firmware_class: Split _request_firmware() into three functions, v2
[zen-stable.git] / mm / memcontrol.c
blobcd412fc9b802c69a279adaf7d74c4dfcb142f089
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
56 #include <asm/uaccess.h>
58 #include <trace/events/vmscan.h>
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 struct mem_cgroup *root_mem_cgroup __read_mostly;
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
75 #else
76 #define do_swap_account (0)
77 #endif
81 * Statistics for memory cgroup.
83 enum mem_cgroup_stat_index {
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
93 MEM_CGROUP_STAT_NSTATS,
96 enum mem_cgroup_events_index {
97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
99 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
102 MEM_CGROUP_EVENTS_NSTATS,
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
110 enum mem_cgroup_events_target {
111 MEM_CGROUP_TARGET_THRESH,
112 MEM_CGROUP_TARGET_SOFTLIMIT,
113 MEM_CGROUP_TARGET_NUMAINFO,
114 MEM_CGROUP_NTARGETS,
116 #define THRESHOLDS_EVENTS_TARGET (128)
117 #define SOFTLIMIT_EVENTS_TARGET (1024)
118 #define NUMAINFO_EVENTS_TARGET (1024)
120 struct mem_cgroup_stat_cpu {
121 long count[MEM_CGROUP_STAT_NSTATS];
122 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123 unsigned long targets[MEM_CGROUP_NTARGETS];
126 struct mem_cgroup_reclaim_iter {
127 /* css_id of the last scanned hierarchy member */
128 int position;
129 /* scan generation, increased every round-trip */
130 unsigned int generation;
134 * per-zone information in memory controller.
136 struct mem_cgroup_per_zone {
137 struct lruvec lruvec;
138 unsigned long count[NR_LRU_LISTS];
140 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
142 struct zone_reclaim_stat reclaim_stat;
143 struct rb_node tree_node; /* RB tree node */
144 unsigned long long usage_in_excess;/* Set to the value by which */
145 /* the soft limit is exceeded*/
146 bool on_tree;
147 struct mem_cgroup *mem; /* Back pointer, we cannot */
148 /* use container_of */
150 /* Macro for accessing counter */
151 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
153 struct mem_cgroup_per_node {
154 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
157 struct mem_cgroup_lru_info {
158 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
162 * Cgroups above their limits are maintained in a RB-Tree, independent of
163 * their hierarchy representation
166 struct mem_cgroup_tree_per_zone {
167 struct rb_root rb_root;
168 spinlock_t lock;
171 struct mem_cgroup_tree_per_node {
172 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
175 struct mem_cgroup_tree {
176 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
179 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
181 struct mem_cgroup_threshold {
182 struct eventfd_ctx *eventfd;
183 u64 threshold;
186 /* For threshold */
187 struct mem_cgroup_threshold_ary {
188 /* An array index points to threshold just below usage. */
189 int current_threshold;
190 /* Size of entries[] */
191 unsigned int size;
192 /* Array of thresholds */
193 struct mem_cgroup_threshold entries[0];
196 struct mem_cgroup_thresholds {
197 /* Primary thresholds array */
198 struct mem_cgroup_threshold_ary *primary;
200 * Spare threshold array.
201 * This is needed to make mem_cgroup_unregister_event() "never fail".
202 * It must be able to store at least primary->size - 1 entries.
204 struct mem_cgroup_threshold_ary *spare;
207 /* for OOM */
208 struct mem_cgroup_eventfd_list {
209 struct list_head list;
210 struct eventfd_ctx *eventfd;
213 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
214 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
217 * The memory controller data structure. The memory controller controls both
218 * page cache and RSS per cgroup. We would eventually like to provide
219 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
220 * to help the administrator determine what knobs to tune.
222 * TODO: Add a water mark for the memory controller. Reclaim will begin when
223 * we hit the water mark. May be even add a low water mark, such that
224 * no reclaim occurs from a cgroup at it's low water mark, this is
225 * a feature that will be implemented much later in the future.
227 struct mem_cgroup {
228 struct cgroup_subsys_state css;
230 * the counter to account for memory usage
232 struct res_counter res;
234 union {
236 * the counter to account for mem+swap usage.
238 struct res_counter memsw;
241 * rcu_freeing is used only when freeing struct mem_cgroup,
242 * so put it into a union to avoid wasting more memory.
243 * It must be disjoint from the css field. It could be
244 * in a union with the res field, but res plays a much
245 * larger part in mem_cgroup life than memsw, and might
246 * be of interest, even at time of free, when debugging.
247 * So share rcu_head with the less interesting memsw.
249 struct rcu_head rcu_freeing;
251 * But when using vfree(), that cannot be done at
252 * interrupt time, so we must then queue the work.
254 struct work_struct work_freeing;
258 * Per cgroup active and inactive list, similar to the
259 * per zone LRU lists.
261 struct mem_cgroup_lru_info info;
262 int last_scanned_node;
263 #if MAX_NUMNODES > 1
264 nodemask_t scan_nodes;
265 atomic_t numainfo_events;
266 atomic_t numainfo_updating;
267 #endif
269 * Should the accounting and control be hierarchical, per subtree?
271 bool use_hierarchy;
273 bool oom_lock;
274 atomic_t under_oom;
276 atomic_t refcnt;
278 int swappiness;
279 /* OOM-Killer disable */
280 int oom_kill_disable;
282 /* set when res.limit == memsw.limit */
283 bool memsw_is_minimum;
285 /* protect arrays of thresholds */
286 struct mutex thresholds_lock;
288 /* thresholds for memory usage. RCU-protected */
289 struct mem_cgroup_thresholds thresholds;
291 /* thresholds for mem+swap usage. RCU-protected */
292 struct mem_cgroup_thresholds memsw_thresholds;
294 /* For oom notifier event fd */
295 struct list_head oom_notify;
298 * Should we move charges of a task when a task is moved into this
299 * mem_cgroup ? And what type of charges should we move ?
301 unsigned long move_charge_at_immigrate;
303 * percpu counter.
305 struct mem_cgroup_stat_cpu *stat;
307 * used when a cpu is offlined or other synchronizations
308 * See mem_cgroup_read_stat().
310 struct mem_cgroup_stat_cpu nocpu_base;
311 spinlock_t pcp_counter_lock;
313 #ifdef CONFIG_INET
314 struct tcp_memcontrol tcp_mem;
315 #endif
318 /* Stuffs for move charges at task migration. */
320 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
321 * left-shifted bitmap of these types.
323 enum move_type {
324 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
325 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
326 NR_MOVE_TYPE,
329 /* "mc" and its members are protected by cgroup_mutex */
330 static struct move_charge_struct {
331 spinlock_t lock; /* for from, to */
332 struct mem_cgroup *from;
333 struct mem_cgroup *to;
334 unsigned long precharge;
335 unsigned long moved_charge;
336 unsigned long moved_swap;
337 struct task_struct *moving_task; /* a task moving charges */
338 wait_queue_head_t waitq; /* a waitq for other context */
339 } mc = {
340 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
341 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
344 static bool move_anon(void)
346 return test_bit(MOVE_CHARGE_TYPE_ANON,
347 &mc.to->move_charge_at_immigrate);
350 static bool move_file(void)
352 return test_bit(MOVE_CHARGE_TYPE_FILE,
353 &mc.to->move_charge_at_immigrate);
357 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
358 * limit reclaim to prevent infinite loops, if they ever occur.
360 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
361 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
363 enum charge_type {
364 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
365 MEM_CGROUP_CHARGE_TYPE_MAPPED,
366 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
367 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
368 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
369 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
370 NR_CHARGE_TYPE,
373 /* for encoding cft->private value on file */
374 #define _MEM (0)
375 #define _MEMSWAP (1)
376 #define _OOM_TYPE (2)
377 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
378 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
379 #define MEMFILE_ATTR(val) ((val) & 0xffff)
380 /* Used for OOM nofiier */
381 #define OOM_CONTROL (0)
384 * Reclaim flags for mem_cgroup_hierarchical_reclaim
386 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
387 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
388 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
389 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
391 static void mem_cgroup_get(struct mem_cgroup *memcg);
392 static void mem_cgroup_put(struct mem_cgroup *memcg);
394 /* Writing them here to avoid exposing memcg's inner layout */
395 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
396 #include <net/sock.h>
397 #include <net/ip.h>
399 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
400 void sock_update_memcg(struct sock *sk)
402 if (mem_cgroup_sockets_enabled) {
403 struct mem_cgroup *memcg;
405 BUG_ON(!sk->sk_prot->proto_cgroup);
407 /* Socket cloning can throw us here with sk_cgrp already
408 * filled. It won't however, necessarily happen from
409 * process context. So the test for root memcg given
410 * the current task's memcg won't help us in this case.
412 * Respecting the original socket's memcg is a better
413 * decision in this case.
415 if (sk->sk_cgrp) {
416 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
417 mem_cgroup_get(sk->sk_cgrp->memcg);
418 return;
421 rcu_read_lock();
422 memcg = mem_cgroup_from_task(current);
423 if (!mem_cgroup_is_root(memcg)) {
424 mem_cgroup_get(memcg);
425 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
427 rcu_read_unlock();
430 EXPORT_SYMBOL(sock_update_memcg);
432 void sock_release_memcg(struct sock *sk)
434 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
435 struct mem_cgroup *memcg;
436 WARN_ON(!sk->sk_cgrp->memcg);
437 memcg = sk->sk_cgrp->memcg;
438 mem_cgroup_put(memcg);
442 #ifdef CONFIG_INET
443 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
445 if (!memcg || mem_cgroup_is_root(memcg))
446 return NULL;
448 return &memcg->tcp_mem.cg_proto;
450 EXPORT_SYMBOL(tcp_proto_cgroup);
451 #endif /* CONFIG_INET */
452 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
454 static void drain_all_stock_async(struct mem_cgroup *memcg);
456 static struct mem_cgroup_per_zone *
457 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
459 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
462 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
464 return &memcg->css;
467 static struct mem_cgroup_per_zone *
468 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
470 int nid = page_to_nid(page);
471 int zid = page_zonenum(page);
473 return mem_cgroup_zoneinfo(memcg, nid, zid);
476 static struct mem_cgroup_tree_per_zone *
477 soft_limit_tree_node_zone(int nid, int zid)
479 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
482 static struct mem_cgroup_tree_per_zone *
483 soft_limit_tree_from_page(struct page *page)
485 int nid = page_to_nid(page);
486 int zid = page_zonenum(page);
488 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
491 static void
492 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
493 struct mem_cgroup_per_zone *mz,
494 struct mem_cgroup_tree_per_zone *mctz,
495 unsigned long long new_usage_in_excess)
497 struct rb_node **p = &mctz->rb_root.rb_node;
498 struct rb_node *parent = NULL;
499 struct mem_cgroup_per_zone *mz_node;
501 if (mz->on_tree)
502 return;
504 mz->usage_in_excess = new_usage_in_excess;
505 if (!mz->usage_in_excess)
506 return;
507 while (*p) {
508 parent = *p;
509 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
510 tree_node);
511 if (mz->usage_in_excess < mz_node->usage_in_excess)
512 p = &(*p)->rb_left;
514 * We can't avoid mem cgroups that are over their soft
515 * limit by the same amount
517 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
518 p = &(*p)->rb_right;
520 rb_link_node(&mz->tree_node, parent, p);
521 rb_insert_color(&mz->tree_node, &mctz->rb_root);
522 mz->on_tree = true;
525 static void
526 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
527 struct mem_cgroup_per_zone *mz,
528 struct mem_cgroup_tree_per_zone *mctz)
530 if (!mz->on_tree)
531 return;
532 rb_erase(&mz->tree_node, &mctz->rb_root);
533 mz->on_tree = false;
536 static void
537 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
538 struct mem_cgroup_per_zone *mz,
539 struct mem_cgroup_tree_per_zone *mctz)
541 spin_lock(&mctz->lock);
542 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
543 spin_unlock(&mctz->lock);
547 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
549 unsigned long long excess;
550 struct mem_cgroup_per_zone *mz;
551 struct mem_cgroup_tree_per_zone *mctz;
552 int nid = page_to_nid(page);
553 int zid = page_zonenum(page);
554 mctz = soft_limit_tree_from_page(page);
557 * Necessary to update all ancestors when hierarchy is used.
558 * because their event counter is not touched.
560 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
561 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
562 excess = res_counter_soft_limit_excess(&memcg->res);
564 * We have to update the tree if mz is on RB-tree or
565 * mem is over its softlimit.
567 if (excess || mz->on_tree) {
568 spin_lock(&mctz->lock);
569 /* if on-tree, remove it */
570 if (mz->on_tree)
571 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
573 * Insert again. mz->usage_in_excess will be updated.
574 * If excess is 0, no tree ops.
576 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
577 spin_unlock(&mctz->lock);
582 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
584 int node, zone;
585 struct mem_cgroup_per_zone *mz;
586 struct mem_cgroup_tree_per_zone *mctz;
588 for_each_node(node) {
589 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
590 mz = mem_cgroup_zoneinfo(memcg, node, zone);
591 mctz = soft_limit_tree_node_zone(node, zone);
592 mem_cgroup_remove_exceeded(memcg, mz, mctz);
597 static struct mem_cgroup_per_zone *
598 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
600 struct rb_node *rightmost = NULL;
601 struct mem_cgroup_per_zone *mz;
603 retry:
604 mz = NULL;
605 rightmost = rb_last(&mctz->rb_root);
606 if (!rightmost)
607 goto done; /* Nothing to reclaim from */
609 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
611 * Remove the node now but someone else can add it back,
612 * we will to add it back at the end of reclaim to its correct
613 * position in the tree.
615 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
616 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
617 !css_tryget(&mz->mem->css))
618 goto retry;
619 done:
620 return mz;
623 static struct mem_cgroup_per_zone *
624 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
626 struct mem_cgroup_per_zone *mz;
628 spin_lock(&mctz->lock);
629 mz = __mem_cgroup_largest_soft_limit_node(mctz);
630 spin_unlock(&mctz->lock);
631 return mz;
635 * Implementation Note: reading percpu statistics for memcg.
637 * Both of vmstat[] and percpu_counter has threshold and do periodic
638 * synchronization to implement "quick" read. There are trade-off between
639 * reading cost and precision of value. Then, we may have a chance to implement
640 * a periodic synchronizion of counter in memcg's counter.
642 * But this _read() function is used for user interface now. The user accounts
643 * memory usage by memory cgroup and he _always_ requires exact value because
644 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
645 * have to visit all online cpus and make sum. So, for now, unnecessary
646 * synchronization is not implemented. (just implemented for cpu hotplug)
648 * If there are kernel internal actions which can make use of some not-exact
649 * value, and reading all cpu value can be performance bottleneck in some
650 * common workload, threashold and synchonization as vmstat[] should be
651 * implemented.
653 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
654 enum mem_cgroup_stat_index idx)
656 long val = 0;
657 int cpu;
659 get_online_cpus();
660 for_each_online_cpu(cpu)
661 val += per_cpu(memcg->stat->count[idx], cpu);
662 #ifdef CONFIG_HOTPLUG_CPU
663 spin_lock(&memcg->pcp_counter_lock);
664 val += memcg->nocpu_base.count[idx];
665 spin_unlock(&memcg->pcp_counter_lock);
666 #endif
667 put_online_cpus();
668 return val;
671 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
672 bool charge)
674 int val = (charge) ? 1 : -1;
675 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
678 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
679 enum mem_cgroup_events_index idx)
681 unsigned long val = 0;
682 int cpu;
684 for_each_online_cpu(cpu)
685 val += per_cpu(memcg->stat->events[idx], cpu);
686 #ifdef CONFIG_HOTPLUG_CPU
687 spin_lock(&memcg->pcp_counter_lock);
688 val += memcg->nocpu_base.events[idx];
689 spin_unlock(&memcg->pcp_counter_lock);
690 #endif
691 return val;
694 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
695 bool file, int nr_pages)
697 preempt_disable();
699 if (file)
700 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
701 nr_pages);
702 else
703 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
704 nr_pages);
706 /* pagein of a big page is an event. So, ignore page size */
707 if (nr_pages > 0)
708 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
709 else {
710 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
711 nr_pages = -nr_pages; /* for event */
714 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
716 preempt_enable();
719 unsigned long
720 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
721 unsigned int lru_mask)
723 struct mem_cgroup_per_zone *mz;
724 enum lru_list l;
725 unsigned long ret = 0;
727 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
729 for_each_lru(l) {
730 if (BIT(l) & lru_mask)
731 ret += MEM_CGROUP_ZSTAT(mz, l);
733 return ret;
736 static unsigned long
737 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
738 int nid, unsigned int lru_mask)
740 u64 total = 0;
741 int zid;
743 for (zid = 0; zid < MAX_NR_ZONES; zid++)
744 total += mem_cgroup_zone_nr_lru_pages(memcg,
745 nid, zid, lru_mask);
747 return total;
750 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
751 unsigned int lru_mask)
753 int nid;
754 u64 total = 0;
756 for_each_node_state(nid, N_HIGH_MEMORY)
757 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
758 return total;
761 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
762 enum mem_cgroup_events_target target)
764 unsigned long val, next;
766 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
767 next = __this_cpu_read(memcg->stat->targets[target]);
768 /* from time_after() in jiffies.h */
769 if ((long)next - (long)val < 0) {
770 switch (target) {
771 case MEM_CGROUP_TARGET_THRESH:
772 next = val + THRESHOLDS_EVENTS_TARGET;
773 break;
774 case MEM_CGROUP_TARGET_SOFTLIMIT:
775 next = val + SOFTLIMIT_EVENTS_TARGET;
776 break;
777 case MEM_CGROUP_TARGET_NUMAINFO:
778 next = val + NUMAINFO_EVENTS_TARGET;
779 break;
780 default:
781 break;
783 __this_cpu_write(memcg->stat->targets[target], next);
784 return true;
786 return false;
790 * Check events in order.
