2 * linux/net/sunrpc/sched.c
4 * Scheduling for synchronous and asynchronous RPC requests.
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
12 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
23 #include <linux/sunrpc/clnt.h>
28 #define RPCDBG_FACILITY RPCDBG_SCHED
32 * RPC slabs and memory pools
34 #define RPC_BUFFER_MAXSIZE (2048)
35 #define RPC_BUFFER_POOLSIZE (8)
36 #define RPC_TASK_POOLSIZE (8)
37 static struct kmem_cache
*rpc_task_slabp __read_mostly
;
38 static struct kmem_cache
*rpc_buffer_slabp __read_mostly
;
39 static mempool_t
*rpc_task_mempool __read_mostly
;
40 static mempool_t
*rpc_buffer_mempool __read_mostly
;
42 static void rpc_async_schedule(struct work_struct
*);
43 static void rpc_release_task(struct rpc_task
*task
);
44 static void __rpc_queue_timer_fn(unsigned long ptr
);
47 * RPC tasks sit here while waiting for conditions to improve.
49 static struct rpc_wait_queue delay_queue
;
52 * rpciod-related stuff
54 struct workqueue_struct
*rpciod_workqueue
;
57 * Disable the timer for a given RPC task. Should be called with
58 * queue->lock and bh_disabled in order to avoid races within
62 __rpc_disable_timer(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
64 if (task
->tk_timeout
== 0)
66 dprintk("RPC: %5u disabling timer\n", task
->tk_pid
);
68 list_del(&task
->u
.tk_wait
.timer_list
);
69 if (list_empty(&queue
->timer_list
.list
))
70 del_timer(&queue
->timer_list
.timer
);
74 rpc_set_queue_timer(struct rpc_wait_queue
*queue
, unsigned long expires
)
76 queue
->timer_list
.expires
= expires
;
77 mod_timer(&queue
->timer_list
.timer
, expires
);
81 * Set up a timer for the current task.
84 __rpc_add_timer(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
86 if (!task
->tk_timeout
)
89 dprintk("RPC: %5u setting alarm for %lu ms\n",
90 task
->tk_pid
, task
->tk_timeout
* 1000 / HZ
);
92 task
->u
.tk_wait
.expires
= jiffies
+ task
->tk_timeout
;
93 if (list_empty(&queue
->timer_list
.list
) || time_before(task
->u
.tk_wait
.expires
, queue
->timer_list
.expires
))
94 rpc_set_queue_timer(queue
, task
->u
.tk_wait
.expires
);
95 list_add(&task
->u
.tk_wait
.timer_list
, &queue
->timer_list
.list
);
99 * Add new request to a priority queue.
101 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue
*queue
,
102 struct rpc_task
*task
,
103 unsigned char queue_priority
)
108 INIT_LIST_HEAD(&task
->u
.tk_wait
.links
);
109 q
= &queue
->tasks
[queue_priority
];
110 if (unlikely(queue_priority
> queue
->maxpriority
))
111 q
= &queue
->tasks
[queue
->maxpriority
];
112 list_for_each_entry(t
, q
, u
.tk_wait
.list
) {
113 if (t
->tk_owner
== task
->tk_owner
) {
114 list_add_tail(&task
->u
.tk_wait
.list
, &t
->u
.tk_wait
.links
);
118 list_add_tail(&task
->u
.tk_wait
.list
, q
);
122 * Add new request to wait queue.
124 * Swapper tasks always get inserted at the head of the queue.
125 * This should avoid many nasty memory deadlocks and hopefully
126 * improve overall performance.
