_sectors(cmd
) < 0)
3673 dev_max_sectors
= dev
->se_sub_dev
->se_dev_attrib
.max_sectors
;
3674 sector_size
= dev
->se_sub_dev
->se_dev_attrib
.block_size
;
3676 WARN_ON(cmd
->data_length
% sector_size
);
3678 lba
= cmd
->t_task_lba
;
3679 sectors
= DIV_ROUND_UP(cmd
->data_length
, sector_size
);
3680 task_count
= DIV_ROUND_UP_SECTOR_T(sectors
, dev_max_sectors
);
3683 * If we need just a single task reuse the SG list in the command
3684 * and avoid a lot of work.
3686 if (task_count
== 1) {
3687 struct se_task
*task
;
3688 unsigned long flags
;
3690 task
= transport_generic_get_task(cmd
, data_direction
);
3694 task
->task_sg
= cmd_sg
;
3695 task
->task_sg_nents
= sgl_nents
;
3697 task
->task_lba
= lba
;
3698 task
->task_sectors
= sectors
;
3699 task
->task_size
= task
->task_sectors
* sector_size
;
3701 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3702 list_add_tail(&task
->t_list
, &cmd
->t_task_list
);
3703 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3708 for (i
= 0; i
< task_count
; i
++) {
3709 struct se_task
*task
;
3710 unsigned int task_size
, task_sg_nents_padded
;
3711 struct scatterlist
*sg
;
3712 unsigned long flags
;
3715 task
= transport_generic_get_task(cmd
, data_direction
);
3719 task
->task_lba
= lba
;
3720 task
->task_sectors
= min(sectors
, dev_max_sectors
);
3721 task
->task_size
= task
->task_sectors
* sector_size
;
3724 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3725 * in order to calculate the number per task SGL entries
3727 task
->task_sg_nents
= DIV_ROUND_UP(task
->task_size
, PAGE_SIZE
);
3729 * Check if the fabric module driver is requesting that all
3730 * struct se_task->task_sg[] be chained together.. If so,
3731 * then allocate an extra padding SG entry for linking and
3732 * marking the end of the chained SGL for every task except
3733 * the last one for (task_count > 1) operation, or skipping
3734 * the extra padding for the (task_count == 1) case.
3736 if (cmd
->se_tfo
->task_sg_chaining
&& (i
< (task_count
- 1))) {
3737 task_sg_nents_padded
= (task
->task_sg_nents
+ 1);
3739 task_sg_nents_padded
= task
->task_sg_nents
;
3741 task
->task_sg
= kmalloc(sizeof(struct scatterlist
) *
3742 task_sg_nents_padded
, GFP_KERNEL
);
3743 if (!task
->task_sg
) {
3744 cmd
->se_dev
->transport
->free_task(task
);
3748 sg_init_table(task
->task_sg
, task_sg_nents_padded
);
3750 task_size
= task
->task_size
;
3752 /* Build new sgl, only up to task_size */
3753 for_each_sg(task
->task_sg
, sg
, task
->task_sg_nents
, count
) {
3754 if (cmd_sg
->length
> task_size
)
3758 task_size
-= cmd_sg
->length
;
3759 cmd_sg
= sg_next(cmd_sg
);
3762 lba
+= task
->task_sectors
;
3763 sectors
-= task
->task_sectors
;
3765 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3766 list_add_tail(&task
->t_list
, &cmd
->t_task_list
);
3767 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3774 transport_allocate_control_task(struct se_cmd
*cmd
)
3776 struct se_task
*task
;
3777 unsigned long flags
;
3779 task
= transport_generic_get_task(cmd
, cmd
->data_direction
);
3783 task
->task_sg
= cmd
->t_data_sg
;
3784 task
->task_size
= cmd
->data_length
;
3785 task
->task_sg_nents
= cmd
->t_data_nents
;
3787 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3788 list_add_tail(&task
->t_list
, &cmd
->t_task_list
);
3789 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3791 /* Success! Return number of tasks allocated */
3796 * Allocate any required ressources to execute the command, and either place
3797 * it on the execution queue if possible. For writes we might not have the
3798 * payload yet, thus notify the fabric via a call to ->write_pending instead.