793 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
795 preempt_disable();
796 /* threshold event is triggered in finer grain than soft limit */
797 if (unlikely(mem_cgroup_event_ratelimit(memcg,
798 MEM_CGROUP_TARGET_THRESH))) {
799 bool do_softlimit;
800 bool do_numainfo __maybe_unused;
802 do_softlimit = mem_cgroup_event_ratelimit(memcg,
803 MEM_CGROUP_TARGET_SOFTLIMIT);
804 #if MAX_NUMNODES > 1
805 do_numainfo = mem_cgroup_event_ratelimit(memcg,
806 MEM_CGROUP_TARGET_NUMAINFO);
807 #endif
808 preempt_enable();
810 mem_cgroup_threshold(memcg);
811 if (unlikely(do_softlimit))
812 mem_cgroup_update_tree(memcg, page);
813 #if MAX_NUMNODES > 1
814 if (unlikely(do_numainfo))
815 atomic_inc(&memcg->numainfo_events);
816 #endif
817 } else
818 preempt_enable();
821 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
823 return container_of(cgroup_subsys_state(cont,
824 mem_cgroup_subsys_id), struct mem_cgroup,
825 css);
828 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
831 * mm_update_next_owner() may clear mm->owner to NULL
832 * if it races with swapoff, page migration, etc.
833 * So this can be called with p == NULL.
835 if (unlikely(!p))
836 return NULL;
838 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
839 struct mem_cgroup, css);
842 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
844 struct mem_cgroup *memcg = NULL;
846 if (!mm)
847 return NULL;
849 * Because we have no locks, mm->owner's may be being moved to other
850 * cgroup. We use css_tryget() here even if this looks
851 * pessimistic (rather than adding locks here).
853 rcu_read_lock();
854 do {
855 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
856 if (unlikely(!memcg))
857 break;
858 } while (!css_tryget(&memcg->css));
859 rcu_read_unlock();
860 return memcg;
864 * mem_cgroup_iter - iterate over memory cgroup hierarchy
865 * @root: hierarchy root
866 * @prev: previously returned memcg, NULL on first invocation
867 * @reclaim: cookie for shared reclaim walks, NULL for full walks
869 * Returns references to children of the hierarchy below @root, or
870 * @root itself, or %NULL after a full round-trip.
872 * Caller must pass the return value in @prev on subsequent
873 * invocations for reference counting, or use mem_cgroup_iter_break()
874 * to cancel a hierarchy walk before the round-trip is complete.
876 * Reclaimers can specify a zone and a priority level in @reclaim to
877 * divide up the memcgs in the hierarchy among all concurrent
878 * reclaimers operating on the same zone and priority.
880 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
881 struct mem_cgroup *prev,
882 struct mem_cgroup_reclaim_cookie *reclaim)
884 struct mem_cgroup *memcg = NULL;
885 int id = 0;
887 if (mem_cgroup_disabled())
888 return NULL;
890 if (!root)
891 root = root_mem_cgroup;
893 if (prev && !reclaim)
894 id = css_id(&prev->css);
896 if (prev && prev != root)
897 css_put(&prev->css);
899 if (!root->use_hierarchy && root != root_mem_cgroup) {
900 if (prev)
901 return NULL;
902 return root;
905 while (!memcg) {
906 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
907 struct cgroup_subsys_state *css;
909 if (reclaim) {
910 int nid = zone_to_nid(reclaim->zone);
911 int zid = zone_idx(reclaim->zone);
912 struct mem_cgroup_per_zone *mz;
914 mz = mem_cgroup_zoneinfo(root, nid, zid);
915 iter = &mz->reclaim_iter[reclaim->priority];
916 if (prev && reclaim->generation != iter->generation)
917 return NULL;
918 id = iter->position;
921 rcu_read_lock();
922 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
923 if (css) {
924 if (css == &root->css || css_tryget(css))
925 memcg = container_of(css,
926 struct mem_cgroup, css);
927 } else
928 id = 0;
929 rcu_read_unlock();
931 if (reclaim) {
932 iter->position = id;
933 if (!css)
934 iter->generation++;
935 else if (!prev && memcg)
936 reclaim->generation = iter->generation;
939 if (prev && !css)
940 return NULL;
942 return memcg;
946 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
947 * @root: hierarchy root
948 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
950 void mem_cgroup_iter_break(struct mem_cgroup *root,
951 struct mem_cgroup *prev)
953 if (!root)
954 root = root_mem_cgroup;
955 if (prev && prev != root)
956 css_put(&prev->css);
960 * Iteration constructs for visiting all cgroups (under a tree). If
961 * loops are exited prematurely (break), mem_cgroup_iter_break() must
962 * be used for reference counting.
964 #define for_each_mem_cgroup_tree(iter, root) \
965 for (iter = mem_cgroup_iter(root, NULL, NULL); \
966 iter != NULL; \
967 iter = mem_cgroup_iter(root, iter, NULL))
969 #define for_each_mem_cgroup(iter) \
970 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
971 iter != NULL; \
972 iter = mem_cgroup_iter(NULL, iter, NULL))
974 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
976 return (memcg == root_mem_cgroup);
979 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
981 struct mem_cgroup *memcg;
983 if (!mm)
984 return;
986 rcu_read_lock();
987 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
988 if (unlikely(!memcg))
989 goto out;
991 switch (idx) {
992 case PGFAULT:
993 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
994 break;
995 case PGMAJFAULT:
996 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
997 break;
998 default:
999 BUG();
1001 out:
1002 rcu_read_unlock();
1004 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1007 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1008 * @zone: zone of the wanted lruvec
1009 * @mem: memcg of the wanted lruvec
1011 * Returns the lru list vector holding pages for the given @zone and
1012 * @mem. This can be the global zone lruvec, if the memory controller
1013 * is disabled.
1015 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1016 struct mem_cgroup *memcg)
1018 struct mem_cgroup_per_zone *mz;
1020 if (mem_cgroup_disabled())
1021 return &zone->lruvec;
1023 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1024 return &mz->lruvec;
1028 * Following LRU functions are allowed to be used without PCG_LOCK.
1029 * Operations are called by routine of global LRU independently from memcg.
1030 * What we have to take care of here is validness of pc->mem_cgroup.
1032 * Changes to pc->mem_cgroup happens when
1033 * 1. charge
1034 * 2. moving account
1035 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1036 * It is added to LRU before charge.
1037 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1038 * When moving account, the page is not on LRU. It's isolated.
1042 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1043 * @zone: zone of the page
1044 * @page: the page
1045 * @lru: current lru
1047 * This function accounts for @page being added to @lru, and returns
1048 * the lruvec for the given @zone and the memcg @page is charged to.
1050 * The callsite is then responsible for physically linking the page to
1051 * the returned lruvec->lists[@lru].
1053 struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1054 enum lru_list lru)
1056 struct mem_cgroup_per_zone *mz;
1057 struct mem_cgroup *memcg;
1058 struct page_cgroup *pc;
1060 if (mem_cgroup_disabled())
1061 return &zone->lruvec;
1063 pc = lookup_page_cgroup(page);
1064 memcg = pc->mem_cgroup;
1067 * Surreptitiously switch any uncharged page to root:
1068 * an uncharged page off lru does nothing to secure
1069 * its former mem_cgroup from sudden removal.
1071 * Our caller holds lru_lock, and PageCgroupUsed is updated
1072 * under page_cgroup lock: between them, they make all uses
1073 * of pc->mem_cgroup safe.
1075 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1076 pc->mem_cgroup = memcg = root_mem_cgroup;
1078 mz = page_cgroup_zoneinfo(memcg, page);
1079 /* compound_order() is stabilized through lru_lock */
1080 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1081 return &mz->lruvec;
1085 * mem_cgroup_lru_del_list - account for removing an lru page
1086 * @page: the page
1087 * @lru: target lru
1089 * This function accounts for @page being removed from @lru.
1091 * The callsite is then responsible for physically unlinking
1092 * @page->lru.
1094 void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1096 struct mem_cgroup_per_zone *mz;
1097 struct mem_cgroup *memcg;
1098 struct page_cgroup *pc;
1100 if (mem_cgroup_disabled())
1101 return;
1103 pc = lookup_page_cgroup(page);
1104 memcg = pc->mem_cgroup;
1105 VM_BUG_ON(!memcg);
1106 mz = page_cgroup_zoneinfo(memcg, page);
1107 /* huge page split is done under lru_lock. so, we have no races. */
1108 VM_BUG_ON(MEM_CGROUP_ZSTAT(mz, lru) < (1 << compound_order(page)));
1109 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1112 void mem_cgroup_lru_del(struct page *page)
1114 mem_cgroup_lru_del_list(page, page_lru(page));
1118 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1119 * @zone: zone of the page
1120 * @page: the page
1121 * @from: current lru
1122 * @to: target lru
1124 * This function accounts for @page being moved between the lrus @from
1125 * and @to, and returns the lruvec for the given @zone and the memcg
1126 * @page is charged to.
1128 * The callsite is then responsible for physically relinking
1129 * @page->lru to the returned lruvec->lists[@to].
1131 struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1132 struct page *page,
1133 enum lru_list from,
1134 enum lru_list to)
1136 /* XXX: Optimize this, especially for @from == @to */
1137 mem_cgroup_lru_del_list(page, from);
1138 return mem_cgroup_lru_add_list(zone, page, to);
1142 * Checks whether given mem is same or in the root_mem_cgroup's
1143 * hierarchy subtree
1145 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1146 struct mem_cgroup *memcg)
1148 if (root_memcg != memcg) {
1149 return (root_memcg->use_hierarchy &&
1150 css_is_ancestor(&memcg->css, &root_memcg->css));
1153 return true;
1156 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1158 int ret;
1159 struct mem_cgroup *curr = NULL;
1160 struct task_struct *p;
1162 p = find_lock_task_mm(task);
1163 if (p) {
1164 curr = try_get_mem_cgroup_from_mm(p->mm);
1165 task_unlock(p);
1166 } else {
1168 * All threads may have already detached their mm's, but the oom
1169 * killer still needs to detect if they have already been oom
1170 * killed to prevent needlessly killing additional tasks.
1172 task_lock(task);
1173 curr = mem_cgroup_from_task(task);
1174 if (curr)
1175 css_get(&curr->css);
1176 task_unlock(task);
1178 if (!curr)
1179 return 0;
1181 * We should check use_hierarchy of "memcg" not "curr". Because checking
1182 * use_hierarchy of "curr" here make this function true if hierarchy is
1183 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1184 * hierarchy(even if use_hierarchy is disabled in "memcg").
1186 ret = mem_cgroup_same_or_subtree(memcg, curr);
1187 css_put(&curr->css);
1188 return ret;
1191 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1193 unsigned long inactive_ratio;
1194 int nid = zone_to_nid(zone);
1195 int zid = zone_idx(zone);
1196 unsigned long inactive;
1197 unsigned long active;
1198 unsigned long gb;
1200 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1201 BIT(LRU_INACTIVE_ANON));
1202 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1203 BIT(LRU_ACTIVE_ANON));
1205 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1206 if (gb)
1207 inactive_ratio = int_sqrt(10 * gb);
1208 else
1209 inactive_ratio = 1;
1211 return inactive * inactive_ratio < active;
1214 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1216 unsigned long active;
1217 unsigned long inactive;
1218 int zid = zone_idx(zone);
1219 int nid = zone_to_nid(zone);
1221 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1222 BIT(LRU_INACTIVE_FILE));
1223 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1224 BIT(LRU_ACTIVE_FILE));
1226 return (active > inactive);
1229 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1230 struct zone *zone)
1232 int nid = zone_to_nid(zone);
1233 int zid = zone_idx(zone);
1234 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1236 return &mz->reclaim_stat;
1239 struct zone_reclaim_stat *
1240 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1242 struct page_cgroup *pc;
1243 struct mem_cgroup_per_zone *mz;
1245 if (mem_cgroup_disabled())
1246 return NULL;
1248 pc = lookup_page_cgroup(page);
1249 if (!PageCgroupUsed(pc))
1250 return NULL;
1251 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1252 smp_rmb();
1253 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1254 return &mz->reclaim_stat;
1257 #define mem_cgroup_from_res_counter(counter, member) \
1258 container_of(counter, struct mem_cgroup, member)
1261 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1262 * @mem: the memory cgroup
1264 * Returns the maximum amount of memory @mem can be charged with, in
1265 * pages.
1267 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1269 unsigned long long margin;
1271 margin = res_counter_margin(&memcg->res);
1272 if (do_swap_account)
1273 margin = min(margin, res_counter_margin(&memcg->memsw));
1274 return margin >> PAGE_SHIFT;
1277 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1279 struct cgroup *cgrp = memcg->css.cgroup;
1281 /* root ? */
1282 if (cgrp->parent == NULL)
1283 return vm_swappiness;
1285 return memcg->swappiness;
1288 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1290 int cpu;
1292 get_online_cpus();
1293 spin_lock(&memcg->pcp_counter_lock);
1294 for_each_online_cpu(cpu)
1295 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1296 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1297 spin_unlock(&memcg->pcp_counter_lock);
1298 put_online_cpus();
1300 synchronize_rcu();
1303 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1305 int cpu;
1307 if (!memcg)
1308 return;
1309 get_online_cpus();
1310 spin_lock(&memcg->pcp_counter_lock);
1311 for_each_online_cpu(cpu)
1312 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1313 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1314 spin_unlock(&memcg->pcp_counter_lock);
1315 put_online_cpus();
1318 * 2 routines for checking "mem" is under move_account() or not.
1320 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1321 * for avoiding race in accounting. If true,
1322 * pc->mem_cgroup may be overwritten.
1324 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1325 * under hierarchy of moving cgroups. This is for
1326 * waiting at hith-memory prressure caused by "move".
1329 static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1331 VM_BUG_ON(!rcu_read_lock_held());
1332 return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1335 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1337 struct mem_cgroup *from;
1338 struct mem_cgroup *to;
1339 bool ret = false;
1341 * Unlike task_move routines, we access mc.to, mc.from not under
1342 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1344 spin_lock(&mc.lock);
1345 from = mc.from;
1346 to = mc.to;
1347 if (!from)
1348 goto unlock;
1350 ret = mem_cgroup_same_or_subtree(memcg, from)
1351 || mem_cgroup_same_or_subtree(memcg, to);
1352 unlock:
1353 spin_unlock(&mc.lock);
1354 return ret;
1357 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1359 if (mc.moving_task && current != mc.moving_task) {
1360 if (mem_cgroup_under_move(memcg)) {
1361 DEFINE_WAIT(wait);
1362 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1363 /* moving charge context might have finished. */
1364 if (mc.moving_task)
1365 schedule();
1366 finish_wait(&mc.waitq, &wait);
1367 return true;
1370 return false;
1374 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1375 * @memcg: The memory cgroup that went over limit
1376 * @p: Task that is going to be killed
1378 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1379 * enabled
1381 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1383 struct cgroup *task_cgrp;
1384 struct cgroup *mem_cgrp;
1386 * Need a buffer in BSS, can't rely on allocations. The code relies
1387 * on the assumption that OOM is serialized for memory controller.
1388 * If this assumption is broken, revisit this code.
1390 static char memcg_name[PATH_MAX];
1391 int ret;
1393 if (!memcg || !p)
1394 return;
1397 rcu_read_lock();
1399 mem_cgrp = memcg->css.cgroup;
1400 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1402 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1403 if (ret < 0) {
1405 * Unfortunately, we are unable to convert to a useful name
1406 * But we'll still print out the usage information
1408 rcu_read_unlock();
1409 goto done;
1411 rcu_read_unlock();
1413 printk(KERN_INFO "Task in %s killed", memcg_name);
1415 rcu_read_lock();
1416 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1417 if (ret < 0) {
1418 rcu_read_unlock();
1419 goto done;
1421 rcu_read_unlock();
1424 * Continues from above, so we don't need an KERN_ level
1426 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1427 done:
1429 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1430 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1431 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1432 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1433 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1434 "failcnt %llu\n",
1435 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1436 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1437 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1441 * This function returns the number of memcg under hierarchy tree. Returns
1442 * 1(self count) if no children.
1444 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1446 int num = 0;
1447 struct mem_cgroup *iter;
1449 for_each_mem_cgroup_tree(iter, memcg)
1450 num++;
1451 return num;
1455 * Return the memory (and swap, if configured) limit for a memcg.
1457 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1459 u64 limit;
1460 u64 memsw;
1462 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1463 limit += total_swap_pages << PAGE_SHIFT;
1465 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1467 * If memsw is finite and limits the amount of swap space available
1468 * to this memcg, return that limit.
1470 return min(limit, memsw);
1473 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1474 gfp_t gfp_mask,
1475 unsigned long flags)
1477 unsigned long total = 0;
1478 bool noswap = false;
1479 int loop;
1481 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1482 noswap = true;
1483 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1484 noswap = true;
1486 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1487 if (loop)
1488 drain_all_stock_async(memcg);
1489 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1491 * Allow limit shrinkers, which are triggered directly
1492 * by userspace, to catch signals and stop reclaim
1493 * after minimal progress, regardless of the margin.
1495 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1496 break;
1497 if (mem_cgroup_margin(memcg))
1498 break;
1500 * If nothing was reclaimed after two attempts, there
1501 * may be no reclaimable pages in this hierarchy.
1503 if (loop && !total)
1504 break;
1506 return total;
1510 * test_mem_cgroup_node_reclaimable
1511 * @mem: the target memcg
1512 * @nid: the node ID to be checked.
1513 * @noswap : specify true here if the user wants flle only information.
1515 * This function returns whether the specified memcg contains any
1516 * reclaimable pages on a node. Returns true if there are any reclaimable
1517 * pages in the node.
1519 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1520 int nid, bool noswap)
1522 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1523 return true;
1524 if (noswap || !total_swap_pages)
1525 return false;
1526 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1527 return true;
1528 return false;
1531 #if MAX_NUMNODES > 1
1534 * Always updating the nodemask is not very good - even if we have an empty
1535 * list or the wrong list here, we can start from some node and traverse all
1536 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1539 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1541 int nid;
1543 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1544 * pagein/pageout changes since the last update.