127 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
129 static void __rpc_add_wait_queue(struct rpc_wait_queue
*queue
,
130 struct rpc_task
*task
,
131 unsigned char queue_priority
)
133 BUG_ON (RPC_IS_QUEUED(task
));
135 if (RPC_IS_PRIORITY(queue
))
136 __rpc_add_wait_queue_priority(queue
, task
, queue_priority
);
137 else if (RPC_IS_SWAPPER(task
))
138 list_add(&task
->u
.tk_wait
.list
, &queue
->tasks
[0]);
140 list_add_tail(&task
->u
.tk_wait
.list
, &queue
->tasks
[0]);
141 task
->tk_waitqueue
= queue
;
143 rpc_set_queued(task
);
145 dprintk("RPC: %5u added to queue %p \"%s\"\n",
146 task
->tk_pid
, queue
, rpc_qname(queue
));
150 * Remove request from a priority queue.
152 static void __rpc_remove_wait_queue_priority(struct rpc_task
*task
)
156 if (!list_empty(&task
->u
.tk_wait
.links
)) {
157 t
= list_entry(task
->u
.tk_wait
.links
.next
, struct rpc_task
, u
.tk_wait
.list
);
158 list_move(&t
->u
.tk_wait
.list
, &task
->u
.tk_wait
.list
);
159 list_splice_init(&task
->u
.tk_wait
.links
, &t
->u
.tk_wait
.links
);
164 * Remove request from queue.
165 * Note: must be called with spin lock held.
167 static void __rpc_remove_wait_queue(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
169 __rpc_disable_timer(queue
, task
);
170 if (RPC_IS_PRIORITY(queue
))
171 __rpc_remove_wait_queue_priority(task
);
172 list_del(&task
->u
.tk_wait
.list
);
174 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
175 task
->tk_pid
, queue
, rpc_qname(queue
));
178 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue
*queue
, int priority
)
180 queue
->priority
= priority
;
181 queue
->count
= 1 << (priority
* 2);
184 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue
*queue
, pid_t pid
)
187 queue
->nr
= RPC_BATCH_COUNT
;
190 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue
*queue
)
192 rpc_set_waitqueue_priority(queue
, queue
->maxpriority
);
193 rpc_set_waitqueue_owner(queue
, 0);
196 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
, unsigned char nr_queues
)
200 spin_lock_init(&queue
->lock
);
201 for (i
= 0; i
< ARRAY_SIZE(queue
->tasks
); i
++)
202 INIT_LIST_HEAD(&queue
->tasks
[i
]);
203 queue
->maxpriority
= nr_queues
- 1;
204 rpc_reset_waitqueue_priority(queue
);
206 setup_timer(&queue
->timer_list
.timer
, __rpc_queue_timer_fn
, (unsigned long)queue
);
207 INIT_LIST_HEAD(&queue
->timer_list
.list
);
213 void rpc_init_priority_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
)
215 __rpc_init_priority_wait_queue(queue
, qname
, RPC_NR_PRIORITY
);
217 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue
);
219 void rpc_init_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
)
221 __rpc_init_priority_wait_queue(queue
, qname
, 1);
223 EXPORT_SYMBOL_GPL(rpc_init_wait_queue
);
225 void rpc_destroy_wait_queue(struct rpc_wait_queue
*queue
)
227 del_timer_sync(&queue
->timer_list
.timer
);
229 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue
);
231 static int rpc_wait_bit_killable(void *word
)
233 if (fatal_signal_pending(current
))
235 freezable_schedule();
240 static void rpc_task_set_debuginfo(struct rpc_task
*task
)
242 static atomic_t rpc_pid
;
244 task
->tk_pid
= atomic_inc_return(&rpc_pid
);
247 static inline void rpc_task_set_debuginfo(struct rpc_task
*task
)
252 static void rpc_set_active(struct rpc_task
*task
)
254 rpc_task_set_debuginfo(task
);
255 set_bit(RPC_TASK_ACTIVE
, &task
->tk_runstate
);
259 * Mark an RPC call as having completed by clearing the 'active' bit
260 * and then waking up all tasks that were sleeping.