3800 int transport_generic_new_cmd(struct se_cmd
*cmd
)
3802 struct se_device
*dev
= cmd
->se_dev
;
3803 int task_cdbs
, task_cdbs_bidi
= 0;
3808 * Determine is the TCM fabric module has already allocated physical
3809 * memory, and is directly calling transport_generic_map_mem_to_cmd()
3812 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
3814 ret
= transport_generic_get_mem(cmd
);
3820 * For BIDI command set up the read tasks first.
3822 if (cmd
->t_bidi_data_sg
&&
3823 dev
->transport
->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
) {
3824 BUG_ON(!(cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
));
3826 task_cdbs_bidi
= transport_allocate_data_tasks(cmd
,
3827 DMA_FROM_DEVICE
, cmd
->t_bidi_data_sg
,
3828 cmd
->t_bidi_data_nents
);
3829 if (task_cdbs_bidi
<= 0)
3832 atomic_inc(&cmd
->t_fe_count
);
3833 atomic_inc(&cmd
->t_se_count
);
3837 if (cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
) {
3838 task_cdbs
= transport_allocate_data_tasks(cmd
,
3839 cmd
->data_direction
, cmd
->t_data_sg
,
3842 task_cdbs
= transport_allocate_control_task(cmd
);
3849 atomic_inc(&cmd
->t_fe_count
);
3850 atomic_inc(&cmd
->t_se_count
);
3853 cmd
->t_task_list_num
= (task_cdbs
+ task_cdbs_bidi
);
3854 atomic_set(&cmd
->t_task_cdbs_left
, cmd
->t_task_list_num
);
3855 atomic_set(&cmd
->t_task_cdbs_ex_left
, cmd
->t_task_list_num
);
3858 * For WRITEs, let the fabric know its buffer is ready..
3859 * This WRITE struct se_cmd (and all of its associated struct se_task's)
3860 * will be added to the struct se_device execution queue after its WRITE
3861 * data has arrived. (ie: It gets handled by the transport processing
3862 * thread a second time)
3864 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
3865 transport_add_tasks_to_state_queue(cmd
);
3866 return transport_generic_write_pending(cmd
);
3869 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3870 * to the execution queue.
3872 transport_execute_tasks(cmd
);
3876 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3877 cmd
->scsi_sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
3880 EXPORT_SYMBOL(transport_generic_new_cmd
);
3882 /* transport_generic_process_write():
3886 void transport_generic_process_write(struct se_cmd
*cmd
)
3888 transport_execute_tasks(cmd
);
3890 EXPORT_SYMBOL(transport_generic_process_write
);
3892 static void transport_write_pending_qf(struct se_cmd
*cmd
)
3896 ret
= cmd
->se_tfo
->write_pending(cmd
);
3897 if (ret
== -EAGAIN
|| ret
== -ENOMEM
) {
3898 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3900 transport_handle_queue_full(cmd
, cmd
->se_dev
);
3904 static int transport_generic_write_pending(struct se_cmd
*cmd
)
3906 unsigned long flags
;
3909 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3910 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
3911 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3914 * Clear the se_cmd for WRITE_PENDING status in order to set
3915 * cmd->t_transport_active=0 so that transport_generic_handle_data
3916 * can be called from HW target mode interrupt code. This is safe
3917 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
3918 * because the se_cmd->se_lun pointer is not being cleared.
3920 transport_cmd_check_stop(cmd
, 1, 0);
3923 * Call the fabric write_pending function here to let the
3924 * frontend know that WRITE buffers are ready.
3926 ret
= cmd
->se_tfo
->write_pending(cmd
);
3927 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
3932 return PYX_TRANSPORT_WRITE_PENDING
;
3935 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
3936 cmd
->t_state
= TRANSPORT_COMPLETE_QF_WP
;
3937 transport_handle_queue_full(cmd
, cmd
->se_dev
);
3942 * transport_release_cmd - free a command
3943 * @cmd: command to free
3945 * This routine unconditionally frees a command, and reference counting
3946 * or list removal must be done in the caller.