1546 if (!atomic_read(&memcg->numainfo_events))
1547 return;
1548 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1549 return;
1551 /* make a nodemask where this memcg uses memory from */
1552 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1554 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1556 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1557 node_clear(nid, memcg->scan_nodes);
1560 atomic_set(&memcg->numainfo_events, 0);
1561 atomic_set(&memcg->numainfo_updating, 0);
1565 * Selecting a node where we start reclaim from. Because what we need is just
1566 * reducing usage counter, start from anywhere is O,K. Considering
1567 * memory reclaim from current node, there are pros. and cons.
1569 * Freeing memory from current node means freeing memory from a node which
1570 * we'll use or we've used. So, it may make LRU bad. And if several threads
1571 * hit limits, it will see a contention on a node. But freeing from remote
1572 * node means more costs for memory reclaim because of memory latency.
1574 * Now, we use round-robin. Better algorithm is welcomed.
1576 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1578 int node;
1580 mem_cgroup_may_update_nodemask(memcg);
1581 node = memcg->last_scanned_node;
1583 node = next_node(node, memcg->scan_nodes);
1584 if (node == MAX_NUMNODES)
1585 node = first_node(memcg->scan_nodes);
1587 * We call this when we hit limit, not when pages are added to LRU.
1588 * No LRU may hold pages because all pages are UNEVICTABLE or
1589 * memcg is too small and all pages are not on LRU. In that case,
1590 * we use curret node.
1592 if (unlikely(node == MAX_NUMNODES))
1593 node = numa_node_id();
1595 memcg->last_scanned_node = node;
1596 return node;
1600 * Check all nodes whether it contains reclaimable pages or not.
1601 * For quick scan, we make use of scan_nodes. This will allow us to skip
1602 * unused nodes. But scan_nodes is lazily updated and may not cotain
1603 * enough new information. We need to do double check.
1605 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1607 int nid;
1610 * quick check...making use of scan_node.
1611 * We can skip unused nodes.
1613 if (!nodes_empty(memcg->scan_nodes)) {
1614 for (nid = first_node(memcg->scan_nodes);
1615 nid < MAX_NUMNODES;
1616 nid = next_node(nid, memcg->scan_nodes)) {
1618 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1619 return true;
1623 * Check rest of nodes.
1625 for_each_node_state(nid, N_HIGH_MEMORY) {
1626 if (node_isset(nid, memcg->scan_nodes))
1627 continue;
1628 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1629 return true;
1631 return false;
1634 #else
1635 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1637 return 0;
1640 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1642 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1644 #endif
1646 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1647 struct zone *zone,
1648 gfp_t gfp_mask,
1649 unsigned long *total_scanned)
1651 struct mem_cgroup *victim = NULL;
1652 int total = 0;
1653 int loop = 0;
1654 unsigned long excess;
1655 unsigned long nr_scanned;
1656 struct mem_cgroup_reclaim_cookie reclaim = {
1657 .zone = zone,
1658 .priority = 0,
1661 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1663 while (1) {
1664 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1665 if (!victim) {
1666 loop++;
1667 if (loop >= 2) {
1669 * If we have not been able to reclaim
1670 * anything, it might because there are
1671 * no reclaimable pages under this hierarchy
1673 if (!total)
1674 break;
1676 * We want to do more targeted reclaim.
1677 * excess >> 2 is not to excessive so as to
1678 * reclaim too much, nor too less that we keep
1679 * coming back to reclaim from this cgroup
1681 if (total >= (excess >> 2) ||
1682 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1683 break;
1685 continue;
1687 if (!mem_cgroup_reclaimable(victim, false))
1688 continue;
1689 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1690 zone, &nr_scanned);
1691 *total_scanned += nr_scanned;
1692 if (!res_counter_soft_limit_excess(&root_memcg->res))
1693 break;
1695 mem_cgroup_iter_break(root_memcg, victim);
1696 return total;
1700 * Check OOM-Killer is already running under our hierarchy.
1701 * If someone is running, return false.
1702 * Has to be called with memcg_oom_lock
1704 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1706 struct mem_cgroup *iter, *failed = NULL;
1708 for_each_mem_cgroup_tree(iter, memcg) {
1709 if (iter->oom_lock) {
1711 * this subtree of our hierarchy is already locked
1712 * so we cannot give a lock.
1714 failed = iter;
1715 mem_cgroup_iter_break(memcg, iter);
1716 break;
1717 } else
1718 iter->oom_lock = true;
1721 if (!failed)
1722 return true;
1725 * OK, we failed to lock the whole subtree so we have to clean up
1726 * what we set up to the failing subtree
1728 for_each_mem_cgroup_tree(iter, memcg) {
1729 if (iter == failed) {
1730 mem_cgroup_iter_break(memcg, iter);
1731 break;
1733 iter->oom_lock = false;
1735 return false;
1739 * Has to be called with memcg_oom_lock
1741 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1743 struct mem_cgroup *iter;
1745 for_each_mem_cgroup_tree(iter, memcg)
1746 iter->oom_lock = false;
1747 return 0;
1750 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1752 struct mem_cgroup *iter;
1754 for_each_mem_cgroup_tree(iter, memcg)
1755 atomic_inc(&iter->under_oom);
1758 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1760 struct mem_cgroup *iter;
1763 * When a new child is created while the hierarchy is under oom,
1764 * mem_cgroup_oom_lock() may not be called. We have to use
1765 * atomic_add_unless() here.
1767 for_each_mem_cgroup_tree(iter, memcg)
1768 atomic_add_unless(&iter->under_oom, -1, 0);
1771 static DEFINE_SPINLOCK(memcg_oom_lock);
1772 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1774 struct oom_wait_info {
1775 struct mem_cgroup *mem;
1776 wait_queue_t wait;
1779 static int memcg_oom_wake_function(wait_queue_t *wait,
1780 unsigned mode, int sync, void *arg)
1782 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1783 *oom_wait_memcg;
1784 struct oom_wait_info *oom_wait_info;
1786 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1787 oom_wait_memcg = oom_wait_info->mem;
1790 * Both of oom_wait_info->mem and wake_mem are stable under us.
1791 * Then we can use css_is_ancestor without taking care of RCU.
1793 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1794 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1795 return 0;
1796 return autoremove_wake_function(wait, mode, sync, arg);
1799 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1801 /* for filtering, pass "memcg" as argument. */
1802 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1805 static void memcg_oom_recover(struct mem_cgroup *memcg)
1807 if (memcg && atomic_read(&memcg->under_oom))
1808 memcg_wakeup_oom(memcg);
1812 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1814 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1816 struct oom_wait_info owait;
1817 bool locked, need_to_kill;
1819 owait.mem = memcg;
1820 owait.wait.flags = 0;
1821 owait.wait.func = memcg_oom_wake_function;
1822 owait.wait.private = current;
1823 INIT_LIST_HEAD(&owait.wait.task_list);
1824 need_to_kill = true;
1825 mem_cgroup_mark_under_oom(memcg);
1827 /* At first, try to OOM lock hierarchy under memcg.*/
1828 spin_lock(&memcg_oom_lock);
1829 locked = mem_cgroup_oom_lock(memcg);
1831 * Even if signal_pending(), we can't quit charge() loop without
1832 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1833 * under OOM is always welcomed, use TASK_KILLABLE here.
1835 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1836 if (!locked || memcg->oom_kill_disable)
1837 need_to_kill = false;
1838 if (locked)
1839 mem_cgroup_oom_notify(memcg);
1840 spin_unlock(&memcg_oom_lock);
1842 if (need_to_kill) {
1843 finish_wait(&memcg_oom_waitq, &owait.wait);
1844 mem_cgroup_out_of_memory(memcg, mask);
1845 } else {
1846 schedule();
1847 finish_wait(&memcg_oom_waitq, &owait.wait);
1849 spin_lock(&memcg_oom_lock);
1850 if (locked)
1851 mem_cgroup_oom_unlock(memcg);
1852 memcg_wakeup_oom(memcg);
1853 spin_unlock(&memcg_oom_lock);
1855 mem_cgroup_unmark_under_oom(memcg);
1857 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1858 return false;
1859 /* Give chance to dying process */
1860 schedule_timeout_uninterruptible(1);
1861 return true;
1865 * Currently used to update mapped file statistics, but the routine can be
1866 * generalized to update other statistics as well.
1868 * Notes: Race condition
1870 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1871 * it tends to be costly. But considering some conditions, we doesn't need
1872 * to do so _always_.
1874 * Considering "charge", lock_page_cgroup() is not required because all
1875 * file-stat operations happen after a page is attached to radix-tree. There
1876 * are no race with "charge".
1878 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1879 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1880 * if there are race with "uncharge". Statistics itself is properly handled
1881 * by flags.
1883 * Considering "move", this is an only case we see a race. To make the race
1884 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1885 * possibility of race condition. If there is, we take a lock.
1888 void mem_cgroup_update_page_stat(struct page *page,
1889 enum mem_cgroup_page_stat_item idx, int val)
1891 struct mem_cgroup *memcg;
1892 struct page_cgroup *pc = lookup_page_cgroup(page);
1893 bool need_unlock = false;
1894 unsigned long uninitialized_var(flags);
1896 if (mem_cgroup_disabled())
1897 return;
1899 rcu_read_lock();
1900 memcg = pc->mem_cgroup;
1901 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1902 goto out;
1903 /* pc->mem_cgroup is unstable ? */
1904 if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1905 /* take a lock against to access pc->mem_cgroup */
1906 move_lock_page_cgroup(pc, &flags);
1907 need_unlock = true;
1908 memcg = pc->mem_cgroup;
1909 if (!memcg || !PageCgroupUsed(pc))
1910 goto out;
1913 switch (idx) {
1914 case MEMCG_NR_FILE_MAPPED:
1915 if (val > 0)
1916 SetPageCgroupFileMapped(pc);
1917 else if (!page_mapped(page))
1918 ClearPageCgroupFileMapped(pc);
1919 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1920 break;
1921 default:
1922 BUG();
1925 this_cpu_add(memcg->stat->count[idx], val);
1927 out:
1928 if (unlikely(need_unlock))
1929 move_unlock_page_cgroup(pc, &flags);
1930 rcu_read_unlock();
1931 return;
1933 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1936 * size of first charge trial. "32" comes from vmscan.c's magic value.
1937 * TODO: maybe necessary to use big numbers in big irons.
1939 #define CHARGE_BATCH 32U
1940 struct memcg_stock_pcp {
1941 struct mem_cgroup *cached; /* this never be root cgroup */
1942 unsigned int nr_pages;
1943 struct work_struct work;
1944 unsigned long flags;
1945 #define FLUSHING_CACHED_CHARGE (0)
1947 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1948 static DEFINE_MUTEX(percpu_charge_mutex);
1951 * Try to consume stocked charge on this cpu. If success, one page is consumed
1952 * from local stock and true is returned. If the stock is 0 or charges from a
1953 * cgroup which is not current target, returns false. This stock will be
1954 * refilled.
1956 static bool consume_stock(struct mem_cgroup *memcg)
1958 struct memcg_stock_pcp *stock;
1959 bool ret = true;
1961 stock = &get_cpu_var(memcg_stock);
1962 if (memcg == stock->cached && stock->nr_pages)
1963 stock->nr_pages--;
1964 else /* need to call res_counter_charge */
1965 ret = false;
1966 put_cpu_var(memcg_stock);
1967 return ret;
1971 * Returns stocks cached in percpu to res_counter and reset cached information.
1973 static void drain_stock(struct memcg_stock_pcp *stock)
1975 struct mem_cgroup *old = stock->cached;
1977 if (stock->nr_pages) {
1978 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1980 res_counter_uncharge(&old->res, bytes);
1981 if (do_swap_account)
1982 res_counter_uncharge(&old->memsw, bytes);
1983 stock->nr_pages = 0;
1985 stock->cached = NULL;
1989 * This must be called under preempt disabled or must be called by
1990 * a thread which is pinned to local cpu.
1992 static void drain_local_stock(struct work_struct *dummy)
1994 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1995 drain_stock(stock);
1996 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2000 * Cache charges(val) which is from res_counter, to local per_cpu area.
2001 * This will be consumed by consume_stock() function, later.
2003 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2005 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2007 if (stock->cached != memcg) { /* reset if necessary */
2008 drain_stock(stock);
2009 stock->cached = memcg;
2011 stock->nr_pages += nr_pages;
2012 put_cpu_var(memcg_stock);
2016 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2017 * of the hierarchy under it. sync flag says whether we should block
2018 * until the work is done.
2020 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2022 int cpu, curcpu;
2024 /* Notify other cpus that system-wide "drain" is running */
2025 get_online_cpus();
2026 curcpu = get_cpu();
2027 for_each_online_cpu(cpu) {
2028 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2029 struct mem_cgroup *memcg;
2031 memcg = stock->cached;
2032 if (!memcg || !stock->nr_pages)
2033 continue;
2034 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2035 continue;
2036 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2037 if (cpu == curcpu)
2038 drain_local_stock(&stock->work);
2039 else
2040 schedule_work_on(cpu, &stock->work);
2043 put_cpu();
2045 if (!sync)
2046 goto out;
2048 for_each_online_cpu(cpu) {
2049 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2050 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2051 flush_work(&stock->work);
2053 out:
2054 put_online_cpus();
2058 * Tries to drain stocked charges in other cpus. This function is asynchronous
2059 * and just put a work per cpu for draining localy on each cpu. Caller can
2060 * expects some charges will be back to res_counter later but cannot wait for
2061 * it.
2063 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2066 * If someone calls draining, avoid adding more kworker runs.
2068 if (!mutex_trylock(&percpu_charge_mutex))
2069 return;
2070 drain_all_stock(root_memcg, false);
2071 mutex_unlock(&percpu_charge_mutex);
2074 /* This is a synchronous drain interface. */
2075 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2077 /* called when force_empty is called */
2078 mutex_lock(&percpu_charge_mutex);
2079 drain_all_stock(root_memcg, true);
2080 mutex_unlock(&percpu_charge_mutex);
2084 * This function drains percpu counter value from DEAD cpu and
2085 * move it to local cpu. Note that this function can be preempted.
2087 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2089 int i;
2091 spin_lock(&memcg->pcp_counter_lock);
2092 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2093 long x = per_cpu(memcg->stat->count[i], cpu);
2095 per_cpu(memcg->stat->count[i], cpu) = 0;
2096 memcg->nocpu_base.count[i] += x;
2098 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2099 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2101 per_cpu(memcg->stat->events[i], cpu) = 0;
2102 memcg->nocpu_base.events[i] += x;
2104 /* need to clear ON_MOVE value, works as a kind of lock. */
2105 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2106 spin_unlock(&memcg->pcp_counter_lock);
2109 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2111 int idx = MEM_CGROUP_ON_MOVE;
2113 spin_lock(&memcg->pcp_counter_lock);
2114 per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2115 spin_unlock(&memcg->pcp_counter_lock);
2118 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2119 unsigned long action,
2120 void *hcpu)
2122 int cpu = (unsigned long)hcpu;
2123 struct memcg_stock_pcp *stock;
2124 struct mem_cgroup *iter;
2126 if ((action == CPU_ONLINE)) {
2127 for_each_mem_cgroup(iter)
2128 synchronize_mem_cgroup_on_move(iter, cpu);
2129 return NOTIFY_OK;
2132 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2133 return NOTIFY_OK;
2135 for_each_mem_cgroup(iter)
2136 mem_cgroup_drain_pcp_counter(iter, cpu);
2138 stock = &per_cpu(memcg_stock, cpu);
2139 drain_stock(stock);
2140 return NOTIFY_OK;
2144 /* See __mem_cgroup_try_charge() for details */
2145 enum {
2146 CHARGE_OK, /* success */
2147 CHARGE_RETRY, /* need to retry but retry is not bad */
2148 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2149 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2150 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2153 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2154 unsigned int nr_pages, bool oom_check)
2156 unsigned long csize = nr_pages * PAGE_SIZE;
2157 struct mem_cgroup *mem_over_limit;
2158 struct res_counter *fail_res;
2159 unsigned long flags = 0;
2160 int ret;
2162 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2164 if (likely(!ret)) {
2165 if (!do_swap_account)
2166 return CHARGE_OK;
2167 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2168 if (likely(!ret))
2169 return CHARGE_OK;
2171 res_counter_uncharge(&memcg->res, csize);
2172 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2173 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2174 } else
2175 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2177 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2178 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2180 * Never reclaim on behalf of optional batching, retry with a
2181 * single page instead.
2183 if (nr_pages == CHARGE_BATCH)
2184 return CHARGE_RETRY;
2186 if (!(gfp_mask & __GFP_WAIT))
2187 return CHARGE_WOULDBLOCK;
2189 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2190 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2191 return CHARGE_RETRY;
2193 * Even though the limit is exceeded at this point, reclaim
2194 * may have been able to free some pages. Retry the charge
2195 * before killing the task.
2197 * Only for regular pages, though: huge pages are rather
2198 * unlikely to succeed so close to the limit, and we fall back
2199 * to regular pages anyway in case of failure.
2201 if (nr_pages == 1 && ret)
2202 return CHARGE_RETRY;
2205 * At task move, charge accounts can be doubly counted. So, it's
2206 * better to wait until the end of task_move if something is going on.
2208 if (mem_cgroup_wait_acct_move(mem_over_limit))
2209 return CHARGE_RETRY;
2211 /* If we don't need to call oom-killer at el, return immediately */
2212 if (!oom_check)
2213 return CHARGE_NOMEM;
2214 /* check OOM */
2215 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2216 return CHARGE_OOM_DIE;
2218 return CHARGE_RETRY;
2222 * __mem_cgroup_try_charge() does
2223 * 1. detect memcg to be charged against from passed *mm and *ptr,
2224 * 2. update res_counter
2225 * 3. call memory reclaim if necessary.
2227 * In some special case, if the task is fatal, fatal_signal_pending() or
2228 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2229 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2230 * as possible without any hazards. 2: all pages should have a valid
2231 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2232 * pointer, that is treated as a charge to root_mem_cgroup.