262 static int rpc_complete_task(struct rpc_task
*task
)
264 void *m
= &task
->tk_runstate
;
265 wait_queue_head_t
*wq
= bit_waitqueue(m
, RPC_TASK_ACTIVE
);
266 struct wait_bit_key k
= __WAIT_BIT_KEY_INITIALIZER(m
, RPC_TASK_ACTIVE
);
270 spin_lock_irqsave(&wq
->lock
, flags
);
271 clear_bit(RPC_TASK_ACTIVE
, &task
->tk_runstate
);
272 ret
= atomic_dec_and_test(&task
->tk_count
);
273 if (waitqueue_active(wq
))
274 __wake_up_locked_key(wq
, TASK_NORMAL
, &k
);
275 spin_unlock_irqrestore(&wq
->lock
, flags
);
280 * Allow callers to wait for completion of an RPC call
282 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
283 * to enforce taking of the wq->lock and hence avoid races with
284 * rpc_complete_task().
286 int __rpc_wait_for_completion_task(struct rpc_task
*task
, int (*action
)(void *))
289 action
= rpc_wait_bit_killable
;
290 return out_of_line_wait_on_bit(&task
->tk_runstate
, RPC_TASK_ACTIVE
,
291 action
, TASK_KILLABLE
);
293 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task
);
296 * Make an RPC task runnable.
298 * Note: If the task is ASYNC, this must be called with
299 * the spinlock held to protect the wait queue operation.
301 static void rpc_make_runnable(struct rpc_task
*task
)
303 rpc_clear_queued(task
);
304 if (rpc_test_and_set_running(task
))
306 if (RPC_IS_ASYNC(task
)) {
307 INIT_WORK(&task
->u
.tk_work
, rpc_async_schedule
);
308 queue_work(rpciod_workqueue
, &task
->u
.tk_work
);
310 wake_up_bit(&task
->tk_runstate
, RPC_TASK_QUEUED
);
314 * Prepare for sleeping on a wait queue.
315 * By always appending tasks to the list we ensure FIFO behavior.
316 * NB: An RPC task will only receive interrupt-driven events as long
317 * as it's on a wait queue.
319 static void __rpc_sleep_on_priority(struct rpc_wait_queue
*q
,
320 struct rpc_task
*task
,
322 unsigned char queue_priority
)
324 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
325 task
->tk_pid
, rpc_qname(q
), jiffies
);
327 __rpc_add_wait_queue(q
, task
, queue_priority
);
329 BUG_ON(task
->tk_callback
!= NULL
);
330 task
->tk_callback
= action
;
331 __rpc_add_timer(q
, task
);
334 void rpc_sleep_on(struct rpc_wait_queue
*q
, struct rpc_task
*task
,
337 /* We shouldn't ever put an inactive task to sleep */
338 BUG_ON(!RPC_IS_ACTIVATED(task
));
341 * Protect the queue operations.
343 spin_lock_bh(&q
->lock
);
344 __rpc_sleep_on_priority(q
, task
, action
, task
->tk_priority
);
345 spin_unlock_bh(&q
->lock
);
347 EXPORT_SYMBOL_GPL(rpc_sleep_on
);
349 void rpc_sleep_on_priority(struct rpc_wait_queue
*q
, struct rpc_task
*task
,
350 rpc_action action
, int priority
)
352 /* We shouldn't ever put an inactive task to sleep */
353 BUG_ON(!RPC_IS_ACTIVATED(task
));
356 * Protect the queue operations.
358 spin_lock_bh(&q
->lock
);
359 __rpc_sleep_on_priority(q
, task
, action
, priority
- RPC_PRIORITY_LOW
);
360 spin_unlock_bh(&q
->lock
);
364 * __rpc_do_wake_up_task - wake up a single rpc_task
366 * @task: task to be woken up
368 * Caller must hold queue->lock, and have cleared the task queued flag.