3948 void transport_release_cmd(struct se_cmd
*cmd
)
3950 BUG_ON(!cmd
->se_tfo
);
3952 if (cmd
->se_tmr_req
)
3953 core_tmr_release_req(cmd
->se_tmr_req
);
3954 if (cmd
->t_task_cdb
!= cmd
->__t_task_cdb
)
3955 kfree(cmd
->t_task_cdb
);
3957 * Check if target_wait_for_sess_cmds() is expecting to
3958 * release se_cmd directly here..
3960 if (cmd
->check_release
!= 0 && cmd
->se_tfo
->check_release_cmd
)
3961 if (cmd
->se_tfo
->check_release_cmd(cmd
) != 0)
3964 cmd
->se_tfo
->release_cmd(cmd
);
3966 EXPORT_SYMBOL(transport_release_cmd
);
3968 void transport_generic_free_cmd(struct se_cmd
*cmd
, int wait_for_tasks
)
3970 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)) {
3971 if (wait_for_tasks
&& cmd
->se_tmr_req
)
3972 transport_wait_for_tasks(cmd
);
3974 transport_release_cmd(cmd
);
3977 transport_wait_for_tasks(cmd
);
3979 core_dec_lacl_count(cmd
->se_sess
->se_node_acl
, cmd
);
3982 transport_lun_remove_cmd(cmd
);
3984 transport_free_dev_tasks(cmd
);
3986 transport_put_cmd(cmd
);
3989 EXPORT_SYMBOL(transport_generic_free_cmd
);
3991 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3992 * @se_sess: session to reference
3993 * @se_cmd: command descriptor to add
3995 void target_get_sess_cmd(struct se_session
*se_sess
, struct se_cmd
*se_cmd
)
3997 unsigned long flags
;
3999 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
4000 list_add_tail(&se_cmd
->se_cmd_list
, &se_sess
->sess_cmd_list
);
4001 se_cmd
->check_release
= 1;
4002 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
4004 EXPORT_SYMBOL(target_get_sess_cmd
);
4006 /* target_put_sess_cmd - Check for active I/O shutdown or list delete
4007 * @se_sess: session to reference
4008 * @se_cmd: command descriptor to drop
4010 int target_put_sess_cmd(struct se_session
*se_sess
, struct se_cmd
*se_cmd
)
4012 unsigned long flags
;
4014 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
4015 if (list_empty(&se_cmd
->se_cmd_list
)) {
4016 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
4021 if (se_sess
->sess_tearing_down
&& se_cmd
->cmd_wait_set
) {
4022 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
4023 complete(&se_cmd
->cmd_wait_comp
);
4026 list_del(&se_cmd
->se_cmd_list
);
4027 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
4031 EXPORT_SYMBOL(target_put_sess_cmd
);
4033 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4034 * @se_sess: session to split
4036 void target_splice_sess_cmd_list(struct se_session
*se_sess
)
4038 struct se_cmd
*se_cmd
;
4039 unsigned long flags
;
4041 WARN_ON(!list_empty(&se_sess
->sess_wait_list
));
4042 INIT_LIST_HEAD(&se_sess
->sess_wait_list
);
4044 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
4045 se_sess
->sess_tearing_down
= 1;
4047 list_splice_init(&se_sess
->sess_cmd_list
, &se_sess
->sess_wait_list
);
4049 list_for_each_entry(se_cmd
, &se_sess
->sess_wait_list
, se_cmd_list
)
4050 se_cmd
->cmd_wait_set
= 1;
4052 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
4054 EXPORT_SYMBOL(target_splice_sess_cmd_list
);
4056 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4057 * @se_sess: session to wait for active I/O
4058 * @wait_for_tasks: Make extra transport_wait_for_tasks call
4060 void target_wait_for_sess_cmds(
4061 struct se_session
*se_sess
,
4064 struct se_cmd
*se_cmd
, *tmp_cmd
;
4067 list_for_each_entry_safe(se_cmd
, tmp_cmd
,
4068 &se_sess
->sess_wait_list
, se_cmd_list
) {
4069 list_del(&se_cmd
->se_cmd_list
);
4071 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4072 " %d\n", se_cmd
, se_cmd
->t_state
,
4073 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
4075 if (wait_for_tasks
) {
4076 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4077 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
4078 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
4080 rc
= transport_wait_for_tasks(se_cmd
);
4082 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4083 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
4084 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
4088 wait_for_completion(&se_cmd
->cmd_wait_comp
);
4089 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4090 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
4091 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
4094 se_cmd
->se_tfo
->release_cmd(se_cmd
);
4097 EXPORT_SYMBOL(target_wait_for_sess_cmds
);
4099 /* transport_lun_wait_for_tasks():
4101 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4102 * an struct se_lun to be successfully shutdown.