2234 * So __mem_cgroup_try_charge() will return
2235 * 0 ... on success, filling *ptr with a valid memcg pointer.
2236 * -ENOMEM ... charge failure because of resource limits.
2237 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2239 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2240 * the oom-killer can be invoked.
2242 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2243 gfp_t gfp_mask,
2244 unsigned int nr_pages,
2245 struct mem_cgroup **ptr,
2246 bool oom)
2248 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2249 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2250 struct mem_cgroup *memcg = NULL;
2251 int ret;
2254 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2255 * in system level. So, allow to go ahead dying process in addition to
2256 * MEMDIE process.
2258 if (unlikely(test_thread_flag(TIF_MEMDIE)
2259 || fatal_signal_pending(current)))
2260 goto bypass;
2263 * We always charge the cgroup the mm_struct belongs to.
2264 * The mm_struct's mem_cgroup changes on task migration if the
2265 * thread group leader migrates. It's possible that mm is not
2266 * set, if so charge the init_mm (happens for pagecache usage).
2268 if (!*ptr && !mm)
2269 *ptr = root_mem_cgroup;
2270 again:
2271 if (*ptr) { /* css should be a valid one */
2272 memcg = *ptr;
2273 VM_BUG_ON(css_is_removed(&memcg->css));
2274 if (mem_cgroup_is_root(memcg))
2275 goto done;
2276 if (nr_pages == 1 && consume_stock(memcg))
2277 goto done;
2278 css_get(&memcg->css);
2279 } else {
2280 struct task_struct *p;
2282 rcu_read_lock();
2283 p = rcu_dereference(mm->owner);
2285 * Because we don't have task_lock(), "p" can exit.
2286 * In that case, "memcg" can point to root or p can be NULL with
2287 * race with swapoff. Then, we have small risk of mis-accouning.
2288 * But such kind of mis-account by race always happens because
2289 * we don't have cgroup_mutex(). It's overkill and we allo that
2290 * small race, here.
2291 * (*) swapoff at el will charge against mm-struct not against
2292 * task-struct. So, mm->owner can be NULL.
2294 memcg = mem_cgroup_from_task(p);
2295 if (!memcg)
2296 memcg = root_mem_cgroup;
2297 if (mem_cgroup_is_root(memcg)) {
2298 rcu_read_unlock();
2299 goto done;
2301 if (nr_pages == 1 && consume_stock(memcg)) {
2303 * It seems dagerous to access memcg without css_get().
2304 * But considering how consume_stok works, it's not
2305 * necessary. If consume_stock success, some charges
2306 * from this memcg are cached on this cpu. So, we
2307 * don't need to call css_get()/css_tryget() before
2308 * calling consume_stock().
2310 rcu_read_unlock();
2311 goto done;
2313 /* after here, we may be blocked. we need to get refcnt */
2314 if (!css_tryget(&memcg->css)) {
2315 rcu_read_unlock();
2316 goto again;
2318 rcu_read_unlock();
2321 do {
2322 bool oom_check;
2324 /* If killed, bypass charge */
2325 if (fatal_signal_pending(current)) {
2326 css_put(&memcg->css);
2327 goto bypass;
2330 oom_check = false;
2331 if (oom && !nr_oom_retries) {
2332 oom_check = true;
2333 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2336 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2337 switch (ret) {
2338 case CHARGE_OK:
2339 break;
2340 case CHARGE_RETRY: /* not in OOM situation but retry */
2341 batch = nr_pages;
2342 css_put(&memcg->css);
2343 memcg = NULL;
2344 goto again;
2345 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2346 css_put(&memcg->css);
2347 goto nomem;
2348 case CHARGE_NOMEM: /* OOM routine works */
2349 if (!oom) {
2350 css_put(&memcg->css);
2351 goto nomem;
2353 /* If oom, we never return -ENOMEM */
2354 nr_oom_retries--;
2355 break;
2356 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2357 css_put(&memcg->css);
2358 goto bypass;
2360 } while (ret != CHARGE_OK);
2362 if (batch > nr_pages)
2363 refill_stock(memcg, batch - nr_pages);
2364 css_put(&memcg->css);
2365 done:
2366 *ptr = memcg;
2367 return 0;
2368 nomem:
2369 *ptr = NULL;
2370 return -ENOMEM;
2371 bypass:
2372 *ptr = root_mem_cgroup;
2373 return -EINTR;
2377 * Somemtimes we have to undo a charge we got by try_charge().
2378 * This function is for that and do uncharge, put css's refcnt.
2379 * gotten by try_charge().
2381 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2382 unsigned int nr_pages)
2384 if (!mem_cgroup_is_root(memcg)) {
2385 unsigned long bytes = nr_pages * PAGE_SIZE;
2387 res_counter_uncharge(&memcg->res, bytes);
2388 if (do_swap_account)
2389 res_counter_uncharge(&memcg->memsw, bytes);
2394 * A helper function to get mem_cgroup from ID. must be called under
2395 * rcu_read_lock(). The caller must check css_is_removed() or some if
2396 * it's concern. (dropping refcnt from swap can be called against removed
2397 * memcg.)
2399 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2401 struct cgroup_subsys_state *css;
2403 /* ID 0 is unused ID */
2404 if (!id)
2405 return NULL;
2406 css = css_lookup(&mem_cgroup_subsys, id);
2407 if (!css)
2408 return NULL;
2409 return container_of(css, struct mem_cgroup, css);
2412 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2414 struct mem_cgroup *memcg = NULL;
2415 struct page_cgroup *pc;
2416 unsigned short id;
2417 swp_entry_t ent;
2419 VM_BUG_ON(!PageLocked(page));
2421 pc = lookup_page_cgroup(page);
2422 lock_page_cgroup(pc);
2423 if (PageCgroupUsed(pc)) {
2424 memcg = pc->mem_cgroup;
2425 if (memcg && !css_tryget(&memcg->css))
2426 memcg = NULL;
2427 } else if (PageSwapCache(page)) {
2428 ent.val = page_private(page);
2429 id = lookup_swap_cgroup_id(ent);
2430 rcu_read_lock();
2431 memcg = mem_cgroup_lookup(id);
2432 if (memcg && !css_tryget(&memcg->css))
2433 memcg = NULL;
2434 rcu_read_unlock();
2436 unlock_page_cgroup(pc);
2437 return memcg;
2440 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2441 struct page *page,
2442 unsigned int nr_pages,
2443 struct page_cgroup *pc,
2444 enum charge_type ctype,
2445 bool lrucare)
2447 struct zone *uninitialized_var(zone);
2448 bool was_on_lru = false;
2450 lock_page_cgroup(pc);
2451 if (unlikely(PageCgroupUsed(pc))) {
2452 unlock_page_cgroup(pc);
2453 __mem_cgroup_cancel_charge(memcg, nr_pages);
2454 return;
2457 * we don't need page_cgroup_lock about tail pages, becase they are not
2458 * accessed by any other context at this point.
2462 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2463 * may already be on some other mem_cgroup's LRU. Take care of it.
2465 if (lrucare) {
2466 zone = page_zone(page);
2467 spin_lock_irq(&zone->lru_lock);
2468 if (PageLRU(page)) {
2469 ClearPageLRU(page);
2470 del_page_from_lru_list(zone, page, page_lru(page));
2471 was_on_lru = true;
2475 pc->mem_cgroup = memcg;
2477 * We access a page_cgroup asynchronously without lock_page_cgroup().
2478 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2479 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2480 * before USED bit, we need memory barrier here.
2481 * See mem_cgroup_add_lru_list(), etc.
2483 smp_wmb();
2484 switch (ctype) {
2485 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2486 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2487 SetPageCgroupCache(pc);
2488 SetPageCgroupUsed(pc);
2489 break;
2490 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2491 ClearPageCgroupCache(pc);
2492 SetPageCgroupUsed(pc);
2493 break;
2494 default:
2495 break;
2498 if (lrucare) {
2499 if (was_on_lru) {
2500 VM_BUG_ON(PageLRU(page));
2501 SetPageLRU(page);
2502 add_page_to_lru_list(zone, page, page_lru(page));
2504 spin_unlock_irq(&zone->lru_lock);
2507 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2508 unlock_page_cgroup(pc);
2511 * "charge_statistics" updated event counter. Then, check it.
2512 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2513 * if they exceeds softlimit.
2515 memcg_check_events(memcg, page);
2518 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2520 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2521 (1 << PCG_MIGRATION))
2523 * Because tail pages are not marked as "used", set it. We're under
2524 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2525 * charge/uncharge will be never happen and move_account() is done under
2526 * compound_lock(), so we don't have to take care of races.
2528 void mem_cgroup_split_huge_fixup(struct page *head)
2530 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2531 struct page_cgroup *pc;
2532 int i;
2534 if (mem_cgroup_disabled())
2535 return;
2536 for (i = 1; i < HPAGE_PMD_NR; i++) {
2537 pc = head_pc + i;
2538 pc->mem_cgroup = head_pc->mem_cgroup;
2539 smp_wmb();/* see __commit_charge() */
2540 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2543 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2546 * mem_cgroup_move_account - move account of the page
2547 * @page: the page
2548 * @nr_pages: number of regular pages (>1 for huge pages)
2549 * @pc: page_cgroup of the page.
2550 * @from: mem_cgroup which the page is moved from.
2551 * @to: mem_cgroup which the page is moved to. @from != @to.
2552 * @uncharge: whether we should call uncharge and css_put against @from.
2554 * The caller must confirm following.
2555 * - page is not on LRU (isolate_page() is useful.)
2556 * - compound_lock is held when nr_pages > 1
2558 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2559 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2560 * true, this function does "uncharge" from old cgroup, but it doesn't if
2561 * @uncharge is false, so a caller should do "uncharge".
2563 static int mem_cgroup_move_account(struct page *page,
2564 unsigned int nr_pages,
2565 struct page_cgroup *pc,
2566 struct mem_cgroup *from,
2567 struct mem_cgroup *to,
2568 bool uncharge)
2570 unsigned long flags;
2571 int ret;
2573 VM_BUG_ON(from == to);
2574 VM_BUG_ON(PageLRU(page));
2576 * The page is isolated from LRU. So, collapse function
2577 * will not handle this page. But page splitting can happen.
2578 * Do this check under compound_page_lock(). The caller should
2579 * hold it.
2581 ret = -EBUSY;
2582 if (nr_pages > 1 && !PageTransHuge(page))
2583 goto out;
2585 lock_page_cgroup(pc);
2587 ret = -EINVAL;
2588 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2589 goto unlock;
2591 move_lock_page_cgroup(pc, &flags);
2593 if (PageCgroupFileMapped(pc)) {
2594 /* Update mapped_file data for mem_cgroup */
2595 preempt_disable();
2596 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2597 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2598 preempt_enable();
2600 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2601 if (uncharge)
2602 /* This is not "cancel", but cancel_charge does all we need. */
2603 __mem_cgroup_cancel_charge(from, nr_pages);
2605 /* caller should have done css_get */
2606 pc->mem_cgroup = to;
2607 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2609 * We charges against "to" which may not have any tasks. Then, "to"
2610 * can be under rmdir(). But in current implementation, caller of
2611 * this function is just force_empty() and move charge, so it's
2612 * guaranteed that "to" is never removed. So, we don't check rmdir
2613 * status here.
2615 move_unlock_page_cgroup(pc, &flags);
2616 ret = 0;
2617 unlock:
2618 unlock_page_cgroup(pc);
2620 * check events
2622 memcg_check_events(to, page);
2623 memcg_check_events(from, page);
2624 out:
2625 return ret;
2629 * move charges to its parent.
2632 static int mem_cgroup_move_parent(struct page *page,
2633 struct page_cgroup *pc,
2634 struct mem_cgroup *child,
2635 gfp_t gfp_mask)
2637 struct cgroup *cg = child->css.cgroup;
2638 struct cgroup *pcg = cg->parent;
2639 struct mem_cgroup *parent;
2640 unsigned int nr_pages;
2641 unsigned long uninitialized_var(flags);
2642 int ret;
2644 /* Is ROOT ? */
2645 if (!pcg)
2646 return -EINVAL;
2648 ret = -EBUSY;
2649 if (!get_page_unless_zero(page))
2650 goto out;
2651 if (isolate_lru_page(page))
2652 goto put;
2654 nr_pages = hpage_nr_pages(page);
2656 parent = mem_cgroup_from_cont(pcg);
2657 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2658 if (ret)
2659 goto put_back;
2661 if (nr_pages > 1)
2662 flags = compound_lock_irqsave(page);
2664 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2665 if (ret)
2666 __mem_cgroup_cancel_charge(parent, nr_pages);
2668 if (nr_pages > 1)
2669 compound_unlock_irqrestore(page, flags);
2670 put_back:
2671 putback_lru_page(page);
2672 put:
2673 put_page(page);
2674 out:
2675 return ret;
2679 * Charge the memory controller for page usage.
2680 * Return
2681 * 0 if the charge was successful
2682 * < 0 if the cgroup is over its limit
2684 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2685 gfp_t gfp_mask, enum charge_type ctype)
2687 struct mem_cgroup *memcg = NULL;
2688 unsigned int nr_pages = 1;
2689 struct page_cgroup *pc;
2690 bool oom = true;
2691 int ret;
2693 if (PageTransHuge(page)) {
2694 nr_pages <<= compound_order(page);
2695 VM_BUG_ON(!PageTransHuge(page));
2697 * Never OOM-kill a process for a huge page. The
2698 * fault handler will fall back to regular pages.
2700 oom = false;
2703 pc = lookup_page_cgroup(page);
2704 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2705 if (ret == -ENOMEM)
2706 return ret;
2707 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype, false);
2708 return 0;
2711 int mem_cgroup_newpage_charge(struct page *page,
2712 struct mm_struct *mm, gfp_t gfp_mask)
2714 if (mem_cgroup_disabled())
2715 return 0;
2716 VM_BUG_ON(page_mapped(page));
2717 VM_BUG_ON(page->mapping && !PageAnon(page));
2718 VM_BUG_ON(!mm);
2719 return mem_cgroup_charge_common(page, mm, gfp_mask,
2720 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2723 static void
2724 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2725 enum charge_type ctype);
2727 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2728 gfp_t gfp_mask)
2730 struct mem_cgroup *memcg = NULL;
2731 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2732 int ret;
2734 if (mem_cgroup_disabled())
2735 return 0;
2736 if (PageCompound(page))
2737 return 0;
2739 if (unlikely(!mm))
2740 mm = &init_mm;
2741 if (!page_is_file_cache(page))
2742 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2744 if (!PageSwapCache(page))
2745 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2746 else { /* page is swapcache/shmem */
2747 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2748 if (!ret)
2749 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2751 return ret;
2755 * While swap-in, try_charge -> commit or cancel, the page is locked.
2756 * And when try_charge() successfully returns, one refcnt to memcg without
2757 * struct page_cgroup is acquired. This refcnt will be consumed by
2758 * "commit()" or removed by "cancel()"
2760 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2761 struct page *page,
2762 gfp_t mask, struct mem_cgroup **memcgp)
2764 struct mem_cgroup *memcg;
2765 int ret;
2767 *memcgp = NULL;
2769 if (mem_cgroup_disabled())
2770 return 0;
2772 if (!do_swap_account)
2773 goto charge_cur_mm;
2775 * A racing thread's fault, or swapoff, may have already updated
2776 * the pte, and even removed page from swap cache: in those cases
2777 * do_swap_page()'s pte_same() test will fail; but there's also a
2778 * KSM case which does need to charge the page.
2780 if (!PageSwapCache(page))
2781 goto charge_cur_mm;
2782 memcg = try_get_mem_cgroup_from_page(page);
2783 if (!memcg)
2784 goto charge_cur_mm;
2785 *memcgp = memcg;
2786 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2787 css_put(&memcg->css);
2788 if (ret == -EINTR)
2789 ret = 0;
2790 return ret;
2791 charge_cur_mm:
2792 if (unlikely(!mm))
2793 mm = &init_mm;
2794 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2795 if (ret == -EINTR)
2796 ret = 0;
2797 return ret;
2800 static void
2801 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2802 enum charge_type ctype)
2804 struct page_cgroup *pc;
2806 if (mem_cgroup_disabled())
2807 return;
2808 if (!memcg)
2809 return;
2810 cgroup_exclude_rmdir(&memcg->css);
2812 pc = lookup_page_cgroup(page);
2813 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype, true);
2815 * Now swap is on-memory. This means this page may be
2816 * counted both as mem and swap....double count.
2817 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2818 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2819 * may call delete_from_swap_cache() before reach here.
2821 if (do_swap_account && PageSwapCache(page)) {
2822 swp_entry_t ent = {.val = page_private(page)};
2823 struct mem_cgroup *swap_memcg;
2824 unsigned short id;
2826 id = swap_cgroup_record(ent, 0);
2827 rcu_read_lock();
2828 swap_memcg = mem_cgroup_lookup(id);
2829 if (swap_memcg) {
2831 * This recorded memcg can be obsolete one. So, avoid
2832 * calling css_tryget
2834 if (!mem_cgroup_is_root(swap_memcg))
2835 res_counter_uncharge(&swap_memcg->memsw,
2836 PAGE_SIZE);
2837 mem_cgroup_swap_statistics(swap_memcg, false);
2838 mem_cgroup_put(swap_memcg);
2840 rcu_read_unlock();
2843 * At swapin, we may charge account against cgroup which has no tasks.
2844 * So, rmdir()->pre_destroy() can be called while we do this charge.
2845 * In that case, we need to call pre_destroy() again. check it here.
2847 cgroup_release_and_wakeup_rmdir(&memcg->css);
2850 void mem_cgroup_commit_charge_swapin(struct page *page,
2851 struct mem_cgroup *memcg)
2853 __mem_cgroup_commit_charge_swapin(page, memcg,
2854 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2857 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2859 if (mem_cgroup_disabled())
2860 return;
2861 if (!memcg)
2862 return;
2863 __mem_cgroup_cancel_charge(memcg, 1);
2866 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2867 unsigned int nr_pages,
2868 const enum charge_type ctype)
2870 struct memcg_batch_info *batch = NULL;
2871 bool uncharge_memsw = true;
2873 /* If swapout, usage of swap doesn't decrease */
2874 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2875 uncharge_memsw = false;
2877 batch = &current->memcg_batch;
2879 * In usual, we do css_get() when we remember memcg pointer.