370 static void __rpc_do_wake_up_task(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
372 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
373 task
->tk_pid
, jiffies
);
375 /* Has the task been executed yet? If not, we cannot wake it up! */
376 if (!RPC_IS_ACTIVATED(task
)) {
377 printk(KERN_ERR
"RPC: Inactive task (%p) being woken up!\n", task
);
381 __rpc_remove_wait_queue(queue
, task
);
383 rpc_make_runnable(task
);
385 dprintk("RPC: __rpc_wake_up_task done\n");
389 * Wake up a queued task while the queue lock is being held
391 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
393 if (RPC_IS_QUEUED(task
) && task
->tk_waitqueue
== queue
)
394 __rpc_do_wake_up_task(queue
, task
);
398 * Tests whether rpc queue is empty
400 int rpc_queue_empty(struct rpc_wait_queue
*queue
)
404 spin_lock_bh(&queue
->lock
);
406 spin_unlock_bh(&queue
->lock
);
409 EXPORT_SYMBOL_GPL(rpc_queue_empty
);
412 * Wake up a task on a specific queue
414 void rpc_wake_up_queued_task(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
416 spin_lock_bh(&queue
->lock
);
417 rpc_wake_up_task_queue_locked(queue
, task
);
418 spin_unlock_bh(&queue
->lock
);
420 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task
);
423 * Wake up the next task on a priority queue.
425 static struct rpc_task
* __rpc_wake_up_next_priority(struct rpc_wait_queue
*queue
)
428 struct rpc_task
*task
;
431 * Service a batch of tasks from a single owner.
433 q
= &queue
->tasks
[queue
->priority
];
434 if (!list_empty(q
)) {
435 task
= list_entry(q
->next
, struct rpc_task
, u
.tk_wait
.list
);
436 if (queue
->owner
== task
->tk_owner
) {
439 list_move_tail(&task
->u
.tk_wait
.list
, q
);
442 * Check if we need to switch queues.
449 * Service the next queue.
452 if (q
== &queue
->tasks
[0])
453 q
= &queue
->tasks
[queue
->maxpriority
];
456 if (!list_empty(q
)) {
457 task
= list_entry(q
->next
, struct rpc_task
, u
.tk_wait
.list
);
460 } while (q
!= &queue
->tasks
[queue
->priority
]);
462 rpc_reset_waitqueue_priority(queue
);
466 rpc_set_waitqueue_priority(queue
, (unsigned int)(q
- &queue
->tasks
[0]));
468 rpc_set_waitqueue_owner(queue
, task
->tk_owner
);
470 rpc_wake_up_task_queue_locked(queue
, task
);
475 * Wake up the next task on the wait queue.
477 struct rpc_task
* rpc_wake_up_next(struct rpc_wait_queue
*queue
)
479 struct rpc_task
*task
= NULL
;
481 dprintk("RPC: wake_up_next(%p \"%s\")\n",
482 queue
, rpc_qname(queue
));
483 spin_lock_bh(&queue
->lock
);
484 if (RPC_IS_PRIORITY(queue
))
485 task
= __rpc_wake_up_next_priority(queue
);
487 task_for_first(task
, &queue
->tasks
[0])
488 rpc_wake_up_task_queue_locked(queue
, task
);
490 spin_unlock_bh(&queue
->lock
);
494 EXPORT_SYMBOL_GPL(rpc_wake_up_next
);
497 * rpc_wake_up - wake up all rpc_tasks
498 * @queue: rpc_wait_queue on which the tasks are sleeping
502 void rpc_wake_up(struct rpc_wait_queue
*queue
)
504 struct list_head
*head
;
506 spin_lock_bh(&queue
->lock
);
507 head
= &queue
->tasks
[queue
->maxpriority
];
509 while (!list_empty(head
)) {
510 struct rpc_task
*task
;
511 task
= list_first_entry(head
,
514 rpc_wake_up_task_queue_locked(queue
, task
);
516 if (head
== &queue
->tasks
[0])
520 spin_unlock_bh(&queue