4104 static int transport_lun_wait_for_tasks(struct se_cmd
*cmd
, struct se_lun
*lun
)
4106 unsigned long flags
;
4109 * If the frontend has already requested this struct se_cmd to
4110 * be stopped, we can safely ignore this struct se_cmd.
4112 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4113 if (atomic_read(&cmd
->t_transport_stop
)) {
4114 atomic_set(&cmd
->transport_lun_stop
, 0);
4115 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4116 " TRUE, skipping\n", cmd
->se_tfo
->get_task_tag(cmd
));
4117 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4118 transport_cmd_check_stop(cmd
, 1, 0);
4121 atomic_set(&cmd
->transport_lun_fe_stop
, 1);
4122 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4124 wake_up_interruptible(&cmd
->se_dev
->dev_queue_obj
.thread_wq
);
4126 ret
= transport_stop_tasks_for_cmd(cmd
);
4128 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4129 " %d\n", cmd
, cmd
->t_task_list_num
, ret
);
4131 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4132 cmd
->se_tfo
->get_task_tag(cmd
));
4133 wait_for_completion(&cmd
->transport_lun_stop_comp
);
4134 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4135 cmd
->se_tfo
->get_task_tag(cmd
));
4137 transport_remove_cmd_from_queue(cmd
);
4142 static void __transport_clear_lun_from_sessions(struct se_lun
*lun
)
4144 struct se_cmd
*cmd
= NULL
;
4145 unsigned long lun_flags
, cmd_flags
;
4147 * Do exception processing and return CHECK_CONDITION status to the
4150 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
4151 while (!list_empty(&lun
->lun_cmd_list
)) {
4152 cmd
= list_first_entry(&lun
->lun_cmd_list
,
4153 struct se_cmd
, se_lun_node
);
4154 list_del(&cmd
->se_lun_node
);
4156 atomic_set(&cmd
->transport_lun_active
, 0);
4158 * This will notify iscsi_target_transport.c:
4159 * transport_cmd_check_stop() that a LUN shutdown is in
4160 * progress for the iscsi_cmd_t.
4162 spin_lock(&cmd
->t_state_lock
);
4163 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4164 "_lun_stop for ITT: 0x%08x\n",
4165 cmd
->se_lun
->unpacked_lun
,
4166 cmd
->se_tfo
->get_task_tag(cmd
));
4167 atomic_set(&cmd
->transport_lun_stop
, 1);
4168 spin_unlock(&cmd
->t_state_lock
);
4170 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, lun_flags
);
4173 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4174 cmd
->se_tfo
->get_task_tag(cmd
),
4175 cmd
->se_tfo
->get_cmd_state(cmd
), cmd
->t_state
);
4179 * If the Storage engine still owns the iscsi_cmd_t, determine
4180 * and/or stop its context.