2880 * But in this case, we keep res->usage until end of a series of
2881 * uncharges. Then, it's ok to ignore memcg's refcnt.
2883 if (!batch->memcg)
2884 batch->memcg = memcg;
2886 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2887 * In those cases, all pages freed continuously can be expected to be in
2888 * the same cgroup and we have chance to coalesce uncharges.
2889 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2890 * because we want to do uncharge as soon as possible.
2893 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2894 goto direct_uncharge;
2896 if (nr_pages > 1)
2897 goto direct_uncharge;
2900 * In typical case, batch->memcg == mem. This means we can
2901 * merge a series of uncharges to an uncharge of res_counter.
2902 * If not, we uncharge res_counter ony by one.
2904 if (batch->memcg != memcg)
2905 goto direct_uncharge;
2906 /* remember freed charge and uncharge it later */
2907 batch->nr_pages++;
2908 if (uncharge_memsw)
2909 batch->memsw_nr_pages++;
2910 return;
2911 direct_uncharge:
2912 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2913 if (uncharge_memsw)
2914 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2915 if (unlikely(batch->memcg != memcg))
2916 memcg_oom_recover(memcg);
2917 return;
2921 * uncharge if !page_mapped(page)
2923 static struct mem_cgroup *
2924 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2926 struct mem_cgroup *memcg = NULL;
2927 unsigned int nr_pages = 1;
2928 struct page_cgroup *pc;
2930 if (mem_cgroup_disabled())
2931 return NULL;
2933 if (PageSwapCache(page))
2934 return NULL;
2936 if (PageTransHuge(page)) {
2937 nr_pages <<= compound_order(page);
2938 VM_BUG_ON(!PageTransHuge(page));
2941 * Check if our page_cgroup is valid
2943 pc = lookup_page_cgroup(page);
2944 if (unlikely(!PageCgroupUsed(pc)))
2945 return NULL;
2947 lock_page_cgroup(pc);
2949 memcg = pc->mem_cgroup;
2951 if (!PageCgroupUsed(pc))
2952 goto unlock_out;
2954 switch (ctype) {
2955 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2956 case MEM_CGROUP_CHARGE_TYPE_DROP:
2957 /* See mem_cgroup_prepare_migration() */
2958 if (page_mapped(page) || PageCgroupMigration(pc))
2959 goto unlock_out;
2960 break;
2961 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2962 if (!PageAnon(page)) { /* Shared memory */
2963 if (page->mapping && !page_is_file_cache(page))
2964 goto unlock_out;
2965 } else if (page_mapped(page)) /* Anon */
2966 goto unlock_out;
2967 break;
2968 default:
2969 break;
2972 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
2974 ClearPageCgroupUsed(pc);
2976 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2977 * freed from LRU. This is safe because uncharged page is expected not
2978 * to be reused (freed soon). Exception is SwapCache, it's handled by
2979 * special functions.
2982 unlock_page_cgroup(pc);
2984 * even after unlock, we have memcg->res.usage here and this memcg
2985 * will never be freed.
2987 memcg_check_events(memcg, page);
2988 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2989 mem_cgroup_swap_statistics(memcg, true);
2990 mem_cgroup_get(memcg);
2992 if (!mem_cgroup_is_root(memcg))
2993 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2995 return memcg;
2997 unlock_out:
2998 unlock_page_cgroup(pc);
2999 return NULL;
3002 void mem_cgroup_uncharge_page(struct page *page)
3004 /* early check. */
3005 if (page_mapped(page))
3006 return;
3007 VM_BUG_ON(page->mapping && !PageAnon(page));
3008 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3011 void mem_cgroup_uncharge_cache_page(struct page *page)
3013 VM_BUG_ON(page_mapped(page));
3014 VM_BUG_ON(page->mapping);
3015 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3019 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3020 * In that cases, pages are freed continuously and we can expect pages
3021 * are in the same memcg. All these calls itself limits the number of
3022 * pages freed at once, then uncharge_start/end() is called properly.
3023 * This may be called prural(2) times in a context,
3026 void mem_cgroup_uncharge_start(void)
3028 current->memcg_batch.do_batch++;
3029 /* We can do nest. */
3030 if (current->memcg_batch.do_batch == 1) {
3031 current->memcg_batch.memcg = NULL;
3032 current->memcg_batch.nr_pages = 0;
3033 current->memcg_batch.memsw_nr_pages = 0;
3037 void mem_cgroup_uncharge_end(void)
3039 struct memcg_batch_info *batch = &current->memcg_batch;
3041 if (!batch->do_batch)
3042 return;
3044 batch->do_batch--;
3045 if (batch->do_batch) /* If stacked, do nothing. */
3046 return;
3048 if (!batch->memcg)
3049 return;
3051 * This "batch->memcg" is valid without any css_get/put etc...
3052 * bacause we hide charges behind us.
3054 if (batch->nr_pages)
3055 res_counter_uncharge(&batch->memcg->res,
3056 batch->nr_pages * PAGE_SIZE);
3057 if (batch->memsw_nr_pages)
3058 res_counter_uncharge(&batch->memcg->memsw,
3059 batch->memsw_nr_pages * PAGE_SIZE);
3060 memcg_oom_recover(batch->memcg);
3061 /* forget this pointer (for sanity check) */
3062 batch->memcg = NULL;
3065 #ifdef CONFIG_SWAP
3067 * called after __delete_from_swap_cache() and drop "page" account.
3068 * memcg information is recorded to swap_cgroup of "ent"
3070 void
3071 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3073 struct mem_cgroup *memcg;
3074 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3076 if (!swapout) /* this was a swap cache but the swap is unused ! */
3077 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3079 memcg = __mem_cgroup_uncharge_common(page, ctype);
3082 * record memcg information, if swapout && memcg != NULL,
3083 * mem_cgroup_get() was called in uncharge().
3085 if (do_swap_account && swapout && memcg)
3086 swap_cgroup_record(ent, css_id(&memcg->css));
3088 #endif
3090 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3092 * called from swap_entry_free(). remove record in swap_cgroup and
3093 * uncharge "memsw" account.
3095 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3097 struct mem_cgroup *memcg;
3098 unsigned short id;
3100 if (!do_swap_account)
3101 return;
3103 id = swap_cgroup_record(ent, 0);
3104 rcu_read_lock();
3105 memcg = mem_cgroup_lookup(id);
3106 if (memcg) {
3108 * We uncharge this because swap is freed.
3109 * This memcg can be obsolete one. We avoid calling css_tryget
3111 if (!mem_cgroup_is_root(memcg))
3112 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3113 mem_cgroup_swap_statistics(memcg, false);
3114 mem_cgroup_put(memcg);
3116 rcu_read_unlock();
3120 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3121 * @entry: swap entry to be moved
3122 * @from: mem_cgroup which the entry is moved from
3123 * @to: mem_cgroup which the entry is moved to
3124 * @need_fixup: whether we should fixup res_counters and refcounts.
3126 * It succeeds only when the swap_cgroup's record for this entry is the same
3127 * as the mem_cgroup's id of @from.
3129 * Returns 0 on success, -EINVAL on failure.
3131 * The caller must have charged to @to, IOW, called res_counter_charge() about
3132 * both res and memsw, and called css_get().
3134 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3135 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3137 unsigned short old_id, new_id;
3139 old_id = css_id(&from->css);
3140 new_id = css_id(&to->css);
3142 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3143 mem_cgroup_swap_statistics(from, false);
3144 mem_cgroup_swap_statistics(to, true);
3146 * This function is only called from task migration context now.
3147 * It postpones res_counter and refcount handling till the end
3148 * of task migration(mem_cgroup_clear_mc()) for performance
3149 * improvement. But we cannot postpone mem_cgroup_get(to)
3150 * because if the process that has been moved to @to does
3151 * swap-in, the refcount of @to might be decreased to 0.
3153 mem_cgroup_get(to);
3154 if (need_fixup) {
3155 if (!mem_cgroup_is_root(from))
3156 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3157 mem_cgroup_put(from);
3159 * we charged both to->res and to->memsw, so we should
3160 * uncharge to->res.
3162 if (!mem_cgroup_is_root(to))
3163 res_counter_uncharge(&to->res, PAGE_SIZE);
3165 return 0;
3167 return -EINVAL;
3169 #else
3170 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3171 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3173 return -EINVAL;
3175 #endif
3178 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3179 * page belongs to.
3181 int mem_cgroup_prepare_migration(struct page *page,
3182 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3184 struct mem_cgroup *memcg = NULL;
3185 struct page_cgroup *pc;
3186 enum charge_type ctype;
3187 int ret = 0;
3189 *memcgp = NULL;
3191 VM_BUG_ON(PageTransHuge(page));
3192 if (mem_cgroup_disabled())
3193 return 0;
3195 pc = lookup_page_cgroup(page);
3196 lock_page_cgroup(pc);
3197 if (PageCgroupUsed(pc)) {
3198 memcg = pc->mem_cgroup;
3199 css_get(&memcg->css);
3201 * At migrating an anonymous page, its mapcount goes down
3202 * to 0 and uncharge() will be called. But, even if it's fully
3203 * unmapped, migration may fail and this page has to be
3204 * charged again. We set MIGRATION flag here and delay uncharge
3205 * until end_migration() is called
3207 * Corner Case Thinking
3208 * A)
3209 * When the old page was mapped as Anon and it's unmap-and-freed
3210 * while migration was ongoing.
3211 * If unmap finds the old page, uncharge() of it will be delayed
3212 * until end_migration(). If unmap finds a new page, it's
3213 * uncharged when it make mapcount to be 1->0. If unmap code
3214 * finds swap_migration_entry, the new page will not be mapped
3215 * and end_migration() will find it(mapcount==0).
3217 * B)
3218 * When the old page was mapped but migraion fails, the kernel
3219 * remaps it. A charge for it is kept by MIGRATION flag even
3220 * if mapcount goes down to 0. We can do remap successfully
3221 * without charging it again.
3223 * C)
3224 * The "old" page is under lock_page() until the end of
3225 * migration, so, the old page itself will not be swapped-out.
3226 * If the new page is swapped out before end_migraton, our
3227 * hook to usual swap-out path will catch the event.
3229 if (PageAnon(page))
3230 SetPageCgroupMigration(pc);
3232 unlock_page_cgroup(pc);
3234 * If the page is not charged at this point,
3235 * we return here.
3237 if (!memcg)
3238 return 0;
3240 *memcgp = memcg;
3241 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3242 css_put(&memcg->css);/* drop extra refcnt */
3243 if (ret) {
3244 if (PageAnon(page)) {
3245 lock_page_cgroup(pc);
3246 ClearPageCgroupMigration(pc);
3247 unlock_page_cgroup(pc);
3249 * The old page may be fully unmapped while we kept it.
3251 mem_cgroup_uncharge_page(page);
3253 /* we'll need to revisit this error code (we have -EINTR) */
3254 return -ENOMEM;
3257 * We charge new page before it's used/mapped. So, even if unlock_page()
3258 * is called before end_migration, we can catch all events on this new
3259 * page. In the case new page is migrated but not remapped, new page's
3260 * mapcount will be finally 0 and we call uncharge in end_migration().
3262 pc = lookup_page_cgroup(newpage);
3263 if (PageAnon(page))
3264 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3265 else if (page_is_file_cache(page))
3266 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3267 else
3268 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3269 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype, false);
3270 return ret;
3273 /* remove redundant charge if migration failed*/
3274 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3275 struct page *oldpage, struct page *newpage, bool migration_ok)
3277 struct page *used, *unused;
3278 struct page_cgroup *pc;
3280 if (!memcg)
3281 return;
3282 /* blocks rmdir() */
3283 cgroup_exclude_rmdir(&memcg->css);
3284 if (!migration_ok) {
3285 used = oldpage;
3286 unused = newpage;
3287 } else {
3288 used = newpage;
3289 unused = oldpage;
3292 * We disallowed uncharge of pages under migration because mapcount
3293 * of the page goes down to zero, temporarly.
3294 * Clear the flag and check the page should be charged.
3296 pc = lookup_page_cgroup(oldpage);
3297 lock_page_cgroup(pc);
3298 ClearPageCgroupMigration(pc);
3299 unlock_page_cgroup(pc);
3301 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3304 * If a page is a file cache, radix-tree replacement is very atomic
3305 * and we can skip this check. When it was an Anon page, its mapcount
3306 * goes down to 0. But because we added MIGRATION flage, it's not
3307 * uncharged yet. There are several case but page->mapcount check
3308 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3309 * check. (see prepare_charge() also)
3311 if (PageAnon(used))
3312 mem_cgroup_uncharge_page(used);
3314 * At migration, we may charge account against cgroup which has no
3315 * tasks.
3316 * So, rmdir()->pre_destroy() can be called while we do this charge.
3317 * In that case, we need to call pre_destroy() again. check it here.
3319 cgroup_release_and_wakeup_rmdir(&memcg->css);
3323 * At replace page cache, newpage is not under any memcg but it's on
3324 * LRU. So, this function doesn't touch res_counter but handles LRU
3325 * in correct way. Both pages are locked so we cannot race with uncharge.
3327 void mem_cgroup_replace_page_cache(struct page *oldpage,
3328 struct page *newpage)
3330 struct mem_cgroup *memcg;
3331 struct page_cgroup *pc;
3332 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3334 if (mem_cgroup_disabled())
3335 return;
3337 pc = lookup_page_cgroup(oldpage);
3338 /* fix accounting on old pages */
3339 lock_page_cgroup(pc);
3340 memcg = pc->mem_cgroup;
3341 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3342 ClearPageCgroupUsed(pc);
3343 unlock_page_cgroup(pc);
3345 if (PageSwapBacked(oldpage))
3346 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3349 * Even if newpage->mapping was NULL before starting replacement,
3350 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3351 * LRU while we overwrite pc->mem_cgroup.
3353 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, type, true);
3356 #ifdef CONFIG_DEBUG_VM
3357 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3359 struct page_cgroup *pc;
3361 pc = lookup_page_cgroup(page);
3363 * Can be NULL while feeding pages into the page allocator for
3364 * the first time, i.e. during boot or memory hotplug;
3365 * or when mem_cgroup_disabled().
3367 if (likely(pc) && PageCgroupUsed(pc))
3368 return pc;
3369 return NULL;
3372 bool mem_cgroup_bad_page_check(struct page *page)
3374 if (mem_cgroup_disabled())
3375 return false;
3377 return lookup_page_cgroup_used(page) != NULL;
3380 void mem_cgroup_print_bad_page(struct page *page)
3382 struct page_cgroup *pc;
3384 pc = lookup_page_cgroup_used(page);
3385 if (pc) {
3386 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3387 pc, pc->flags, pc->mem_cgroup);
3390 #endif
3392 static DEFINE_MUTEX(set_limit_mutex);
3394 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3395 unsigned long long val)
3397 int retry_count;
3398 u64 memswlimit, memlimit;
3399 int ret = 0;
3400 int children = mem_cgroup_count_children(memcg);
3401 u64 curusage, oldusage;
3402 int enlarge;
3405 * For keeping hierarchical_reclaim simple, how long we should retry
3406 * is depends on callers. We set our retry-count to be function
3407 * of # of children which we should visit in this loop.
3409 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3411 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3413 enlarge = 0;
3414 while (retry_count) {
3415 if (signal_pending(current)) {
3416 ret = -EINTR;
3417 break;
3420 * Rather than hide all in some function, I do this in
3421 * open coded manner. You see what this really does.
3422 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3424 mutex_lock(&set_limit_mutex);
3425 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3426 if (memswlimit < val) {
3427 ret = -EINVAL;
3428 mutex_unlock(&set_limit_mutex);
3429 break;
3432 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3433 if (memlimit < val)
3434 enlarge = 1;
3436 ret = res_counter_set_limit(&memcg->res, val);
3437 if (!ret) {
3438 if (memswlimit == val)
3439 memcg->memsw_is_minimum = true;
3440 else
3441 memcg->memsw_is_minimum = false;
3443 mutex_unlock(&set_limit_mutex);
3445 if (!ret)
3446 break;
3448 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3449 MEM_CGROUP_RECLAIM_SHRINK);
3450 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3451 /* Usage is reduced ? */
3452 if (curusage >= oldusage)
3453 retry_count--;
3454 else
3455 oldusage = curusage;
3457 if (!ret && enlarge)
3458 memcg_oom_recover(memcg);
3460 return ret;
3463 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3464 unsigned long long val)
3466 int retry_count;
3467 u64 memlimit, memswlimit, oldusage, curusage;
3468 int children = mem_cgroup_count_children(memcg);
3469 int ret = -EBUSY;
3470 int enlarge = 0;
3472 /* see mem_cgroup_resize_res_limit */
3473 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3474 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3475 while (retry_count) {
3476 if (signal_pending(current)) {
3477 ret = -EINTR;
3478 break;
3481 * Rather than hide all in some function, I do this in
3482 * open coded manner. You see what this really does.