->lock
);
522 EXPORT_SYMBOL_GPL(rpc_wake_up
);
525 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
526 * @queue: rpc_wait_queue on which the tasks are sleeping
527 * @status: status value to set
531 void rpc_wake_up_status(struct rpc_wait_queue
*queue
, int status
)
533 struct list_head
*head
;
535 spin_lock_bh(&queue
->lock
);
536 head
= &queue
->tasks
[queue
->maxpriority
];
538 while (!list_empty(head
)) {
539 struct rpc_task
*task
;
540 task
= list_first_entry(head
,
543 task
->tk_status
= status
;
544 rpc_wake_up_task_queue_locked(queue
, task
);
546 if (head
== &queue
->tasks
[0])
550 spin_unlock_bh(&queue
->lock
);
552 EXPORT_SYMBOL_GPL(rpc_wake_up_status
);
554 static void __rpc_queue_timer_fn(unsigned long ptr
)
556 struct rpc_wait_queue
*queue
= (struct rpc_wait_queue
*)ptr
;
557 struct rpc_task
*task
, *n
;
558 unsigned long expires
, now
, timeo
;
560 spin_lock(&queue
->lock
);
561 expires
= now
= jiffies
;
562 list_for_each_entry_safe(task
, n
, &queue
->timer_list
.list
, u
.tk_wait
.timer_list
) {
563 timeo
= task
->u
.tk_wait
.expires
;
564 if (time_after_eq(now
, timeo
)) {
565 dprintk("RPC: %5u timeout\n", task
->tk_pid
);
566 task
->tk_status
= -ETIMEDOUT
;
567 rpc_wake_up_task_queue_locked(queue
, task
);
570 if (expires
== now
|| time_after(expires
, timeo
))
573 if (!list_empty(&queue
->timer_list
.list
))
574 rpc_set_queue_timer(queue
, expires
);
575 spin_unlock(&queue
->lock
);
578 static void __rpc_atrun(struct rpc_task
*task
)
584 * Run a task at a later time
586 void rpc_delay(struct rpc_task
*task
, unsigned long delay
)
588 task
->tk_timeout
= delay
;
589 rpc_sleep_on(&delay_queue
, task
, __rpc_atrun
);
591 EXPORT_SYMBOL_GPL(rpc_delay
);
594 * Helper to call task->tk_ops->rpc_call_prepare
596 void rpc_prepare_task(struct rpc_task
*task
)
598 task
->tk_ops
->rpc_call_prepare(task
, task
->tk_calldata
);
602 rpc_init_task_statistics(struct rpc_task
*task
)
604 /* Initialize retry counters */
605 task
->tk_garb_retry
= 2;
606 task
->tk_cred_retry
= 2;
607 task
->tk_rebind_retry
= 2;
609 /* starting timestamp */
610 task
->tk_start
= ktime_get();
614 rpc_reset_task_statistics(struct rpc_task
*task
)
616 task
->tk_timeouts
= 0;
617 task
->tk_flags
&= ~(RPC_CALL_MAJORSEEN
|RPC_TASK_KILLED
|RPC_TASK_SENT
);
619 rpc_init_task_statistics(task
);
623 * Helper that calls task->tk_ops->rpc_call_done if it exists
625 void rpc_exit_task(struct rpc_task
*task
)
627 task
->tk_action
= NULL
;
628 if (task
->tk_ops
->rpc_call_done
!= NULL
) {
629 task
->tk_ops
->rpc_call_done(task
, task
->tk_calldata
);
630 if (task
->tk_action
!= NULL
) {
631 WARN_ON(RPC_ASSASSINATED(task
));
632 /* Always release the RPC slot and buffer memory */
634 rpc_reset_task_statistics(task
);
639 void rpc_exit(struct rpc_task
*task
, int status
)
641 task
->tk_status
= status
;
642 task
->tk_action
= rpc_exit_task
;
643 if (RPC_IS_QUEUED(task
))
644 rpc_wake_up_queued_task(task
->tk_waitqueue
, task
);
646 EXPORT_SYMBOL_GPL(rpc_exit
);
648 void rpc_release_calldata(const struct rpc_call_ops
*ops
, void *calldata
)
650 if (ops
->rpc_release
!= NULL
)
651 ops
->rpc_release(calldata
);
655 * This is the RPC `scheduler' (or rather, the finite state machine).