4182 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4183 "_lun_wait_for_tasks()\n", cmd
->se_lun
->unpacked_lun
,
4184 cmd
->se_tfo
->get_task_tag(cmd
));
4186 if (transport_lun_wait_for_tasks(cmd
, cmd
->se_lun
) < 0) {
4187 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
4191 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4192 "_wait_for_tasks(): SUCCESS\n",
4193 cmd
->se_lun
->unpacked_lun
,
4194 cmd
->se_tfo
->get_task_tag(cmd
));
4196 spin_lock_irqsave(&cmd
->t_state_lock
, cmd_flags
);
4197 if (!atomic_read(&cmd
->transport_dev_active
)) {
4198 spin_unlock_irqrestore(&cmd
->t_state_lock
, cmd_flags
);
4201 atomic_set(&cmd
->transport_dev_active
, 0);
4202 transport_all_task_dev_remove_state(cmd
);
4203 spin_unlock_irqrestore(&cmd
->t_state_lock
, cmd_flags
);
4205 transport_free_dev_tasks(cmd
);
4207 * The Storage engine stopped this struct se_cmd before it was
4208 * send to the fabric frontend for delivery back to the
4209 * Initiator Node. Return this SCSI CDB back with an
4210 * CHECK_CONDITION status.
4213 transport_send_check_condition_and_sense(cmd
,
4214 TCM_NON_EXISTENT_LUN
, 0);
4216 * If the fabric frontend is waiting for this iscsi_cmd_t to
4217 * be released, notify the waiting thread now that LU has
4218 * finished accessing it.
4220 spin_lock_irqsave(&cmd
->t_state_lock
, cmd_flags
);
4221 if (atomic_read(&cmd
->transport_lun_fe_stop
)) {
4222 pr_debug("SE_LUN[%d] - Detected FE stop for"
4223 " struct se_cmd: %p ITT: 0x%08x\n",
4225 cmd
, cmd
->se_tfo
->get_task_tag(cmd
));
4227 spin_unlock_irqrestore(&cmd
->t_state_lock
,
4229 transport_cmd_check_stop(cmd
, 1, 0);
4230 complete(&cmd
->transport_lun_fe_stop_comp
);
4231 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
4234 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4235 lun
->unpacked_lun
, cmd
->se_tfo
->get_task_tag(cmd
));
4237 spin_unlock_irqrestore(&cmd
->t_state_lock
, cmd_flags
);
4238 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
4240 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, lun_flags
);
4243 static int transport_clear_lun_thread(void *p
)
4245 struct se_lun
*lun
= (struct se_lun
*)p
;
4247 __transport_clear_lun_from_sessions(lun
);
4248 complete(&lun
->lun_shutdown_comp
);
4253 int transport_clear_lun_from_sessions(struct se_lun
*lun
)
4255 struct task_struct
*kt
;
4257 kt
= kthread_run(transport_clear_lun_thread
, lun
,
4258 "tcm_cl_%u", lun
->unpacked_lun
);
4260 pr_err("Unable to start clear_lun thread\n");
4263 wait_for_completion(&lun
->lun_shutdown_comp
);
4269 * transport_wait_for_tasks - wait for completion to occur
4270 * @cmd: command to wait
4272 * Called from frontend fabric context to wait for storage engine
4273 * to pause and/or release frontend generated struct se_cmd.
4275 bool transport_wait_for_tasks(struct se_cmd
*cmd
)
4277 unsigned long flags
;
4279 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4280 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) && !(cmd
->se_tmr_req
)) {
4281 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4285 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4286 * has been set in transport_set_supported_SAM_opcode().
4288 if (!(cmd
->se_cmd_flags
& SCF_SUPPORTED_SAM_OPCODE
) && !cmd
->se_tmr_req
) {
4289 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4293 * If we are already stopped due to an external event (ie: LUN shutdown)
4294 * sleep until the connection can have the passed struct se_cmd back.
4295 * The cmd->transport_lun_stopped_sem will be upped by
4296 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4297 * has completed its operation on the struct se_cmd.