3483 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3485 mutex_lock(&set_limit_mutex);
3486 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3487 if (memlimit > val) {
3488 ret = -EINVAL;
3489 mutex_unlock(&set_limit_mutex);
3490 break;
3492 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3493 if (memswlimit < val)
3494 enlarge = 1;
3495 ret = res_counter_set_limit(&memcg->memsw, val);
3496 if (!ret) {
3497 if (memlimit == val)
3498 memcg->memsw_is_minimum = true;
3499 else
3500 memcg->memsw_is_minimum = false;
3502 mutex_unlock(&set_limit_mutex);
3504 if (!ret)
3505 break;
3507 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3508 MEM_CGROUP_RECLAIM_NOSWAP |
3509 MEM_CGROUP_RECLAIM_SHRINK);
3510 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3511 /* Usage is reduced ? */
3512 if (curusage >= oldusage)
3513 retry_count--;
3514 else
3515 oldusage = curusage;
3517 if (!ret && enlarge)
3518 memcg_oom_recover(memcg);
3519 return ret;
3522 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3523 gfp_t gfp_mask,
3524 unsigned long *total_scanned)
3526 unsigned long nr_reclaimed = 0;
3527 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3528 unsigned long reclaimed;
3529 int loop = 0;
3530 struct mem_cgroup_tree_per_zone *mctz;
3531 unsigned long long excess;
3532 unsigned long nr_scanned;
3534 if (order > 0)
3535 return 0;
3537 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3539 * This loop can run a while, specially if mem_cgroup's continuously
3540 * keep exceeding their soft limit and putting the system under
3541 * pressure
3543 do {
3544 if (next_mz)
3545 mz = next_mz;
3546 else
3547 mz = mem_cgroup_largest_soft_limit_node(mctz);
3548 if (!mz)
3549 break;
3551 nr_scanned = 0;
3552 reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3553 gfp_mask, &nr_scanned);
3554 nr_reclaimed += reclaimed;
3555 *total_scanned += nr_scanned;
3556 spin_lock(&mctz->lock);
3559 * If we failed to reclaim anything from this memory cgroup
3560 * it is time to move on to the next cgroup
3562 next_mz = NULL;
3563 if (!reclaimed) {
3564 do {
3566 * Loop until we find yet another one.
3568 * By the time we get the soft_limit lock
3569 * again, someone might have aded the
3570 * group back on the RB tree. Iterate to
3571 * make sure we get a different mem.
3572 * mem_cgroup_largest_soft_limit_node returns
3573 * NULL if no other cgroup is present on
3574 * the tree
3576 next_mz =
3577 __mem_cgroup_largest_soft_limit_node(mctz);
3578 if (next_mz == mz)
3579 css_put(&next_mz->mem->css);
3580 else /* next_mz == NULL or other memcg */
3581 break;
3582 } while (1);
3584 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3585 excess = res_counter_soft_limit_excess(&mz->mem->res);
3587 * One school of thought says that we should not add
3588 * back the node to the tree if reclaim returns 0.
3589 * But our reclaim could return 0, simply because due
3590 * to priority we are exposing a smaller subset of
3591 * memory to reclaim from. Consider this as a longer
3592 * term TODO.
3594 /* If excess == 0, no tree ops */
3595 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3596 spin_unlock(&mctz->lock);
3597 css_put(&mz->mem->css);
3598 loop++;
3600 * Could not reclaim anything and there are no more
3601 * mem cgroups to try or we seem to be looping without
3602 * reclaiming anything.
3604 if (!nr_reclaimed &&
3605 (next_mz == NULL ||
3606 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3607 break;
3608 } while (!nr_reclaimed);
3609 if (next_mz)
3610 css_put(&next_mz->mem->css);
3611 return nr_reclaimed;
3615 * This routine traverse page_cgroup in given list and drop them all.
3616 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3618 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3619 int node, int zid, enum lru_list lru)
3621 struct mem_cgroup_per_zone *mz;
3622 unsigned long flags, loop;
3623 struct list_head *list;
3624 struct page *busy;
3625 struct zone *zone;
3626 int ret = 0;
3628 zone = &NODE_DATA(node)->node_zones[zid];
3629 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3630 list = &mz->lruvec.lists[lru];
3632 loop = MEM_CGROUP_ZSTAT(mz, lru);
3633 /* give some margin against EBUSY etc...*/
3634 loop += 256;
3635 busy = NULL;
3636 while (loop--) {
3637 struct page_cgroup *pc;
3638 struct page *page;
3640 ret = 0;
3641 spin_lock_irqsave(&zone->lru_lock, flags);
3642 if (list_empty(list)) {
3643 spin_unlock_irqrestore(&zone->lru_lock, flags);
3644 break;
3646 page = list_entry(list->prev, struct page, lru);
3647 if (busy == page) {
3648 list_move(&page->lru, list);
3649 busy = NULL;
3650 spin_unlock_irqrestore(&zone->lru_lock, flags);
3651 continue;
3653 spin_unlock_irqrestore(&zone->lru_lock, flags);
3655 pc = lookup_page_cgroup(page);
3657 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3658 if (ret == -ENOMEM || ret == -EINTR)
3659 break;
3661 if (ret == -EBUSY || ret == -EINVAL) {
3662 /* found lock contention or "pc" is obsolete. */
3663 busy = page;
3664 cond_resched();
3665 } else
3666 busy = NULL;
3669 if (!ret && !list_empty(list))
3670 return -EBUSY;
3671 return ret;
3675 * make mem_cgroup's charge to be 0 if there is no task.
3676 * This enables deleting this mem_cgroup.
3678 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3680 int ret;
3681 int node, zid, shrink;
3682 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3683 struct cgroup *cgrp = memcg->css.cgroup;
3685 css_get(&memcg->css);
3687 shrink = 0;
3688 /* should free all ? */
3689 if (free_all)
3690 goto try_to_free;
3691 move_account:
3692 do {
3693 ret = -EBUSY;
3694 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3695 goto out;
3696 ret = -EINTR;
3697 if (signal_pending(current))
3698 goto out;
3699 /* This is for making all *used* pages to be on LRU. */
3700 lru_add_drain_all();
3701 drain_all_stock_sync(memcg);
3702 ret = 0;
3703 mem_cgroup_start_move(memcg);
3704 for_each_node_state(node, N_HIGH_MEMORY) {
3705 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3706 enum lru_list l;
3707 for_each_lru(l) {
3708 ret = mem_cgroup_force_empty_list(memcg,
3709 node, zid, l);
3710 if (ret)
3711 break;
3714 if (ret)
3715 break;
3717 mem_cgroup_end_move(memcg);
3718 memcg_oom_recover(memcg);
3719 /* it seems parent cgroup doesn't have enough mem */
3720 if (ret == -ENOMEM)
3721 goto try_to_free;
3722 cond_resched();
3723 /* "ret" should also be checked to ensure all lists are empty. */
3724 } while (memcg->res.usage > 0 || ret);
3725 out:
3726 css_put(&memcg->css);
3727 return ret;
3729 try_to_free:
3730 /* returns EBUSY if there is a task or if we come here twice. */
3731 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3732 ret = -EBUSY;
3733 goto out;
3735 /* we call try-to-free pages for make this cgroup empty */
3736 lru_add_drain_all();
3737 /* try to free all pages in this cgroup */
3738 shrink = 1;
3739 while (nr_retries && memcg->res.usage > 0) {
3740 int progress;
3742 if (signal_pending(current)) {
3743 ret = -EINTR;
3744 goto out;
3746 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3747 false);
3748 if (!progress) {
3749 nr_retries--;
3750 /* maybe some writeback is necessary */
3751 congestion_wait(BLK_RW_ASYNC, HZ/10);
3755 lru_add_drain();
3756 /* try move_account...there may be some *locked* pages. */
3757 goto move_account;
3760 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3762 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3766 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3768 return mem_cgroup_from_cont(cont)->use_hierarchy;
3771 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3772 u64 val)
3774 int retval = 0;
3775 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3776 struct cgroup *parent = cont->parent;
3777 struct mem_cgroup *parent_memcg = NULL;
3779 if (parent)
3780 parent_memcg = mem_cgroup_from_cont(parent);
3782 cgroup_lock();
3784 * If parent's use_hierarchy is set, we can't make any modifications
3785 * in the child subtrees. If it is unset, then the change can
3786 * occur, provided the current cgroup has no children.
3788 * For the root cgroup, parent_mem is NULL, we allow value to be
3789 * set if there are no children.
3791 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3792 (val == 1 || val == 0)) {
3793 if (list_empty(&cont->children))
3794 memcg->use_hierarchy = val;
3795 else
3796 retval = -EBUSY;
3797 } else
3798 retval = -EINVAL;
3799 cgroup_unlock();
3801 return retval;
3805 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3806 enum mem_cgroup_stat_index idx)
3808 struct mem_cgroup *iter;
3809 long val = 0;
3811 /* Per-cpu values can be negative, use a signed accumulator */
3812 for_each_mem_cgroup_tree(iter, memcg)
3813 val += mem_cgroup_read_stat(iter, idx);
3815 if (val < 0) /* race ? */
3816 val = 0;
3817 return val;
3820 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3822 u64 val;
3824 if (!mem_cgroup_is_root(memcg)) {
3825 if (!swap)
3826 return res_counter_read_u64(&memcg->res, RES_USAGE);
3827 else
3828 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3831 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3832 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3834 if (swap)
3835 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3837 return val << PAGE_SHIFT;
3840 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3842 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3843 u64 val;
3844 int type, name;
3846 type = MEMFILE_TYPE(cft->private);
3847 name = MEMFILE_ATTR(cft->private);
3848 switch (type) {
3849 case _MEM:
3850 if (name == RES_USAGE)
3851 val = mem_cgroup_usage(memcg, false);
3852 else
3853 val = res_counter_read_u64(&memcg->res, name);
3854 break;
3855 case _MEMSWAP:
3856 if (name == RES_USAGE)
3857 val = mem_cgroup_usage(memcg, true);
3858 else
3859 val = res_counter_read_u64(&memcg->memsw, name);
3860 break;
3861 default:
3862 BUG();
3863 break;
3865 return val;
3868 * The user of this function is...
3869 * RES_LIMIT.
3871 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3872 const char *buffer)
3874 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3875 int type, name;
3876 unsigned long long val;
3877 int ret;
3879 type = MEMFILE_TYPE(cft->private);
3880 name = MEMFILE_ATTR(cft->private);
3881 switch (name) {
3882 case RES_LIMIT:
3883 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3884 ret = -EINVAL;
3885 break;
3887 /* This function does all necessary parse...reuse it */
3888 ret = res_counter_memparse_write_strategy(buffer, &val);
3889 if (ret)
3890 break;
3891 if (type == _MEM)
3892 ret = mem_cgroup_resize_limit(memcg, val);
3893 else
3894 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3895 break;
3896 case RES_SOFT_LIMIT:
3897 ret = res_counter_memparse_write_strategy(buffer, &val);
3898 if (ret)
3899 break;
3901 * For memsw, soft limits are hard to implement in terms
3902 * of semantics, for now, we support soft limits for
3903 * control without swap
3905 if (type == _MEM)
3906 ret = res_counter_set_soft_limit(&memcg->res, val);
3907 else
3908 ret = -EINVAL;
3909 break;
3910 default:
3911 ret = -EINVAL; /* should be BUG() ? */
3912 break;
3914 return ret;
3917 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3918 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3920 struct cgroup *cgroup;
3921 unsigned long long min_limit, min_memsw_limit, tmp;
3923 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3924 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3925 cgroup = memcg->css.cgroup;
3926 if (!memcg->use_hierarchy)
3927 goto out;
3929 while (cgroup->parent) {
3930 cgroup = cgroup->parent;
3931 memcg = mem_cgroup_from_cont(cgroup);
3932 if (!memcg->use_hierarchy)
3933 break;
3934 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3935 min_limit = min(min_limit, tmp);
3936 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3937 min_memsw_limit = min(min_memsw_limit, tmp);
3939 out:
3940 *mem_limit = min_limit;
3941 *memsw_limit = min_memsw_limit;
3942 return;
3945 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3947 struct mem_cgroup *memcg;
3948 int type, name;
3950 memcg = mem_cgroup_from_cont(cont);
3951 type = MEMFILE_TYPE(event);
3952 name = MEMFILE_ATTR(event);
3953 switch (name) {
3954 case RES_MAX_USAGE:
3955 if (type == _MEM)
3956 res_counter_reset_max(&memcg->res);
3957 else
3958 res_counter_reset_max(&memcg->memsw);
3959 break;
3960 case RES_FAILCNT:
3961 if (type == _MEM)
3962 res_counter_reset_failcnt(&memcg->res);
3963 else
3964 res_counter_reset_failcnt(&memcg->memsw);
3965 break;
3968 return 0;
3971 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3972 struct cftype *cft)
3974 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3977 #ifdef CONFIG_MMU
3978 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3979 struct cftype *cft, u64 val)
3981 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3983 if (val >= (1 << NR_MOVE_TYPE))
3984 return -EINVAL;
3986 * We check this value several times in both in can_attach() and
3987 * attach(), so we need cgroup lock to prevent this value from being
3988 * inconsistent.
3990 cgroup_lock();
3991 memcg->move_charge_at_immigrate = val;
3992 cgroup_unlock();
3994 return 0;
3996 #else
3997 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3998 struct cftype *cft, u64 val)
4000 return -ENOSYS;
4002 #endif
4005 /* For read statistics */
4006 enum {
4007 MCS_CACHE,
4008 MCS_RSS,
4009 MCS_FILE_MAPPED,
4010 MCS_PGPGIN,
4011 MCS_PGPGOUT,
4012 MCS_SWAP,
4013 MCS_PGFAULT,
4014 MCS_PGMAJFAULT,
4015 MCS_INACTIVE_ANON,
4016 MCS_ACTIVE_ANON,
4017 MCS_INACTIVE_FILE,
4018 MCS_ACTIVE_FILE,
4019 MCS_UNEVICTABLE,
4020 NR_MCS_STAT,
4023 struct mcs_total_stat {
4024 s64 stat[NR_MCS_STAT];
4027 struct {
4028 char *local_name;
4029 char *total_name;
4030 } memcg_stat_strings[NR_MCS_STAT] = {
4031 {"cache", "total_cache"},
4032 {"rss", "total_rss"},
4033 {"mapped_file", "total_mapped_file"},
4034 {"pgpgin", "total_pgpgin"},
4035 {"pgpgout", "total_pgpgout"},
4036 {"swap", "total_swap"},
4037 {"pgfault", "total_pgfault"},
4038 {"pgmajfault", "total_pgmajfault"},
4039 {"inactive_anon", "total_inactive_anon"},
4040 {"active_anon", "total_active_anon"},
4041 {"inactive_file", "total_inactive_file"},
4042 {"active_file", "total_active_file"},
4043 {"unevictable", "total_unevictable"}
4047 static void
4048 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4050 s64 val;
4052 /* per cpu stat */
4053 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4054 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4055 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4056 s->stat[MCS_RSS] += val * PAGE_SIZE;
4057 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4058 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4059 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4060 s->stat[MCS_PGPGIN] += val;
4061 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4062 s->stat[MCS_PGPGOUT] += val;
4063 if (do_swap_account) {
4064 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4065 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4067 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4068 s->stat[MCS_PGFAULT] += val;
4069 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4070 s->stat[MCS_PGMAJFAULT] += val;
4072 /* per zone stat */
4073 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4074 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4075 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4076 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4077 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4078 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4079 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4080 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4081 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4082 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4085 static void
4086 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4088 struct mem_cgroup *iter;
4090 for_each_mem_cgroup_tree(iter, memcg)
4091 mem_cgroup_get_local_stat(iter, s);
4094 #ifdef CONFIG_NUMA
4095 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4097 int nid;
4098 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4099 unsigned long node_nr;
4100 struct cgroup *cont = m->private;
4101 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4103 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4104 seq_printf(m, "total=%lu", total_nr);
4105 for_each_node_state(nid, N_HIGH_MEMORY) {
4106 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4107 seq_printf(m, " N%d=%lu", nid, node_nr);
4109 seq_putc(m, '\n');
4111 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4112 seq_printf(m, "file=%lu", file_nr);
4113 for_each_node_state(nid, N_HIGH_MEMORY) {
4114 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4115 LRU_ALL_FILE);
4116 seq_printf(m, " N%d=%lu", nid, node_nr);
4118 seq_putc(m, '\n');
4120 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4121 seq_printf(m, "anon=%lu", anon_nr);
4122 for_each_node_state(nid, N_HIGH_MEMORY) {
4123 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4124 LRU_ALL_ANON);
4125 seq_printf(m, " N%d=%lu", nid, node_nr);
4127 seq_putc(m, '\n');
4129 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4130 seq_printf(m, "unevictable=%lu", unevictable_nr);
4131 for_each_node_state(nid, N_HIGH_MEMORY) {
4132 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4133 BIT(LRU_UNEVICTABLE));
4134 seq_printf(m, " N%d=%lu", nid, node_nr);
4136 seq_putc(m, '\n');
4137 return 0;
4139 #endif /* CONFIG_NUMA */
4141 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4142 struct cgroup_map_cb *cb)
4144 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4145 struct mcs_total_stat mystat;
4146 int i;
4148 memset(&mystat, 0, sizeof(mystat));
4149 mem_cgroup_get_local_stat(mem_cont, &mystat);
4152 for (i = 0; i < NR_MCS_STAT; i++) {
4153 if (i == MCS_SWAP && !do_swap_account)
4154 continue;
4155 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4158 /* Hierarchical information */
4160 unsigned long long limit, memsw_limit;
4161 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4162 cb->fill(cb, "hierarchical_memory_limit", limit);
4163 if (do_swap_account)
4164 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4167 memset(&mystat, 0, sizeof(mystat));
4168 mem_cgroup_get_total_stat(mem_cont, &mystat);
4169 for (i = 0; i < NR_MCS_STAT; i++) {
4170 if (i == MCS_SWAP && !do_swap_account)
4171 continue;
4172 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4175 #ifdef CONFIG_DEBUG_VM
4177 int nid, zid;
4178 struct mem_cgroup_per_zone *mz;
4179 unsigned long recent_rotated[2] = {0, 0};
4180 unsigned long recent_scanned[2] = {0, 0};
4182 for_each_online_node(nid)
4183 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4184 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4186 recent_rotated[0] +=
4187 mz->reclaim_stat.recent_rotated[0];
4188 recent_rotated[1] +=
4189 mz->reclaim_stat.recent_rotated[1];
4190 recent_scanned[0] +=
4191 mz->reclaim_stat.recent_scanned[0];
4192 recent_scanned[1] +=
4193 mz->reclaim_stat.recent_scanned[1];
4195 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4196 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4197 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4198 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4200 #endif
4202 return 0;
4205 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4207 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4209 return mem_cgroup_swappiness(memcg);
4212 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4213 u64 val)
4215 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4216 struct mem_cgroup *parent;
4218 if (val > 100)
4219 return -EINVAL;
4221 if (cgrp->parent == NULL)
4222 return -EINVAL;
4224 parent = mem_cgroup_from_cont(cgrp->parent);
4226 cgroup_lock();
4228 /* If under hierarchy, only empty-root can set this value */
4229 if ((parent->use_hierarchy) ||
4230 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4231 cgroup_unlock();
4232 return -EINVAL;
4235 memcg->swappiness = val;
4237 cgroup_unlock();
4239 return 0;
4242 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4244 struct mem_cgroup_threshold_ary *t;
4245 u64 usage;
4246 int i;
4248 rcu_read_lock();
4249 if (!swap)
4250 t = rcu_dereference(memcg->thresholds.primary);
4251 else
4252 t = rcu_dereference(memcg->memsw_thresholds.primary);
4254 if (!t)
4255 goto unlock;
4257 usage = mem_cgroup_usage(memcg, swap);
4260 * current_threshold points to threshold just below usage.