657 static void __rpc_execute(struct rpc_task
*task
)
659 struct rpc_wait_queue
*queue
;
660 int task_is_async
= RPC_IS_ASYNC(task
);
663 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
664 task
->tk_pid
, task
->tk_flags
);
666 BUG_ON(RPC_IS_QUEUED(task
));
669 void (*do_action
)(struct rpc_task
*);
672 * Execute any pending callback first.
674 do_action
= task
->tk_callback
;
675 task
->tk_callback
= NULL
;
676 if (do_action
== NULL
) {
678 * Perform the next FSM step.
679 * tk_action may be NULL if the task has been killed.
680 * In particular, note that rpc_killall_tasks may
681 * do this at any time, so beware when dereferencing.
683 do_action
= task
->tk_action
;
684 if (do_action
== NULL
)
690 * Lockless check for whether task is sleeping or not.
692 if (!RPC_IS_QUEUED(task
))
695 * The queue->lock protects against races with
696 * rpc_make_runnable().
698 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
699 * rpc_task, rpc_make_runnable() can assign it to a
700 * different workqueue. We therefore cannot assume that the
701 * rpc_task pointer may still be dereferenced.
703 queue
= task
->tk_waitqueue
;
704 spin_lock_bh(&queue
->lock
);
705 if (!RPC_IS_QUEUED(task
)) {
706 spin_unlock_bh(&queue
->lock
);
709 rpc_clear_running(task
);
710 spin_unlock_bh(&queue
->lock
);
714 /* sync task: sleep here */
715 dprintk("RPC: %5u sync task going to sleep\n", task
->tk_pid
);
716 status
= out_of_line_wait_on_bit(&task
->tk_runstate
,
717 RPC_TASK_QUEUED
, rpc_wait_bit_killable
,
719 if (status
== -ERESTARTSYS
) {
721 * When a sync task receives a signal, it exits with
722 * -ERESTARTSYS. In order to catch any callbacks that
723 * clean up after sleeping on some queue, we don't
724 * break the loop here, but go around once more.
726 dprintk("RPC: %5u got signal\n", task
->tk_pid
);
727 task
->tk_flags
|= RPC_TASK_KILLED
;
728 rpc_exit(task
, -ERESTARTSYS
);
730 rpc_set_running(task
);
731 dprintk("RPC: %5u sync task resuming\n", task
->tk_pid
);
734 dprintk("RPC: %5u return %d, status %d\n", task
->tk_pid
, status
,
736 /* Release all resources associated with the task */
737 rpc_release_task(task
);
741 * User-visible entry point to the scheduler.
743 * This may be called recursively if e.g. an async NFS task updates
744 * the attributes and finds that dirty pages must be flushed.
745 * NOTE: Upon exit of this function the task is guaranteed to be
746 * released. In particular note that tk_release() will have
747 * been called, so your task memory may have been freed.
749 void rpc_execute(struct rpc_task
*task
)
751 rpc_set_active(task
);
752 rpc_make_runnable(task
);
753 if (!RPC_IS_ASYNC(task
))
757 static void rpc_async_schedule(struct work_struct
*work
)
759 __rpc_execute(container_of(work
, struct rpc_task
, u
.tk_work
));
763 * rpc_malloc - allocate an RPC buffer
764 * @task: RPC task that will use this buffer
765 * @size: requested byte size
767 * To prevent rpciod from hanging, this allocator never sleeps,
768 * returning NULL if the request cannot be serviced immediately.
769 * The caller can arrange to sleep in a way that is safe for rpciod.
771 * Most requests are 'small' (under 2KiB) and can be serviced from a
772 * mempool, ensuring that NFS reads and writes can always proceed,
773 * and that there is good locality of reference for these buffers.
775 * In order to avoid memory starvation triggering more writebacks of
776 * NFS requests, we avoid using GFP_KERNEL.