4299 if (atomic_read(&cmd
->transport_lun_stop
)) {
4301 pr_debug("wait_for_tasks: Stopping"
4302 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4303 "_stop_comp); for ITT: 0x%08x\n",
4304 cmd
->se_tfo
->get_task_tag(cmd
));
4306 * There is a special case for WRITES where a FE exception +
4307 * LUN shutdown means ConfigFS context is still sleeping on
4308 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4309 * We go ahead and up transport_lun_stop_comp just to be sure
4312 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4313 complete(&cmd
->transport_lun_stop_comp
);
4314 wait_for_completion(&cmd
->transport_lun_fe_stop_comp
);
4315 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4317 transport_all_task_dev_remove_state(cmd
);
4319 * At this point, the frontend who was the originator of this
4320 * struct se_cmd, now owns the structure and can be released through
4321 * normal means below.
4323 pr_debug("wait_for_tasks: Stopped"
4324 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4325 "stop_comp); for ITT: 0x%08x\n",
4326 cmd
->se_tfo
->get_task_tag(cmd
));
4328 atomic_set(&cmd
->transport_lun_stop
, 0);
4330 if (!atomic_read(&cmd
->t_transport_active
) ||
4331 atomic_read(&cmd
->t_transport_aborted
)) {
4332 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4336 atomic_set(&cmd
->t_transport_stop
, 1);
4338 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4339 " i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4340 cmd
, cmd
->se_tfo
->get_task_tag(cmd
),
4341 cmd
->se_tfo
->get_cmd_state(cmd
), cmd
->t_state
);
4343 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4345 wake_up_interruptible(&cmd
->se_dev
->dev_queue_obj
.thread_wq
);
4347 wait_for_completion(&cmd
->t_transport_stop_comp
);
4349 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4350 atomic_set(&cmd
->t_transport_active
, 0);
4351 atomic_set(&cmd
->t_transport_stop
, 0);
4353 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4354 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4355 cmd
->se_tfo
->get_task_tag(cmd
));
4357 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4361 EXPORT_SYMBOL(transport_wait_for_tasks
);
4363 static int transport_get_sense_codes(
4368 *asc
= cmd
->scsi_asc
;
4369 *ascq
= cmd
->scsi_ascq
;
4374 static int transport_set_sense_codes(
4379 cmd
->scsi_asc
= asc
;
4380 cmd
->scsi_ascq
= ascq
;
4385 int transport_send_check_condition_and_sense(
4390 unsigned char *buffer
= cmd
->sense_buffer
;
4391 unsigned long flags
;
4393 u8 asc
= 0, ascq
= 0;
4395 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4396 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
4397 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4400 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
4401 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4403 if (!reason
&& from_transport
)
4406 if (!from_transport
)
4407 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
4409 * Data Segment and SenseLength of the fabric response PDU.
4411 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4412 * from include/scsi/scsi_cmnd.h
4414 offset
= cmd
->se_tfo
->set_fabric_sense_len(cmd
,
4415 TRANSPORT_SENSE_BUFFER
);
4417 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4418 * SENSE KEY values from include/scsi/scsi.h
4421 case TCM_NON_EXISTENT_LUN
:
4423 buffer
[offset
] = 0x70;
4424 /* ILLEGAL REQUEST */
4425 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4426 /* LOGICAL UNIT NOT SUPPORTED */
4427 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x25;
4429 case TCM_UNSUPPORTED_SCSI_OPCODE
:
4430 case TCM_SECTOR_COUNT_TOO_MANY
:
4432 buffer
[offset
] = 0x70;
4433 /* ILLEGAL REQUEST */
4434 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4435 /* INVALID COMMAND OPERATION CODE */
4436 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x20;
4438 case TCM_UNKNOWN_MODE_PAGE
:
4440 buffer
[offset
] = 0x70;
4441 /* ILLEGAL REQUEST */
4442 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4443 /* INVALID FIELD IN CDB */
4444 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x24;
4446 case TCM_CHECK_CONDITION_ABORT_CMD
:
4448 buffer
[offset
] = 0x70;
4449 /* ABORTED COMMAND */
4450 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4451 /* BUS DEVICE RESET FUNCTION OCCURRED */
4452 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x29;
4453 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x03;
4455 case TCM_INCORRECT_AMOUNT_OF_DATA