4261 * If it's not true, a threshold was crossed after last
4262 * call of __mem_cgroup_threshold().
4264 i = t->current_threshold;
4267 * Iterate backward over array of thresholds starting from
4268 * current_threshold and check if a threshold is crossed.
4269 * If none of thresholds below usage is crossed, we read
4270 * only one element of the array here.
4272 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4273 eventfd_signal(t->entries[i].eventfd, 1);
4275 /* i = current_threshold + 1 */
4276 i++;
4279 * Iterate forward over array of thresholds starting from
4280 * current_threshold+1 and check if a threshold is crossed.
4281 * If none of thresholds above usage is crossed, we read
4282 * only one element of the array here.
4284 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4285 eventfd_signal(t->entries[i].eventfd, 1);
4287 /* Update current_threshold */
4288 t->current_threshold = i - 1;
4289 unlock:
4290 rcu_read_unlock();
4293 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4295 while (memcg) {
4296 __mem_cgroup_threshold(memcg, false);
4297 if (do_swap_account)
4298 __mem_cgroup_threshold(memcg, true);
4300 memcg = parent_mem_cgroup(memcg);
4304 static int compare_thresholds(const void *a, const void *b)
4306 const struct mem_cgroup_threshold *_a = a;
4307 const struct mem_cgroup_threshold *_b = b;
4309 return _a->threshold - _b->threshold;
4312 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4314 struct mem_cgroup_eventfd_list *ev;
4316 list_for_each_entry(ev, &memcg->oom_notify, list)
4317 eventfd_signal(ev->eventfd, 1);
4318 return 0;
4321 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4323 struct mem_cgroup *iter;
4325 for_each_mem_cgroup_tree(iter, memcg)
4326 mem_cgroup_oom_notify_cb(iter);
4329 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4330 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4332 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4333 struct mem_cgroup_thresholds *thresholds;
4334 struct mem_cgroup_threshold_ary *new;
4335 int type = MEMFILE_TYPE(cft->private);
4336 u64 threshold, usage;
4337 int i, size, ret;
4339 ret = res_counter_memparse_write_strategy(args, &threshold);
4340 if (ret)
4341 return ret;
4343 mutex_lock(&memcg->thresholds_lock);
4345 if (type == _MEM)
4346 thresholds = &memcg->thresholds;
4347 else if (type == _MEMSWAP)
4348 thresholds = &memcg->memsw_thresholds;
4349 else
4350 BUG();
4352 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4354 /* Check if a threshold crossed before adding a new one */
4355 if (thresholds->primary)
4356 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4358 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4360 /* Allocate memory for new array of thresholds */
4361 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4362 GFP_KERNEL);
4363 if (!new) {
4364 ret = -ENOMEM;
4365 goto unlock;
4367 new->size = size;
4369 /* Copy thresholds (if any) to new array */
4370 if (thresholds->primary) {
4371 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4372 sizeof(struct mem_cgroup_threshold));
4375 /* Add new threshold */
4376 new->entries[size - 1].eventfd = eventfd;
4377 new->entries[size - 1].threshold = threshold;
4379 /* Sort thresholds. Registering of new threshold isn't time-critical */
4380 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4381 compare_thresholds, NULL);
4383 /* Find current threshold */
4384 new->current_threshold = -1;
4385 for (i = 0; i < size; i++) {
4386 if (new->entries[i].threshold < usage) {
4388 * new->current_threshold will not be used until
4389 * rcu_assign_pointer(), so it's safe to increment
4390 * it here.
4392 ++new->current_threshold;
4396 /* Free old spare buffer and save old primary buffer as spare */
4397 kfree(thresholds->spare);
4398 thresholds->spare = thresholds->primary;
4400 rcu_assign_pointer(thresholds->primary, new);
4402 /* To be sure that nobody uses thresholds */
4403 synchronize_rcu();
4405 unlock:
4406 mutex_unlock(&memcg->thresholds_lock);
4408 return ret;
4411 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4412 struct cftype *cft, struct eventfd_ctx *eventfd)
4414 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4415 struct mem_cgroup_thresholds *thresholds;
4416 struct mem_cgroup_threshold_ary *new;
4417 int type = MEMFILE_TYPE(cft->private);
4418 u64 usage;
4419 int i, j, size;
4421 mutex_lock(&memcg->thresholds_lock);
4422 if (type == _MEM)
4423 thresholds = &memcg->thresholds;
4424 else if (type == _MEMSWAP)
4425 thresholds = &memcg->memsw_thresholds;
4426 else
4427 BUG();
4430 * Something went wrong if we trying to unregister a threshold
4431 * if we don't have thresholds
4433 BUG_ON(!thresholds);
4435 if (!thresholds->primary)
4436 goto unlock;
4438 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4440 /* Check if a threshold crossed before removing */
4441 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4443 /* Calculate new number of threshold */
4444 size = 0;
4445 for (i = 0; i < thresholds->primary->size; i++) {
4446 if (thresholds->primary->entries[i].eventfd != eventfd)
4447 size++;
4450 new = thresholds->spare;
4452 /* Set thresholds array to NULL if we don't have thresholds */
4453 if (!size) {
4454 kfree(new);
4455 new = NULL;
4456 goto swap_buffers;
4459 new->size = size;
4461 /* Copy thresholds and find current threshold */
4462 new->current_threshold = -1;
4463 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4464 if (thresholds->primary->entries[i].eventfd == eventfd)
4465 continue;
4467 new->entries[j] = thresholds->primary->entries[i];
4468 if (new->entries[j].threshold < usage) {
4470 * new->current_threshold will not be used
4471 * until rcu_assign_pointer(), so it's safe to increment
4472 * it here.
4474 ++new->current_threshold;
4476 j++;
4479 swap_buffers:
4480 /* Swap primary and spare array */
4481 thresholds->spare = thresholds->primary;
4482 rcu_assign_pointer(thresholds->primary, new);
4484 /* To be sure that nobody uses thresholds */
4485 synchronize_rcu();
4486 unlock:
4487 mutex_unlock(&memcg->thresholds_lock);
4490 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4491 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4493 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4494 struct mem_cgroup_eventfd_list *event;
4495 int type = MEMFILE_TYPE(cft->private);
4497 BUG_ON(type != _OOM_TYPE);
4498 event = kmalloc(sizeof(*event), GFP_KERNEL);
4499 if (!event)
4500 return -ENOMEM;
4502 spin_lock(&memcg_oom_lock);
4504 event->eventfd = eventfd;
4505 list_add(&event->list, &memcg->oom_notify);
4507 /* already in OOM ? */
4508 if (atomic_read(&memcg->under_oom))
4509 eventfd_signal(eventfd, 1);
4510 spin_unlock(&memcg_oom_lock);
4512 return 0;
4515 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4516 struct cftype *cft, struct eventfd_ctx *eventfd)
4518 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4519 struct mem_cgroup_eventfd_list *ev, *tmp;
4520 int type = MEMFILE_TYPE(cft->private);
4522 BUG_ON(type != _OOM_TYPE);
4524 spin_lock(&memcg_oom_lock);
4526 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4527 if (ev->eventfd == eventfd) {
4528 list_del(&ev->list);
4529 kfree(ev);
4533 spin_unlock(&memcg_oom_lock);
4536 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4537 struct cftype *cft, struct cgroup_map_cb *cb)
4539 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4541 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4543 if (atomic_read(&memcg->under_oom))
4544 cb->fill(cb, "under_oom", 1);
4545 else
4546 cb->fill(cb, "under_oom", 0);
4547 return 0;
4550 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4551 struct cftype *cft, u64 val)
4553 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4554 struct mem_cgroup *parent;
4556 /* cannot set to root cgroup and only 0 and 1 are allowed */
4557 if (!cgrp->parent || !((val == 0) || (val == 1)))
4558 return -EINVAL;
4560 parent = mem_cgroup_from_cont(cgrp->parent);
4562 cgroup_lock();
4563 /* oom-kill-disable is a flag for subhierarchy. */
4564 if ((parent->use_hierarchy) ||
4565 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4566 cgroup_unlock();
4567 return -EINVAL;
4569 memcg->oom_kill_disable = val;
4570 if (!val)
4571 memcg_oom_recover(memcg);
4572 cgroup_unlock();
4573 return 0;
4576 #ifdef CONFIG_NUMA
4577 static const struct file_operations mem_control_numa_stat_file_operations = {
4578 .read = seq_read,
4579 .llseek = seq_lseek,
4580 .release = single_release,
4583 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4585 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4587 file->f_op = &mem_control_numa_stat_file_operations;
4588 return single_open(file, mem_control_numa_stat_show, cont);
4590 #endif /* CONFIG_NUMA */
4592 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4593 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4596 * Part of this would be better living in a separate allocation
4597 * function, leaving us with just the cgroup tree population work.
4598 * We, however, depend on state such as network's proto_list that
4599 * is only initialized after cgroup creation. I found the less
4600 * cumbersome way to deal with it to defer it all to populate time
4602 return mem_cgroup_sockets_init(cont, ss);
4605 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4606 struct cgroup *cont)
4608 mem_cgroup_sockets_destroy(cont, ss);
4610 #else
4611 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4613 return 0;
4616 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4617 struct cgroup *cont)
4620 #endif
4622 static struct cftype mem_cgroup_files[] = {
4624 .name = "usage_in_bytes",
4625 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4626 .read_u64 = mem_cgroup_read,
4627 .register_event = mem_cgroup_usage_register_event,
4628 .unregister_event = mem_cgroup_usage_unregister_event,
4631 .name = "max_usage_in_bytes",
4632 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4633 .trigger = mem_cgroup_reset,
4634 .read_u64 = mem_cgroup_read,
4637 .name = "limit_in_bytes",
4638 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4639 .write_string = mem_cgroup_write,
4640 .read_u64 = mem_cgroup_read,
4643 .name = "soft_limit_in_bytes",
4644 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4645 .write_string = mem_cgroup_write,
4646 .read_u64 = mem_cgroup_read,
4649 .name = "failcnt",
4650 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4651 .trigger = mem_cgroup_reset,
4652 .read_u64 = mem_cgroup_read,
4655 .name = "stat",
4656 .read_map = mem_control_stat_show,
4659 .name = "force_empty",
4660 .trigger = mem_cgroup_force_empty_write,
4663 .name = "use_hierarchy",
4664 .write_u64 = mem_cgroup_hierarchy_write,
4665 .read_u64 = mem_cgroup_hierarchy_read,
4668 .name = "swappiness",
4669 .read_u64 = mem_cgroup_swappiness_read,
4670 .write_u64 = mem_cgroup_swappiness_write,
4673 .name = "move_charge_at_immigrate",
4674 .read_u64 = mem_cgroup_move_charge_read,
4675 .write_u64 = mem_cgroup_move_charge_write,
4678 .name = "oom_control",
4679 .read_map = mem_cgroup_oom_control_read,
4680 .write_u64 = mem_cgroup_oom_control_write,
4681 .register_event = mem_cgroup_oom_register_event,
4682 .unregister_event = mem_cgroup_oom_unregister_event,
4683 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4685 #ifdef CONFIG_NUMA
4687 .name = "numa_stat",
4688 .open = mem_control_numa_stat_open,
4689 .mode = S_IRUGO,
4691 #endif
4694 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4695 static struct cftype memsw_cgroup_files[] = {
4697 .name = "memsw.usage_in_bytes",
4698 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4699 .read_u64 = mem_cgroup_read,
4700 .register_event = mem_cgroup_usage_register_event,
4701 .unregister_event = mem_cgroup_usage_unregister_event,
4704 .name = "memsw.max_usage_in_bytes",
4705 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4706 .trigger = mem_cgroup_reset,
4707 .read_u64 = mem_cgroup_read,
4710 .name = "memsw.limit_in_bytes",
4711 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4712 .write_string = mem_cgroup_write,
4713 .read_u64 = mem_cgroup_read,
4716 .name = "memsw.failcnt",
4717 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4718 .trigger = mem_cgroup_reset,
4719 .read_u64 = mem_cgroup_read,
4723 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4725 if (!do_swap_account)
4726 return 0;
4727 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4728 ARRAY_SIZE(memsw_cgroup_files));
4730 #else
4731 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4733 return 0;
4735 #endif
4737 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4739 struct mem_cgroup_per_node *pn;
4740 struct mem_cgroup_per_zone *mz;
4741 enum lru_list l;
4742 int zone, tmp = node;
4744 * This routine is called against possible nodes.
4745 * But it's BUG to call kmalloc() against offline node.
4747 * TODO: this routine can waste much memory for nodes which will
4748 * never be onlined. It's better to use memory hotplug callback
4749 * function.
4751 if (!node_state(node, N_NORMAL_MEMORY))
4752 tmp = -1;
4753 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4754 if (!pn)
4755 return 1;
4757 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4758 mz = &pn->zoneinfo[zone];
4759 for_each_lru(l)
4760 INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4761 mz->usage_in_excess = 0;
4762 mz->on_tree = false;
4763 mz->mem = memcg;
4765 memcg->info.nodeinfo[node] = pn;
4766 return 0;
4769 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4771 kfree(memcg->info.nodeinfo[node]);
4774 static struct mem_cgroup *mem_cgroup_alloc(void)
4776 struct mem_cgroup *mem;
4777 int size = sizeof(struct mem_cgroup);
4779 /* Can be very big if MAX_NUMNODES is very big */
4780 if (size < PAGE_SIZE)
4781 mem = kzalloc(size, GFP_KERNEL);
4782 else
4783 mem = vzalloc(size);
4785 if (!mem)
4786 return NULL;
4788 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4789 if (!mem->stat)
4790 goto out_free;
4791 spin_lock_init(&mem->pcp_counter_lock);
4792 return mem;
4794 out_free:
4795 if (size < PAGE_SIZE)
4796 kfree(mem);
4797 else
4798 vfree(mem);
4799 return NULL;
4803 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4804 * but in process context. The work_freeing structure is overlaid
4805 * on the rcu_freeing structure, which itself is overlaid on memsw.
4807 static void vfree_work(struct work_struct *work)
4809 struct mem_cgroup *memcg;
4811 memcg = container_of(work, struct mem_cgroup, work_freeing);
4812 vfree(memcg);
4814 static void vfree_rcu(struct rcu_head *rcu_head)
4816 struct mem_cgroup *memcg;
4818 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4819 INIT_WORK(&memcg->work_freeing, vfree_work);
4820 schedule_work(&memcg->work_freeing);
4824 * At destroying mem_cgroup, references from swap_cgroup can remain.
4825 * (scanning all at force_empty is too costly...)
4827 * Instead of clearing all references at force_empty, we remember
4828 * the number of reference from swap_cgroup and free mem_cgroup when
4829 * it goes down to 0.
4831 * Removal of cgroup itself succeeds regardless of refs from swap.
4834 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4836 int node;
4838 mem_cgroup_remove_from_trees(memcg);
4839 free_css_id(&mem_cgroup_subsys, &memcg->css);
4841 for_each_node(node)
4842 free_mem_cgroup_per_zone_info(memcg, node);
4844 free_percpu(memcg->stat);
4845 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4846 kfree_rcu(memcg, rcu_freeing);
4847 else
4848 call_rcu(&memcg->rcu_freeing, vfree_rcu);
4851 static void mem_cgroup_get(struct mem_cgroup *memcg)
4853 atomic_inc(&memcg->refcnt);
4856 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4858 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4859 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4860 __mem_cgroup_free(memcg);
4861 if (parent)
4862 mem_cgroup_put(parent);
4866 static void mem_cgroup_put(struct mem_cgroup *memcg)
4868 __mem_cgroup_put(memcg, 1);
4872 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4874 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4876 if (!memcg->res.parent)
4877 return NULL;
4878 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4880 EXPORT_SYMBOL(parent_mem_cgroup);
4882 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4883 static void __init enable_swap_cgroup(void)
4885 if (!mem_cgroup_disabled() && really_do_swap_account)
4886 do_swap_account = 1;
4888 #else
4889 static void __init enable_swap_cgroup(void)
4892 #endif
4894 static int mem_cgroup_soft_limit_tree_init(void)
4896 struct mem_cgroup_tree_per_node *rtpn;
4897 struct mem_cgroup_tree_per_zone *rtpz;
4898 int tmp, node, zone;
4900 for_each_node(node) {
4901 tmp = node;
4902 if (!node_state(node, N_NORMAL_MEMORY))
4903 tmp = -1;
4904 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4905 if (!rtpn)
4906 goto err_cleanup;
4908 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4910 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4911 rtpz = &rtpn->rb_tree_per_zone[zone];
4912 rtpz->rb_root = RB_ROOT;
4913 spin_lock_init(&rtpz->lock);
4916 return 0;
4918 err_cleanup:
4919 for_each_node(node) {
4920 if (!soft_limit_tree.rb_tree_per_node[node])
4921 break;
4922 kfree(soft_limit_tree.rb_tree_per_node[node]);
4923 soft_limit_tree.rb_tree_per_node[node] = NULL;
4925 return 1;
4929 static struct cgroup_subsys_state * __ref
4930 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4932 struct mem_cgroup *memcg, *parent;
4933 long error = -ENOMEM;
4934 int node;
4936 memcg = mem_cgroup_alloc();
4937 if (!memcg)
4938 return ERR_PTR(error);
4940 for_each_node(node)
4941 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4942 goto free_out;
4944 /* root ? */
4945 if (cont->parent == NULL) {
4946 int cpu;
4947 enable_swap_cgroup();
4948 parent = NULL;
4949 if (mem_cgroup_soft_limit_tree_init())
4950 goto free_out;
4951 root_mem_cgroup = memcg;
4952 for_each_possible_cpu(cpu) {
4953 struct memcg_stock_pcp *stock =
4954 &per_cpu(memcg_stock, cpu);
4955 INIT_WORK(&stock->work, drain_local_stock);
4957 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4958 } else {
4959 parent = mem_cgroup_from_cont(cont->parent);
4960 memcg->use_hierarchy = parent->use_hierarchy;
4961 memcg->oom_kill_disable = parent->oom_kill_disable;
4964 if (parent && parent->use_hierarchy) {
4965 res_counter_init(&memcg->res, &parent->res);
4966 res_counter_init(&memcg->memsw, &parent->memsw);
4968 * We increment refcnt of the parent to ensure that we can
4969 * safely access it on res_counter_charge/uncharge.