778 void *rpc_malloc(struct rpc_task
*task
, size_t size
)
780 struct rpc_buffer
*buf
;
781 gfp_t gfp
= RPC_IS_SWAPPER(task
) ? GFP_ATOMIC
: GFP_NOWAIT
;
783 size
+= sizeof(struct rpc_buffer
);
784 if (size
<= RPC_BUFFER_MAXSIZE
)
785 buf
= mempool_alloc(rpc_buffer_mempool
, gfp
);
787 buf
= kmalloc(size
, gfp
);
793 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
794 task
->tk_pid
, size
, buf
);
797 EXPORT_SYMBOL_GPL(rpc_malloc
);
800 * rpc_free - free buffer allocated via rpc_malloc
801 * @buffer: buffer to free
804 void rpc_free(void *buffer
)
807 struct rpc_buffer
*buf
;
812 buf
= container_of(buffer
, struct rpc_buffer
, data
);
815 dprintk("RPC: freeing buffer of size %zu at %p\n",
818 if (size
<= RPC_BUFFER_MAXSIZE
)
819 mempool_free(buf
, rpc_buffer_mempool
);
823 EXPORT_SYMBOL_GPL(rpc_free
);
826 * Creation and deletion of RPC task structures
828 static void rpc_init_task(struct rpc_task
*task
, const struct rpc_task_setup
*task_setup_data
)
830 memset(task
, 0, sizeof(*task
));
831 atomic_set(&task
->tk_count
, 1);
832 task
->tk_flags
= task_setup_data
->flags
;
833 task
->tk_ops
= task_setup_data
->callback_ops
;
834 task
->tk_calldata
= task_setup_data
->callback_data
;
835 INIT_LIST_HEAD(&task
->tk_task
);
837 task
->tk_priority
= task_setup_data
->priority
- RPC_PRIORITY_LOW
;
838 task
->tk_owner
= current
->tgid
;
840 /* Initialize workqueue for async tasks */
841 task
->tk_workqueue
= task_setup_data
->workqueue
;
843 if (task
->tk_ops
->rpc_call_prepare
!= NULL
)
844 task
->tk_action
= rpc_prepare_task
;
846 rpc_init_task_statistics(task
);
848 dprintk("RPC: new task initialized, procpid %u\n",
849 task_pid_nr(current
));
852 static struct rpc_task
*
855 return (struct rpc_task
*)mempool_alloc(rpc_task_mempool
, GFP_NOFS
);
859 * Create a new task for the specified client.
861 struct rpc_task
*rpc_new_task(const struct rpc_task_setup
*setup_data
)
863 struct rpc_task
*task
= setup_data
->task
;
864 unsigned short flags
= 0;
867 task
= rpc_alloc_task();
869 rpc_release_calldata(setup_data
->callback_ops
,
870 setup_data
->callback_data
);
871 return ERR_PTR(-ENOMEM
);
873 flags
= RPC_TASK_DYNAMIC
;
876 rpc_init_task(task
, setup_data
);
877 task
->tk_flags
|= flags
;
878 dprintk("RPC: allocated task %p\n", task
);
882 static void rpc_free_task(struct rpc_task
*task
)
884 const struct rpc_call_ops
*tk_ops
= task
->tk_ops
;
885 void *calldata
= task
->tk_calldata
;
887 if (task
->tk_flags
& RPC_TASK_DYNAMIC
) {
888 dprintk("RPC: %5u freeing task\n", task
->tk_pid
);
889 mempool_free(task
, rpc_task_mempool
);
891 rpc_release_calldata(tk_ops
, calldata
);
894 static void rpc_async_release(struct work_struct
*work
)
896 rpc_free_task(container_of(work
, struct rpc_task
, u
.tk_work
));
899 static void rpc_release_resources_task(struct rpc_task
*task
)
903 if (task
->tk_msg
.rpc_cred
) {
904 put_rpccred(task
->tk_msg
.rpc_cred
);
905 task
->tk_msg
.rpc_cred
= NULL
;
907 rpc_task_release_client(task
);
910 static void rpc_final_put_task(struct rpc_task
*task
,
911 struct workqueue_struct
*q
)
914 INIT_WORK(&task
->u
.tk_work
, rpc_async_release
);
915 queue_work(q
, &task
->u
.tk_work
);
920 static void rpc_do_put_task(struct rpc_task
*task
, struct workqueue_struct
*q
)
922 if (atomic_dec_and_test(&task
->tk_count
)) {
923 rpc_release_resources_task(task
);
924 rpc_final_put_task(task
, q
);
928 void rpc_put_task(struct rpc_task
*task
)
930 rpc_do_put_task(task
, NULL
);
932 EXPORT_SYMBOL_GPL(rpc_put_task
);
934 void rpc_put_task_async(struct rpc_task
*task
)
936 rpc_do_put_task(task
, task
->tk_workqueue
);
938 EXPORT_SYMBOL_GPL(rpc_put_task_async
);
940 static void rpc_release_task(struct rpc_task
*task
)
942 dprintk("RPC: %5u release task\n", task
->tk_pid
);
944 BUG_ON (RPC_IS_QUEUED(task
));
946 rpc_release_resources_task(task
);
949 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
950 * so it should be safe to use task->tk_count as a test for whether
951 * or not any other processes still hold references to our rpc_task.