:
4457 buffer
[offset
] = 0x70;
4458 /* ABORTED COMMAND */
4459 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4461 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x0c;
4462 /* NOT ENOUGH UNSOLICITED DATA */
4463 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x0d;
4465 case TCM_INVALID_CDB_FIELD
:
4467 buffer
[offset
] = 0x70;
4468 /* ABORTED COMMAND */
4469 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4470 /* INVALID FIELD IN CDB */
4471 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x24;
4473 case TCM_INVALID_PARAMETER_LIST
:
4475 buffer
[offset
] = 0x70;
4476 /* ABORTED COMMAND */
4477 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4478 /* INVALID FIELD IN PARAMETER LIST */
4479 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x26;
4481 case TCM_UNEXPECTED_UNSOLICITED_DATA
:
4483 buffer
[offset
] = 0x70;
4484 /* ABORTED COMMAND */
4485 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4487 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x0c;
4488 /* UNEXPECTED_UNSOLICITED_DATA */
4489 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x0c;
4491 case TCM_SERVICE_CRC_ERROR
:
4493 buffer
[offset
] = 0x70;
4494 /* ABORTED COMMAND */
4495 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4496 /* PROTOCOL SERVICE CRC ERROR */
4497 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x47;
4499 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x05;
4501 case TCM_SNACK_REJECTED
:
4503 buffer
[offset
] = 0x70;
4504 /* ABORTED COMMAND */
4505 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4507 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x11;
4508 /* FAILED RETRANSMISSION REQUEST */
4509 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x13;
4511 case TCM_WRITE_PROTECTED
:
4513 buffer
[offset
] = 0x70;
4515 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = DATA_PROTECT
;
4516 /* WRITE PROTECTED */
4517 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x27;
4519 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
4521 buffer
[offset
] = 0x70;
4522 /* UNIT ATTENTION */
4523 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = UNIT_ATTENTION
;
4524 core_scsi3_ua_for_check_condition(cmd
, &asc
, &ascq
);
4525 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = asc
;
4526 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = ascq
;
4528 case TCM_CHECK_CONDITION_NOT_READY
:
4530 buffer
[offset
] = 0x70;
4532 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = NOT_READY
;
4533 transport_get_sense_codes(cmd
, &asc
, &ascq
);
4534 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = asc
;
4535 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = ascq
;
4537 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
4540 buffer
[offset
] = 0x70;
4541 /* ILLEGAL REQUEST */
4542 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4543 /* LOGICAL UNIT COMMUNICATION FAILURE */
4544 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x80;
4548 * This code uses linux/include/scsi/scsi.h SAM status codes!
4550 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
4552 * Automatically padded, this value is encoded in the fabric's
4553 * data_length response PDU containing the SCSI defined sense data.
4555 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
+ offset
;
4558 return cmd
->se_tfo
->queue_status(cmd
);
4560 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
4562 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
4566 if (atomic_read(&cmd
->t_transport_aborted
) != 0) {
4568 (cmd
->se_cmd_flags
& SCF_SENT_DELAYED_TAS
))
4571 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4572 " status for CDB: 0x%02x ITT: 0x%08x\n",
4574 cmd
->se_tfo
->get_task_tag(cmd
));
4576 cmd
->se_cmd_flags
|= SCF_SENT_DELAYED_TAS
;
4577 cmd
->se_tfo
->queue_status(cmd
);
4582 EXPORT_SYMBOL(transport_check_aborted_status
);
4584 void transport_send_task_abort(struct se_cmd
*cmd
)
4586 unsigned long flags
;
4588 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4589 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
4590 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4593 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4596 * If there are still expected incoming fabric WRITEs, we wait
4597 * until until they have completed before sending a TASK_ABORTED
4598 * response. This response with TASK_ABORTED status will be
4599 * queued back to fabric module by transport_check_aborted_status().