4970 * This refcnt will be decremented when freeing this
4971 * mem_cgroup(see mem_cgroup_put).
4973 mem_cgroup_get(parent);
4974 } else {
4975 res_counter_init(&memcg->res, NULL);
4976 res_counter_init(&memcg->memsw, NULL);
4978 memcg->last_scanned_node = MAX_NUMNODES;
4979 INIT_LIST_HEAD(&memcg->oom_notify);
4981 if (parent)
4982 memcg->swappiness = mem_cgroup_swappiness(parent);
4983 atomic_set(&memcg->refcnt, 1);
4984 memcg->move_charge_at_immigrate = 0;
4985 mutex_init(&memcg->thresholds_lock);
4986 return &memcg->css;
4987 free_out:
4988 __mem_cgroup_free(memcg);
4989 return ERR_PTR(error);
4992 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4993 struct cgroup *cont)
4995 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4997 return mem_cgroup_force_empty(memcg, false);
5000 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5001 struct cgroup *cont)
5003 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5005 kmem_cgroup_destroy(ss, cont);
5007 mem_cgroup_put(memcg);
5010 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5011 struct cgroup *cont)
5013 int ret;
5015 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5016 ARRAY_SIZE(mem_cgroup_files));
5018 if (!ret)
5019 ret = register_memsw_files(cont, ss);
5021 if (!ret)
5022 ret = register_kmem_files(cont, ss);
5024 return ret;
5027 #ifdef CONFIG_MMU
5028 /* Handlers for move charge at task migration. */
5029 #define PRECHARGE_COUNT_AT_ONCE 256
5030 static int mem_cgroup_do_precharge(unsigned long count)
5032 int ret = 0;
5033 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5034 struct mem_cgroup *memcg = mc.to;
5036 if (mem_cgroup_is_root(memcg)) {
5037 mc.precharge += count;
5038 /* we don't need css_get for root */
5039 return ret;
5041 /* try to charge at once */
5042 if (count > 1) {
5043 struct res_counter *dummy;
5045 * "memcg" cannot be under rmdir() because we've already checked
5046 * by cgroup_lock_live_cgroup() that it is not removed and we
5047 * are still under the same cgroup_mutex. So we can postpone
5048 * css_get().
5050 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5051 goto one_by_one;
5052 if (do_swap_account && res_counter_charge(&memcg->memsw,
5053 PAGE_SIZE * count, &dummy)) {
5054 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5055 goto one_by_one;
5057 mc.precharge += count;
5058 return ret;
5060 one_by_one:
5061 /* fall back to one by one charge */
5062 while (count--) {
5063 if (signal_pending(current)) {
5064 ret = -EINTR;
5065 break;
5067 if (!batch_count--) {
5068 batch_count = PRECHARGE_COUNT_AT_ONCE;
5069 cond_resched();
5071 ret = __mem_cgroup_try_charge(NULL,
5072 GFP_KERNEL, 1, &memcg, false);
5073 if (ret)
5074 /* mem_cgroup_clear_mc() will do uncharge later */
5075 return ret;
5076 mc.precharge++;
5078 return ret;
5082 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5083 * @vma: the vma the pte to be checked belongs
5084 * @addr: the address corresponding to the pte to be checked
5085 * @ptent: the pte to be checked
5086 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5088 * Returns
5089 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5090 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5091 * move charge. if @target is not NULL, the page is stored in target->page
5092 * with extra refcnt got(Callers should handle it).
5093 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5094 * target for charge migration. if @target is not NULL, the entry is stored
5095 * in target->ent.
5097 * Called with pte lock held.
5099 union mc_target {
5100 struct page *page;
5101 swp_entry_t ent;
5104 enum mc_target_type {
5105 MC_TARGET_NONE, /* not used */
5106 MC_TARGET_PAGE,
5107 MC_TARGET_SWAP,
5110 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5111 unsigned long addr, pte_t ptent)
5113 struct page *page = vm_normal_page(vma, addr, ptent);
5115 if (!page || !page_mapped(page))
5116 return NULL;
5117 if (PageAnon(page)) {
5118 /* we don't move shared anon */
5119 if (!move_anon() || page_mapcount(page) > 2)
5120 return NULL;
5121 } else if (!move_file())
5122 /* we ignore mapcount for file pages */
5123 return NULL;
5124 if (!get_page_unless_zero(page))
5125 return NULL;
5127 return page;
5130 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5131 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5133 int usage_count;
5134 struct page *page = NULL;
5135 swp_entry_t ent = pte_to_swp_entry(ptent);
5137 if (!move_anon() || non_swap_entry(ent))
5138 return NULL;
5139 usage_count = mem_cgroup_count_swap_user(ent, &page);
5140 if (usage_count > 1) { /* we don't move shared anon */
5141 if (page)
5142 put_page(page);
5143 return NULL;
5145 if (do_swap_account)
5146 entry->val = ent.val;
5148 return page;
5151 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5152 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5154 struct page *page = NULL;
5155 struct inode *inode;
5156 struct address_space *mapping;
5157 pgoff_t pgoff;
5159 if (!vma->vm_file) /* anonymous vma */
5160 return NULL;
5161 if (!move_file())
5162 return NULL;
5164 inode = vma->vm_file->f_path.dentry->d_inode;
5165 mapping = vma->vm_file->f_mapping;
5166 if (pte_none(ptent))
5167 pgoff = linear_page_index(vma, addr);
5168 else /* pte_file(ptent) is true */
5169 pgoff = pte_to_pgoff(ptent);
5171 /* page is moved even if it's not RSS of this task(page-faulted). */
5172 page = find_get_page(mapping, pgoff);
5174 #ifdef CONFIG_SWAP
5175 /* shmem/tmpfs may report page out on swap: account for that too. */
5176 if (radix_tree_exceptional_entry(page)) {
5177 swp_entry_t swap = radix_to_swp_entry(page);
5178 if (do_swap_account)
5179 *entry = swap;
5180 page = find_get_page(&swapper_space, swap.val);
5182 #endif
5183 return page;
5186 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5187 unsigned long addr, pte_t ptent, union mc_target *target)
5189 struct page *page = NULL;
5190 struct page_cgroup *pc;
5191 int ret = 0;
5192 swp_entry_t ent = { .val = 0 };
5194 if (pte_present(ptent))
5195 page = mc_handle_present_pte(vma, addr, ptent);
5196 else if (is_swap_pte(ptent))
5197 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5198 else if (pte_none(ptent) || pte_file(ptent))
5199 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5201 if (!page && !ent.val)
5202 return 0;
5203 if (page) {
5204 pc = lookup_page_cgroup(page);
5206 * Do only loose check w/o page_cgroup lock.
5207 * mem_cgroup_move_account() checks the pc is valid or not under
5208 * the lock.
5210 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5211 ret = MC_TARGET_PAGE;
5212 if (target)
5213 target->page = page;
5215 if (!ret || !target)
5216 put_page(page);
5218 /* There is a swap entry and a page doesn't exist or isn't charged */
5219 if (ent.val && !ret &&
5220 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5221 ret = MC_TARGET_SWAP;
5222 if (target)
5223 target->ent = ent;
5225 return ret;
5228 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5229 unsigned long addr, unsigned long end,
5230 struct mm_walk *walk)
5232 struct vm_area_struct *vma = walk->private;
5233 pte_t *pte;
5234 spinlock_t *ptl;
5236 split_huge_page_pmd(walk->mm, pmd);
5237 if (pmd_trans_unstable(pmd))
5238 return 0;
5240 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5241 for (; addr != end; pte++, addr += PAGE_SIZE)
5242 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5243 mc.precharge++; /* increment precharge temporarily */
5244 pte_unmap_unlock(pte - 1, ptl);
5245 cond_resched();
5247 return 0;
5250 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5252 unsigned long precharge;
5253 struct vm_area_struct *vma;
5255 down_read(&mm->mmap_sem);
5256 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5257 struct mm_walk mem_cgroup_count_precharge_walk = {
5258 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5259 .mm = mm,
5260 .private = vma,
5262 if (is_vm_hugetlb_page(vma))
5263 continue;
5264 walk_page_range(vma->vm_start, vma->vm_end,
5265 &mem_cgroup_count_precharge_walk);
5267 up_read(&mm->mmap_sem);
5269 precharge = mc.precharge;
5270 mc.precharge = 0;
5272 return precharge;
5275 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5277 unsigned long precharge = mem_cgroup_count_precharge(mm);
5279 VM_BUG_ON(mc.moving_task);
5280 mc.moving_task = current;
5281 return mem_cgroup_do_precharge(precharge);
5284 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5285 static void __mem_cgroup_clear_mc(void)
5287 struct mem_cgroup *from = mc.from;
5288 struct mem_cgroup *to = mc.to;
5290 /* we must uncharge all the leftover precharges from mc.to */
5291 if (mc.precharge) {
5292 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5293 mc.precharge = 0;
5296 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5297 * we must uncharge here.
5299 if (mc.moved_charge) {
5300 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5301 mc.moved_charge = 0;
5303 /* we must fixup refcnts and charges */
5304 if (mc.moved_swap) {
5305 /* uncharge swap account from the old cgroup */
5306 if (!mem_cgroup_is_root(mc.from))
5307 res_counter_uncharge(&mc.from->memsw,
5308 PAGE_SIZE * mc.moved_swap);
5309 __mem_cgroup_put(mc.from, mc.moved_swap);
5311 if (!mem_cgroup_is_root(mc.to)) {
5313 * we charged both to->res and to->memsw, so we should
5314 * uncharge to->res.
5316 res_counter_uncharge(&mc.to->res,
5317 PAGE_SIZE * mc.moved_swap);
5319 /* we've already done mem_cgroup_get(mc.to) */
5320 mc.moved_swap = 0;
5322 memcg_oom_recover(from);
5323 memcg_oom_recover(to);
5324 wake_up_all(&mc.waitq);
5327 static void mem_cgroup_clear_mc(void)
5329 struct mem_cgroup *from = mc.from;
5332 * we must clear moving_task before waking up waiters at the end of
5333 * task migration.
5335 mc.moving_task = NULL;
5336 __mem_cgroup_clear_mc();
5337 spin_lock(&mc.lock);
5338 mc.from = NULL;
5339 mc.to = NULL;
5340 spin_unlock(&mc.lock);
5341 mem_cgroup_end_move(from);
5344 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5345 struct cgroup *cgroup,
5346 struct cgroup_taskset *tset)
5348 struct task_struct *p = cgroup_taskset_first(tset);
5349 int ret = 0;
5350 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5352 if (memcg->move_charge_at_immigrate) {
5353 struct mm_struct *mm;
5354 struct mem_cgroup *from = mem_cgroup_from_task(p);
5356 VM_BUG_ON(from == memcg);
5358 mm = get_task_mm(p);
5359 if (!mm)
5360 return 0;
5361 /* We move charges only when we move a owner of the mm */
5362 if (mm->owner == p) {
5363 VM_BUG_ON(mc.from);
5364 VM_BUG_ON(mc.to);
5365 VM_BUG_ON(mc.precharge);
5366 VM_BUG_ON(mc.moved_charge);
5367 VM_BUG_ON(mc.moved_swap);
5368 mem_cgroup_start_move(from);
5369 spin_lock(&mc.lock);
5370 mc.from = from;
5371 mc.to = memcg;
5372 spin_unlock(&mc.lock);
5373 /* We set mc.moving_task later */
5375 ret = mem_cgroup_precharge_mc(mm);
5376 if (ret)
5377 mem_cgroup_clear_mc();
5379 mmput(mm);
5381 return ret;
5384 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5385 struct cgroup *cgroup,
5386 struct cgroup_taskset *tset)
5388 mem_cgroup_clear_mc();
5391 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5392 unsigned long addr, unsigned long end,
5393 struct mm_walk *walk)
5395 int ret = 0;
5396 struct vm_area_struct *vma = walk->private;
5397 pte_t *pte;
5398 spinlock_t *ptl;
5400 split_huge_page_pmd(walk->mm, pmd);
5401 if (pmd_trans_unstable(pmd))
5402 return 0;
5403 retry:
5404 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5405 for (; addr != end; addr += PAGE_SIZE) {
5406 pte_t ptent = *(pte++);
5407 union mc_target target;
5408 int type;
5409 struct page *page;
5410 struct page_cgroup *pc;
5411 swp_entry_t ent;
5413 if (!mc.precharge)
5414 break;
5416 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5417 switch (type) {
5418 case MC_TARGET_PAGE:
5419 page = target.page;
5420 if (isolate_lru_page(page))
5421 goto put;
5422 pc = lookup_page_cgroup(page);
5423 if (!mem_cgroup_move_account(page, 1, pc,
5424 mc.from, mc.to, false)) {
5425 mc.precharge--;
5426 /* we uncharge from mc.from later. */
5427 mc.moved_charge++;
5429 putback_lru_page(page);
5430 put: /* is_target_pte_for_mc() gets the page */
5431 put_page(page);
5432 break;
5433 case MC_TARGET_SWAP:
5434 ent = target.ent;
5435 if (!mem_cgroup_move_swap_account(ent,
5436 mc.from, mc.to, false)) {
5437 mc.precharge--;
5438 /* we fixup refcnts and charges later. */
5439 mc.moved_swap++;
5441 break;
5442 default:
5443 break;
5446 pte_unmap_unlock(pte - 1, ptl);
5447 cond_resched();
5449 if (addr != end) {
5451 * We have consumed all precharges we got in can_attach().
5452 * We try charge one by one, but don't do any additional
5453 * charges to mc.to if we have failed in charge once in attach()
5454 * phase.
5456 ret = mem_cgroup_do_precharge(1);
5457 if (!ret)
5458 goto retry;
5461 return ret;
5464 static void mem_cgroup_move_charge(struct mm_struct *mm)
5466 struct vm_area_struct *vma;
5468 lru_add_drain_all();
5469 retry:
5470 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5472 * Someone who are holding the mmap_sem might be waiting in
5473 * waitq. So we cancel all extra charges, wake up all waiters,
5474 * and retry. Because we cancel precharges, we might not be able
5475 * to move enough charges, but moving charge is a best-effort
5476 * feature anyway, so it wouldn't be a big problem.
5478 __mem_cgroup_clear_mc();
5479 cond_resched();
5480 goto retry;
5482 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5483 int ret;
5484 struct mm_walk mem_cgroup_move_charge_walk = {
5485 .pmd_entry = mem_cgroup_move_charge_pte_range,
5486 .mm = mm,
5487 .private = vma,
5489 if (is_vm_hugetlb_page(vma))
5490 continue;
5491 ret = walk_page_range(vma->vm_start, vma->vm_end,
5492 &mem_cgroup_move_charge_walk);
5493 if (ret)
5495 * means we have consumed all precharges and failed in
5496 * doing additional charge. Just abandon here.
5498 break;
5500 up_read(&mm->mmap_sem);
5503 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5504 struct cgroup *cont,
5505 struct cgroup_taskset *tset)
5507 struct task_struct *p = cgroup_taskset_first(tset);
5508 struct mm_struct *mm = get_task_mm(p);
5510 if (mm) {
5511 if (mc.to)
5512 mem_cgroup_move_charge(mm);
5513 put_swap_token(mm);
5514 mmput(mm);
5516 if (mc.to)
5517 mem_cgroup_clear_mc();
5519 #else /* !CONFIG_MMU */
5520 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5521 struct cgroup *cgroup,
5522 struct cgroup_taskset *tset)
5524 return 0;
5526 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5527 struct cgroup *cgroup,
5528 struct cgroup_taskset *tset)
5531 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5532 struct cgroup *cont,
5533 struct cgroup_taskset *tset)
5536 #endif
5538 struct cgroup_subsys mem_cgroup_subsys = {
5539 .name = "memory",
5540 .subsys_id = mem_cgroup_subsys_id,
5541 .create = mem_cgroup_create,
5542 .pre_destroy = mem_cgroup_pre_destroy,
5543 .destroy = mem_cgroup_destroy,
5544 .populate = mem_cgroup_populate,
5545 .can_attach = mem_cgroup_can_attach,
5546 .cancel_attach = mem_cgroup_cancel_attach,
5547 .attach = mem_cgroup_move_task,
5548 .early_init = 0,
5549 .use_id = 1,
5552 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5553 static int __init enable_swap_account(char *s)
5555 /* consider enabled if no parameter or 1 is given */
5556 if (!strcmp(s, "1"))
5557 really_do_swap_account = 1;
5558 else if (!strcmp(s, "0"))
5559 really_do_swap_account = 0;
5560 return 1;
5562 __setup("swapaccount=", enable_swap_account);
5564 #endif