953 if (atomic_read(&task
->tk_count
) != 1 + !RPC_IS_ASYNC(task
)) {
954 /* Wake up anyone who may be waiting for task completion */
955 if (!rpc_complete_task(task
))
958 if (!atomic_dec_and_test(&task
->tk_count
))
961 rpc_final_put_task(task
, task
->tk_workqueue
);
966 return try_module_get(THIS_MODULE
) ? 0 : -EINVAL
;
969 void rpciod_down(void)
971 module_put(THIS_MODULE
);
975 * Start up the rpciod workqueue.
977 static int rpciod_start(void)
979 struct workqueue_struct
*wq
;
982 * Create the rpciod thread and wait for it to start.
984 dprintk("RPC: creating workqueue rpciod\n");
985 wq
= alloc_workqueue("rpciod", WQ_MEM_RECLAIM
, 0);
986 rpciod_workqueue
= wq
;
987 return rpciod_workqueue
!= NULL
;
990 static void rpciod_stop(void)
992 struct workqueue_struct
*wq
= NULL
;
994 if (rpciod_workqueue
== NULL
)
996 dprintk("RPC: destroying workqueue rpciod\n");
998 wq
= rpciod_workqueue
;
999 rpciod_workqueue
= NULL
;
1000 destroy_workqueue(wq
);
1004 rpc_destroy_mempool(void)
1007 if (rpc_buffer_mempool
)
1008 mempool_destroy(rpc_buffer_mempool
);
1009 if (rpc_task_mempool
)
1010 mempool_destroy(rpc_task_mempool
);
1012 kmem_cache_destroy(rpc_task_slabp
);
1013 if (rpc_buffer_slabp
)
1014 kmem_cache_destroy(rpc_buffer_slabp
);
1015 rpc_destroy_wait_queue(&delay_queue
);
1019 rpc_init_mempool(void)
1022 * The following is not strictly a mempool initialisation,
1023 * but there is no harm in doing it here
1025 rpc_init_wait_queue(&delay_queue
, "delayq");
1026 if (!rpciod_start())
1029 rpc_task_slabp
= kmem_cache_create("rpc_tasks",
1030 sizeof(struct rpc_task
),
1031 0, SLAB_HWCACHE_ALIGN
,
1033 if (!rpc_task_slabp
)
1035 rpc_buffer_slabp
= kmem_cache_create("rpc_buffers",
1037 0, SLAB_HWCACHE_ALIGN
,
1039 if (!rpc_buffer_slabp
)
1041 rpc_task_mempool
= mempool_create_slab_pool(RPC_TASK_POOLSIZE
,
1043 if (!rpc_task_mempool
)
1045 rpc_buffer_mempool
= mempool_create_slab_pool(RPC_BUFFER_POOLSIZE
,
1047 if (!rpc_buffer_mempool
)
1051 rpc_destroy_mempool();