4601 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
4602 if (cmd
->se_tfo
->write_pending_status(cmd
) != 0) {
4603 atomic_inc(&cmd
->t_transport_aborted
);
4604 smp_mb__after_atomic_inc();
4605 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
4606 transport_new_cmd_failure(cmd
);
4610 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
4612 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4613 " ITT: 0x%08x\n", cmd
->t_task_cdb
[0],
4614 cmd
->se_tfo
->get_task_tag(cmd
));
4616 cmd
->se_tfo
->queue_status(cmd
);
4619 /* transport_generic_do_tmr():
4623 int transport_generic_do_tmr(struct se_cmd
*cmd
)
4625 struct se_device
*dev
= cmd
->se_dev
;
4626 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
4629 switch (tmr
->function
) {
4630 case TMR_ABORT_TASK
:
4631 tmr
->response
= TMR_FUNCTION_REJECTED
;
4633 case TMR_ABORT_TASK_SET
:
4635 case TMR_CLEAR_TASK_SET
:
4636 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
4639 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
4640 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
4641 TMR_FUNCTION_REJECTED
;
4643 case TMR_TARGET_WARM_RESET
:
4644 tmr
->response
= TMR_FUNCTION_REJECTED
;
4646 case TMR_TARGET_COLD_RESET
:
4647 tmr
->response
= TMR_FUNCTION_REJECTED
;
4650 pr_err("Uknown TMR function: 0x%02x.\n",
4652 tmr
->response
= TMR_FUNCTION_REJECTED
;
4656 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
4657 cmd
->se_tfo
->queue_tm_rsp(cmd
);
4659 transport_cmd_check_stop_to_fabric(cmd
);
4663 /* transport_processing_thread():
4667 static int transport_processing_thread(void *param
)
4671 struct se_device
*dev
= (struct se_device
*) param
;
4673 set_user_nice(current
, -20);
4675 while (!kthread_should_stop()) {
4676 ret
= wait_event_interruptible(dev
->dev_queue_obj
.thread_wq
,
4677 atomic_read(&dev
->dev_queue_obj
.queue_cnt
) ||
4678 kthread_should_stop());
4683 __transport_execute_tasks(dev
);
4685 cmd
= transport_get_cmd_from_queue(&dev
->dev_queue_obj
);
4689 switch (cmd
->t_state
) {
4690 case TRANSPORT_NEW_CMD
:
4693 case TRANSPORT_NEW_CMD_MAP
:
4694 if (!cmd
->se_tfo
->new_cmd_map
) {
4695 pr_err("cmd->se_tfo->new_cmd_map is"
4696 " NULL for TRANSPORT_NEW_CMD_MAP\n");
4699 ret
= cmd
->se_tfo
->new_cmd_map(cmd
);
4701 cmd
->transport_error_status
= ret
;
4702 transport_generic_request_failure(cmd
,
4703 0, (cmd
->data_direction
!=
4707 ret
= transport_generic_new_cmd(cmd
);
4709 cmd
->transport_error_status
= ret
;
4710 transport_generic_request_failure(cmd
,
4711 0, (cmd
->data_direction
!=
4715 case TRANSPORT_PROCESS_WRITE
:
4716 transport_generic_process_write(cmd
);
4718 case TRANSPORT_PROCESS_TMR
:
4719 transport_generic_do_tmr(cmd
);
4721 case TRANSPORT_COMPLETE_QF_WP
:
4722 transport_write_pending_qf(cmd
);
4724 case TRANSPORT_COMPLETE_QF_OK
:
4725 transport_complete_qf(cmd
);
4728 pr_err("Unknown t_state: %d for ITT: 0x%08x "
4729 "i_state: %d on SE LUN: %u\n",
4731 cmd
->se_tfo
->get_task_tag(cmd
),
4732 cmd
->se_tfo
->get_cmd_state(cmd
),
4733 cmd
->se_lun
->unpacked_lun
);
4741 WARN_ON(!list_empty(&dev
->state_task_list
));
4742 WARN_ON(!list_empty(&dev
->dev_queue_obj
.qobj_list
));
4743 dev
->process_thread
= NULL
;